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Abstract
We show, without relying on any unproven assumptions, that a low-density free fermion
chain exhibits thermalization in the following (restricted) sense. We choose the initial state
as a pure state drawn randomly from the Hilbert space in which all particles are in half of the
chain. This represents a nonequilibrium state such that the half chain containing all particles
is in equilibrium at infinite temperature, and the other half chain is a vacuum. We let the
system evolve according to the unitary time evolution determined by theHamiltonian and, at a
sufficiently large typical time,measure the particle number in an arbitrarymacroscopic region
in the chain. In this setup, it is proved that the measured number is close to the equilibrium
value with probability very close to one. Our result establishes the presence of thermalization
in a concrete model in a mathematically rigorous manner. The key for the proof is a new
strategy to show that a randomly generated nonequilibrium initial state typically has a large
enough effective dimension by using only mild verifiable assumptions. In the present work,
we first give general proof of thermalization based on two assumptions, namely, the absence
of degeneracy in energy eigenvalues and a property about the particle distribution in energy
eigenstates. We then justify these assumptions in a concrete free-fermion model, where the
absence of degeneracy is established by using number-theoretic results. This means that our
general result also applies to any lattice gas models in which the above two assumptions are
justified. To confirm the potential wide applicability of our theory, we discuss some other
models for which the essential assumption about the particle distribution is easily verified,
and some non-random initial states whose effective dimensions are sufficiently large.
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1 Introduction

Whether the unitary time evolution in an isolated macroscopic quantum system can describe
the phenomenon of thermalization or, equivalently, the approach to thermal equilibrium
is an essential question in the foundation of statistical mechanics. Since there are several
different formulations of thermalization, we shall first make clear what we precisely mean by
thermalization in the present work. Consider amany-body quantum systemwith Hamiltonian
Ĥ and take a pure initial state |�(0)〉 inwhich energy is sharply distributed around some value
E . We say that the system with this initial state thermalizes if the measurement result of any
macroscopic observable Â in the time-evolved state |�(t)〉 after sufficiently long and typical
time t > 0 is indistinguishable (with probability very close to one) from the microcanonical
average 〈 Â〉MC

E . Note that we are dealing with the outcome of a single quantum mechanical
measurement of Â in the state |�(t)〉 rather than the quantum mechanical expectation value
〈�(t)| Â|�(t)〉 or any other averaged quantities. Therefore, thermalization formulated in this
manner guarantees that the result of a single experiment at a sufficiently later time is predicted
precisely by equilibrium statistical mechanics.1

Our ultimate goal is to rigorously establish the presence of thermalization in the above
strong form in a realistic macroscopic quantum system with a realistic nonequilibrium initial
state. But this seems to be a formidably difficult problem for the moment. In the present
paper, we report a partial result toward the goal, namely, complete proof that a low-density
free fermion chain exhibits thermalization in the above sense but for a restricted class of
observables [1].

1 It is a common misconception that the prediction of equilibrium statistical mechanics should always be
compared with an averaged quantity in the corresponding physical system. In fact, the law of large num-
bers guarantees that the statistical mechanical expectation value accurately predicts the outcome of a single
measurement in the equilibrium state, provided that both the system and the quantity to be measured are
macroscopic.
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The study of thermalization in isolated macroscopic quantum systems goes back to the
early days of quantummechanics [2], but considerable progress has been made in the present
century partly motivated by modern ultracold atom experiments [3–7]. It is now a general
consensus that a sufficiently complexmany-bodyquantumsystemhas the ability to thermalize
only by the unitary time evolution [8, 9].

An important theoretical concept in the study of thermalization is the energy eigenstate
thermalization hypothesis (ETH). It was first introduced (implicitly) by von Neumann in
1929 [2, 10] as an essential assumption for his quantum ergodic theorem. See [8, 11] for the
relation between von Neumann’s ETH and the modern version of ETH proposed in [12, 13].
Another key theoretical concept is a large effective dimension of the initial state. It was first
pointed out by Tasaki in 1998 [14] (without explicitly introducing the notion of the effective
dimension) that one can show the presence of equilibration if the effective dimension is large
enough. It is known that one can prove the presence of thermalization by assuming either
(i) some (strong) form of ETH [2, 10, 15–18], (ii) some form of ETH and a large enough
effective dimension [14, 19–22], or (iii) an effective dimension almost as large as the total
dimension [17, 23].

It is strongly believed that the assumptions in the above scenarios (i), (ii), and (iii) are
satisfied in a large class of sufficiently complex quantum systems and their realistic (nonequi-
librium) initial states. However, it is extremely difficult, even if not impossible, to justify the
assumptions rigorously for concrete models. As far as we know, there have been no con-
crete and nontrivial examples of quantum systems with short-range interaction in which the
presence of thermalization was justified according to these scenarios without relying on any
unproven assumptions. We note that an example based on a different mechanism is discussed
in [24].

It is interesting, on the other hand, that there have beenmany examples of quantum systems
in which the absence of thermalization was rigorously established. A well-known example
is an integrable system, where the system relaxes not to the equilibrium state but to a state
corresponding to an ensemble characterized by its local integrals of motion. The absence of
thermalization in such systems with local integrals of motion is an old established property
[25, 26], and has recently been studied in detail in terms of the generalized Gibbs ensemble
[27, 28].Another example is a systemwithmany-body localization:A spin systemwithmany-
body localization has random interactions or a random magnetic field, and this randomness
prohibits its thermalization as in the case of the Anderson localization [29–34]. Recently, a
more exotic system was found where most initial states thermalize while some do not. This
phenomenon was first observed in experiments of cold atoms [35], and independently from
this experiment, a general theoretical framework covering such phenomena was proposed
[36, 37]. Later, such phenomena were named quantum many-body scar states, and have
attracted the interests of broad research fields [38–44]. Furthermore, it has even been shown
that the problem of thermalization is, in general, undecidable [45].

The goal of this paper is to present a nontrivial and rigorous concrete example of ther-
malization (in a restricted sense) that does not rely on any unproven assumptions. We first
develop a general theory of unitary time evolution in a low-density lattice gas that satis-
fies two crucial assumptions, and establish the presence of thermalization with respect to
the number operator for any macroscopic region, assuming that the initial nonequilibrium
state is generated randomly. The derivation is based on the above-mentioned scenario (iii),
which requires the effective dimension of the initial state to be almost as large as the total
Hilbert space dimension. We then prove that the two assumptions are indeed satisfied in the
simplest model, namely, the free fermion chain with suitable parameters. Although a free
fermion system does not exhibit full-fledged thermalization, i.e., the approach to thermal
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equilibrium from an arbitrary nonequilibrium state (with almost fixed energy), it does ther-
malize in our setting where the initial state is sufficiently complex. We should note that we
are here using the notion of thermalization in a phenomenological manner, in the sense we
focus only on macroscopically observable features and do not pay attention to microscopic
mechanisms. More precisely, thermalization in our example is essentially indistinguishable
from that observed in a realistic gas, provided that a macroscopic observer measures only the
density of particles in a given region (and the coarse-grained momentum distribution).2 See
Sect. 4 for a related discussion, and [46–48] for detailed numerical studies of closely related
problems.

It is important to note, however, that our general theory should apply to non-integrable
models as well, in which one expects full-fledged thermalization to take place. In fact, the
key assumption in our theory is about the particle distribution in energy eigenstates, which
may be regarded as a very restrictive form of ETH. The other assumption is the absence of
degeneracy in the energy spectrum of the model, which appears highly natural and plausible
in complex many-body systems. Interestingly, if we assume the absence of degeneracy, we
can justify the first assumption about the particle distribution for a wider class of lattice
gas models, including interacting ones. It is an intriguing problem whether one can find
non-integrable models in which our assumptions can be fully justified.

Before going into details of our theory, let us state precisely what we can prove for free
fermion chains. Consider a system of N fermions on the chain {1, . . . , L}, where we fix the
density ρ = N/L and make N and L large. We take the standard Hamiltonian with uniform
nearest-neighbor hopping

Ĥ =
L∑

x=1

{
eiθ ĉ†x ĉx+1 + e−iθ ĉ†x+1ĉx

}
, (1.1)

where the phase θ ∈ R is introduced (artificially) to break the reflection symmetry. See
Sect. 3.1 for notations and details. In the most standard model with θ = 0, most energy
eigenvalues are degenerate because of the reflection symmetry (which brings thewavenumber
k to−k). It is likely that the degeneracies are lifted by a nonzero phase θ . We assume that the
parameters are properly chosen so that all the energy eigenvalues of Ĥ are nondegenerate.
In fact, we prove in Sect. 3.2 that the model is free from degeneracy under some conditions.
For example, it suffices to set θ = (4N + 2L)−(L−1)/2 provided that L is an odd prime.

We choose initial state |�(0)〉 randomly from the subspace of states in which all fermions
are in the half-chain {1, . . . , (L−1)/2}. This corresponds to the infinite temperature equilib-

rium state confined in the half-chain. We then denote by |�(t)〉 = e−i Ĥ t |�(0)〉 the state at
time t > 0. We let N̂left be the operator that counts the number of fermions on the half-chain
{1, . . . , (L − 1)/2}. Then, our main result is as follows:

Theorem 1.1 When N (or L) is sufficiently large and ρ = N/L ≤ 1/5, the following is
true with probability larger than 1− e−(ρ/3)N (where the probability is that for the choice of
|�(0)〉). There exists a sufficiently long time T > 0 and a subset (a collection of intervals)
G ⊂ [0, T ] with μ(G)/T ≥ 1 − e−(ρ/4)N (where μ(G) denotes the total length of the

intervals in G) such that if one measures N̂left in |�(t)〉 = e−i Ĥ t |�(0)〉 at any t ∈ G the

2 Researchers who emphasize microscopic mechanisms may not call the process thermalization since every-
thing is governed by free particle dynamics. Our point is to focus only on macroscopically observable
phenomena, assuming that the observer has no access to microscopic mechanisms.
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measurement result Nleft satisfies

∣∣∣
Nleft

N
− 1

2

∣∣∣ ≤ ε0(ρ), (1.2)

with probability larger than 1 − e−(ρ/4)N (where the probability is that for quantum mea-

surement). Here we set ε0(ρ) =
√

3
2ρ.

The factors e−(ρ/3)N and e−(ρ/4)N are essentially negligible if ρN � 1. Then the theorem
states that it almost certainly happens that the measurement result of N̂left/N at a sufficiently
large and typical time is close to its equilibrium value 1/2 with precision ε0(ρ). Since the
measurement result of N̂left/N is 1 in the initial state |�(0)〉, this establishes an irreversible
behavior (or the approach to thermal equilibrium) with respect to the observable N̂left . We
should note that our result is not limited for a single specific observable Nleft . In fact, the
main theorem, Theorem 2.4, is stated for the number operator for any macroscopic region.
As we have already stressed, it is crucial that we are dealing with the result of a single
projective measurement of N̂left in the state |�(t)〉, rather than its quantum mechanical
average 〈�(t)|N̂left|�(t)〉.

We must note, however, that the precision ε0(ρ) in (1.2) is a function of the density ρ,
and may not be small. One needs to consider a system with low density in order to have high
precision. For example, ρ 	 10−4 for ε0 	 10−2, or ρ 	 0.04 for ε0 = 1/4. This density-
dependence of the precision ε0(ρ) is amajor shortcoming of the present theory, which reflects
our strategy to base the theory only on mild verifiable assumptions. We nevertheless stress
that our theorem establishes thermalization in a certain sensewithout relying on any unproven
assumptions.

The present paper is organized as follows. In Sect. 2, we state our main thermalization
theorem for a general lattice gas satisfying two assumptions, namely, Assumptions 2.1 and
2.2. Then in Sect. 3, we prove these two assumptions are indeed satisfied in free fermion
chains with suitable parameters.

In Appendix A, we discuss the extension of our general theory to a model in which the
energy spectrum is moderately degenerate. In Appendix B, we present two classes of models
(one of which includes non-integrable models) in which we can justify Assumption 2.2
about the particle distribution in energy eigenstates, assuming that the energy eigenvalues
are nondegenerate.We stress that Assumption 2.2 is indeed an essential nontrivial assumption
in our theory. In Appendix C, we present some concrete estimates of the effective dimensions
of some non-random initial states in the free fermion chain, and with the help of this estimate,
we prove that some non-random initial states indeed thermalize. Finally, in Appendix D, we
briefly discuss a possible extension of our result to finite temperature states.

2 General Results

Here we describe general systems of lattice gas, state necessary assumptions, and prove the
main low-density thermalization theorem. The new observation about the effective dimension
is summarized in Theorem 2.3.
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2.1 Setting andMain Assumptions

Let � be a lattice with L sites, and consider a system of N fermions on �.3 A typical
example is the chain � = {1, . . . , L}. We take the thermodynamic convention (except in
Appendix C), in which we fix the density ρ, choose L and N such that N/L 	 ρ, and make
L and N sufficiently large. Our results are meaningful in the low-density regime, where ρ is
sufficiently small.

LetHtot be theHilbert space of the systemwith N particles on the lattice�. The dimension
Dtot of Htot is given by

Dtot =
(
L

N

)
∼ eL S(ρ), (2.1)

where the relation F(L) ∼ G(L) means

lim
L↑∞

1

L
log

F(L)

G(L)
= 0, (2.2)

and

S(p) = −p log p − (1 − p) log(1 − p), (2.3)

is the binominal entropy. The final expression in (2.1) comes from the Stirling formula.
We decompose the lattice � disjointly into two parts as � = �1 ∪ �2, where |�1| =

(L − 1)/2 and |�2| = (L + 1)/2 when L is odd, and |�1| = |�2| = L/2 when L is even.
Throughout the present paper, we denote by |S| the number of elements in a set S. Let H1

denote the nonequilibrium subspace where all particles are in the sublattice �1 and hence
�2 is empty. The dimension of H1 is

D1 =
( L−1

2
N

)
∼ e(L/2)S(2ρ), (2.4)

where we assumed L is odd (but the result is essentially the same for even L). We denote by
P̂1 the projection onto the subspace H1.

Let Ĥ be the Hamiltonian of the system.We assume that Ĥ preserves the particle number,
and denote by |� j 〉 ∈ Htot with j = 1, . . . , Dtot its normalized eigenstate (with N particles)
corresponding to the energy eigenvalue E j .Wemake two essential assumptions about energy
eigenvalues and eigenstates.

Assumption 2.1 The energy eigenvalues E1, . . . , EDtot of Ĥ are nondegenerate.

It is believed that the energy eigenvalues of a quantum many-body system are, in general,
nondegenerate unless there are special reasons (such as symmetry) that cause degeneracy.
In other words, it is likely that accidental degeneracies can always be lifted by adding an
appropriate small perturbation to the Hamiltonian. It is, however, not at all easy to make this
intuition into proof for a concrete class of models. In Sect. 3.2, we shall prove that some free
fermion models on a chain are indeed free from degeneracy. See Theorems 3.1 and 3.2.

Assumption 2.2 For any j = 1, . . . , Dtot , the energy eigenstate |� j 〉 satisfies
〈� j |P̂1|� j 〉 ≤ 2−N . (2.5)

3 All the results in Sect. 2 are also valid for a system of hardcore bosons.
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Here 〈� j |P̂1|� j 〉 is the probability to find all particles in �1 in the state |� j 〉. Note that
one gets the probability 2−N if each particle independently chooses between�1 and�2 with
probability 1/2. The bound (2.5) is reasonable since the hardcore nature further reduces the
probability. We expect the bound (2.5) to hold for a large class of interacting quantum lattice
gases, but, for the moment, we are able to prove it for a class of non-interacting fermions
(Sect. 3.3 and Appendix B.2) and systems of interacting fermions or hardcore bosons on a
double lattice with special symmetry (Appendix B.1).

We also note that Assumption 2.2 is reminiscent of the strong ETH in the sense that it is an
assertion about every energy eigenstate. But this is much weaker than the standard ETH since
we only require that a single observable, rather than all macroscopic observables, satisfies
the inequality (2.5), rather than an equality.

In what follows, we first show that, under Assumption 2.2, a random initial state has an
extremely large effective dimensionwith high probability (Theorem2.3). Then, by combining
Assumption 2.1 and the largeness of effective dimension, we conclude that this initial state
thermalizes (Theorem 2.4).

2.2 Initinal State and its Effective Dimension

Let |�(0)〉 ∈ Htot be the normalized initial state of the system. We define the effective
dimension Deff of |�(0)〉 by

Deff =
(Dtot∑

j=1

∣∣〈�(0)|� j 〉
∣∣4
)−1

, (2.6)

which quantifies the effective number of energy eigenstates that constitute the state |�(0)〉.
It holds in general that 1 ≤ Deff ≤ Dtot. It is known that an initial state whose effective
dimension Deff is almost as large as Dtot generically exhibits thermalization, provided that
the energy eigenvalues are nondegenerate. See section 6 of [17]. (See Appendix A for nec-
essary modifications when there are degeneracies.) It is strongly believed that a realistic
nonequilibrium initial state of a non-integrable many-body quantum system has an effective
dimension almost as large as the total Hilbert space dimension.4 See [49–51] for systematic
convincing numerical studies.5 However, it seems to be formidably difficult to prove this
expectation rigorously. Currently available general lower bound for Deff only shows that it
is only moderately large [52]. Our major task is to construct an initial state |�(0)〉 that is far
from equilibrium and has a large effective dimension Deff .

To realize such an initial state with large Deff , we choose |�(0)〉 randomly from the sub-
spaceH1. To be precise, denoting by {|� j 〉} j=1,...,D1 an arbitrary orthonormal basis ofH1 we

4 To be precise this is true only when the final state represents the equilibrium state at infinite temperature
(as in our case). In general, if the initial state |�(0)〉 has energy close to E then the effective dimension is
believed to be close to the dimension of the corresponding energy shell, i.e., the Hilbert space spanned by
energy eigenstates whose eigenvalues are close to E . One can argue, although very heuristically, that a large
effective dimension is a consequence of (a strong form of) ETH. Consider a system described by a short-ranged
translation-invariant Hamiltonian Ĥ and assume that ETH is valid. For simplicity, we take the initial state
|�(0)〉 to be a translation invariant product state. (We assume |�(0)〉 is not an eigenstate of Ĥ .) Then |�(0)〉
has energy distribution peaked around some value E . Let |� j 〉 be the eigenstate of Ĥ with eigenvalue E j .
Since ETH asserts that energy eigenstates with close eigenvalues are similar to each other, it is reasonable to
assume that the overlap |〈�(0)|� j 〉|2 is almost independent of j as long as E j 	 E . This implies that Deff
is almost identical to the dimension of the energy shell around E .
5 We note that the diagonal entropy Sd studied in these works is believed to be related to the effective
dimension as Deff ∼ exp[Sd].
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prepare an initial state as |�(0)〉 = ∑D1
j=1 c j |� j 〉, where c j ∈ C satisfies

∑
j |c j |2 = 1 and

are drawn randomly according to the uniform measure on the unit sphere in the D1 dimen-
sional complex space. Such |�(0)〉 describes a nonequilibrium state such that all particles
are confined in the sublattice �1, while the state restricted to �1 is in thermal equilibrium
at infinite temperature. In this state, the infinite temperature state in �1 borders a vacuum in
�2. Therefore we can interpret the present initial state as a limiting case of a nonequilibrium
state in which two equilibrium states with different pressures are in touch with each other.

We then have the following essential result, which is the main new observation in the
present paper.

Theorem 2.3 Suppose that Assumption 2.2 is valid and that ρ ≤ 1/5. Then, for sufficiently
large N, one has

Dtot

Deff
≤ eρN , (2.7)

with probability larger than 1 − e−(ρ/3)N .

Here the probability is that for the random choice of the initial state |�(0)〉. We thus see
that, when ρ is small, the effective dimension Deff is almost as large as Dtot with proba-
bility very close to one. We shall see in Sect. 2.3 below that the upper bound (2.7) implies
thermalization in a certain sense.

Proof of Theorem 2.3 It is well known (and can easily be shown) that for any |�〉 ∈ H1, one
has

∣∣〈�(0)|�〉∣∣4 = 2

D1(D1 + 1)
‖|�〉‖4, (2.8)

where the bar on the left-hand side denotes the average over the random choice of |�(0)〉.
See, e.g., [53]. Noting that 〈�(0)|� j 〉 = 〈�(0)|P̂1|� j 〉 and that P̂1|� j 〉 ∈ H1, we find from
(2.6) and (2.8) that

D−1
eff =

Dtot∑

j=1

∣∣〈�(0)|P̂1|� j 〉
∣∣4 = 2

D1(D1 + 1)

Dtot∑

j=1

‖P̂1|� j 〉‖4. (2.9)

By using the assumed bound (2.5), which is written as ‖P̂1|� j 〉‖2 ≤ 2−N , we find

D−1
eff ≤ 2

D1(D1 + 1)2N

Dtot∑

j=1

‖P̂1|� j 〉‖2 = 2

D1(D1 + 1)2N
Tr[P̂1] = 2

(D1 + 1)2N
, (2.10)

where we noted that Tr[P̂1] = D1. Recalling (2.1) and (2.4), we see that

DtotD
−1
eff ≤ 2Dtot

2N D1
∼ exp[L S(ρ) − L

2 S(2ρ) − N log 2] = eg(ρ)L , (2.11)

with

g(ρ) = S(ρ) − 1
2 S(2ρ) − ρ log 2

= −(1 − ρ) log(1 − ρ) + 1 − 2ρ

2
log(1 − 2ρ)

= ρ2

2
+ ρ3

2
+ 7ρ4

12
+ · · · <

2

3
ρ2. (2.12)
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Here the final inequality is verified for ρ ∈ [0, 1/5] with an aid of numerical evaluation. We
can rewrite the estimate (2.11) into the bound

DtotD
−1
eff ≤ exp[ 23ρ2L] = exp[ 23ρN ], (2.13)

provided that L (or N ) is sufficiently large. Theorem 2.3 then follows fromMarkov’s inequal-
ity as follows. Let p be the probability that DtotD

−1
eff is larger than eρN . Then we see

DtotD
−1
eff ≥ p eρN , which, with (2.13), implies p ≤ e−(ρ/3)N . ��

One may prefer a statement for a definite (i.e., non-random) initial state rather than that
for (the majority of) random initial states. In Appendix C, we discuss a non-random initial
state whose effective dimension almost saturates as in Theorem 2.3.

2.3 Time Evolution and Thermalization

Let us now consider the state obtained from the initial state |�(0)〉 by the unitary time
evolution, i.e.,

|�(t)〉 = e−i Ĥ t |�(0)〉 =
Dtot∑

j=1

e−i E j t |� j 〉〈� j |�(0)〉. (2.14)

We expect that, for sufficiently large and typical t , the time-evolved state |�(t)〉 describes
(in a certain physical sense) the thermal equilibrium at infinite temperature. See the next
subsection.

To examine the property of the state |�(t)〉, we take an arbitrary subset 	 of � such that
|	| = γ L , where γ is a constant of order 1, and measure the proportion of particles in 	.
We shall prove that, for sufficiently large and typical time t , the proportion is close to its
equilibrium value, γ , with probability very close to one. This type of statement has been
shown in the literature for initial states with extremely large effective dimensions [17, 23],
and we follow the standard idea. Our precise statement is as follows.

Theorem 2.4 We fix the (small) density ρ > 0, and take sufficiently large L and N such that
N/L 	 ρ. We consider a system of N particles on the lattice � such that |�| = L and let Ĥ
be the Hamiltonian. Suppose that Assumption 2.1 about nondegeneracy is valid and also that
the effective dimension Deff is large enough to satisfy the bound (2.7). (This is guaranteed
by Theorem 2.3 to be extremely likely.) Take any 	 ⊂ � such that |	| = γ L, and let N̂	 be
the operator that counts the number of particles in 	. Then there exists a constant T > 0
and a subset (a collection of intervals) G ⊂ [0, T ] with

μ(G)

T
≥ 1 − e−(ρ/4)N , (2.15)

whereμ(G) is the total length of the intervals in G. Suppose that one performs ameasurement
of the number operator N̂	 in the state |�(t)〉 with arbitrary t ∈ G. Then, with probability
larger than 1 − e−(ρ/4)N , the measurement result N	 satisfies

∣∣∣
N	

N
− γ

∣∣∣ ≤ ε0(ρ), (2.16)

where the precision is given by

ε0(ρ) = √
6γ (1 − γ )ρ. (2.17)
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Here the probability is that for the quantum mechanical measurement. Suppose that N is
sufficiently large so that e−(ρ/4)N is negligibly small. Then the theorem guarantees that (2.16)
almost certainly holds for almost all t in [0, T ]. The bound (2.16) states that the observed
proportion N	/N is close to its equilibrium value, γ . Recalling that the initial state |�(0)〉
is a nonequilibrium state in which all particles are in �1, we have established that the system
thermalizes only by means of unitary time evolution (2.14).

We must note, however, that the precision in the relation (2.16) is given by ε0(ρ), which
is a function of ρ as in (2.17) and may not be small. In fact, we need to make the density
ρ sufficiently low to achieve high precision. If one demands that the precision ε0(ρ) should
be, for example, of order 10−2 then ρ should be of order 10−4. This density dependence of
the precision and the resulting limitation to dilute gases are the major shortcomings of the
present theory, which comes from our strategy to base the whole theory on mild verifiable
assumptions, namely, Assumptions 2.1 and 2.2.

We should also remark that our criterion for thermal equilibrium deals only with the
number of particles in an arbitrary macroscopic region. We have proved the presence of
thermalization, but only with respect to this rather restricted criterion. This again reflects
the limitation arising from our mild assumptions. Although we expect that thermalization
for other macroscopic quantities reflecting single-particle properties can be established by
a straightforward extension of the present analysis, we are far from treating quantities that
involve particle-particle correlations. See the discussion at the end of Sect. 4.

Proof of Theorem 2.4 The proof consists essentially of a combination of standard arguments
found in the literature. For ε > 0, let P̂	,ε

neq denote the projection operator onto the subspace
of Htot determined by

∣∣∣∣
N̂	

N
− γ

∣∣∣∣ ≥ ε. (2.18)

Clearly, the expectation value 〈�(t)|P̂	,ε0(ρ)
neq |�(t)〉 is the probability that the measurement

result of N̂	 in |�(t)〉 does not satisfy the relation (2.16). From (2.14), we see that

〈�(t)|P̂	,ε
neq |�(t)〉 =

Dtot∑

j, j ′=1

ei(E j−E j ′ )t 〈�(0)|� j 〉〈� j |P̂	,ε
neq |� j ′ 〉〈� j ′ |�(0)〉. (2.19)

Since we assumed that the energy eigenvalues E j are non-degegerate, the long-time average
of 〈�(t)|P̂	,ε

neq |�(t)〉 is expressed in terms of a single sum as

lim
T↑∞

1

T

∫ T

0
dt 〈�(t)|P̂	,ε

neq |�(t)〉 =
Dtot∑

j=1

∣∣〈�(0)|� j 〉
∣∣2〈� j |P̂	,ε

neq |� j 〉

≤

√√√√√
(Dtot∑

j=1

∣∣〈�(0)|� j 〉
∣∣4
)(Dtot∑

j=1

〈� j |P̂	,ε
neq |� j 〉2

)

≤
√
DtotD

−1
eff 〈P̂	,ε

neq 〉∞, (2.20)

where we defined the canonical average at infinite temperature by

〈· · · 〉∞ = TrHtot [· · · ]
Dtot

. (2.21)
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In (2.20), the second line follows from the Schwarz inequality, and the final expression
follows from (2.6) by noting 〈� j |P̂	,ε

neq |� j 〉2 ≤ 〈� j |P̂	,ε
neq |� j 〉.

Below we prove the large-deviation type upper bound

〈P̂	,ε
neq 〉∞ ≤ C exp

[
− ε2

3γ (1 − γ )
N
]

= C exp
[
−2ρ

( ε

ε0(ρ)

)2
N
]
, (2.22)

with a constant C > 1, assuming that N is sufficiently large and ε is sufficiently small. Note
that the right-hand side reduces to Ce−2ρN if we set ε = ε0(ρ). Recalling (2.7), we find that
the right-hand side of (2.20) with ε = ε0(ρ) is bounded from above by

√
C e−(ρ/2)N . This

means that there is sufficiently large T such that the finite-time average satisfies

1

T

∫ T

0
dt 〈�(t)|P̂	,ε0(ρ)

neq |�(t)〉 ≤ e−(ρ/2)N . (2.23)

To rewrite the obtained relation into the form of Theorem 2.4, we applyMarkov’s inequal-
ity. We let G be the set of time at which (2.16) is satisfied with probability larger than
1 − e−(ρ/4)N :

G = {
t ∈ [0, T ] ∣∣ 〈�(t)|P̂	,ε0(ρ)

neq |�(t)〉 ≤ e−(ρ/4)N}. (2.24)

The property ofG stated in the theorem is fulfilled by construction. It remains to verify (2.15)
for the above G. For this, it suffices to note that

1

T

∫ T

0
dt 〈�(t)|P̂	,ε0(ρ)

neq |�(t)〉 ≥ 1

T

∫

t∈[0,T ]\G
dt e−(ρ/4)N = T − μ(G)

T
e−(ρ/4)N ,

(2.25)

which, with (2.23), implies the desired (2.15). ��
Derivation of (2.22) We shall be brief since the derivation is standard and elementary. Let P̂M
be the projection onto the subspace with N̂	 = M . It is clear that

P̂	,ε
neq =

∑

M
(|M/N−γ |≥ε)

P̂M , (2.26)

and

〈P̂M 〉∞ ∼ exp

[
γ L S

(
M

γ L

)
+ (1 − γ )L S

(
N − M

(1 − γ )L

)
− L S

(
N

L

)]
. (2.27)

When |M/N − γ | = ε or, equivalently, M/N − γ = ±ε, the two first argument of S(·) in
the above expression read

M

γ L
=
(
1 ± ε

γ

)
ρ,

N − M

(1 − γ )L
=
(
1 ∓ ε

1 − γ

)
ρ. (2.28)

Since 〈P̂M 〉∞ takes a very sharp maximum aroundM such thatM/(γ L) = ρ, the probability
that |M/N − γ | ≥ ε is almost the same as the probability that |M/N − γ | 	 ε. We thus
have

〈P̂	,ε
neq 〉∞ ∼ max± exp

[
γ L S

((
1 ± ε

γ

)
ρ
)

+ (1 − γ )L S
((

1 ∓ ε
1−γ

)
ρ
)

− L S(ρ)
]

= exp

[
−
{1
2

1

γ (1 − γ )

ρ

1 − ρ
ε2 + O(ε3)

}
L

]
. (2.29)

For sufficiently large L and small ε this is converted into the inequality (2.22). ��
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2.4 Nature of the Final State

As we have noted several times, we expect that the state |�(t)〉 with sufficiently large and
typical t represents (with certain limited accuracy) the thermal equilibrium state of the whole
system at infinite temperature. Here we briefly explain why the infinite temperature state,
rather than a finite temperature state, is the destination of the relaxation process.

Let us assume in general that the Hamiltonian is written as

Ĥ = Ĥ1 + Ĥ2 + ΔĤ , (2.30)

where Ĥ1 and Ĥ2 act only on�1 and�2, respectively, andΔĤ is the interaction Hamiltonian
between �1 and �2. We assume that Ĥ1 and Ĥ2 are almost identical and ΔĤ is smaller.6

We shall use the standard convention that Ĥ1|�vac〉 = Ĥ2|�vac〉 = ΔĤ |�vac〉 = 0, where
|�vac〉 is the state with no particles. Then we see from the energy conservation that

〈�(t)|Ĥ |�(t)〉 = 〈�(0)|Ĥ |�(0)〉 	 〈�(0)|Ĥ1|�(0)〉 	 TrH1 [Ĥ1]
TrH1 [1̂]

, (2.31)

where we recalled that |�(0)〉 is drawn randomly from H1. In a standard lattice gas model
at low density, we expect from extensivity that

TrH1 [Ĥ1]
TrH1 [1̂]

	 TrHtot [Ĥ ]
TrHtot [1̂]

	 Nε∞, (2.32)

where ε∞ is the energy per particle in the equilibrium state at infinite temperature. We thus
see

〈�(t)|Ĥ |�(t)〉 	 Nε∞, (2.33)

i.e., |�(t)〉 has almost the same energy as the equilibrium state of the whole system at infinite
temperature. This is confirmed explicitly for the free fermion chain. In summary, if the initial
state |�(0)〉 has an almost saturating effective dimension, then the state after time evolution
|�(t)〉 represents thermal equilibrium at infinite temperature.

3 Free Fermion on the Chain

In this section, we discuss our concrete example, namely the one-dimensional system of free
fermions.We shall show that the model satisfies Assumptions 2.1 and 2.2 if we take a suitable
setting.

3.1 Energy Eigenstates and Eigenvalues

We consider the chain � = {1, 2, . . . , L}, where L is odd. We denote the sites as x, y, . . . ∈
�. Let ĉx and ĉ

†
x be the annihilation and creation operators, respectively, of the fermion at site

x ∈ �. They satisfy the canonical anticommutation relations {ĉx , ĉy} = 0 and {ĉx , ĉ†y} = δx,y

for any x, y ∈ �, where { Â, B̂} = Â B̂+ B̂ Â. We denote by |�vac〉 the state with no particles.

6 ΔĤ may not be small in the class of models considered in Appendix B.
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We take the standard Hamiltonian

Ĥ =
L∑

x=1

{
eiθ ĉ†x ĉx+1 + e−iθ ĉ†x+1ĉx

}
, (3.1)

where we set the hopping amplitude to be unity for convenience. We introduced the artificial
phase factor θ ∈ [0, 2π) in order to avoid degeneracy. We impose the periodic boundary
condition and identify ĉL+1 with ĉ1.

The Hamiltonian Ĥ is readily diagonalized in terms of the plane wave states. Setting the
k-space as

K =
{2π
L

ν

∣∣∣ ν = 0,±1, . . . ,± L − 1

2

}
, (3.2)

we define the creation operator

â†k = 1√
L

L∑

x=1

eikx ĉ†x , (3.3)

for k ∈ K. It holds that {â†k , âk′ } = δk,k′ . One can show from the basic anticommutation
relations that

[Ĥ , â†k ] = 2τ cos(k + θ) â†k . (3.4)

Let k = (k1, . . . , kN ) denote a collection of N elements in K such that k j < k j+1 for
j = 1, . . . , N − 1, and define

|�k〉 = â†k1 â
†
k2

· · · â†kN |�vac〉. (3.5)

From (3.4) we readily see that |�k〉 is an energy eigenstate, i.e.,

Ĥ |�k〉 = Ek|�k〉, (3.6)

where the energy eigenvalue is

Ek = 2
N∑

j=1

cos(k j + θ). (3.7)

By counting the dimension, we see that these are the only energy eigenstates and eigenvalues.

3.2 Justification of Assumption 2.1

We prove two theorems for the free fermion chain that justify Assumption 2.1 about the
absence of degeneracy in the energy eigenvalues. Note that the free fermion model on the
continuous interval always has degenerate many-body energy eigenvalues. The degeneracy
cannot be lifted by the flux insertion (which corresponds to the phase θ ). The following
results on nondegeneracy essentially rely on the lattice nature of the model.

The first theorem rules out the degeneracy for most values of θ .7

Theorem 3.1 (Nondegeneracy of Ek for most θ ) Let L be an arbitrary odd prime and N be
an arbitrary integer with 0 < N ≤ L. Except for a finite number of θ ∈ [0, 2π), one has
Ek �= Ek′ whenever k �= k′, i.e., the energy eigenvalues Ek are nondegenerate.

7 The theorem was proved by one of us in [54]. See also Proposition 10.1 in [17] for a similar statement for
a slightly complicated model.
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The theorem, in particular, implies that if one draws θ randomly, then with probability one,
all the energy eigenvalues Ek are nondegenerate. The second theorem allows one to choose
a model free from degeneracy without relying on a probabilistic choice.

Theorem 3.2 (Nondegeneracy of Ek for small |θ | �= 0) Let L be an arbitrary odd prime and
N be an arbitrary integer with 0 < N ≤ L. For any θ �= 0 such that

|θ | ≤ 1

(4N + 2L)(L−1)/2
, (3.8)

one has Ek �= Ek′ whenever k �= k′, i.e., the energy eigenvalues Ek are nondegenerate.

One thus knows that the model with, say, θ = (4N + 2L)−(L−1)/2 is free from degeneracy.
As we noted after Assumption 2.1, it is expected that the energy eigenvalues of a quantum

many-body system are generically nondegenerate when there is no reason (like symmetry)
to cause degeneracy. Even for a model of free fermions, we expect that possible degeneracy
can be lifted by tuning some parameters, like the flux θ or the site-dependent potential or
hopping amplitude. However, it turns out that demonstrating nondegeneracy rigorously is
very difficult in general. That is why we considered an artificial setting where the system size
L is a prime number. In this case, the absence of degeneracy can be demonstrated by using
number-theoretic results, as we shall see below.

We also note that the absence of degeneracy was rigorously established in a disordered
free fermion chain. See Appendix A of [55].

To prove Theorems 3.1 and 3.2, it is convenient to introduce the standard occupation
number description. For a given N -tuple k = (k1, . . . , kN ), we define the corresponding
occupation numbers n = (n−(L−1)/2, . . . , n(L−1)/2) as

nν =
{
1, if 2πν/L = k j for some j;
0, otherwise,

(3.9)

where ν = 0,±1, . . . ,±(L − 1)/2. One clearly has

(L−1)/2∑

ν=−(L−1)/2

nν = N . (3.10)

By using the occupation numbers, the energy eigenstate (3.5) and the energy eigenvalue (3.7)
are written as

|�n〉 =
( (L−1)/2∏

ν=−(L−1)/2

(â†2πν/L)nν

)
|�vac〉, (3.11)

and

En = 2
(L−1)/2∑

ν=−(L−1)/2

nν cos
(2π
L

ν + θ
)
, (3.12)

respectively. By defining “complex energy” by

En =
(L−1)/2∑

ν=−(L−1)/2

nν ζ ν, (3.13)
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with

ζ = ei2π/L , (3.14)

we can express the energy eigenvalue (3.12) as

En = 2Re[eiθEn]. (3.15)

Let us state two number theoretic lemmas,8 which play essential roles in the proof of
Theorems 3.1 and 3.2. We recall L is an odd prime, and ζ is defined as (3.14).

Lemma 3.3 For any m1, . . . ,mL−1 ∈ Z such that mμ �= 0 for some μ, one has

L−1∑

μ=1

mμ ζμ �= 0. (3.16)

Here, it is crucial that the sum is from 1 to L − 1, rather than from 1 to L . Otherwise (3.16)
can never be true because

∑L
μ=1 ζμ = 0. The lemma is a straightforward consequence of

the classical result by Gauss, known as the irreducibility of the cyclotomic polynomials of
prime index. See, e.g., Chapter 12, Section 2 of [57], and also Chapter 13, Section 2 of [58]
or section 3.2 of [59].

The following lemma9 provides an explicit lower bound for |∑L−1
μ=1 mμ ζμ|.

Lemma 3.4 For any m1, . . . ,mL−1 ∈ Z such that mμ �= 0 for some μ, one has

∣∣∣∣
L−1∑

μ=1

mμ ζμ

∣∣∣∣ ≥
(L−1∑

μ=1

|mμ|
)−(L−3)/2

. (3.17)

Proof The lemma is proved by using standard facts about the field norm and algebraic inte-
gers. See, e.g., [59]. Let α = ∑L−1

μ=1 mμ ζμ ∈ Z[ζ ] ⊂ Q[ζ ] and

σ j (α) =
L−1∑

μ=1

mμ ei2π jμ/L , (3.18)

be its conjugates, where j = 1, . . . , L − 1. Note that σ1(α) = α, σ j (α) = {σL− j (α)}∗, and
|σ j (α)| ≤ M with M = ∑L−1

μ=1 |mμ|. Let N : Q[ζ ] → Q denote the field norm of Q[ζ ]. By
definition, we have

N (α) =
L−1∏

j=1

σ j (α) =
(L−1)/2∏

j=1

|σ j (α)|2. (3.19)

Since Lemma 3.3 guarantees σ j (α) �= 0 for all j , we see that N (α) > 0. Note that α is an
algebraic integer, and hence so are its conjugates σ j (α) and the norm N (α). It is known that
an algebraic integer that is rational must be an integer. Since N (α) ∈ Q, we see N (α) ∈ Z

and hence N (α) ≥ 1. This bound, with (3.19), implies

|α|2 ≥
((L−1)/2∏

j=2

∣∣σ j (α)
∣∣2
)−1

≥ 1

ML−3 . (3.20)

��
8 See [56] for elementary proofs of the two lemmas.
9 We learned the lemma and its proof from Wataru Kai and Kazuaki Miyatani.
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We are now ready to prove our physics theorems.

Proof of Theorem 3.1 We first show En �= En′ if n �= n′, where both n and n′ are occupation
numbers for N particle energy eigenstates. In other words, the complex energy eigenvalues
are nondegenerate. From (3.13), we find

En − En′ =
(L−1)/2∑

ν=−(L−1)/2

(nν − n′
ν) ζ ν . (3.21)

We claim that there is at least one ν such that nν − n′
ν = 0. To see this, it suffices to note that

the converse, i.e., nν = 0, n′
ν = 1 or nν = 1, n′

ν = 0 for every ν, implies L = 2N , while L
is odd. Let ν0 be such ν, i.e., nν0 − n′

ν0
= 0. Noting that the right-hand side of (3.21) does

not contain the term proportional to ζ ν0 , we rewrite it as

En − En′ = ζ ν0

L−1∑

μ=1

mμ ζμ, (3.22)

with mμ = nν0+μ − n′
ν0+μ, where we used the “periodic boundary condition”, ν = ν + L ,

for the index. Since mμ is not identically zero (because n �= n′), we see En − En′ �= 0 from
Lemma 3.3.

Now, the statement of the lemma is proved easily. Take any n and n′ with n �= n′. Since
eiθ (En −En′) �= 0, (3.15) implies that the two energy eigenvalues En and En′ are degenerate
only at two values of θ for which the real part of eiθ (En − En′) vanishes. This means that the
N -particle energy eigenvalues exhibit degeneracy at most at Dtot(Dtot − 1) different values
of θ , where we recalled that there are Dtot distinct n’s. Except for these finite points in the
continuous interval [0, 2π), the Hamiltonian has no degeneracy. ��
Proof of Theorem 3.2 Consider the model with θ = 0. Because of the reflection symmetry
cos((2π/L)ν) = cos(−(2π/L)ν), we see from (3.12) that the energy eigenvalue En depends
only on n0 and nν + n−ν for ν = 1, . . . , (L − 1)/2. In particular, we get the same energy
for nν = 1, n−ν = 0 and nν = 0, n−ν = 1. This means that En is generally degenerate,
and the maximum possible degree of degeneracy is 2N . We call such a degeneracy a trivial
degeneracy.

We shall show that, in the model with θ = 0, there are no additional degeneracies than
trivial degeneracies.10 Take occupation numbers n and n′ for N particles such that nν+n−ν �=
n′

ν + n′−ν for some ν (including ν = 0). The energy eigenvalues En and En′ do not exhibit
trivial degeneracy. Since ζ ∗ = ζ−1, we see from (3.13) and (3.15) that

En − En′ = En + (En)∗ − En′ − (En′)∗ =
(L−1)/2∑

ν=−(L−1)/2

ñν ζ ν, (3.23)

where we set ñν = nν + n−ν − n′
ν − n′−ν . Noting that

∑(L−1)/2
ν=−(L−1)/2 ζ ν = 0, we rewrite

(3.23) as

En − En′ =
(L−1)/2∑

ν=−(L−1)/2

(ñν − ñ0) ζ ν =
L−1∑

μ=1

mμ ζμ, (3.24)

10 As is suggested by this conclusion, one can prove, by using essentially the same argument, the absence of
degeneracy in certain open fermion chains with a suitable boundary potential.
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where

mμ =
{
ñμ − ñ0, μ = 1, . . . , L−1

2 ;
ñμ−L − ñ0, μ = L+1

2 , . . . , L − 1.
(3.25)

We shall see at the end of the proof that mμ �= 0 for some μ. Then, noting that

L−1∑

μ=1

|mμ| ≤
(L−1)/2∑

ν=−(L−1)/2

{|ñν | + |ñ0|} ≤ 4N + 2L, (3.26)

we find from Lemma 3.4 that

|En − En′ | ≥ 1

(4N + 2L)(L−3)/2
. (3.27)

This, in particular, means that the energy eigenvalues En and En′ are not degenerate.
We shall now examine the effect of nonzero θ . We make the θ -dependence of the energy

eigenvalues explicit by writing E (θ)
n instead of En.

Suppose for some n �= n′ that E (0)
n = E (0)

n′ , i.e., Re En = Re En′ . The two energy eigenval-
ues exhibit trivial degeneracy. Since En �= En′ (see the proof of Theorem 3.1 above), we must
have Im En �= Im En′ . Recalling that (3.15) implies E (θ)

n = 2 cos θ Re En − 2 sin θ Im En,
we see E (θ)

n �= E (θ)

n′ for any θ �= 0, π . Trivial degeneracies are completely lifted.
Since we have shown that the model is free from trivial degeneracies for θ with 0 < |θ | <

π , we look for a sufficient condition that additional (nontrivial) degeneracy is not generated
when θ is varied slightly from 0. We observe from (3.12) that the resulting change in the
energy eigenvalue is bounded as

|E (θ)
n − E (0)

n | ≤ 2
(L−1)/2∑

ν=−(L−1)/2

nν

∣∣∣∣cos
(2π
L

ν + θ
)

− cos
(2π
L

ν
)∣∣∣∣

< 2
(L−1)/2∑

ν=−(L−1)/2

nν |θ | = 2N |θ |, (3.28)

for any n such that (3.10) holds. We then find from (3.27) that no additional degeneracy can
be generated if

2 × 2N |θ | ≤ 1

(4N + 2L)(L−3)/2
, (3.29)

This is satisfied if the condition (3.8) in the theorem is valid.
It remains to prove that mμ �= 0 for some μ, where mμ is defined in (3.25). To this end,

we assume mμ = 0 for all μ. First, suppose ñ0 = 0. We then have ñν = 0 for all ν, but
this contradicts the basic assumption that nν + n−ν �= n′

ν + n′−ν for some ν. Next, suppose
ñ0 �= 0. We then have nν + n−ν − n′

ν − n′−ν = ñ0 �= 0 for any ν �= 0. But this implies∑
ν �=0 nν −∑

ν �=0 n
′
ν = L−1

2 ñ0, which apparently contradicts with the constraint on the total
particle number, i.e.,

∑
ν nν = ∑

ν n
′
ν = N . ��

3.3 Justification of Assumption 2.2

We shall demonstrate that Assumption 2.2 about the particle distribution in the energy eigen-
states is valid in the present free fermion chain. As in section 2.1, we disjointly decompose
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the chain � = {1, . . . , L} as � = �1 ∪ �2 with |�1| = (L − 1)/2 and |�2| = (L + 1)/2.
An obvious choice is �1 = {1, 2, . . . , (L − 1)/2}, but any subset will work similarly.

Let us decompose the creation operator â†k defined in (3.3) as

â†k = b̂†1,k + b̂†2,k, (3.30)

where

b̂†α,k = 1√
L

∑

x∈�α

eikx ĉ†x , (3.31)

with α = 1, 2. Note that {b̂†1,k, b̂1,k′ } with k �= k′ is not necessarily vanishing. From (3.5),
we obviously have

P̂1|�k〉 = b̂†1,k1 b̂
†
1,k2

. . . b̂†1,kN |�vac〉, (3.32)

and hence

〈�k|P̂1|�k〉 = 〈�vac|b̂1,kN . . . b̂1,k2 b̂1,k1 b̂
†
1,k1

b̂†1,k2 . . . b̂†1,kN |�vac〉
≤ ‖b̂1,k1 b̂†1,k1‖ 〈�vac|b̂1,kN . . . b̂1,k2 b̂

†
1,k2

. . . b̂†1,kN |�vac〉. (3.33)

Here we used the basic property 〈�| Â|�〉 ≤ ‖ Â‖〈�|�〉 of the operator norm of an arbitrary
operator Â. Noting that

‖b̂1,k b̂†1,k‖ ≤ 1

2
, (3.34)

for any k ∈ K (as we shall show below), we get the desired bound (2.5) by repeatedly using
(3.33).

To estimate the norm ‖b̂1,k b̂†1,k‖, we first note by an explicit calculation that {b̂1,k, b̂†1,k} =
p with p = (L − 1)/(2L) ≤ 1/2. Then by noting that (b̂1,k b̂

†
1,k)

2 = p b̂1,k b̂
†
1,k , we see

that the self-adjoing operator b̂1,k b̂
†
1,k has eigenvalues 0 and p. This means ‖b̂1,k b̂†1,k‖ = p,

which implies (3.34).
It is clear that the above justification of Assumption 2.2 applies to a much more general

class of free fermion systems. The only requirement is that there is a decomposition cor-
responding to (3.30) of the creation operator for single-particle energy eigenstate with the
property (3.34). See Appendix B.2 for a class of examples.

4 Discussion

We developed in Sect. 2 a general theory for the thermalization in low-density lattice gases.
Under the two essential assumptions, namely, Assumption 2.2 about the particle distribution
in energy eigenstates and Assumption 2.1 about nondegneracy of energy eigenvalues, we
have shown that the system exhibits thermalization (in a restricted sense) when the initial
state is drawn randomly from the Hilbert space H1 in which all particles are confined in
the half-lattice �1. The essential observation, which is summarized in Theorem 2.3, is that
Assumptions 2.2 implies the lower bound (2.7) on the effective dimension of the initial state.
Combined with standard arguments, the lower bound implies the desired statement about
thermalization.

Then, in Sect. 3, we justified Assumptions 2.1 and 2.2 for a class of free fermion chains
without relying on any unproven assumptions. Free fermion models, which have infinitely
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many conserved quantities, are often referred to as examples of systems that fail to thermalize.
One might then be puzzled to see that we have established thermalization in free fermion
chains. The essential point is in the choice of the initial state |�(0)〉. In a non-interacting
fermion model with translation invariance, for example, the momentum distribution does not
change under the unitary time evolution. Thus the system never thermalizes if it starts from
a state with non-thermal momentum distribution. In our case, the momentum distribution
is thermal from the beginning because the initial state is chosen to be a thermal state but
with particles confined in the sublattice�1. In the language of generalized Gibbs ensembles,
our generalized ensemble with the random initial state is characterized by local integrals of
motion taking the same values as the equilibrium ones.

Although free fermion chains are the only examples in which we can fully justify our
two assumptions, we stress that our general theory should apply to much more general mod-
els, most of which are non-integrable. Non-integrable models are believed to exhibit robust
thermalization from an arbitrary realistic nonequilibrium initial state. When applied to such
models, our thermalization theorem is expected to describe a partial aspect of thermaliza-
tion exhibited by the model. We might say that our theory is general and broad enough to
cover not only full-fledged thermalization in non-integrable system but also (rather trivial)
thermalization in free fermion chains.

As we have already discussed after Assumption 2.1, it is believed that energy eigenvalues
are nondegenerate in a generic non-integrable model. Therefore, let us focus on Assump-
tion 2.2, which asserts that the probability of finding all particles in the sublattice �1 does
not exceed 2−N in any energy eigenstate as in (2.5). By accepting the assumption of nonde-
generacy as a plausible one, we have two additonal classes of models in which we can prove
(2.5) as presented in Appendix B.

Assumption 2.2 is reminiscent of the (strong) ETH in the sense that we postulate that
every energy eigenstate exhibits more or less uniform particle distributions. Although we
are able to prove the bound (2.5) only for limited models, we expect that it is valid for all
(or for a great majority of) energy eigenstates of a generic macroscopic quantum system.
The bound does not hold, for example, in a state where a macroscopic number of particles
form a big cluster and move together, but such states cannot be an energy eigenstate of a
model with short-range interactions.We, in particular, note that the average of the probability
〈� j |P̂1|� j 〉 over all the energy eigenstates is

1

Dtot

Dtot∑

j=1

〈� j |P̂1|� j 〉 = 1

Dtot
Tr[P̂1] = D1

Dtot
∼ 2−Ne−(L/2)ρ2

, (4.1)

and is much smaller than 2−N .
In Sect. 2, we only discussed thermalization in the sense that the ratio of the number of

particles in a macroscopic region 	 approaches its equilibrium value γ . It is, however, clear
from the proof that ourmethod automatically extends to other criteria for thermal equilibrium.
Let P̂neq be the projection operator onto the nonequilibrium subspace ofHtot determined by a
certain criterion for thermal equilibrium. If the canonical expectation value of P̂neq at infinite
temperature satisfies

〈P̂neq〉∞ ≤ e−κN = e−κρ L , (4.2)

with a constant κ such that κ > ρ, then we can prove, exactly as in Theorem 2.4, that the
expectation value 〈�(t)|P̂neq|�(t)〉 is extremely small for sufficiently large typical t , i.e.,
the system exhibits thermalization. Although we do not go into details, we expect that the
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assumption (4.2) is valid if one defines P̂neq to be the projection onto the space where the
total energy in a macroscopic region differs considerably from its expectation value in 〈·〉∞.

We note, however, that if one employs a criterion of thermal equilibrium that involves,
say, particle-particle correlation, then the assumption (4.2) with κ > ρ for the corresponding
nonequilibrium projection is never valid. This means that our theorem is simply powerless.
This shortcoming is related to the limitation to low densities and reflects the limitation of our
approach, which reflects our strategy to base the theory on mild assumptions.

Appendices

A: Models With Degenerate Energy Eigenvalues

Our general discussion in Sect. 2 is based on the crucial assumption, Assumption 2.1, that
all the energy eigenvalues are nondegenerate. Here we shall see how one can treat models
in which the degree of degeneracy is at most dmax. We find that our thermalization results
remain valid as long as dmax is not too large. Unfortunately, we do not know of any examples
where a nontrivial upper bound for the degree of degeneracy is known.

Let E j with j = 1, . . . , Nel be the distinct energy eigenvalues. We denote by |� j,�〉
with � = 1, . . . , d j the energy eigenstates corresponding to E j , where d j is the degree of
degeneracy of E j . We assume that the collection of |� j,�〉with all j , � forms an orthonormal
basis of Htot.

We first examine the discussion in Sect. 2.2 about the effective dimension. A straightfor-
ward generalization of the definition (2.6) of the effective dimension is

Deff =
( Nel∑

j=1

d j∑

�=1

∣∣〈�(0)|� j,�
〉∣∣4
)−1

. (A.1)

When energy eigenvalues are degenerate, however, it is convenient to employ the definition

D̃eff =
( Nel∑

j=1

〈�(0)|P̂j |�(0)〉2
)−1

, (A.2)

where P̂j = ∑d j
�=1 |� j,�〉〈� j,�| is the projection onto the space corresponding to the energy

eigenvalue E j . Clearly, (A.2) reduces to the original (A.1) when there is no degeneracy. To
evaluate (A.2), we note that

〈�(0)|P̂j |�(0)〉2 =
d j∑

�,�′=1

∣∣〈�(0)|� j,�
〉∣∣2 ∣∣〈�(0)|� j,�′

〉∣∣2

≤ 1

2

d j∑

�,�′=1

(∣∣〈�(0)|� j,�
〉∣∣4 + ∣∣〈�(0)|� j,�′

〉∣∣4
)

= d j

d j∑

�=1

∣∣〈�(0)|� j,�
〉∣∣4, (A.3)
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where we noted ab ≤ (a2 + b2)/2 to get the second line. We thus find

D̃−1
eff ≤

Nel∑

j=1

d j

d j∑

�=1

∣∣〈�(0)|� j,�
〉∣∣4 ≤ dmax

Nel∑

j=1

d j∑

�=1

∣∣〈�(0)|� j,�
〉∣∣4 = dmax

Deff
(A.4)

where dmax = max j d j .
Suppose that (2.5) in Assumption 2.2 is valid for the energy eigenstates |� j,�〉. Then

Theorem 2.3 guarantees the crucial lower bound (2.7) for Deff defined as (A.1). We thus find
from (A.4) that

Dtot

D̃eff
≤ dmax e

ρN . (A.5)

We see that D̃eff is large provided that dmax is not too large. Note that the degeneracy does not
essentially change the behavior of the effective dimension if dmax grows subexponentially in
N .

We move onto the discussion in Sect. 2.3 about the time evolution. Taking into account
the degeneracy, the expression (2.14) for the time evolution reads

|�(t)〉 = e−i Ĥ t |�(0)〉 =
Nel∑

j=1

e−i E j t P̂j |�(0)〉 =
Nel∑

j=1

e−i E j t |�̃ j 〉
√

〈�(0)|P̂j |�(0)〉,

(A.6)

where we defined

|�̃ j 〉 = P̂j |�(0)〉
‖P̂j |�(0)〉‖ . (A.7)

Correspondingly, (2.20) is modified as

lim
T↑∞

1

T

∫ T

0
dt 〈�(t)|P̂	,ε

neq |�(t)〉 =
Nel∑

j=1

〈�(0)|P̂j |�(0)〉〈�̃ j |P̂	,ε
neq |�̃ j 〉

≤

√√√√√
( Nel∑

j=1

〈�(0)|P̂j |�(0)〉2
)( Nel∑

j=1

〈�̃ j |P̂	,ε
neq |�̃ j 〉2

)

≤

√√√√√
( Nel∑

j=1

〈�(0)|P̂j |�(0)〉2
)( Nel∑

j=1

d j∑

�=1

〈� j,�|P̂	,ε
neq |� j,�〉2

)

≤
√
Dtot D̃

−1
eff 〈P̂	,ε

neq 〉∞. (A.8)

Therefore the rest of the discussion remains valid if we replace Deff with D̃eff .

B: Models Satisfying Assumption 2.2

In this Appendix, we present two classes of models in which we can prove Assumption 2.2
about the particle distribution (under suitable assumptions about nondegeneracy). If we could
also justify Assumption 2.1 about the nondegeneracy of energy eigenvalues, we would have
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further rigorous examples of thermalization. Unfortunately, we still do not know how non-
degeneracy can be proved, although we believe it to be highly plausible.

The first class of models is that of interacting fermions on a specific class of lattices, while
the second class is that of free fermions on arbitrary lattices with Z2 symmetry.

B.1. Interacting Fermions on Double-Lattice

First, we discuss a class of lattice gas models on a double lattice with special symmetry. In
these models, we can easily verify the bound (2.5) for any energy eigenstate corresponding to
a nondegenerate energy eigenvalue. See Lemma B.1 below. This means that Assumption 2.2
about the particle distribution is automatically valid if Assumption 2.1 about nondegeneracy
of energy eigenvalues is valid. The class of models in fact contains many non-trivial inter-
acting models for which we generally expect that energy eigenvalues are nondegenerate.
We thus expect that the present class contains many examples in which our thermalization
theorem, Theorem 2.4, is valid. Unfortunately, we are not able to prove nondegeneracy in
concrete models, except for trivial decoupled models. See the discussion at the end of the
present subsection.

We shall describe the class of models and state the basic observation, i.e., Lemma B.1.
Although we here describe models of fermions for notational simplicity, extensions to hard-
core bosons or quantum spin systems are trivial.

Let �0 be a lattice with L/2 sites, and �1 and �2 be copies of �0. Sites in �1 and �2

are denoted as (x, 1) and (x, 2), respectively, with x ∈ �0. We consider a model of fermions
on the whole lattice � = �1 ∪ �2.

We assume that the Hamiltonian Ĥ conserves the total particle number and is invariant
under the exchange of two sites (x, 1) and (x, 2) for each x ∈ �0. The latter is a highly
nontrivial (and artificial) assumption, which enables us to prove the desired bound (2.5)
easily. To bemore precise we define for each x ∈ �0 the unitary operator Ûx that swaps (x, 1)
and (x, 2). It is defined by Ûx |�vac〉 = |�vac〉, Ûx ĉ(x,1)Û

†
x = ĉ(x,2), Ûx ĉ(x,2)Û

†
x = ĉ(x,1),

and Ûx ĉ(y,ν)Û
†
x = ĉ(y,ν) for y �= x and ν = 1, 2. Note that (Ûx )

2 = 1̂. Our symmetry
assumption is that [Ûx , Ĥ ] = 0 for any x ∈ �0.

If we restrict ourselves to models with standard particle-hopping and two-body interac-
tions, the most general Hamiltonian takes the form

Ĥ =
∑

x,y∈�0

(x �=y)

{
tx,y(ĉ

†
(x,1) + ĉ†(x,2))(ĉ(y,1) + ĉ(y,2)) + vx,y

2
(n̂(x,1) + n̂(x,2))(n̂(y,1) + n̂(y,2))

}

+
∑

x∈�0

{
sx (ĉ

†
(x,1)ĉ(x,2) + ĉ†(x,2)ĉ(x,1)) + wx (n̂(x,1) + n̂(x,2)) + ux n̂(x,1)n̂(x,2)

}
,

(B.1)

where tx,y = (ty,x )∗ ∈ C, vx,y = vy,x ∈ R, and sx , wx , ux ∈ R. We defined the number
operator by n̂(x,σ ) = ĉ†(x,σ )ĉ(x,σ ).

Here is the basic observation in the present appendix.

Lemma B.1 Let |�〉 be the normalized eigenstate corresponding to a nondgenerate energy
eigenvalue of Ĥ . Then we have

〈�|P̂1|�〉 ≤ 2−N , (B.2)

which is the same as (2.5).
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Proof For a fixed particle number N , we define the basis states of the model by

|�S1,S2〉 =
(∏

x∈S1
ĉ†(x,1)

)(∏

x∈S2
ĉ†(x,2)

)
|�vac〉, (B.3)

where S1 and S2 are arbitrary subsets of �0 such that |S1| + |S2| = N . Take any normalized
eigenstate |�〉 of Ĥ and expand it in the above basis as

|�〉 =
∑

S1,S2⊂�0
(|S1|+|S2|=N )

ψS1,S2 |�S1,S2〉, (B.4)

where ψS1,S2 ∈ C are coefficients which satisfy
∑ |ψS1,S2 |2 = 1. The symmetry of the

Hamiltonian and the nondgeneracy imply Ûx |�〉 = ±|�〉 for any x ∈ �0. This means that
the expansion coefficients satisfy

|ψS,∅| = |ψS\S′,S′ |, (B.5)

for any S ⊂ �0 with |S| = N and any S′ ⊂ S. We thus have

|ψS,∅|2 = 1

2N
∑

S′⊂S

|ψS\S′,S′ |2, (B.6)

which, when summed over S, yields

∑

S⊂�0
(|S|=N )

|ψS,∅|2 = 1

2N
∑

S⊂�0
(|S|=N )

∑

S′⊂S

|ψS\S′,S′ |2 ≤ 1

2N
∑

S1,S2⊂�0
(|S1|+|S2|=N )

|ψS1,S2 |2 = 1

2N
. (B.7)

Noting that the left-hand side is 〈�|P̂1|�〉, we get (B.2). ��
This model considered here is generally non-integrable, and we expect that its energy

eigenvalues are nondegenerate. It is desirable to find models in which the absence of degen-
eracy can be proved rigorously.

Unfortunately, the only case we can prove nondegeneracy is a trivial decoupled model
with tx,y = vx,y = 0 for all x, y ∈ �0. We readily see that the energy eigenvalues are
nondegenerate if sx , wx , and ux with x ∈ �0 are chosen to be different from each other.11

Therefore we can fully justify our main theorem, Theorem 2.4, for the model, but we should
note that the result is trivial. In the initial state |�(0)〉, each pair of sites (x, 1) and (x, 2)
is either empty or occupied by one partilce at (x, 1). The time evolution then takes place
independently for each pair of sites. If there is a particle in a pair, then a superposition of two
states with a particle at (x, 1) and at (x, 2) is generated. This, when viewed macroscopically,
results in thermalization. We must say that there is nothing interesting in this observation.

B.2. Free FermionsWithZ2 Symmetry

Next, we discuss a class of free fermion models in which the bound (2.5) for the particle
distribution, and hence Assumption 2.2 can be justified. We here follow the strategy outlined

11 In this trivial model, the energy eigenvalues for a pair of sites (x, 1) and (x, 2) are either zero (when there
is no particles), ±sx + wx (when there is one particle), or 2wx + ux (when there are two particles). The total
energy eigenvalues are the sums of these eigenvalues and are nondegenerate if we choose sx , wx , and ux
properly.
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at the end of Sect. 3.3 and justify the inequality (3.34) for the fermion operators corresponding
to single-particle energy eigenstates.

Let � be an arbitrary lattice, and consider the most general free fermion Hamiltonian

Ĥ =
∑

x,y∈�

tx,y ĉ
†
x ĉy, (B.8)

where the hopping amplitude satisfies tx,y = (ty,x )∗ ∈ C. Note that the diagonal element
tx,x ∈ R represents the single-body potential.

We assume that the model has Z2 symmetry in the sense that there is a one-to-one map
p : � → � such that p2 = id, and that the Hamiltonian is invariant under the transformation
p, i.e., tp(x),p(y) = tx,y for any x, y ∈ �. We also assume that � is disjointly decomposed
as � = �1 ∪ �2 and that p(�1) ⊂ �2.

As an example, consider the chain � = {1, . . . , L} with odd L , and let p be the inversion
p(x) = L + 1 − x . Then the decomposition with �1 = {1, . . . , (L − 1)/2} and �2 =
{(L + 1)/2, . . . , L} satisfies the above property.

Let ψ = (ψx )x∈� be a normalized single-particle energy eigenstate. To be precise, it sat-
isfies the Schrödinger equation ε ψx = ∑

y∈� tx,yψx for all x ∈ � with the (single-particle)
energy eigenvalue ε. Let us further assume that the energy eigenvalue ε is nondegenerate.
Then, with respect to the symmetry transformation p, the corresponding wave function ψ is
either symmetric, i.e., ψp(x) = ψx for all x ∈ �, or antisymmetric, i.e., ψp(x) = −ψx for all
x ∈ �. We then see that

∑

x∈�1

|ψx |2 = 1

2

∑

x∈�1

(|ψx |2 + |ψp(x)|2
) ≤ 1

2

∑

x∈�

|ψx |2 = 1

2
, (B.9)

where we noted that p(�1) ⊂ �\�1.
Let â†ψ = ∑

x∈� ψx ĉ
†
x be the creation operator of the state ψ . It can be decom-

posed as â†ψ = b̂†1,ψ + b̂†2,ψ with b̂†1,ψ = ∑
x∈�1

ψx ĉ
†
x and b̂†2,ψ = ∑

x∈�2
ψx ĉ

†
x .

This corresponds to the decomposition (3.30). We also see from (B.9) that b̂†1,ψ satisfies

‖b̂1,ψ b̂†1,ψ‖ = ∑
x∈�1

|ψx |2 ≤ 1/2, which corresponds to the desired (3.34).
We now assume that single-particle energy eigenvalues ε1, . . . , ε|�| are all nondegenerate,

and denote by â†j the creation operator of the single-particle energy eigenstate correspond-

ing to ε j . Then the foregoing discussion shows that each â†j is decomposed as (3.30), and
the operator for the sublattice �1 satisfies the bound (3.34). Repeating the derivation in
section 3.3, we see an N -body energy eigenstate of the form

|�〉 = â†j1 · · · â†jN |�vac〉, (B.10)

satisfies the desired bound (2.5).
Interestingly, it was only necessary to assume the nondegeneracy of single-particle energy

eigenvalues to prove the desired bound (2.5) in this model. To ensure the presence of ther-
malization, we have to assume further that N -body energy eigenvalues are nondegenerate. It
is rather likely that degeneracy is absent in a sufficiently complex free fermion model, but we
do not know how to justify the claim. We also note that the p-symmetry may not be exact.
It can be violated by a small perturbation as long as the bound (2.5) remains valid.
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C: Effective Dimensions of Some Initial Particle Configurations in the
Free Fermion Chain

In the main text, the initial state |�(0)〉 is drawn randomly from the small Hilbert spaceH1.
Conceptually speaking, it may be desirable to consider the time evolution starting from a
non-random simple initial state. Here we again treat free fermion chains and examine the
effective dimensions of some initial states in which particles have definite positions.

In Sect. C.2, we observe that the initial state where particles are arranged in a periodic
manner has an effective dimension that is large but not large enough to guarantee thermal-
ization. This observation suggests that a random initial state is mandatory in a free fermion
model if we demand the effective dimension to be extremely large. This is very likely to be
a common property for integrable models. In a non-integrable model, on the other hand, it is
believed that even a regular initial state generally has an effective dimension almost as large
as the total dimension.

In Sect. C.3, we consider an artificial class of initial configurations (Golomb ruler con-
figurations) and show that the corresponding effective dimensions are almost as large as the
total dimension. This leads to a statement about thermalization with a non-random initial
state. In this class of models, however, the particle density inevitably tends to zero according
to ρ ∼ N−1 as the particle number grows.

C.1. General formula for Deff

Weconsider the free fermion chain as defined in section 3. Let the initial particle configuration
be x = (x1, x2, . . . , xN ) with x j ∈ {1, . . . , L} such that x j < x j+1 for j = 1, . . . , N − 1,
and define the corresponding N fermion state as

|�x〉 = ĉ†x1 ĉ
†
x2 · · · ĉ†xN |�vac〉. (C.1)

We set |�x〉 as the initial state |�(0)〉. Then we see from (2.6) that the effective dimension
is given by

D−1
eff =

∑

k∈K̃N

∣∣〈�x |�k〉
∣∣4, (C.2)

where K̃N = {(k1, . . . , kN ) | k j < k j+1} ⊂ KN . (The k-space K is defined in (3.2).) Noting
that (3.3) implies {ĉx , â†k } = eikx/

√
L , we see

〈�x |�k〉 = 〈�vac|ĉxN · · · ĉx1 â†k1 · · · â†kN |�vac〉 = L−N/2
∑

P

(−1)P
N∏

j=1

eik j xP( j) , (C.3)

where the summation is over all possible N ! permutations P of {1, . . . , N } and (−1)P is the
signature of P . It is useful to regard k in the above expression as an element inKN rather than
its physical subspace K̃N . This replacement is justified since

∣∣〈�x |�k〉
∣∣ is invariant under

any permutations of k1, . . . , kN and equals zero if k j = k j ′ for some j �= j ′. We can thus
rewrite (C.2) as

D−1
eff = 1

N !
∑

k∈KN

∣∣〈�x |�k〉
∣∣4. (C.4)

This rewriting is useful since one can now sum independently over k1, . . . , kN ∈ K.
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From (C.3), we see that

∣∣〈�x |�k〉
∣∣2 = 1

LN

∑

P,Q

(−1)PQ
N∏

j=1

eik j (xP( j)−xQ( j))

= N !
LN

+ 1

LN

∑

P,Q
(P �=Q)

(−1)PQ
N∏

j=1

eik j (xP( j)−xQ( j)), (C.5)

and
∣∣〈�x |�k〉

∣∣4 = C1 + C2(k) + C3(k), (C.6)

with

C1 =
( N !
LN

)2
, C2(k) = 2N !

L2N

∑

P,Q
(P �=Q)

(−1)PQ
N∏

j=1

eik j (xP( j)−xQ( j)), (C.7)

C3(k) = 1

L2N

∑

P,Q,P ′,Q′
(P �=Q, P ′ �=Q′)

(−1)PQP ′Q′
N∏

j=1

eik j {(xP( j)−xQ( j))−(xP ′( j)−xQ′( j))}. (C.8)

We shall evaluate the sum (C.4) by using the decomposition (C.6). Clearly

1

N !
∑

k∈KN

C1 = N !
LN

, (C.9)

The remaining sums are evaluated by using the standard formula

∑

k∈K
eikx =

{
L, x = 0 mod L;
0, otherwise,

(C.10)

where x ∈ Z. Note that in the expression for C2(k) in (C.7), one has xP( j) − xQ( j) �= 0 for
at least one j because P �= Q. We thus see

1

N !
∑

k∈KN

C2(k) = 0. (C.11)

The sum of C3(k) is generally nonzero and can be evaluated as

1

N !
∑

k∈KN

C3(k) = 1

LN N !
∑

P,Q,P ′,Q′
(P �=Q, P ′ �=Q′)

(−1)PQP ′Q′

·
N∏

j=1

χ[(xP( j) − xQ( j)) − (xP ′( j) − xQ′( j)) = 0 mod L], (C.12)

where the characteristic function is defined as χ[true] = 1 and χ[false] = 0. Let us write
the right-hand side of (C.12) as Sx/LN . From (C.4), (C.6), (C.9), (C.11), and (C.12), we see
that the effective dimension of the initial state |�(0)〉 = |�x〉 is given by

Deff = LN

N ! + Sx
. (C.13)
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Our main task is to evaluate the sum Sx defined in (C.12) for a given particle configuration
x. For later convenience we sum over P in (C.12) (and write P−1Q, P−1P ′, and P−1Q′ as
Q, P ′, and Q′, respectively) to rewrite the expression as

Sx =
∑

Q,P ′,Q′
(Q �=id, P ′ �=Q′)

(−1)QP ′Q′
N∏

j=1

χ[x j − xQ( j) − xP ′( j) + xQ′( j) = 0 mod L].

(C.14)

C.2. Deff in Periodic Configurations

First, we consider regular particle configurations with a period p = 1, 2, . . .. Fix p, and
choose the chain length L and the particle number N such that L = pN . We consider the
initial particle distribution given by

x j = pj, (C.15)

for j = 1, . . . , N .
Then (C.14) is computed as

Sx =
∑

Q,P ′,Q′
(Q �=id, P ′ �=Q′)

(−1)QP ′Q′
N∏

j=1

χ[pj − pQ( j) − pP ′( j) + pQ′( j) = 0 mod L]

=
∑

Q,P ′,Q′
(Q �=id, P ′ �=Q′)

(−1)QP ′Q′
N∏

j=1

χ[ j − Q( j) − P ′( j) + Q′( j) = 0 mod N ], (C.16)

which depends only on N and is independent of L and p. Thus, we can evaluate the above
sum by employing a useful choice of p. Fortunately, this sum becomes trivial for p = 1, and
therefore we compute the sum in the case of p = 1. A fermion system with L = N = 1,
which is fully filled, has one-dimensional Hilbert space and hence Deff = 1. We see from
(C.13) that Sx = NN −N !. Recalling the L independence of Sx , we get a remarkably simple
result

Deff =
( L

N

)N = e−(ρ log ρ)L , (C.17)

for any L and N (such that L = pN ), where ρ = 1/p is the particle density. We thus see
that the effective dimension grows exponentially with the system size L , as expected. But it
turns out that it is not large enough. Combining (C.17) with (2.1), we see

Dtot

Deff
∼ e{−(1−ρ) log(1−ρ)}L = e{ρ+O(ρ2)}L , (C.18)

and hence Deff is considerably smaller compared with the total dimension Dtot. This conclu-
sion is consistent with the numerical result in [47]. We conclude that our strategy of the proof
of Theorem 2.4 is ineffective for this initial state. Interestingly, it was found numerically in
[46, 47] that the free fermion chain with similar initial states exhibits thermalization in some
sense.
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C.3. Deff in Golomb-Ruler Configurations

We next discuss a class of particle configurations for which the effective dimension Deff

is easily evaluated and turns out to be almost as large as the total dimension Dtot . In these
settings, however, the particle density inevitablyapproaches zero as N gets larger.

A sequence of natural numbers x = (x1, . . . , xN ) is called a Golomb ruler [60] if for any
j �= k, one has x j − xk = x� − xm only when j = � and k = m. The periodic boundary
counterpart (in which one replaces the condition x j − xk = x� − xm by x j − xk = x� − xm
mod L) is called amodularGolomb ruler. The optimal (minimum) system size L of amodular
Golomb ruler for given N is L = N (N − 1), since x j − xk takes N (N − 1) distinct positive
integers. The optimal configuration, if exists, is called a perfect difference set. Interestingly,
perfect difference sets are proven to exist if N − 1 is a prime power pn [61].

We set the configuration of N particles as a modular Golomb ruler x = (x1, . . . , xN )

(x1 < x2 · · · < xN ). By taking x1 = 1 and choosing the system size L as a prime such that
L ≥ 2xN − 1, we see that for any j �= k, one has x j − xk = x� − xm mod L only when
j = � and k = m (i.e., a modular Golomb ruler). A nontrivial and asymptotically optimal
example12 of a Golomb ruler can be found in [62], where the following sequence

x j = 1 + 2N ( j − 1) + {( j − 1)2 mod N }, (C.19)

for j = 1, . . . , N with a prime N > 2 is shown to be a Golomb ruler. Since 1+2N (N −1) ≤
xN ≤ 1+ 2N (N − 1) + N − 1, the aforementioned construction leads to the chain length as
L 	 4N 2 with the particle density ρ 	 (4N )−1. Note that the optimal (densest) Golomb ruler
has density ρ = O(N−1) = O(L−1/2), and thus the above construction is asymptotically
optimal.

We shall fix an arbitrary initial particle configuration x that forms a modular Golomb ruler
and evaluate its effective dimension.Wefirst bound the sign factor in (C.14) as (−1)QP ′Q′ ≤ 1
to get

Sx ≤
∑

Q,P ′,Q′
(Q �=id, P ′ �=Q′)

N∏

j=1

χ[x j − xQ( j) − xP ′( j) + xQ′( j) = 0 mod L]. (C.20)

In fact, it can be shown that this is an equality13, but the upper bound is enough for our
purpose.

Let us fix a permutation Q �= id, and examine the conditions for
∏N

j=1 χ[· · · ] = 1, i.e.,
x j − xQ( j) − xP ′( j) + xQ′( j) = 0 mod L for all j = 1, . . . , N . If j is such that Q( j) �= j ,
the condition for x implies P ′( j) = j and Q′( j) = Q( j). We see there is no choice for
P ′( j) and Q′( j). If j = Q( j), on the other hand, the only requirement is P ′( j) = Q′( j).
There is some freedom for choosing P ′( j) and Q′( j).

12 A non-optimal but simple example of a Golomb ruler is obtained by taking N such that L = 2N − 1 is a
(Mersenne) prime, and setting x j = 2 j−1 for j = 1, . . . , N . In this case, the particle density ρ 	 N/2N is
exponentially small in N .
13 In a Golomb ruler, x j − xQ( j) − xP ′( j) + xQ′( j) = 0 mod L holds only if (1) j = P ′( j) and Q( j) =
Q′( j), or (2) j = Q( j) and P ′( j) = Q′( j). Now we decompose a set {1, 2, . . . , N } into two subsets, A and
B, where (1) holds in A and (2) holds in B. Then, P ′, Q, Q′ can be expressed in the form of P ′ = idA ⊕ π A ,
Q = π B ⊕ idB , and Q′ = π A ⊕ π B , where π A and π B represent permutations on A and B, respectively.

With the above form of permutations, we easily see (−1)P
′QQ′ = 1 if x j − xQ( j) − xP ′( j) + xQ′( j) = 0

mod L holds for any j .
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Let nQ be the number of j such that Q( j) = j . Since Q �= id, we see nQ = 0, 1, . . . , N−
2. From the above consideration, we see that there are nQ ! choices for P ′ (and thus Q′) for
fixed Q. We thus find

(RHS of (C .20)) =
∑

Q
(Q �=id)

nQ ! =
N−2∑

n=0

n!N (n), (C.21)

where N (n) is the number of Q �= id such that nQ = n. The value of N (n) is computed
explicitly as

N (n) =
(
N

n

)
dN−n, (C.22)

where dm is the m-th de Montmort number (also known as the m-th derangement number or
the subfactorial of m). The de Montmort number counts the number of derangement14 on n
elements. Fortunately, the de Montmort number dm is explicitly computed as

dm =
⌊
m! + 1

e

⌋
(C.23)

with the floor function15 �·� [63]. This expression, with (C.20) and (C.21), leads to a simple
upper bound

Sx ≤
N−2∑

n=0

N !
e

(
1 + 1

(N − n)!
)

= N !
e

(
N − 1 +

N∑

m=2

1

m!
)

≤ N !
e

(N − 3 + e). (C.24)

Substituting this into (C.13), we can bound the effective dimension from below as

Deff ≥ eLN

(N + 2e − 3)N ! . (C.25)

Thus the ratio between the total dimension and the effective dimension is bounded as

Dtot

Deff
≤ (N + 2e − 3) L!

e(L − N )! LN
≤ N + 2e − 3

e
. (C.26)

Note that Dtot = (L
N

)
is approximated by (L/N )N when N � L , and hence grows super-

exponentially in N . (If we take the initial configuration (C.19) then Dtot ∼ (4N )N .) This
means that Deff satisfying (C.26) is extremely close to Dtot.

As we have stressed, such a large effective dimension is expected in a non-integrable
quantum many-body system, but not in an integrable system. Here we have a large Deff in a
free fermion model because of the artificial Golomb-ruler configuration. But recall that this
choice is possible only in the extremely low density ρ = O(N−1).

The above observation about the large effective dimension leads to a statement about
thermalization. Take a sufficiently large and arbitrary prime N and a prime L such that
L ≥ 2xN − 1 with xN given by (C.19). We consider the system of N fermions on the chain
{1, . . . , L} with the Hamiltonian (3.1). We take the phase factor θ for which the energy
eigenvalues (3.7) are nondegenerate. (See Lemma 3.1.)

14 A derangement is a permutation in which no entry stays at the original position.
15 The floor function �x� is the largest integers less than or equal to x .
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For simplicity we restrict our observable only to the particle number in the left half of the
chain, i.e.,

N̂left =
(L+1)/2∑

j=1

n̂ j . (C.27)

The equilibrium value is of course 〈N̂left〉∞ = N/2. Let the initial state be |�(0)〉 = |�x〉 =
ĉ†x1 · · · ĉ†xN |�vac〉, where the configuration x1, . . . , xN is given by (C.19). Since

N̂left

N
|�(0)〉 = |�(0)〉, (C.28)

the initial state is highly nonequilibrium with respect to the quantity N̂left/N .
Then by using the large deviation type estimate

〈
P̂

[∣∣∣
N̂left

N
− 1

2

∣∣∣ ≥ ε

]〉

∞
≤ e−(4ε2/3)N , (C.29)

which follows from (2.22), and the standard argument (as in the proof of Theorem 2.4), we
can prove the following.

Theorem C.1 For any ε > 0, there exists a constant T > 0 and a subset (a collection of
intervals) G ⊂ [0, T ] with

μ(G)

T
≥ 1 − e−(ε2/4)N , (C.30)

whereμ(G) is the total length of the intervals in G. Suppose that one performs ameasurement
of the number operator N̂left in the state |�(t)〉 with arbitrary t ∈ G. Then, with probability
larger than 1 − e−(ε2/4)N , the measurement result Nleft satisfies

∣∣∣
Nleft

N
− 1

2

∣∣∣ ≤ ε, (C.31)

i.e., the state is found in thermal equilibrium.

Thus thermalization starting from a deterministic initial state has been established without
any unproven assumptions. Here one can choose the precision ε > 0 arbitrarily. But in order
to make the factor e−(ε2/4)N negligibly small, one must take N large enough, which means
that the density becomes lower.

D: Possible Extension to the Finite Temperature Situation

Throughout the present paper, we only focused on situations where the initial and the final
states correspond to infinite temperature thermal states. See, in particular, Sect. 2.4. We
believe that our results can be extended to finite temperature settings with extra technical
efforts. Although we do not elaborate on the extension, we here briefly discuss the setting
and essential steps in the proof.

We consider the free fermion Hamiltonian (1.1), (3.1). Decompose the Hamiltonian as in
(2.30), where we choose�1 as the half-chain {1, . . . , (L−1)/2}. It follows that ‖ΔĤ‖ = h0
is independent of the system size. Denote by |�̃ j 〉 ∈ H1 the normalized eigenstate of Ĥ1
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with eigenvalue Ẽ j . For the energy density u ∈ (−2, 0) and the energy width Δu > 0, we
define the nonequilibrium microcanonical energy shell by

Hu
1 = span

{|�̃ j 〉
∣∣∣
∣∣ Ẽ j
N − u

∣∣ ≤ Δu
} ⊂ H1. (D.1)

Noting that Ĥ2|�̃ j 〉 = 0, we observe

〈�̃ j |(Ĥ − Ẽ j )
2|�̃ j 〉 = 〈�̃ j |{(Ĥ1 − Ẽ j ) + ΔĤ}2|�̃ j 〉 = 〈�̃ j |{(ΔĤ)2|�̃ j 〉 ≤ (h0)

2,

(D.2)

which implies that |�̃ j 〉 is (with a minor error when N is large) a superposition of |�k〉
such that |Ek − Ẽ j | � h0. We thus find that any state |�(0)〉 ∈ Hu

1 and its time-evolution

|�(t)〉 = e−i Ĥ t |�(0)〉 belongs (again, with minor errors when N is large) to the standard
microcanonical energy shell

Hu
tot = span

{|� j 〉
∣∣∣
∣∣ E j
N − u

∣∣ ≤ Δu′} ⊂ Htot, (D.3)

with Δu′ > Δu.
In the finite temperature setting, we choose initial state |�(0)〉 randomly and uniformly

from the nonequilibrium energy shellHu
1 . The goal is to show that Theorem 2.4 (with suitable

modifications of constants) is valid for the time-evolved state |�(0)〉.
Recalling that |�(0)〉 (essentially) belongs to Hu

tot, our strategy for the proof will be to
properly replace H1 and Htot in the original proof with Hu

1 and Hu
tot, respectively. Let us

see how the proof of the most important estimate of the effective dimension, Theorem 2.3,
is modified. Interestingly, a small modification is sufficient. Denoting by P̂u

1 the projection
onto Hu

1 , and by Du
1 the dimension of Hu

1 , we find

D−1
eff =

Dtot∑

j=1

∣∣〈�(0)|P̂u
1 |� j 〉

∣∣4 = 2

Du
1 (Du

1 + 1)

Dtot∑

j=1

‖P̂u
1 |� j 〉‖4

≤ 2

Du
1 (Du

1 + 1)

Dtot∑

j=1

‖P̂1|� j 〉‖2 ‖P̂u
1 |� j 〉‖2

≤ 2

Du
1 (Du

1 + 1)2N
Tr[P̂u

1 ] = 2

(Du
1 + 1)2N

, (D.4)

which is a faithful extension of the key inequality (2.10). The analog of Theorem 2.3 is
proved if we properly estimate the ratio Du

tot/D
u
1 . Another nontrivial (but technical) step for

the proof of the desired extension of Theorem 2.4 is the derivation of the large-deviation
upper bound (2.22) for the microcanonical average.
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