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Abstract

The linearized Boltzmann collision operator has a central role in many important applications
of the Boltzmann equation. Recently some important classical properties of the linearized col-
lision operator for monatomic single species were extended to multicomponent monatomic
gases and polyatomic single species. For multicomponent polyatomic gases, the case where
the polyatomicity is modelled by a discrete internal energy variable was considered lately.
Here we consider the corresponding case for a continuous internal energy variable. Com-
pactness results, stating that the linearized operator can be decomposed into a sum of a
positive multiplication operator, the collision frequency, and a compact operator, bringing
e.g., self-adjointness, is extended from the classical result for monatomic single species,
under reasonable assumptions on the collision kernel. With a probabilistic formulation of the
collision operator as a starting point, the compactness property is shown by a decomposition,
such that the terms are, or at least are uniform limits of, Hilbert—Schmidt integral operators
and therefore are compact operators. Moreover, bounds on—including coercivity of—the
collision frequency are obtained for hard sphere like, as well as hard potentials with cutoff
like, models, from which Fredholmness of the linearized collision operator follows, as well
as its domain.

Keywords Boltzmann equation - Gas mixture - Polyatomic gas - Linearized collision
operator - Hilbert—Schmidt integral operator

1 Introduction

The Boltzmann equation is a fundamental equation of kinetic theory of gases, e.g., for com-
putations of the flow around a space shuttle in the upper atmosphere during reentry [1].
Studies of the main properties of the linearized collision operator are of great importance in
gaining increased knowledge about related problems, see, e.g., [12] and references therein.
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The linearized collision operator, obtained by considering deviations of an equilibrium, or
Maxwellian, distribution, can in a natural way be written as a sum of a positive multiplica-
tion operator—the collision frequency—and an integral operator — K. Compact properties
of the integral operator K (for angular cut-off kernels) are extensively studied for monatomic
single species, see, e.g., [12, 14, 18, 21], and more recently for monatomic multi-component
mixtures [4, 8]. Extensions to polyatomic single species, where the polyatomicity is modeled
by either a discrete, or, a continuous internal energy variable [4, 5] and polyatomic mul-
ticomponent mixtures [2], where the polyatomicity is modeled by discrete internal energy
variables, have also been conducted. For models, assuming a continuous internal energy
variable, see also [7] for the case of molecules undergoing resonant collisions (for which
internal energy and kinetic energy, respectively, are conserved under collisions), and [10,
11] for diatomic and polyatomic gases, respectively—with more restrictive—concerning the
models considered in [16], allowing some others in return—assumptions on the collision ker-
nels than in [5], but also a more direct approach. The integral operator can be written as the
sum of a Hilbert—Schmidt integral operator and an approximately Hilbert—Schmidt integral
operator—which is a uniform limit of Hilbert—-Schmidt integral operators (cf. Lemma 4 in
Sect.4) [17], and so compactness of the integral operator K can be obtained. In this work, we
extend the results of [4, 5] for monatomic multicomponent mixtures and polyatomic single
species, where the polyatomicity is modeled by a continuous internal energy variable [9,
16], to the case of multicomponent mixtures of monatomic and/or polyatomic gases, where
the polyatomicity is modeled by a continuous internal energy variable [1, 13]. To consider
mixtures of monatomic and polyatomic molecules are of highest relevance in, e.g., the upper
atmosphere [1].

Following the lines of [2, 4, 5], motivated by an approach by Kogan in [20, Sect. 2.8]
for the monatomic single species case, a probabilistic formulation of the collision operator
is considered as the starting point. With this approach, it is shown that the integral operator
K can be written as a sum of Hilbert—Schmidt integral operators and operators, which are
uniform limits of Hilbert—Schmidt integral operators— and so compactness of the integral
operator K follows. The operator K is self-adjoint, as well as the collision frequency. Thus
the linearized collision operator, as the sum of two self-adjoint operators whereof (at least)
one is bounded, is also self-adjoint.

For models corresponding to hard sphere models, as well as hard potentials with cut off
models, in the monatomic case, bounds on the collision frequency are obtained. Here we
also want to point out reference [15], where the corresponding upper bound in [5] for the
single species case was improved. Then the collision frequency is coercive and becomes a
Fredholm operator. The set of Fredholm operators is closed under addition with compact
operators. Therefore, also the linearized collision operator becomes a Fredholm operator by
the compactness of the integral operator K. The Fredholm property is vital in the Chapman-
Enskog process, and the Fredholmness of the linearized operator supply with the Fredholm
property, taken for granted in [1], for those models. Note that for monatomic species, the
linearized operator is not Fredholm for soft potential models, unlike for hard potential models.
The domain of collision frequency—and, hence, of the linearized collision operator as well—
follows directly by the obtained bounds

For hard sphere like models the linearized collision operator satisfies all the properties of
the general linear operator in the abstract half-space problem considered in [3], and, hence,
the existence results in [3] apply.

The rest of the paper is organized as follows. In Sect. 2, the model considered is presented.
The probabilistic formulation of the collision operators considered and its relations to more
classical formulations [1, 13] are accounted for in Sect.2.1. Some results for the collision
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operators in Sect. 2.2 and the linearized collision operator in Sect. 2.3 are reviewed. Section 3
is devoted to the main results of this paper, while the main proofs are addressed in Sects. 4
and 5; a proof of compactness of the integral operators K is presented in Sect.4, while a
proof of the bounds on the collision frequency appears in Sect. 5.

2 Model

This section concerns the model considered. Probabilistic formulations of the collision opera-
tors are considered, whose relations to more classical formulations are accounted for. Known
properties of the models and corresponding linearized collision operators are also reviewed.

Consider a multicomponent mixture of s species ay, ..., ds, with sp monatomic and
s1 := s — so polyatomic species, and masses my, ..., mg, respectively, and introduce the
index sets

Z=1{1,...,5}, Tmono = {a; ay is monatomic} = {1, ..., sp}, and
Zpoty = {a; ag is polyatomic } = {so + 1, ..., s}.
Here the polyatomicity is modeled by a continuous internal energy variable I € R, [6].

The distribution functions are of the form f = (f1, ..., fs), where for « € 7 the compo-
nent fo = fy (¢, X, Z), with

Z=7, = { § for & € Znono )

(&,1) fora eIy

{t, 1} C Ry, x=(x,y,2) € R% and § = (&, &, &) € R, is the distribution function for
species dg.
Moreover, consider the real Hilbert space

b= (L*(@8))" x (L* d&dD)",

with inner product

50 s
Go=3 [ heder [ fasudsdl o f.0

a=so+1

The evolution of the distribution functions is (in the absence of external forces) described
by the (vector) Boltzmann equation

af
§+(§~Vx)f=Q(f,f), (2)
where the (vector) collision operator Q = (Qj, ..., Q) is a quadratic bilinear operator

that accounts for the change of velocities and internal energies of particles due to binary
collisions (assuming that the gas is rarefied, such that other collisions are negligible). Here
the component Q,, with o € Z, is the collision operator for species ay.

A collision between two particles of species a, and ag, where {a, 8} C Z, respectively,
can be represented by two pre-collisional elements, each element consisting of a micro-
scopic velocity and possibly also an internal energy, Z and Z,, and two corresponding
post-collisional elements, Z’ and Z,,. The notation for pre- and post-collisional pairs may
be interchanged as well. Due to momentum and total energy conservation, the following
relations have to be satisfied by the elements

mo€ +mg€, =maE +mgk,
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and if (&, B) € 72, (mono/mono-interactions)
2

s

2 2
mo |87 +mp [, = ma |§']" + mp [£,
if (a, B) € Tiono % Zpoly (mono/poly-interactions)
2 2 2
ma |12+ mg |&, 7 + 20, = mg |82+ my |EL]7 + 21,
if (a, B) € Tpoty X Linono (poly/mono-interactions)
2 2 2
My |‘S.|2 +mg |§*| + 21 =my |i>:/| +tmg |§;<| + 21/’

while if (o, B) € 1127 (poly/poly-interactions)

oly
2 2 _ 712 72 / /
mo |E* +mp [E.]" +21 + 2L = mq |§'|" +mp [E]" + 21" +21.

2.1 Collision Operator

The (vector) collision operator Q = (Q1, ..., Qs) has components that can be written in
the following form

Qu(f. ) =Y Qup(f. f)= 2/ , WapAop(f) dZ.dZ dZ.,,
/3:1 )3=l ZO(XZ

B
ar
where Agg(f) = o/ Bx _ Ja I
9o (I @ (1) @u (1) @p (L)
_ R ify € Znono
and 2, = {]R3 xRy ify € Zpory

Here and below the abbreviations

Jox = fo (1, X, Zy), fo/( = fo (an Z/) , and fo/(* = fa (t7X7 Z;) ,
where Z,, Z/, and Z/,, are defined as the natural extension of definition (1), i.e. denoting
. | &, fora € Zyono
L:=12: = { (E*, I*) for o € Tpory
or renormalization weights ¢, = ¢, (I), @ € Z, with ¢, = 1 for @ € Z;,0n0, are positive
functions for I > 0. A typical choice of the degeneracies is [16]

etc., are used for @ € Z. Moreover, the degeneracies

0o (1) =111 g e,

where 81 = ... = §60) = 2 while §©, with §©® > 2, denote the number of internal degrees
of freedom of the species for @ € 7,,;,. Our main results in Sect. 3 below will be stated and
proven for this particular choice of degeneracies.

Note that in the literature it is usual to use a slightly different setting [1, 9, 13], where
already renormalized distribution functions are considered, opting to consider a weighted
measure—where the renormalization weights appear as weights—with respect to /. However,
this is merely due to a different scaling of the distribution functions considered.

The transition probabilities Wyg are of the form, cf. [4, 5],

Wop = Wap(Z,Z, |7, Z,)
/
= (e + ) mame (1) s (1) 215154
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2 gl = =
— (o +mp)” mamppa (I) g (1*>oaﬁ§6163, where

oup = 0ap (Igl. cos6, 1,1, 1',1]) > 0 and

a(;ﬁ = 0up (|g’ ,cos6, I', 1,1, 1) > 0ae., with

~ 1

51 = 81 (5 (ma 6P +mg 6. = ma ¢/ = ma £1") - 1),
S ’ / _ g'g,

83 =83 (maé +mpg, —mué —mﬁé*) ,cos6 = ellg]’

g=¢—&.g =8 —& and Al = (I' = 1) Laez,, + (I = ) 1pez, - )

Here 83 and 8; denote the Dirac’s delta function in R and R, respectively—:?\l and 83
taking the conservation of momentum and total energy into account. Note that for o« € 7,50
the scattering cross sections oy are independent of 7 and I’, while correspondingly, for
B € Tmono the scattering cross sections ogg are independent of 7, and ;. Moreover, we have
chosen—even if this means not being completely consistent—to not indicate the dependence
of species in the notation, if—like for the energy gap Al—the dependence is only up to if
the species are monatomic or polyatomic.

It is assumed that the scattering cross sections oyg for (o, B) € 77 satisfy the microre-
versibility conditions

0 (1) g (1) Ig1* 0p (18], cO86, 1, I, I', 1))
= oo (I') 95 (1) || 0up (|| cos6, I, IL, 1, L) . )

Furthermore, to obtain invariance of change of particles in a collision, it is assumed that the
scattering cross sections ogg for (e, ) € Z? satisfy the symmetry relations

oup (18], cos0, 1, I, I', 1)) = opq (18], cos 0, I, I, 1., 1'), (5)

s Ly
while
Oqa = Oga (|g| ,|cos@|, I, I, 1/7 I;) = Oga (|g| ,|cos@|, Iy, 1, I/’ I;)
= Oqa (|g|a|C059|,1*7171;,1/)~ (6)

The invariance under change of particles in a collision, which follows directly by the definition
of the transition probability (3) and the symmetry relations (5), (6) for the collision frequency,
and the microreversibility of the collisions (4), implies that the transition probabilities (3)
satisfy the relations

Wop(Z, 2|2 Z,) = Wpo (Zy, Z|Z,, )
Wop(Z, Ly |2\ Z,) = Wop(Z | Z, |Z, Z,)
Waa(Z’ Z* ’Z/» Z;) = Waa(27 Z* |Z:|<7 Z/) (7)

Applying known properties of Dirac’s delta function, the transition probabilities may be
transformed to

Wap = Wap(Z, Z |2, Z,)
/
= (o + mp) mamppa (I') 0p (1) a;ﬁ@al (B2 (1gP - |g*) - A1)

g 2
%83 ((ma +mp) (Gaﬂ - G{w))
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/ ) 2
= 2¢a (I') 9 (1) 0up ||g|| (Iglz—lg}z—MM)& (Gaﬂ—G;ﬁ)

1
= @Qq (1/)(pﬁ (I) aﬂ| | Maﬂ\g\2>2A18 (Gaﬂ —G&ﬁ)

2A1
X8 ( lgl* — — — |g’|>
Kap

| , 2A1
¢ (1) op (L) U"‘ﬁwluaﬂlgl%mﬁl lgl” — T lg/|

x 33 (Gaﬁ - Zxﬁ) :
meé +ml3$* ’ mo§

with Gog = s Gl =
o

Remark 1 Note that
M 2
81 (52 (18— |&") — A1) = 81 (Eap — Elg)

where Eqp = Mzﬂ lg|? + Lyer,

2

oy ] T 1pez,,, I« is the total energy in the center of mass

frame, and, correspondingly, E aﬂ — /’“otﬁ ‘ ‘ + 1a€ngly I+ I,BEIpoly I.

Observe that, by a series of change of variables:
m §/+m g/
A e e A

My +mg
!
coordinates {g’} — {Ig’l, o= éﬁ}*

dE'dg), = dGldg = |g/|” dGled |g| do

}, followed by a change to spherical

while, if ag is polyatomic, 8 € Z,,y, by applying the additional change of variables

12
(i ,r;}e{R=‘2““§aL,Eaﬁ—““ﬂ) P +r+z;},

Eap 2 1/2
d&'dEdI] = fz(i> R'2dRdodG,dE,,,

MHap
1/
d, finally, if additionally @ € Z oy, the ch I = lleadst
an nayla 1tiona yOt poly eC ange{ }—){}’ (I_R)Eaﬂ}easo
dg'dg' dI'dl. = V2 E)(1 = R)RV?drdRdodGy,dE, 8)
* * 3/2 rafaoats,gdLog- (
Hap

Then for two monatomic species, i.e., (&, f) € Z, (mono/mono-case)

mono’

712 v , ’
Q(X,B(f’ f) = /(R3)2XR+XSQ WO(,B }g | <faff3* - f(xfﬁ*) dg*dGozﬂd }g |do'
= A3XS2 BO(X/S (fo/(f/é* - fafﬁ*) ds*d(f, with BOotﬁ = Oup |g| s
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. @ /y_ . . . ..
or, with ¢, (I) = 159/2-1 o e 7, for a monatomic species and a polyatomic species, i.e.,

either (@, B) € Znono X Ipoiy (mono/poly-case)

W, \6 Eaﬁ 32 fo/tff/i* fafﬁ*
ap 5B 2—1 5B/
war )\ (™

Qup(f. f) = /

(R3)*xR2 x[0,1]xS2 .

xR'?d§,dG, zdRdodl,dE,

ff;ﬂff;* fotfﬂ*

B —
/R3XR+XLO,IJXSZ “ 0/ B Faa

(1— R)a<ﬂ>/2—1

B) 19—
xR212" 2 4g aRrdsal,,
with Bigs = Oupy/ 2/ ap |8l P2 _ 0up 18l Eap
« - —3
N8B 21 5 2AI1 op R1/2(1 — R)8<5J/2—1
(I*) lg|” — —
Map

or, (a, B) € Zpoly X Linono (poly/mono-case)

3/2 Y
Wam<@> ( Jalps faf/s*)

Hap (1@ 2=1 5=

Qup(f. f) = /

(R?)? xRy x[0,11xS2
xR'/?d§,dGl4dRdodE),

s
_ B JoSp B So [ | — RY@/2-1 p1/2
= 1Ba @ 77— @ ( )
R3x[0,1]xS? (=1 921

x %1271 4g_dRdo

and, finally, again with ¢, (I) = I°/2=1 & e T, for two polyatomic species, i.e., with
(o, B) € 1'127 oly (poly/poly-case)
fo/t f/;* fa fﬁ*
Qotﬂ(fv )= 5 (@) sB p—1 §B) /2—1
(R3) XR%X[O,]]ZXSZ (1/)5 ) /2—1 (I;) / 18(01)/2711* /
V2 sp
XWWWEMQ (1 = R)R'?d drdRdodG,dE,4dI,

Hop
fo/tfé* fafﬂ*

By
/l.§3><R+><[0,1]2><S2 p (I,)g(a)/2,1 (14)5(5)/271 18@‘)/2711)‘2('8)/2*1

Xram)/z—l (1— r)s(ﬂ)/z—l (1— R)(s<°‘)+8<ﬁ>)/2—1R1/2
o ® 5
) 1821327 g drdRdedl,, with
5@ 5B 11)/2
V2o 18l EY, )

o B) j2—
(1/)8( )/2—1 (14)5 /2-1 |g|2 _

BZozﬁ = Oup N,

MHap

oup |8l Egy
F8@/2-1 - r)s(ﬂ)/z—l (1— R)(8<a>+5(ﬂ))/2—2R1/2
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where
m 2A1
§=Gop+o—"— [lg?——
my +mg Hap
My 2A1
8, =Gap —0—— [lg]’ -
My +mg MHap

This results in more familiar forms of the Boltzmann collision operators for mixtures of
monatomic and/or polyatomic molecules modeled with a continuous energy variable, cf.,
e.g., [1, 13]. Here and below the internal energy gaps are given by A/ = 0 in the mono/mono-
case, Al = I, — I, in the mono/poly-case, AI = I’ — I in the poly/mono-case, while in the
poly/poly-case AI = 1"+ I, — I — I,.

2.2 Collision Invariants and Maxwellian Distributions
The following lemma follows directly by the relations (7).
Lemma 1 The measures
dAog = Wog(Z, Ly |Z’, 7! )dZdZ.d7 dZ!,

are invariant under the (ordered) interchange

(Z.Z,) < (2.Z), )
of variables for (a, B) € T?, while

dAgp +dAgy for (a, ) € T?

are invariant under the (ordered) interchange of variables

(z,7) < (2. 7). (10)

The weak form of the collision operator Q(f, f) reads

s

@ 9= 3 [ AupPgudiuy

wpat ) Z2x x 23

= Z /2 Otﬂ(f)gﬁ* dAa/B

o,p=1"2a

. f e (Pl dAu
a,Bf=1

-y / , Ao (D dA
a,B=1

for any function g = (g1, ..., &), With g4 = g4(Z), such that the first integrals are defined

for all (a, B) € Z?, while the following equalities are obtained by applying Lemma 1.
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Denote for any function g = (g1, ..., &), With g4 = g4(Z),
Aup (8) = 8a + 8. — 84 — &hu-
We have the following proposition.

Proposition 1 Let g = (g1, ..., &), where g, = go(Z), be such that
f fo/t fé* fa fﬁ*
Z2x

Acx adAa: -hAa = - ’
o o @A U R ) = S 0 () ™ a Do (1)

is defined for any («, B) € I?. Then
1 s
Q=3 2 [ Rap(F)Bap ) dAs
Z2x 22
a,p=172a*2p
Definition 1 A function g = (g1, ..., &s), Where g4 = g4(Z), is a collision invariant if
ANap (8) Wap(Z,Z, |2, Z) =0 ae.

for all (o, B) € 7.

Itisclearthatey, ..., 5, m&y, m&,, mé&;, andm |§|2+2]I,denotingherem = (my,...,my),

I =(@,...,0,1,...,1I), and by {ej,..., e} the standard basis of R®, are colli
———— S—

50 S1=5—50
invariants—corresponding to conservation of mass(es), momentum, and total energy.
In fact, we have the following proposition, cf. [1, 13].

sion

Proposition2 Let m = (my,...,mg), I = (0,...,0,1,...,1), and {ey, ..., es} be the
[ S ———

S0 S1
standard basis of R®. Then the vector space of collision invariants is generated by

ler. ... es.mEc, méy, mé., m|§* + 21} .
Define
WIf1:=(Q(f, 1) log (7' 1)),
where ¢ = ¢(I) = diag (p1(1), ..., ¢s(I)). It follows by Proposition 1 that

1S o () p (1y) fo/zfé*
wisi=—3 > | -
f 4a§=:1 22x23 (fafﬁ*‘/’a (1) g (L) )

o (1 Iy 02 /* o JBx*
« log 9o (1) g (1) fo fg fufp s,
Jafps0a (I") @ (11) ] a (1) @p (I+)

Since (x — 1) log (x) > 0 for x > 0, with equality if and only if x = 1,
WIf1=0,

with equality if and only if for all (e, B) € Z°2
Aopg(f)Wep =0ace.,
or, equivalently, if and only if

o(f. fH=0.

an
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For any equilibrium, or, Maxwellian, distribution M = (My, ..., My), it follows by
identity (11), since Q(M, M) = 0, that

M, M, M, M;
log — 4+ log Br__ log —=— —log B Wop =0 ace..
@ (1) o (1x) @a (I) op (I7)

-1 Ml Ms . .. . .
Hence, log ((p M ) = | log ,...,log is a collision invariant, and the compo-
o1 ) ws(I)
nents of the Maxwellian distributions M = (My, ..., M) are of the form
ngm? 2
o —malé—ul?/Q2kpT) ;
L (2nkBT)3/ze if @ € Zono
«= 3/2 ~(mal§—ul+21)/@ksT) ’
nape (I)my "€ ifoe Ty
@m)*2 (ks T)*/* g4 o
1 1
where ny = (M,e,),u = — (M, m§), and T = —— (M, m £ —ul?), with mass
P 3nkp
N N
vector m = (my,...,ms), n = Y Hg, P = Y Mghy, and normalization factors
a=1 a=1

o = fooo 0o (1) e 1/kBT) g foro € Zpoly, while kp denote the Boltzmann constant.

75 /2-1

For the typical case ¢y (1) = ,a €L,

4o = s )T (512).

where I' = I'(n) denote the Gamma function I'(n) = fooo X le=¥ dx.
Note that, by Eq. (11), any Maxwellian distribution M = (M, ..., M) satisfies the
relations

Aap(M)Wep =0 ace. (12)
for any (a, B) € Z2.
Remark 2 Introducing the H-functional
HIf1=(flog(¢™" (D) f)).

an H-theorem can be obtained, cf. [1, 13].

2.3 Linearized Collision Operator

Consider a deviation of a centered and normalized Maxwellian M = (My, ..., M), where
nam(:;){/ 2 2.
3/2e””°‘|§‘ 2 ifa € Tnono
_ ) @Qn)y
Mo = %) (I)m3/2 2
Rafa X e emmalé 2ol if ¢ € T,
@n)* g,

with g, = fooo @o (I) e~ " dI for a € Tpyy, of the form
f=M+M"p

For o € Z, the typical case ¢ (1) = 5= implies thatg, =T (8(“)/2).
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Insertion in the Boltzmann equation (2) results in the system

oh
a——i—(é‘ Vx)h+Lh =T (h, h),
where the components of the linearized collision operator £ = (Ly, ..., L) are given by

Loh = =M (Qo(M, M'h) + Qo (M1, M)

N

Mg M, 12 n
)3 / B B Aq ( 1 2) WopdZ,dZ/ dZ,
zex22 \ ¢a (D) @p (1) ¢a (1) 5 (IL) MY

B=1
= vohy — Kq (h), (13)
with
N Mg, -
Vy = 7Waﬁdz*dl dZ,,
f=1 ZO(XZ o (I) B (1)
N /
h! hﬁ* h g
Ko=) / « - Wap
/2 1/2 1/2
B=1 «xZ} (Mo/l) (Mé*> Mﬂ*
1/2
Mg, MM,
B ﬁ/* / dZ7.d7/dZ.,, (14)
o (1) g (1) g (I') 9p (1 )
while the components of the quadratic term I' = (I"q, ..., ['y) are given by

Ty (h, h) = M2 Qo (M1, M'/?h).
for o € Z. The multiplication operator A defined by
A(f) =vf,where v = diag (vq, ..., vy),

is a closed, densely defined, self-adjoint operator on b. It is Fredholm, as well, if and only if
A is coercive.
The following lemma follows immediately by Lemma 1.

Lemma2 Forany (a, B) € I the measure

- MyMg M. M’ 172
dAw}:( aVpstVig M g, ( )) dAaﬂ

Pa (1) p (1) 9o (I") @ (I
is invariant under the (ordered) interchange (9) of variables, while
dgaﬁ + dgﬁafor (o, B) € 72
is invariant under the (ordered) interchange (10) of variables

The weak form of the linearized collision operator £ reads

N

Z/ Awﬂ( ?/2) g?/z d;{aﬁ
£2x 2} M M,

a,p=1

(Lh, g)

N

h 8B
Z/ A“ﬂ< 12) 1 dAOtﬁ
2
w1V 22x 23 M/ Mg,
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h g ~
N Z /szz <M1/2> (M,(;l/z dAap

«o,B=1
h 8pe
-3 I
22x 23 <M1/2> 172
* (¥5.)
for any function g = (g1, .. ., gs), With g4 = g« (Z), such that the first integrals are defined

for all {«, B} C Z, while the following equalities are obtained by applying Lemma 2. The
following lemma follows.

Lemma3 Letg = (g1,...,8gs), where g4 = go(Z), be such that

h
A — dAgg,
/2ng§ af <M1/2> 1/2 af

is defined for any (a, ) € 72, Then
h g ~
(Lh,g) = Z 2X22 W Aaﬁ (W) dAaﬂ.
oz B=1
Proposition 3 The linearized collision operator is symmetric and nonnegative,
(Lh,g) = (h, Lg) and (Lh,h) > 0,
and the kernel of L, ker L, is generated by
MYy, oo, M Peg, M Pt MY Pmty, M Pmg,, MY (m 1§17 + 2) ),

wherem = (my,...,my), 1=(0,...,0,1,...,1), and M = diag (M, ..., My).
~———— —

K S1
Proof By Lemma 3, it is immediate that (Lh, g) = (h, Lg), and

h 2
=g 3 [ (2o (im)) o

otﬁl

Furthermore, /1 € ker £ if and only if (Lh, h) = 0, which will be fulfilled if and only if for
all (o, B) € 72

h
Aap (W) Wop(Z,Z, |27/, Z,) =0 ace.,

i.e., if and only if M~!/2h is a collision invariant. The last part of the lemma follows by
Proposition 2. o

Remark 3 Note also that the quadratic term is orthogonal to the kernel of £, i.e., we have that
[ (h,h) € (ker £)*b.
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3 Main Results

This section is devoted to the main results, concerning compact properties in Theorem 1
and bounds of collision frequencies in Theorem 2. Below we restrict to the particular case
0o (1) =182V fora e T.

Assume that for some positive number y, such that 0 < y < 1, there is for all (o, 8) € Z?
a bound

Wap + (Vap)”'”

0 E aOt,B (|g|7C059,1a[*71,7 1;) EC |g|2 Tofﬂv
I 1 2A1
whereYpp = M and Wyp = |g| |g|2 _ , (15)
B 5B /2 B
59 (5* ) / Hap
of af

for pap |g|2 > 2Al, on the scattering cross sections, or, equivalently, the bound

1
0 < Biap (18], c0s0. 1, I, I'. I}) < CE,)} (1 + W) (16)
af

for pyp |g|2 > 2Al, on the collision kernels. Here, for (¢, ) € 72, Eop = 1ifa € Tyono
and £, = 1if B € Zyono, While, otherwise,

Eop = Eip = tap 1817 /2 + LacT,p, I + Lpez,, L
2
= Map ’g/| /2 + laGIpolyl/ + lﬂel'[m]y];-

Remark 4 1In the single polyatomic case, i.e., with s = s = 1, assumption (15) (or, (16)),
differs from the one in [4], by an extra factor EV2 = E 11 { 2 in the denominator, resulting

in the factor EV/2 = E 11 1/ % instead of E in assumption (16). This rules out the superhard
potential like models considered in [4], while it opens up for some soft potential like models,
not covered in [4], in return.

The following result may be obtained.

Theorem 1 Assume that for all {«, B} C I the scattering cross sections oqg satisfy the bound
(15) for some positive number y, 0 < y < 1.

Then the operator K = (K1, ..., Ky), with the components K, given by (14) is a self-
adjoint compact operator on ) = (L2 (dg))“’ X (L2 (d’g'dl))sl.

The proof of Theorem 1 will be addressed in Sect. 4.

Corollary 1 The linearized collision operator L, with scattering cross sections satisfying (15),
is a closed, densely defined, self-adjoint operator on ).

Proof By Theorem 1, the linear operator £ = A — K is closed as the sum of a closed and a
bounded operator, and densely defined, since the domains of the linear operators £ and A are
equal; D(L) = D(A). Furthermore, it is a self-adjoint operator, since the set of self-adjoint
operators is closed under addition of bounded self-adjoint operators, see Theorem 4.3 of
Chapter V in [19]. m]
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Now consider the scattering cross sections
2A1

Hap g (1/) Vg (I;)

/2 5(,‘3)/2
g |E'7 5@ /2
Cop " \Eap

lgl> —

Jif g lgl* > 241, (17)

oup = Cup

for some positive constants Cyg > 0 for all (o, B) € 7?2 and nonnegative number 7 less than
1,0 < n < 1,—cf. hard sphere models for n = 0.
In fact, it would be enough with the bounds (for 1t |g|2 > 2AI)

5 2AI s 2AI1
lgl” — Tﬂ lgl” — T/S
o, «,
—WTM < 0oup < C+WT¢xﬂ,

a (I') pp (1)

5@ 2 362
£l (5;;,3)

for some nonnegative number 7 less than 1,0 < 5 < 1, and some positive constants C+ > 0,
on the scattering cross sections—cf. hard potential with cut-off models.

The following bounds restricted to single species were obtained in [5, 15]. In [15] the
improved—compared to the one in [5]—upper bound below was shown for single species.

with Yo = (18)

Theorem 2 The linearized collision operator L, with scattering cross sections (17) (or (18)),
can be split into a positive multiplication operator A, where A (f) = v f, with v = v(Z),
minus a compact operator K on b, such that there exist positive numbers v_ and v, where
0 < v_ < vy, for which, forany « € 7
1—n 1—-n
(14184 e, VT) S ve vy (1418 + Laer,, V1) (19)
The decomposition follows by decomposition (13), (14) and Theorem 1, while the bounds
(19) on the collision frequency will be proven in Sect. 5.

Corollary 2 The linearized collision operator L, with scattering cross section (17) (or (18)),
is a Fredholm operator with domain

D(L) = (L2 ((1 + €)' d§))" x (L2 ((1 gl +vT) d&dl)) g

Proof By Theorem 2 the multiplication operator A is coercive, and thus it is a Fredholm
operator. Furthermore, the set of Fredholm operators is closed under addition of compact
operators, see Theorem 5.26 of Chapter IV in [19] and its proof, so, by Theorem 2, L is a
Fredholm operator. o

We stress that Corollary 2 finally yields the Fredholmness of the linearized operator
assumed in [1] for kernels of the form (17) or (18).
For hard sphere like models we obtain the following result.

Corollary 3 For the linearized collision operator L, with scattering cross section (17 (or
(18)) where n = 0, there exists a positive number X, 0 < A < 1, such that

(h, Lh) = & (h,v(Z)h) = hv_ (h, (1 + |§]) h)
forallh € D (L) NImL.
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Proof Leth € D (£) N (ker£)" = D (£) NImL. As a Fredholm operator, L is closed with
a closed range, and as a compact operator, K is bounded, and so there are positive constants
vo > 0 and cx > 0, such that

(h, Lh) = vo(h, h) and (h, Kh) < ck (h, h).

Letd =

. Then the corollary follows, since
Vo + ck

(h, Lh) = (1 = A)(h, Lh) + A(h, W(Z) — K)h)
> (1 =2vo(h, h) + A(h, v(Z)h) — dck (h, h)
= (vo — A(vo + cx))(h, h) + A(h, v(Z)h) = A(h, v(Z)h).

m}

Remark 5 By Proposition 3 and Corollary 1-3 the linearized operator £ fulfills the properties
assumed on the linear operators in [3], and, hence, the results for the abstract linearized half-
space problem therein can be applied to hard sphere like models for mixtures of monatomic
and polyatomic gases.

4 Compactness

This section concerns the proof of Theorem 1. Note that in the proof the kernels are rewritten
in such a way that Z,—and not Z’' or Z,—always will be arguments of the distribution
functions. As for single species, either Z, is an argument in the loss term (like Z) or in the
gain term (unlike Z) of the collision operator. However, in the latter case, unlike for single
species, for mixtures one has to differ between two different cases; either Z, is associated
to the same species as Z, or not. The kernels of the terms from the loss part of the collision
operator will be shown to be Hilbert—Schmidt in a quite direct way. The kernels of some of
the terms—for which Z, is associated to the same species as Z—from the gain parts of the
collision operators will be shown to be uniform limits of Hilbert—Schmidt integral operators,
i.e., approximately Hilbert—Schmidt in the sense of Lemma 4. Furthermore, it will be shown
that the kernels of the remaining terms—for which Z, is associated to the opposite species
to Z—from the gain parts of the collision operators are Hilbert—Schmidt.

To show the compactness properties—when the terms are not necessarily Hilbert—Schmidt
integral operators themselves—the following result will be applied. Denote, for any (nonzero)
natural number N,

1
hy = {(Z,Z*)GYXY*:|§—E*| > ¥ 1&] §N},and
bN) = b NN(Z, Z,) == b(Z, L)1y,

Here, either Z = & and Y = R3, or,Z = (§,I)and Y = R3 x R4, and correspondingly,
either Z, = &, and Y, = R3, or, Z, = ('g'*, I*) and Y, = R x R4. Then we have the
following lemma, cf. Glassey [17, Lemma 3.5.1] and Drange [14].

Lemma4 Assume that Tf (Z) = fY* b(Z,Z,)f (L) dZ,, with b(Z,Z,) > 0. Then T is
compact on L* (dZ) if

(i) fY b(Z,Z,) dZ is bounded in Z,;
(ii) b e L% (dZ dZ,) for any (nonzero) natural number N;
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(iii) sup [y b(Z,Zs) —bN(Z,Z,)dZi — 0as N — oc.
ZeY

Then T is the uniform limit of Hilbert—Schmidt integral operators [17, Lemma 3.5.1] and
we say that the kernel b(Z, Z,) is approximately Hilbert—Schmidt, while 7 is an approx-
imately Hilbert—Schmidt integral operator. The reader is referred to Glassey [17, Lemma
3.5.1] for a proof of Lemma 4.

Now we turn to the proof of Theorem 1. Note that throughout the proof C will denote a

generic positive constant. Moreover, remind that ¢, (1) = I 8/2=1 for o € T below.

Proof For « € 7 rewrite expression (14) as

N
Ko = (Mo)™'/? Z/ wap(Z. 24 |2, Z,)
P ZyxZ}

h:x h/ﬂ* hﬂ* l /
x <o+ Tl dZ.,dZ/dZ.,
(MO() (M//S*) Bx
with
My Mg M, M,

172
b (14)> Wap(Z, Z |2, 7).

wp(Z. L, |2 Z,) =
Wap( | ) (wa (D) o (1) g (I') @p

Due to relations (7), the relations
wap(Z, Ly |2\ Z,) = wpo(Z, Z|Z,, 7))
wop(Z, Ly |2, Z,) = wap(Z', Z,, |Z, Z,.)
Wao (Z, Zo |2, 7)) = weo(Z, L. |Z.,, Z)) (20)

are satisfied. By renaming {Z.} = {Z;},

h/
B
/ L Wop (2. 24 |2 Z,) —= 7 dL.dL'dZ,
Zaxzﬂ l/s
%

hgs
_ 4 / / ’
- /Zax wap(Z, Z, |Z,Z*)—M1/2 dZ.dZ/dZ.,.

Zﬂ B

Moreover, by renaming {Z,} = {Z’ },

h/
/ wap(Z, Lo |2/, 7)) L"m dZ.,d7/dZ.,
(1)

12
ok

h
= / wap(Z, 2 |2y, Z,) —7 7 dZ,dZ dZ),.
zung M
It follows that
s
Ky (h) = Z/ kap (f,’, .1, I*) hy dZ., where
_JZ
p=1"%r
kaphs = Say k(S B + 85,k s
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= Bugk e + 85 (K = K ) B with
wop(Z, 2 |Zy, Z,,)

d7/d7’,
(Mo Megi)'? *

ez [

B

wep(Z, Zs |2/, Z,
k2.2, = / o 2. 2 | — 2 474z, and
Zyx2Zp (MaM,B*)

d7/dZ.,. (21)

k(ﬁ) 7. 7.) — wep(Z, Z, |Z/, Z)
aﬂz( s *) = 1/2
ZaXZﬁ (MO{Mﬁ*)

By applying the second relation of (20) and renaming {Z'} < {Z.},

wes(Z, 17 \Zy,Z!
k(%)(Z, Z.) :/ 2 | T/z 2 dZ'dZ,
Z§ (MaMa*)
=/ wap(Zy, 7' |Z, Z;)dl/dl’ =k(0/§)(Z* 7). (22)
2 (MyMo)' Lo
Moreover,
020 =K D) KD~ KD, O

since, by applying the first relation of (20) and renaming {Z’ } = {Z;},

d7/dZ,

Pz 7y = wﬁa(Z*,Z’Z;, ")
Otﬂl( k] *) - ]/2
ZaxZp  (MaMpy)

/ wpa(Zy, 2|2, 7))
ZyxZp (1‘40[Mﬂ*)1/2

= dZ/dZ:k = k/(ga)l (Z*a Z)’

o

while, by renaming {Z’ } = {Z; }, after applying the first two relations of (20)

wpo (Z,, 2|2y, Z))

B) ! gyt
Pz, 7. :/ d7/dz.
o ) ZaxZp (MaMﬁ*)l/z '
wga(Zs. Z' |2, Z)
-/ = azaz,
ZyxZp (MaMﬂ*)
wee(Zy, 2, |7/, Z
— / ﬂot( sy Lay |1/2 )dZ/dZ; — kgfx)z(z*v 7).
ZaXZﬂ (MD(Mﬂ*)

Now the compactness of the three different types of collision kernel will be considered sep-
arately. Note that, if « = §, by applying the last relation of (20), kC(Y/Z)Z 7,7, = k‘%) (Z,7,),
and we will remain with only two cases—the first two below. Even if my = mg, the kernels
k(%) (Z,Z,) and kéfs)z (Z, Z.,) are structurally equal, and we (in principle) remain with (first)
two cases (the second one twice).

I Compactness of Kop1 = [, ko) (Z, Z) hp. dZ, for any indices (@, f) € 72,

By a change of variables, cf. Figure 1,

g
76=@’Gaﬂ=

(e8]~ {lel =g -, el ook |

My +mpg
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£’. ma .6

mg' /(M + m) ‘
0 mg/(M + m)

7 M = m, (heavy particle)
G(yﬁ
m = mg (light particle)
g g
Mg/(M +m) Mg'/(M +m)
o ] /
3 Ma g

Fig. 1 Classical representation of an inelastic collision between particles of different species

noting identity (8) and using relation (12), expression (21) of k;%)l may be written as

12
(MiMp,) " Weg
(Z,7,) = /Z Az dZ,

B)
o wx2p (¢ (1) op (1) ga (1) 0p (1))
1/2
= / (M&M}!*) Waﬁll/s&ﬁll,ﬁseliﬁz g/|2dG‘;ﬂd’g/|do’d1/d14
RIS x§? (9o (1) @ (1) 9o (1) g (11))
B (M“Mﬁ*)l/z 2l ll/vm‘}‘g|2>2Alll/55aﬂ 11;gg;ﬁaa,s do dl'dl].
S2xR2
Note that
if @ B) € Zyono: lﬂuﬁ\g\2>2A111’55aﬂ 114552,3 = 1y<11y,<;, while

Listgrsaarlrseplzey, = 1r<ily ygpoon = lr=ily<eg,
if (&, B) € Tinono X Lpoly,
lxta,slglz>2Alll’ffaﬂllaiifiﬁ = lﬂaﬂ|g|2>2A1 I<i = 1reg, i<
if (. B) € Tpoty X Imono» and if (e, B) € I,
1uuﬁ\g\2>2A111/S&xﬂ 11455;‘,3 = luaﬂ|g|2>2AI = 11/+1458a,3~

Since Eqp > CWqg, it follows, by assumption (15), that

2
(8,2.2.)
2
<C / Yop (‘Ijaﬁ‘f‘\llgléz) 11/§5aﬁll;§£;‘ﬂ dO’dl’d];
S2xRZ
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2
5@ /21 2 * 8P j2—1
CM(xMﬁ* (1 +E )2 Eaﬁ (I/) dI/ gaﬂ (I>|/<) dI/
T kel P\ g 0 ()T
o (¢24)
MM @ (1) @p (I+) 2
ool T TP (14 Eog)’

va (Dop (L) g
Then, by assumption (15) and

Ha £
’"aT*’"ﬁ' 5

where Eup = 1tap 181> /2 + laez,,, 1 + 1pez

poly
(:))
(kaﬁ 1

| 2

2

2
+ laEIpo,).I + 1,3611,,0[v I, = aﬂ| + Eqp,

I, the bound

2 2 1 1
(Z, Z*)) < Ce—(matmp)|Gap|™/2~Eap P (1) 9 (L) l)ng( ) (1 + Eiﬂ)

(1+1g?)’
lgl?
x (14 Lpez,, 1) 05 (1) (14 Laez, 1) 00 (D (24)

may be obtained. Hence, by applying the bound (24) and first changing variables of integration
{§ , E*} — {g, Gogp }, with unitary Jacobian, and then to spherical coordinates,

® S
. (k) @.2.)) azaz,
aXZp
4
< C/ . e*(maerﬁ)|Gaﬁ|2/267uaﬁ\g\2/2%dg dGegp
(®) g

x 2 8@ /-1 © 2 1, 8P 21
x I+ D2e T di | (A +1)%e ™10 dI,
0 0

< Ce—(mu+mﬂ)|Guﬂ|2/2—Eaﬁ

© 2/4 4 RS 2
:c/ e et (141 )dr/ R ®dR=C
0 0
Therefore,

Kop1 = / k5 (2. 2,) hp, dZ,
Zp

are Hilbert—Schmidt integral operators and as such compact on L? (dZ), see, e.g., Theorem
7.83 in [22], for (a, B) € Z2.

IL Compactness of Kog3 = [, k' (Z. Z.) hax dZ, for any indices (. f) € I,

Note that, cf. Figure?2,

Wep(Z,Z/ |Z*, Z,) = (mg+ mﬁ)zmamﬁq)a (1) @p (I') 83 (mag + mpg)

8] mg —m
X = Gopby (18l ma (x4 — ——L Igl ) — AL
|2+ 2mg
~ 2
[gl(my +m - m
= ( d f) va (1) 9p (I/) 001;383 ig'}'g/
|« |g|m,3 mg

myg —m Al
X8 (X+ — a2mf3 £ Igl - m |*g|) ,
o
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Fig.2 Typical collision of Kyg3 xX_n . n g o X+ 11
3 ¢
g
w _
° g | W
A ) Ol
13 g = —m.g/mg &,

o . g8 ~
with g = 0Oup (IgI, == I.I'I,1I ) =E—&,.8 =8 -E.g=¢(-F,
8] x|’

g =&, — &, AL =1gez,,, (I — 1) + 1gez,,, (I, — I'), and x4 = (&, — &) - n, where

= E'
By performing the change of variables {&', &, } — {g' =& — &, =& — &}, with

d§'dE, = dg'dg = dg'dyidw, where w = §/, — & — xin,
the expression (21) of kéol_f,) may be rewritten in the following way

12 Wap (2, 2! |2, O p e 1y, dg/dgdl'dl!
*

k(d)(Z Z*) :/ MM %
Z,%( ! ﬁ) (w0 (D @ ) g (1) 9 (14))1/2
2 2@ (M) ol (1
) (ma+'"ﬁ) B\ Mp.) o5 (1)
”2<1> (@)'nxrs  mj Bllel gg” (1)

~ ~ / /
Xaaﬁluaﬁ|§|2>2AI*II’SS;ﬂII;SS;ﬂdeI dI*.

Here, see Fig.2,

with x4+ =

§/=E*+w—x_n . Al My —mg
E.=f+w—un * el
= X+1 me |g| 2mg

implying that

2

& IELIZZ‘EH* AL
my gl

m? )
>+ - n+w +ﬁ|§—§*|

_ (g+£*)l"+w’2+<(§+§*)“— Al )2 m2

2 2 my |g| 4m,23
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2 N (ma (J6.* - 189) + 2A1*)2 e

E+&
E+8),, +w +—% g,
4mﬂ

2

4m? |g|*
where

€17 — |8,
‘g - E*’

Denote gaﬂ = lifa € Tono and 5;5 = 1if B € Tynono, While, otherwise,

($+E*)n: (€+E*)n: and (§+§*)in :E+E*_(E+E*)nn

go(ﬁ = g;,g = [ap [B7 /2 + Loez,p, 1 + 1pez,,, I’
= Uap |8:1* /2 + Laez oy, I + Lpez, 0, 1.

Let0 <@ < I,withw =0if @ € Tyono. If @ € Ty, then

@/4-1/2
(11" C c
55 )2 = cw i yl—k—w = 2w yi yl—Kk— forO0=k <1-w. (25)
& AR 8> 1<}

Denoting (]R3)L“ = {w eR3 wl n}, we obtain the bound

2
1, 2 £§+§&
/ 1+4Mﬁ|1g‘|,>/22A1* exp | — £ 7( ), +w| |dw
(R3)in "I"aﬂy 2 2
, mg |[E+E), |
§C/ T+ 1w )exp | —— |[—=—=+w| | dw
(R3)'n 2 2
2
£+ &
<C / 1+ |w”2dw +2 / exp —? (;)l”—i—w dw
wi<l [w|>1
<C / 1+ w2 dw +/ e W g%y
lw|<1 (R3)*n
1 [e'e) ) -
=C </ 1+ Vadr —l—/ re”” dr) = C, where Wyp = 8] |2« . (26)
0 0

By the bounds (25) and (26), and assumption (15), for any number x, 0 <« < 1 — @,

1
(@) C a€Zpoly
kaﬁ (Z,Z,) < W <1aeIm(,m, + W)

2 2 2
(ma (e —182) +280)" 2
x [ exp| — - —
/ L 8m? lgl* S ©
R
2
L (5 +8.)
HaplB|“>2A1 mg *) 1y
X / <1 + \W) exp —7 ) +w dw
(®3)'n o
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(I,I,)zs(ﬂ)/z—l
*
=50
e

__c <1 N loe,,, )/ o~ (I+1)/2
= 7|g|]+2w a€Zmono IKL,}_K_w R%— (1/1;)1_5(&/4
2
m m
xexp (=L (Ig] — 21€l cos ¢ + 2x0)* — —2 |g* ) d1'd1],
8 Smﬂ

and cosp =n - S 27

Mg, | | &
For 0 <k <1 — @, by the bound (27) and the Cauchy-Schwarz inequality,

(ks . Z*>)

x e~ '+1)/2 dr'dl,

where x, =

__C (1 o lyez,,, ) / o~ (I'+10)/2 irdr / o~ (I'+10)/2
= 244 ®E€Lmono 2—2k—2 — * —
|g| +dw 12KI* K—2w 5 ([/];)1 8P 4 ki (1/1;)1 5B /4
+ +
mg 2 gt 2 BT
xexp | ——— (gl —2|§|cosp +2xa)" — —— |g|” | dI'dI,
4 4m,3
—(I'+1})/2
<c f exp (== (gl = 2 gl cos ¢ +2xa)?) ——— =z d I dl]
8 )
Loez,, e—malel?/(4mp) £
X = +1 Imm) ——————, with cosp =n - — (28)
P Cd g €|

If @ € Zp1y, by the change of variables I, — ® = |g| — 2 |&| cos ¢ + 24, noting that
m
dl, = == gl d®,

for any positive number a > 0, the bound

mg N e
/3 exXp <_7 (Igl —2|&]cos @ 4+ 2xq) ) mdl*dl dl*
RO ()
0 : SR ) 2
< Clgl/ e dd / — el =Clel (29)
may be obtained. Note also that
1 1 1 1
2 |411<1+ 1= |)dI =C 1+|g7 and ol _1—1—W (30)

Then, by the bounds (28) for k = 1 —

{01“ . (29). and (30), one have that,

1if 7
k(a) (Z,2)1y, € L? (dZdZ,) for any (nonzero) natural number N, since

2
/ (k“’)(z Z*)> dZdZ.,
by
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()
gz \lgl  |gf El<N

o0 1 2 p2 N
- c/ (R + —) e MaR /(4'"ﬂ)dR/ r2dr

/N R3 0

o0
< CN3/ e~maR/(4mp) (1 4 RYN3AR = CNS.
0

A

Note that, by the bound (27) fork =0 andif I, > 1, @ =0,

k(2. 2.

2 —(I'+1,)/2
m m e *
< —/ exp <—f8ﬁ (Igl — 2 1€ cos @ + 2xa)* — o |g|2> ——w ALY,
gl Jr2 mg (1'1y)

. 1 IOtEI oly
with Wi = (Wlusl + %11*21)
*

*

1 1 IOtEI Iy
<1+ —= 1<+ —"1,, 1)- (31)
< |g|2w> (11 —w = L =

The integral of k(%) (Z, Z..) with respect to Z over Z, is bounded in Z,. Indeed, due to
the symmetry (22) of the kernel k(%), follows, by the bounds (29) and (31), that

/k(“)(Z 7.)dZ = /k(“)(Z*,Z)dZ
Z,

f / k(a)(Z*y Z) 11<1 + IIOIEIPUI") dgdl

, 2
C 1 1 1 [ee) 6_1 /2
< — 1+ — ——dl — - drI'
- ./R3 g ( * |g|>/o 112 </0 (1)1 —8? /4 *lel

X€7m5|g|2/(8nlﬂ)dg

o 2 p2
< c/ (14 R?) e mal/Gmp) gR = C,
0
Aiming to prove that

/ k(2. 2,)dZ, = kS (2. Z) (1,21 + Laez,, 11,21) dILdE,
ZD( RSXR+

1 +log(1+ |&])
1&] ’

for |€| # 0, split the domain R x R into two subdomains

<C (32)

Dy = {R’ x Ry; L = [§]} and D = {R® x Ry; I, < [£]} .

By the bounds (29) and (31) (for @ = 0), it can be shown that the restriction of bound (32)
to the domain Dy is satisfied for |&] £ 0

/N /EI k(a)(Z Z.) (11,<1 + Loz, 11,21) d1.dE,
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IA

/ / K@, Z L, (1,21 + Luer,,,) dldE,

<

&

- < —m21g2/(8mp)
s/ ( ) e
_ ¢

&

/ (R + R2 o MR/ (8mp) g p — <
€]
+1

< og (14 &)

11

On the other hand, by the bound (31) (for @ = 1/2if « € Z),y), it can be shown that the
restriction of bound (32) to the domain D_ is satisfied for |&§| # O

1&]
/3/ k(“)(Z ) (ll*<] + 10!51—1;“1"11*21) dl*df;‘*
R

g L+ gl
<c| / / exp(—f(|g|—2|5|cosgo+xa> ——| |2) 18 g
R2 gl

1 e~ (I'+1))/2 )
X —1 + —1 7& dr'dr,
/2 I.<1 I.>1 (1/14)]—80‘5)/4 *

, 2
c ("1 o el
? (/ 1/2d1* +1|§\>1/] T*dl* /(; 7(1/)178(/5)/4(11
1 +log (1 + |&])

<E( —|—1|§|>110g|§|)<C |

Here the second inequality follows for [§] # 0, with xg = Al/ (my R), by

1+ |g| m
Cf Eew (-2 g ds
R3 Igl

2
//(1 +R)exp< ?‘3 (R—2&|cosg +2x2)* — 8'"—“1#) singdg dR
mg

IA

a

R+2x % +21&|
/ / T e 8 4 Ry R (M) g R
|§| R+2x%—2JE|

00 _;n2R2/(8m/;)(1 +R) dR/ —mﬁ¢2/8dq) C
|§| — €I

which is obtained by a change to spherical coordinates followed by the change of variables
o —> P=R—2|&|cosp +2xg, withd® = |§|sinp dg.

1 +log(1+x) . . .
Note that f(x) = ————— is a decreasing function for x > 0. Therefore, by the

bounds (29), (31), and (32),

sup / kS (Z.Z.) — k(2. 21y, dZ,

ez,
1+ log (1 +
< Sup/ / kS (2. Z.) (11,1 + Laez,, 11.21) dgdl, + sup 1+log (1 +1ED
zez. ) lE|I>N €]
Ig\i
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Fig.3 Typical collision of Kgyg2 / mpaa
5. .5
o -
o
g’ 5
o
5; mea 5*
r 1+1
+log(1+ N
< sup/ f kS (2. Z) (1,1 + Laez, )dgaur,urcL
ZEZ, N
0 lgl<4
c({1 (11 l+log(l1+N
5/ = —/ sl +1gl | dg+ cEU TR
lgl<4 1&gl \lglJo I, N
1 l+log(1+ N
EC / jdg_i_w
lgl< 18l N
1
v 1+1log(1+ N
=c(/ d|g|++0g]\(]+)>—>OasN—>oo.
0

Hence, by Lemma 4, the operators

Koz = / k(2. 2.) h dZ,
Z

o

are compact on L2 (dZy) for (a, B) 6 IZ
III. Compactness of K.g> = f ﬁz(Z Z.) hg+ dZ, for any indices (a, B) € 72

Assume that m, # mg and denote

mok — mgk
g=( 6,8 =8 £ 8=6 —ET=E & gp= L%,
My —mg
/ _ma‘f _mﬁE N Y
= ey O = o (B g LA L),
o~ meg —m
Aaply = L% ALy, and Aly = laex,,, (I' = 1) + 1gez,,, (I — 1) -
momeg .
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Furthermore, denote E’\a =1lifa € Z,ono and &, =1if B € Linono, While, otherwise,
B af

Eup = Eop = thap [B17 /2 + Lacz,p, I + ez, 1.
= ttap 18 /2 + Lacz,py I’ + 1pez,p, I
Note that, cf. Figure 3,
Wap (2.2, |Z . L)

= (mq + mﬁ)2 mampee (1) @ (1) Gapds ((ma —mpg) (gaﬂ - gfxﬁ))

gl Mmomg 2 )
P —1gP?) - AL
Xl (2(’"& ~ ) (Ig " — Il ) #)

2 .
(o +mp) ~ gl
= 500 (D 9p (1) Gapligp ooty =15 03 (gaﬁ - g;ﬂ)
(ma — mﬁ) gl gl
x4 <Ig/| —/lg” - 230431#) , (33)
/ /_ li
Then, by a change of variables {&', &} — lg'|.o = g7’ L= maé — mpk, , with
lg’| "~ My —mg

g =& — &, where
dE'dg., = dg'dg,; = |¢/|" d |g/| dg,pdo.

and substitution of expression (33) in the expression (21) of k(i%, one obtain

wos(Z, 2, |2/, Z,)

/ /
T dZ/dZ,

Wz = [
Zax2Zp  (MoaMpy)

o () M2 2l
Bxsx® V0 0 (g (1) gp (L) g (1) 0 (1) 2

XLigi2 202 0 1y 11’§£§,311,;§£A§ﬂdgfxﬁd"d g|drar

o~ 1/2
- (ma+mﬁ)2/ (31 )1/2 @lle| (e Dop(1)\”
gz N 4P gl \ou (I gp (1)

2
(mo —mp)
Xaotﬁ1|g|2>2£a,gl# 1,5, 11§S§:ﬂdad1’dli. 34)

However, also

12

. 12 (oo (Dep (1)) "«
kb (z,7,) :/ 8l (M M, SR A ST I
BT Jeme ( « ﬁ*) va (D gp )] 7

|wal

x 1 (35)

R s arar) g~
;La,5|§|2>2AI#11’§£aﬁllggfgjﬂdadl dl*’ witho =

7

and, furthermore,
1/2
®) o N2 (e () ep (1)) T _
k (Z,Z):/ |g|(MM ) Pl V9P &
ap2 : S2xRZ o« h va (1) wp (I;) o
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— 7 gyl .
Xl#aﬂ‘g|2>72AI#11/S&1ﬂllifg&kﬁdo’ d] d[*, Wlth

Taup = Oap <|g| e || e 1*,1,1;> and @ = %. (36)

By straightforward calculations, with o = g’/ |g’ }

/ ’ mg / mgo a2 N
§ Bap My — mﬂg Bap My — mg &l B TH

, , My , Mo 2 _oa :
£, =8 p— mﬁg L — iy V gl ap I

It follows, again by straightforward calculations, that

2 4
y M |g/|2> _ dmams o g
(ma —mﬂ) mg

4 £ = e+ ) (s .

2

+ Relp 2‘g/‘2)
(mo —mp)

maing /)2

—§

mg —mg

=(m—¢m7)2<g;ﬁ

+2»,/mam,3 (g:xﬂ -

> (\/mot - \/mﬂ)z
— (\/7 — F)z |gaﬂ|2 +4A, (|g|2 — 220(/31#) ,where

% = 0. (37)
F (e + )

Applying the Cauchy-Schwarz inequality, we obtain that

2
+44, ||

gt/xﬁ

1/2
(w01,) V4 (g (19 (12) 90 (1 05 U)' _(iiiyay o
- B 5@ /2 (2 8B 2 *
5aﬁ (50,5)
, 12
< (g, )1/2 (e (Do (1) 0 (1) 08 U iy sae
~ Jeame VTP *

5B
58(@)
gaﬁ (g;ﬁ )

x / eIt A ggarar
S2xR2

/ / /
M Mﬁ* ’ ’
AL U Rgearall, (38)

< 6471/
SZXRz_ ggﬁ (5;,3)
since for («, B) € I?2

o o \8P -2 @ jy_ 8
&2 (E) 2 )T ) = gy (g (1) g (1) 0 (L)

Note that max (|g], [g]) > |g|, cf. Figure3.
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H1. If min (/g], [g]) > 1., then [g] g > max ([g] . [g]) > lg|, and

gl gl + (gl lgh”’* gl 1
—~2 == (! ~ = 1-7/2
[g] [g] (Igllgh "

g ( 1 ) g ( 1 )
<=1+ —7=)=<=(14+—].
gl lg|' /2 gl lg|

1/4 g
Observe that ’g/‘z (M[;M/’S*> < Ce~(I'+ID/4 gince x2e=0%" < 1/ (ae) for any positive
number a > 0. Hence, by expression (34), assumption (15), and inequalities (37)-(38), one
may obtain the following bound

2
2 0u (I 0 (IN' S < o
(k;%)z(z’ Z*)) < C/ ( Ol( ) B ( *2)) eZAzA(,ﬂI# (1 +I*)/21‘glz>230031#dlldl>:<
ap \“ap
X (1 + |1|2) ef(x/miafx/miﬁ)zlgaﬂz/“e*f‘z\g\z (39)
g

H2. If min (|g], |g|) < I, then either of the two cases below apply:

(i) [g] = max (g], [g]) > |g| and |g| = min ([g], [g]) < 1, and, hence,

A ol 5])Y/2 1 1 C 1
gl gl +,E|§| ) < —= (1 + ﬂ) <= (1 + *) s
2l gl lgl' " 2l gl

and then, by expression (35), assumption (15), and inequalities (37)—(38), the bound (39)
is again satisfied.
(i) [ = max ([g]. [g) > |g| and [€] = min ([g]. [g]) < 1, implying, correspondingly, that
8l 18l + (8l 1gh* _ € (1 i )
gl - gl gl
and, hence, by expression (36), assumption (15), and inequalities (37)—(38), the bound
(39) is again obtained.

Note that
4A22aﬂ I# - (laezpnly I/ + lﬂezpoly IXC)
= 2A1 AI# - (I‘XEIpr)Iy I/ + lﬂEIpaly I>!/<)
laeng;y Y My I/ + lﬁezpaly \/I’ITﬁI;(

= 2A 1 PO\ VI - 1 (o \'] - — b (40)
1 ( O(EII 1 ,BEIP 1y *) \/}’}Ta-‘r mﬂ
where
My — /M
PP BT B V.. B
2 (ma + /mp) 4 (g + /i)
Moreover, for o € Zp1y
aﬁ > J1—ba—Ta (1/)@ I |g|271a , (41)
and for B € Zpy
—~ 1—tg—
wp = L (1) g, (42)
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where 0 <m, <1-¢,and0 < ¢, < 1/2fory € {a, B}. If the species a,, is monatomic,
Y € Tnono, let1 — ¢, =m, =0.

Therefore, by the bounds (39), (41), and (42), and expression (40), changing variables of
integration {£, &,} — {g, 8o}, with unitary Jacobian,

2
[ () asae,

A1 (0, 17 1pe, 0, 1) —AolE |
<C / e (1 + —) dg
Q

12—2;a—2m,12 2p—2mp |g|*Crat7s) lg|?

/ (a5 e 14 g
R3

X / (1’)501)/471/2724-0‘1“511101_\7 eim[//(z(\/mioff’m))dll
0

(o]
o /0 (14)8(/5)/471/272§ﬁ1ﬂ52p0,), o~V Qe+ ) g !
A1 (a1 1pe, 0, 1) —AolE |
<C / (1 )dg, (43)
Q [2-2%u—270 I*Z*Zé“ﬂ*hﬁ |g|4(7Ta+7Tﬁ) |g|2

for € R3, since, by a change to spherical coordinates,

oo
/ o~ (=) e g, = C / R FdR = C.
R3 0

Without loss of generality we can assume that m, > mg, and then A; > 0. On the other
hand, for Q C R3, by inequality (37), and the bounds (39), (41), and (42), also

[ (kp.z.) asas,

oA (122801 _
2(1gl? 8 #)llg\2>2AaﬂI# 1
¢ 2-275—27 I+ —5)dg
QxRE [2-2a=2ma [ BT | g 4(Tatp) gl
« (1/)5(00/4 1/2=28aluez,,, e 12 (I;)a(ﬁ)/4—1/2—2@156%01), e_Ii/zdI’dI;
.
R’

1 1
<C <1 + —) dg
Q [2-20a— 27ra12 26p—2mp |g|4(”a+”ﬂ) |g|2

o0
» / «s<“>/4 1220 aeT 112y
0

o
o / 5(/3)/4 12=2p1pez,,, 11124 I
0

IA

e («/W \/7) |guﬂ| /4dg /3

w

1

1
< c/ (1 + 7> dg. (44)
Q [2-260—2my [2T 28728 |g|#(Tat7p) lg|?

@ Springer



32 Page300f35 N. Bernhoff

By the bound (43), with ¢, = 4w, =4/9if y € Z,,;y,—remind that 1 — ¢, =, = 0if
y € Imon()_

2
/(R* [0,17)* (k‘(’%)z(z’ Z*)) dgdé.dl dl
2 x [0,

1 + |g|2) e~ A2l 1 1 B
S C/ ( 2|gL) dg/ 12(§a+71'a*1) dI/ 1*2({5"’_71/3 1) dI*
R |g| +4 (g +7p) 0 0

2
< c/ AR —mr g
R3 R4(7ra+rr/j)

This covers the case («, f) € Z2,,, completely.
Now assume that 8 € Z,,,, and consider the case I, > I, assuming that
2/5if1 <1 i

I, > 1—else (1, I,) € [0, 112 Then, by the bound (43), with ¢, = 27, = { 0if I > 1

a € Ipoy — e =0ifa € Tyono—and ¢g = 10 = 10/21,

< ® 2
[ L (5. 20) (rsitaczn, + tocr, ) dgag arar,

S | , 1+ |g|2) e—A2lel
<cC 1+/ T / O+ gl e ™8
o I+ {o—2my R3 |g|2+4(77a+77/5)

0 e—A1U=D)
——————d (s — 1
X/o @ —nr D

1 45 © 00 engRz 5
<C 1+/ 1~ dI—i—f I‘dl)/ ——(1+R°)dR =_C.
( 0 1 0 R4(mat7p) ( )

This covers the case (o, B) € Zyono X Zpoly completely, and the case (a, B) € 72 poly partly.

On the other hand, if @ € Z,,/y, considering the case I > I, assume that I > l—else
(1, 1,) € [0, 1] Then, by the bound (44), with 7y, = ¢, = 0 and ¢g = 2ng = 2/5 if
/3 € Ipoly,

! 2
/1 /0 / | 1 kfxf;)Z(Z’ Z*)) (11*511/351-;11(”:0 + lﬁezpoly) dsdg*dl* dI
gl=

o0
< c/ 172 <1+1ﬂE lf 4/5d1*) dI/ g 7274 dg
1 0 lgl<1
00 1 00
< c/ 1*21‘/5011/ R™*PdR :c/ 1798341 =C
1 0 1

If, additionally, assuming that the species ag is polyatomic, B € Z,y, then, again by the
bound (44), with ¢, = ¢g =0and 1 — 2ny, = g = 3/5,

= ®) 2
/1 /O /|| l(kalgz(z, Z.) dgdg,dl, dI
gl=

o0 L s

< c[ 1—8/5/ Y dl*dI/ g 16/5 ag
1 0 lgl>1
o0 o0

= cf 1*7/5d1/ R™dR = C.
1 1
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This completes the case («, B) € 120[ .
Assume now instead that, additionally, the species ag is monatomic, 8 € Z;on0- Then, If
Al < Ay |g|2, by the bound (43), with §{, = (g =1 -7 =74 =0,

Azlgl/Ar )
/\ | 1/1 (k2. 2.0) d1asag,
gz

Aslgl? /A ) 00
< C/ |g|_4f eA—A0E g rge < c/ R 2dR =C.
lgl>1 1 1

On the other hand, if A{1 > A, |g|2, noting that

A 2 Mg 2

- (|g/| - |g|2) 41— =—"2"F (!g’| - |g|2) — Aly =0,

Ay 2 (ma — mﬁ)
and, hence,

A 2 Ap
I =1 7(/ _ 2>>1_7 2>0,
7 2" —lgf) = a, e =

then, by the bounds (39), (37), and (41), with {, = 1 — m, = 0, changing variables of
integration {&, &, } — {8, 8o}, with unitary Jacobian,

o0 2
[ (ko) arasas,
lgl=1J Az lgl?/A
o0 [o¢] 5
< C/ |g|—4/ e~ I=M21gP/A) /4y 14
1 Aalgl?/Ar

oo o ,
X/ e‘(m‘W)2|gﬂﬂ|2/4dgaﬁ/ (I/)‘S( R Y
R3 0
o0
< C/ RdR=C.
1

Then the case (a, B) € Zpoty X Iimono is covered completely.

2
Concluding, (k;f;)z(z, Z*)) € L2 (dZ dZ,), implying that
_ »B)
Kaﬂ2 = / ka‘gz(zv Z*)hﬂ* dZ,
Zp

are Hilbert—Schmidt integral operators, and as such continuous and compact on L2 (dZ), see
[22, Theorem 7.83], for (a, B) € Z2.
On the other hand, if my = mg, then

R , , 1/2
gl (MaMﬁ*) @o () g (I}) 12
0o (I") pp (1)

Oapl o 1,z & 'dI,
My <&y =
XOuply, apsant i <E i <gr dwdl dl,,

B)
ki (2, 1y) = / 4 —
N T ) Izl gl

withg=§& — &, andg =&, — & Here, withg =& — &,_andn = g/ |g|,

§'=E+w—yan Al
, where w L g and = .
{E;=§*+w—xan B e = e gl

@ Springer



32 Page32o0f35 N. Bernhoff

Then similar arguments to the ones for k‘%) (Z,Z,) (with mq = mg) above, can be applied.

Concluding, the operator
)
K =(Ky,...,Ky) = Z(Kl,sz + K13 — Kip1, ..., Kspo + K3 — K1),
p=1
is a compact self-adjoint operator on h. Self-adjointness is due to the symmetry relations
(22), (23), cf. [23, p. 198]. O
5 Bounds on the Collision Frequency

This section concerns the proof of Theorem 2. Note that throughout the proof, C will denote
a generic positive constants. Moreover, remind that ¢, (1) = 1 8/2=1 for o € T below.

Proof Noting identity (8), under assumption (17), the collision frequencies v, equal

s
3 Mp» -

Vo = ———— WypdZ,dZ/dZ

) B—1 /zang 0o (1) @p (Iy) ap & Eu *
N

2A1
= Mpooup 2181 [ [12P — 220 g )1, e

ﬂ:]LﬂXR3X(R+)3SZ BxO0ap o | | Haplgl?>2A1

X1z, 11y =62,83 (Gop — Gl ) dZ.dGld g | dod1'd1]

N
2
= E Caﬁ/ da/ vp (I*)e_l*e_mﬁrg*| /200,3
et s? R3x(Ry)?

X1, iapoans Lrzeg ey, |2l dE,dLd1dl]

_ Zs C ﬁ/ o—mple} /2,1 P (1) ¢p (1) ¢p (L)
- G, ®B 2
— RIx(R4)? 5 /2 SR a2
p=1 xRy e P (&2s) T EY,

Xluaﬁlg|2>2A111’§€aﬂ114552/5 \} |g|2 N 2Zaﬁ1d5*d1*d1/dli

for o € Z. Clearly,

Vo (Iy) o (1/) (2 (14) el 2 4
Vg > Cuq @ =n/2 gl — —AI
R3x(R4)? Sga Eoo Mgy

2
xe M€l 21y e dE dldldl.

Then, if the species ay is monatomic, @ € Zon0,
2
wzC [ e,
R3x(Ry)3

o el (- ) e
R3x(R; )3
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while if a, is polyatomic, o € Z 01y,

-1
Vo > C/ / ool 272 % (1) @a (I') @ () €
R3xRy JI'+1[<Eqa/2 g8 EII2
%y Eqo — (I' + 1})d& d1,d1'dI]

1/2 _mot|§ |2/2 Eqo /4 2

Euq e * @ /p_

c/ e pa (I e (/ (1) ‘dﬂ) dé dI,
RxR,  EXWEN; 0

v

2
c / EU-072gmalul* 12, (1) el ag d1,
R3xRy
- 2 X 5@
> C/3 (g2 + 1) 77" emmalts] /2[15*/ 2P g,
R 0

> C/ <||§| — |§*H2 n I)(l—n)/z efmalE*p/sz*.
R:i

Now it follows that

2 (-m/2 _ 2
vz C [ (081 80+ taegy 1) emlee

x (1|’E |<121igz1 + 1|£*|221|£\51) dé,

1-n)/2 _ 2
C( |§|2+1a61’p(,1} )( 2 1|E‘21/ e ma|§*| /2d$*

|&.]<1/2
_ 2
+ (14 Laez,, 1 )u n>/21|551f| | o Mald.l /2d§*)
£.]>2

(I=n)
|§| +1(XEI]}UI\ ) n/ 1| ‘>1 +(1 +1a€IF”l} )(1 n)/21|£| l)
1=n)/2
+ |£| + IDZEIpol) ) v

>C
>C

I-n
>C

(1+ 181 + Laez,,,, VT)
Hence, there is a positive constant v_ > 0, such that for all « € 7

1—n

vo 2 v- (1 + 1§ + Lacz,, V7

On the other hand,
N
vy < C Z/ omplE 12,1 p=m/2 e (1) ¢p (1) 0p (1)
- R3><(]R+)3 ob 55(“)/2 &* 5#/2
af aﬁ)
Xll/fgaﬁlliff* d{‘*dl*dl/dl,ﬁ
6*
Eap 5@ /21 af 5B 2—1
) (1)
— —mpgl&, /2 —1, ( ’ * ’
—cy / sl / ! / Szl
P=lpssr, 0 op 0 (52,9)

1-n)/2
xp (1) Eyg " d1,dE,
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s

_ 2 1-n)/2
=C /]R2 . e mp&.| 124 [*(/)ﬂ (1) E(Stﬂ n/ dl.dE,
p=1"" R

implying, since, clearly, Eqp < (1 + stop 181* /2 + 1aez,,, 1) (1 4+ 1pez,,,,, 1), that

S

(1=m)/2 2

v = CZ/ (1 + EP g2 4 laeII,(,,vl> emelel 2
p=1 /R 2 ’

* (=m/2 8P 2-1 _p
X 1+ L)V ="M= e *dlI,
0
1—n)/2 (I-m/2 2
< C(1+ &P + Loez,, 1) " /3 (1+ y§*|2) omolé 28
R

1-n 0 _
<cC (1 +1E] + Loez,, fl) / (14720702 2 mir g,
0

-n

=C (1 + 1§+ laEIpolyﬁ)l

Hence, there is a positive constant vy > 0, such that forall « € 7

I—n
Vg < vy (1 + 1§+ lotEIpol.vﬁ)
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