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Abstract
The linearized Boltzmann collision operator has a central role inmany important applications
of theBoltzmann equation. Recently some important classical properties of the linearized col-
lision operator for monatomic single species were extended to multicomponent monatomic
gases and polyatomic single species. For multicomponent polyatomic gases, the case where
the polyatomicity is modelled by a discrete internal energy variable was considered lately.
Here we consider the corresponding case for a continuous internal energy variable. Com-
pactness results, stating that the linearized operator can be decomposed into a sum of a
positive multiplication operator, the collision frequency, and a compact operator, bringing
e.g., self-adjointness, is extended from the classical result for monatomic single species,
under reasonable assumptions on the collision kernel. With a probabilistic formulation of the
collision operator as a starting point, the compactness property is shown by a decomposition,
such that the terms are, or at least are uniform limits of, Hilbert–Schmidt integral operators
and therefore are compact operators. Moreover, bounds on—including coercivity of—the
collision frequency are obtained for hard sphere like, as well as hard potentials with cutoff
like, models, from which Fredholmness of the linearized collision operator follows, as well
as its domain.

Keywords Boltzmann equation · Gas mixture · Polyatomic gas · Linearized collision
operator · Hilbert–Schmidt integral operator

1 Introduction

The Boltzmann equation is a fundamental equation of kinetic theory of gases, e.g., for com-
putations of the flow around a space shuttle in the upper atmosphere during reentry [1].
Studies of the main properties of the linearized collision operator are of great importance in
gaining increased knowledge about related problems, see, e.g., [12] and references therein.
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The linearized collision operator, obtained by considering deviations of an equilibrium, or
Maxwellian, distribution, can in a natural way be written as a sum of a positive multiplica-
tion operator—the collision frequency—and an integral operator −K . Compact properties
of the integral operator K (for angular cut-off kernels) are extensively studied for monatomic
single species, see, e.g., [12, 14, 18, 21], and more recently for monatomic multi-component
mixtures [4, 8]. Extensions to polyatomic single species, where the polyatomicity is modeled
by either a discrete, or, a continuous internal energy variable [4, 5] and polyatomic mul-
ticomponent mixtures [2], where the polyatomicity is modeled by discrete internal energy
variables, have also been conducted. For models, assuming a continuous internal energy
variable, see also [7] for the case of molecules undergoing resonant collisions (for which
internal energy and kinetic energy, respectively, are conserved under collisions), and [10,
11] for diatomic and polyatomic gases, respectively—with more restrictive—concerning the
models considered in [16], allowing some others in return—assumptions on the collision ker-
nels than in [5], but also a more direct approach. The integral operator can be written as the
sum of a Hilbert–Schmidt integral operator and an approximately Hilbert–Schmidt integral
operator—which is a uniform limit of Hilbert–Schmidt integral operators (cf. Lemma 4 in
Sect. 4) [17], and so compactness of the integral operator K can be obtained. In this work, we
extend the results of [4, 5] for monatomic multicomponent mixtures and polyatomic single
species, where the polyatomicity is modeled by a continuous internal energy variable [9,
16], to the case of multicomponent mixtures of monatomic and/or polyatomic gases, where
the polyatomicity is modeled by a continuous internal energy variable [1, 13]. To consider
mixtures of monatomic and polyatomic molecules are of highest relevance in, e.g., the upper
atmosphere [1].

Following the lines of [2, 4, 5], motivated by an approach by Kogan in [20, Sect. 2.8]
for the monatomic single species case, a probabilistic formulation of the collision operator
is considered as the starting point. With this approach, it is shown that the integral operator
K can be written as a sum of Hilbert–Schmidt integral operators and operators, which are
uniform limits of Hilbert–Schmidt integral operators— and so compactness of the integral
operator K follows. The operator K is self-adjoint, as well as the collision frequency. Thus
the linearized collision operator, as the sum of two self-adjoint operators whereof (at least)
one is bounded, is also self-adjoint.

For models corresponding to hard sphere models, as well as hard potentials with cut off
models, in the monatomic case, bounds on the collision frequency are obtained. Here we
also want to point out reference [15], where the corresponding upper bound in [5] for the
single species case was improved. Then the collision frequency is coercive and becomes a
Fredholm operator. The set of Fredholm operators is closed under addition with compact
operators. Therefore, also the linearized collision operator becomes a Fredholm operator by
the compactness of the integral operator K . The Fredholm property is vital in the Chapman-
Enskog process, and the Fredholmness of the linearized operator supply with the Fredholm
property, taken for granted in [1], for those models. Note that for monatomic species, the
linearized operator is not Fredholm for soft potentialmodels, unlike for hard potentialmodels.
The domain of collision frequency—and, hence, of the linearized collision operator as well—
follows directly by the obtained bounds

For hard sphere like models the linearized collision operator satisfies all the properties of
the general linear operator in the abstract half-space problem considered in [3], and, hence,
the existence results in [3] apply.

The rest of the paper is organized as follows. In Sect. 2, the model considered is presented.
The probabilistic formulation of the collision operators considered and its relations to more
classical formulations [1, 13] are accounted for in Sect. 2.1. Some results for the collision
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operators in Sect. 2.2 and the linearized collision operator in Sect. 2.3 are reviewed. Section3
is devoted to the main results of this paper, while the main proofs are addressed in Sects. 4
and 5; a proof of compactness of the integral operators K is presented in Sect. 4, while a
proof of the bounds on the collision frequency appears in Sect. 5.

2 Model

This section concerns themodel considered. Probabilistic formulations of the collision opera-
tors are considered, whose relations to more classical formulations are accounted for. Known
properties of the models and corresponding linearized collision operators are also reviewed.

Consider a multicomponent mixture of s species a1, . . . , as , with s0 monatomic and
s1 := s − s0 polyatomic species, and masses m1, . . . ,ms , respectively, and introduce the
index sets

I = {1, . . . , s} , Imono = {α; aα is monatomic} = {1, . . . , s0} , and
Ipoly = {α; aα is polyatomic } = {s0 + 1, . . . , s} .

Here the polyatomicity is modeled by a continuous internal energy variable I ∈ R+ [6].
The distribution functions are of the form f = ( f1, . . . , fs), where for α ∈ I the compo-

nent fα = fα (t, x,Z), with

Z = Zα :=
{

ξ for α ∈ Imono

(ξ , I ) for α ∈ Ipoly
, (1)

{t, I } ⊂ R+, x = (x, y, z) ∈ R
3, and ξ = (

ξx , ξy, ξz
) ∈ R

3, is the distribution function for
species aα .

Moreover, consider the real Hilbert space

h := (
L2 (dξ)

)s0 × (
L2 (dξd I )

)s1
,

with inner product

( f , g) =
s0∑

α=1

∫
R3

fαgα dξ +
s∑

α=s0+1

∫
R3×R+

fαgα dξd I , for { f , g} ⊂ h.

The evolution of the distribution functions is (in the absence of external forces) described
by the (vector) Boltzmann equation

∂ f

∂t
+ (ξ · ∇x) f = Q ( f , f ) , (2)

where the (vector) collision operator Q = (Q1, . . . , Qs) is a quadratic bilinear operator
that accounts for the change of velocities and internal energies of particles due to binary
collisions (assuming that the gas is rarefied, such that other collisions are negligible). Here
the component Qα , with α ∈ I, is the collision operator for species aα .

A collision between two particles of species aα and aβ , where {α, β} ⊆ I, respectively,
can be represented by two pre-collisional elements, each element consisting of a micro-
scopic velocity and possibly also an internal energy, Z and Z∗, and two corresponding
post-collisional elements, Z′ and Z′∗. The notation for pre- and post-collisional pairs may
be interchanged as well. Due to momentum and total energy conservation, the following
relations have to be satisfied by the elements

mαξ + mβξ∗ = mαξ ′ + mβξ ′∗
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and if (α, β) ∈ I2
mono (mono/mono-interactions)

mα |ξ |2 + mβ

∣∣ξ∗
∣∣2 = mα

∣∣ξ ′∣∣2 + mβ

∣∣ξ ′∗
∣∣2 ,

if (α, β) ∈ Imono × Ipoly (mono/poly-interactions)

mα |ξ |2 + mβ

∣∣ξ∗
∣∣2 + 2I∗ = mα

∣∣ξ ′∣∣2 + mβ

∣∣ξ ′∗
∣∣2 + 2I ′∗,

if (α, β) ∈ Ipoly × Imono (poly/mono-interactions)

mα |ξ |2 + mβ

∣∣ξ∗
∣∣2 + 2I = mα

∣∣ξ ′∣∣2 + mβ

∣∣ξ ′∗
∣∣2 + 2I ′,

while if (α, β) ∈ I2
poly (poly/poly-interactions)

mα |ξ |2 + mβ

∣∣ξ∗
∣∣2 + 2I + 2I∗ = mα

∣∣ξ ′∣∣2 + mβ

∣∣ξ ′∗
∣∣2 + 2I ′ + 2I ′∗.

2.1 Collision Operator

The (vector) collision operator Q = (Q1, . . . , Qs) has components that can be written in
the following form

Qα( f , f ) =
s∑

β=1

Qαβ( f , f ) =
s∑

β=1

∫
Zα×Z2

β

Wαβ�αβ( f ) dZ∗dZ′dZ′∗,

where �αβ( f ) := f ′
α f ′

β∗
ϕα (I ′) ϕβ

(
I ′∗
) − fα fβ∗

ϕα (I ) ϕβ (I∗)

and Zγ =
{
R
3 if γ ∈ Imono

R
3 × R+ if γ ∈ Ipoly

.

Here and below the abbreviations

fα∗ = fα (t, x,Z∗) , f ′
α = fα

(
t, x,Z′) , and f ′

α∗ = fα
(
t, x,Z′∗

)
,

where Z∗, Z′, and Z′∗, are defined as the natural extension of definition (1), i.e. denoting

Z∗ = Z∗α =
{

ξ∗ for α ∈ Imono(
ξ∗, I∗

)
for α ∈ Ipoly

etc., are used for α ∈ I. Moreover, the degeneracies

or renormalization weights ϕα = ϕα (I ), α ∈ I, with ϕα = 1 for α ∈ Imono, are positive
functions for I > 0. A typical choice of the degeneracies is [16]

ϕα (I ) = I δ(α)/2−1, α ∈ I,
where δ(1) = ... = δ(s0) = 2, while δ(α), with δ(α) ≥ 2, denote the number of internal degrees
of freedom of the species for α ∈ Ipoly . Our main results in Sect. 3 below will be stated and
proven for this particular choice of degeneracies.

Note that in the literature it is usual to use a slightly different setting [1, 9, 13], where
already renormalized distribution functions are considered, opting to consider a weighted
measure—where the renormalizationweights appear asweights—with respect to I . However,
this is merely due to a different scaling of the distribution functions considered.

The transition probabilities Wαβ are of the form, cf. [4, 5],

Wαβ = Wαβ(Z,Z∗
∣∣Z′,Z′∗ )

= (
mα + mβ

)2
mαmϕα

(
I ′)ϕβ

(
I ′∗
)
σ ′

αβ

∣∣g′∣∣
|g| δ̂1̂δ3
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= (
mα + mβ

)2
mαmβϕα (I ) ϕβ (I∗) σαβ

|g|
|g′| δ̂1̂δ3, where

σαβ = σαβ

(|g| , cos θ, I , I∗, I ′, I ′∗
)

> 0 and

σ ′
αβ = σαβ

(∣∣g′∣∣ , cos θ, I ′, I ′∗, I , I∗
)

> 0 a.e., with

δ̂1 = δ1

(
1

2

(
mα |ξ |2 + mβ

∣∣ξ∗
∣∣2 − mα

∣∣ξ ′∣∣2 − mβ

∣∣ξ ′∗
∣∣2) − �I

)
,

δ̂3 = δ3
(
mαξ + mβξ∗ − mαξ ′ − mβξ ′∗

)
, cos θ = g · g′

|g| |g′| ,
g = ξ − ξ∗, g′ = ξ ′ − ξ ′∗, and �I = (

I ′ − I
)
1α∈Ipoly + (

I ′∗ − I∗
)
1β∈Ipoly . (3)

Here δ3 and δ1 denote the Dirac’s delta function in R
3 and R, respectively—δ̂1 and δ̂3

taking the conservation of momentum and total energy into account. Note that for α ∈ Imono

the scattering cross sections σαβ are independent of I and I ′, while correspondingly, for
β ∈ Imono the scattering cross sections σαβ are independent of I∗ and I ′∗. Moreover, we have
chosen—even if this means not being completely consistent—to not indicate the dependence
of species in the notation, if—like for the energy gap �I—the dependence is only up to if
the species are monatomic or polyatomic.

It is assumed that the scattering cross sections σαβ for (α, β) ∈ I2 satisfy the microre-
versibility conditions

ϕα (I ) ϕβ (I∗) |g|2 σαβ

(|g| , cos θ, I , I∗, I ′, I ′∗
)

= ϕα

(
I ′)ϕβ

(
I ′∗
) ∣∣g′∣∣2 σαβ

(∣∣g′∣∣ , cos θ, I ′, I ′∗, I , I∗
)
. (4)

Furthermore, to obtain invariance of change of particles in a collision, it is assumed that the
scattering cross sections σαβ for (α, β) ∈ I2 satisfy the symmetry relations

σαβ

(|g| , cos θ, I , I∗, I ′, I ′∗
) = σβα

(|g| , cos θ, I∗, I , I ′∗, I ′) , (5)

while

σαα = σαα

(|g| , |cos θ | , I , I∗, I ′, I ′∗
) = σαα

(|g| , |cos θ | , I∗, I , I ′, I ′∗
)

= σαα

(|g| , |cos θ | , I∗, I , I ′∗, I ′) . (6)

The invariance under change of particles in a collision,which follows directly by the definition
of the transition probability (3) and the symmetry relations (5), (6) for the collision frequency,
and the microreversibility of the collisions (4), implies that the transition probabilities (3)
satisfy the relations

Wαβ(Z,Z∗
∣∣Z′,Z′∗ ) = Wβα(Z∗,Z

∣∣Z′∗,Z′ )
Wαβ(Z,Z∗

∣∣Z′,Z′∗ ) = Wαβ(Z′,Z′∗ |Z,Z∗ )

Wαα(Z,Z∗
∣∣Z′,Z′∗ ) = Wαα(Z,Z∗

∣∣Z′∗,Z′ ). (7)

Applying known properties of Dirac’s delta function, the transition probabilities may be
transformed to

Wαβ = Wαβ(Z,Z∗
∣∣Z′,Z′∗ )

= (
mα + mβ

)2
mαmβϕα

(
I ′)ϕβ

(
I ′∗
)
σ ′

αβ

∣∣g′∣∣
|g| δ1

(μαβ

2

(
|g|2 − ∣∣g′∣∣2) − �I

)

×δ3

((
mα + mβ

) (
Gαβ − G′

αβ

))
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= 2ϕα

(
I ′)ϕβ

(
I ′∗
)
σ ′

αβ

∣∣g′∣∣
|g| δ1

(
|g|2 − ∣∣g′∣∣2 − 2

μαβ

�I

)
δ3

(
Gαβ − G′

αβ

)

= ϕα

(
I ′)ϕβ

(
I ′∗
)
σ ′

αβ

1

|g|1μαβ |g|2>2�I δ3

(
Gαβ − G′

αβ

)

×δ1

(√
|g|2 − 2�I

μαβ

− ∣∣g′∣∣
)

= ϕα (I ) ϕβ (I∗) σαβ

|g|
|g′|2 1μαβ |g|2>2�I δ1

(√
|g|2 − 2�I

μαβ

− ∣∣g′∣∣
)

×δ3

(
Gαβ − G′

αβ

)
,

with Gαβ = mαξ + mβξ∗
mα + mβ

,G′
αβ = mαξ ′ + mβξ ′∗

mα + mβ

, and μαβ = mαmβ

mα + mβ

.

Remark 1 Note that

δ1

(μαβ

2

(
|g|2 − ∣∣g′∣∣2) − �I

)
= δ1

(
Eαβ − E ′

αβ

)
,

where Eαβ = μαβ

2
|g|2 + 1α∈Ipoly I + 1β∈Ipoly I∗ is the total energy in the center of mass

frame, and, correspondingly, E ′
αβ = μαβ

2

∣∣g′∣∣2 + 1α∈Ipoly I
′ + 1β∈Ipoly I

′∗.

Observe that, by a series of change of variables:

{ξ ′, ξ ′∗} →
{
g′ = ξ ′ − ξ ′∗,G′

αβ = mαξ ′ + mβξ ′∗
mα + mβ

}
, followed by a change to spherical

coordinates

{
g′
}

→
{
|g′|, σ = g′

|g′|
}
,

dξ ′dξ ′∗ = dG′
αβdg

′ = ∣∣g′∣∣2 dG′
αβd

∣∣g′∣∣ dσ

while, if aβ is polyatomic, β ∈ Ipoly , by applying the additional change of variables

{∣∣g′∣∣ , I ′∗
} →

{
R = μαβ

2

∣∣g′∣∣2
Eαβ

, E ′
αβ = μαβ

2

∣∣g′∣∣2 + I ′ + I ′∗

}
,

dξ ′dξ ′∗d I ′∗ = √
2

(
Eαβ

μαβ

)3/2

R1/2dRdσdG′
αβdE

′
αβ ,

and, finally, if additionally α ∈ Ipoly , the change
{
I ′} →

{
r = I ′

(1 − R) Eαβ

}
leads to

dξ ′dξ ′∗d I ′d I ′∗ =
√
2

μ
3/2
αβ

E5/2
αβ (1 − R)R1/2drdRdσdG′

αβdE
′
αβ. (8)

Then for two monatomic species, i.e., (α, β) ∈ I2
mono, (mono/mono-case)

Qαβ( f , f ) =
∫
(R3)

2×R+×S
2
Wαβ

∣∣g′∣∣2 ( f ′
α f ′

β∗ − fα fβ∗
)
dξ∗dG′

αβd
∣∣g′∣∣ dσ

=
∫
R3×S

2
B0αβ

(
f ′
α f ′

β∗ − fα fβ∗
)
dξ∗dσ , with B0αβ = σαβ |g| ,
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or, with ϕα (I ) = I δ(α)/2−1, α ∈ I, for a monatomic species and a polyatomic species, i.e.,
either (α, β) ∈ Imono × Ipoly (mono/poly-case)

Qαβ( f , f ) =
∫
(R3)

2×R
2+×[0,1]×S

2
Wαβ

√
2

(
Eαβ

μαβ

)3/2
⎛
⎝ f ′

α f ′
β∗(

I ′∗
)δ(β)/2−1

− fα fβ∗
I δ(β)/2−1∗

⎞
⎠

×R1/2dξ∗dG′
αβdRdσd I∗dE ′

αβ

=
∫
R3×R+×[0,1]×S

2
B1αβ

⎛
⎝ f ′

α f ′
β∗(

I ′∗
)δ(β)/2−1

− fα fβ∗
I δ(β)/2−1∗

⎞
⎠ (1 − R)δ

(β)/2−1

×R1/2 I δ(β)/2−1∗ dξ∗dRdσd I∗,

with B1αβ = σαβ

√
2/μαβ |g|

(
I ′∗
)δ(β)/2−1

√
|g|2 − 2�I

μαβ

E
(
δ(β)+1

)
/2

αβ = σαβ |g| Eαβ

R1/2(1 − R)δ
(β)/2−1

or, (α, β) ∈ Ipoly × Imono (poly/mono-case)

Qαβ( f , f ) =
∫
(R3)

2×R+×[0,1]×S
2
Wαβ

√
2

(
Eαβ

μαβ

)3/2
(

f ′
α f ′

β∗
(I ′)δ(α)/2−1

− fα fβ∗
I δ(α)/2−1

)

×R1/2 dξ∗dG′
αβdRdσdE ′

αβ

=
∫
R3×[0,1]×S

2
B1βα

(
f ′
α f ′

β∗
(I ′)δ(α)/2−1

− fα fβ∗
I δ(α)/2−1

)
(1 − R)δ

(α)/2−1 R1/2

×I δ(α)/2−1dξ∗dRdσ

and, finally, again with ϕα (I ) = I δ(α)/2−1, α ∈ I, for two polyatomic species, i.e., with
(α, β) ∈ I2

poly (poly/poly-case)

Qαβ( f , f ) =
∫
(R3)

2×R
2+×[0,1]2×S

2

⎛
⎝ f ′

α f ′
β∗

(I ′)δ(α)/2−1 (I ′∗
)δ(β)/2−1

− fα fβ∗
I δ(α)/2−1 I δ(β)/2−1∗

⎞
⎠

×Wαβ

√
2

μ
3/2
αβ

E5/2
αβ (1 − R)R1/2dξ∗drdRdσdG′

αβdE
′
αβd I∗

=
∫
R3×R+×[0,1]2×S

2
B2αβ

⎛
⎝ f ′

α f ′
β∗

(I ′)δ(α)/2−1 (I ′∗
)δ(β)/2−1

− fα fβ∗
I δ(α)/2−1 I δ(β)/2−1∗

⎞
⎠

×r δ(α)/2−1 (1 − r)δ
(β)/2−1 (1 − R)

(
δ(α)+δ(β)

)
/2−1R1/2

×I δ(α)/2−1 I δ(β)/2−1∗ dξ∗drdRdσd I∗, with

B2αβ = σαβ

√
2/μαβ |g| E

(
δ(α)+δ(β)+1

)
/2

αβ

(I ′)δ(α)/2−1 (I ′∗
)δ(β)/2−1

√
|g|2 − 2�I

μαβ

= σαβ |g| E2
αβ

r δ(α)/2−1 (1 − r)δ
(β)/2−1 (1 − R)(δ

(α)+δ(β))/2−2R1/2
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where ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ξ ′ = Gαβ + σ
mβ

mα + mβ

√
|g|2 − 2�I

μαβ

ξ ′∗ = Gαβ − σ
mα

mα + mβ

√
|g|2 − 2�I

μαβ

.

This results in more familiar forms of the Boltzmann collision operators for mixtures of
monatomic and/or polyatomic molecules modeled with a continuous energy variable, cf.,
e.g., [1, 13]. Here and below the internal energy gaps are given by�I = 0 in themono/mono-
case, �I = I ′∗ − I∗ in the mono/poly-case, �I = I ′ − I in the poly/mono-case, while in the
poly/poly-case �I = I ′ + I ′∗ − I − I∗.

2.2 Collision Invariants andMaxwellian Distributions

The following lemma follows directly by the relations (7).

Lemma 1 The measures

d Aαβ = Wαβ(Z,Z∗
∣∣Z′,Z′∗ )dZdZ∗dZ′dZ′∗

are invariant under the (ordered) interchange

(Z,Z∗) ↔ (
Z′,Z′∗

)
, (9)

of variables for (α, β) ∈ I2, while

d Aαβ + d Aβα for (α, β) ∈ I2

are invariant under the (ordered) interchange of variables

(
Z,Z′) ↔ (

Z∗,Z′∗
)
. (10)

The weak form of the collision operator Q( f , f ) reads

(Q( f , f ), g) =
s∑

α,β=1

∫
Z2

α×Z2
β

�αβ( f )gα d Aαβ

=
s∑

α,β=1

∫
Z2

α×Z2
β

�αβ( f )gβ∗ d Aαβ

= −
s∑

α,β=1

∫
Z2

α×Z2
β

�αβ( f )g′
α d Aαβ

= −
s∑

α,β=1

∫
Z2

α×Z2
β

�αβ( f )g′
β∗ d Aαβ

for any function g = (g1, . . . , gs), with gα = gα(Z), such that the first integrals are defined
for all (α, β) ∈ I2, while the following equalities are obtained by applying Lemma 1.
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Denote for any function g = (g1, . . . , gs), with gα = gα(Z),

�αβ (g) := gα + gβ∗ − g′
α − g′

β∗.

We have the following proposition.

Proposition 1 Let g = (g1, . . . , gs), where gα = gα(Z), be such that
∫
Z2

α×Z2
β

�αβ( f )gα d Aαβ , with �αβ( f ) = f ′
α f ′

β∗
ϕα (I ′) ϕβ

(
I ′∗
) − fα fβ∗

ϕα (I ) ϕβ (I∗)
,

is defined for any (α, β) ∈ I2. Then

(Q( f , f ), g) = 1

4

s∑
α,β=1

∫
Z2

α×Z2
β

�αβ( f )�αβ (g) d Aαβ.

Definition 1 A function g = (g1, . . . , gs), where gα = gα(Z), is a collision invariant if

�αβ (g) Wαβ(Z,Z∗
∣∣Z′,Z′∗ ) = 0 a.e.

for all (α, β) ∈ I2.

It is clear that e1, ..., es,mξx ,mξy,mξz, andm |ξ |2+2I, denoting herem = (m1, . . . ,ms),
I = (0, . . . , 0︸ ︷︷ ︸

s0

, I , . . . , I︸ ︷︷ ︸
s1=s−s0

), and by {e1, . . . , es} the standard basis of R
s , are collision

invariants—corresponding to conservation of mass(es), momentum, and total energy.
In fact, we have the following proposition, cf. [1, 13].

Proposition 2 Let m = (m1, . . . ,ms), I = (0, . . . , 0︸ ︷︷ ︸
s0

, I , . . . , I︸ ︷︷ ︸
s1

), and {e1, . . . , es} be the

standard basis of Rs . Then the vector space of collision invariants is generated by{
e1, . . . , es,mξx ,mξy,mξz,m |ξ |2 + 2I

}
.

Define

W [ f ] := (
Q( f , f ), log

(
ϕ−1 f

))
,

where ϕ = ϕ(I ) = diag (ϕ1(I ), . . . , ϕs(I )). It follows by Proposition 1 that

W [ f ] = −1

4

s∑
α,β=1

∫
Z2

α×Z2
β

(
ϕα (I ) ϕβ (I∗) f ′

α f ′
β∗

fα fβ∗ϕα (I ′) ϕβ

(
I ′∗
) − 1

)

× log

(
ϕα (I ) ϕβ (I∗) f ′

α f ′
β∗

fα fβ∗ϕα (I ′) ϕβ

(
I ′∗
)
)

fα fβ∗
ϕα (I ) ϕβ (I∗)

d Aαβ.

Since (x − 1) log (x) ≥ 0 for x > 0, with equality if and only if x = 1,

W [ f ] ≤ 0,

with equality if and only if for all (α, β) ∈ I2

�αβ( f )Wαβ = 0 a.e., (11)

or, equivalently, if and only if

Q( f , f ) ≡ 0.
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For any equilibrium, or, Maxwellian, distribution M = (M1, . . . , Ms), it follows by
identity (11), since Q(M, M) ≡ 0, that(

log
Mα

ϕα (I )
+ log

Mβ∗
ϕβ (I∗)

− log
M ′

α

ϕα (I ′)
− log

M ′
β∗

ϕβ

(
I ′∗
)
)
Wαβ = 0 a.e..

Hence, log
(
ϕ−1M

) =
(
log

M1

ϕ1 (I )
, . . . , log

Ms

ϕs(I )

)
is a collision invariant, and the compo-

nents of the Maxwellian distributions M = (M1, . . . , Ms) are of the form

Mα =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

nαm
3/2
α

(2πkBT )3/2
e−mα |ξ−u|2/(2kBT ) if α ∈ Imono

nαϕα (I )m3/2
α e

−
(
mα |ξ−u|2+2I

)
/(2kBT )

(2π)3/2 (kBT )3/2 qα

if α ∈ Ipoly

,

where nα = (
M, eα

)
, u = 1

ρ
(M,mξ), and T = 1

3nkB

(
M,m |ξ − u|2), with mass

vector m = (m1, . . . ,ms), n =
s∑

α=1
nα , ρ =

s∑
α=1

mαnα , and normalization factors

qα = ∫ ∞
0 ϕα (I ) e−I/(kBT ) d I for α ∈ Ipoly , while kB denote the Boltzmann constant.

For the typical case ϕα (I ) = I δ(α)/2−1, α ∈ I,

qα = (kBT )δ
(α)/2 �

(
δ(α)/2

)
,

where � = �(n) denote the Gamma function �(n) = ∫ ∞
0 xn−1e−x dx .

Note that, by Eq. (11), any Maxwellian distribution M = (M1, . . . , Ms) satisfies the
relations

�αβ(M)Wαβ = 0 a.e. (12)

for any (α, β) ∈ I2.

Remark 2 Introducing the H-functional

H [ f ] = (
f , log

(
ϕ−1 (I ) f

))
,

an H-theorem can be obtained, cf. [1, 13].

2.3 Linearized Collision Operator

Consider a deviation of a centered and normalized Maxwellian M = (M1, . . . , Ms), where

Mα =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

nαm
3/2
α

(2π)3/2
e−mα |ξ |2/2 if α ∈ Imono

nαϕα (I )m3/2
α

(2π)3/2 qα

e−mα |ξ |2/2e−I if α ∈ Ipoly

with qα = ∫ ∞
0 ϕα (I ) e−I d I for α ∈ Ipoly , of the form

f = M + M1/2h.

For α ∈ I, the typical case ϕα (I ) = I δ(α)/2−1 implies that qα = �
(
δ(α)/2

)
.
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Insertion in the Boltzmann equation (2) results in the system

∂h

∂t
+ (ξ · ∇x) h + Lh = � (h, h) ,

where the components of the linearized collision operator L = (L1, . . . ,Ls) are given by

Lαh = −M−1/2
α

(
Qα(M, M1/2h) + Qα(M1/2h, M)

)

=
s∑

β=1

∫
Zα×Z2

β

(
Mβ∗M ′

αM
′
β∗

ϕα (I ) ϕβ (I∗) ϕα (I ′) ϕβ

(
I ′∗
)
)1/2

�αβ

(
h

M1/2

)
WαβdZ∗dZ′dZ′∗

= ναhα − Kα (h) , (13)

with

να =
s∑

β=1

∫
Zα×Z2

β

Mβ∗
ϕα (I ) ϕβ (I∗)

WαβdZ∗dZ′dZ′∗,

Kα =
s∑

β=1

∫
Zα×Z2

β

⎛
⎜⎝ h′

α(
M ′

α

)1/2 + h′
β∗(

M ′
β∗

)1/2 − hβ∗
M1/2

β∗

⎞
⎟⎠Wαβ

×
(

Mβ∗M ′
αM

′
β∗

ϕα (I ) ϕβ (I∗) ϕα (I ′) ϕβ

(
I ′∗
)
)1/2

dZ∗dZ′dZ′∗, (14)

while the components of the quadratic term � = (�1, . . . , �s) are given by

�α (h, h) = M−1/2
α Qα(M1/2h, M1/2h).

for α ∈ I. The multiplication operator � defined by

�( f ) = ν f , where ν = diag (ν1, . . . , νs) ,

is a closed, densely defined, self-adjoint operator on h. It is Fredholm, as well, if and only if
� is coercive.

The following lemma follows immediately by Lemma 1.

Lemma 2 For any (α, β) ∈ I2 the measure

d Ãαβ =
(

MαMβ∗M ′
αM

′
β∗

ϕα (I ) ϕβ (I∗) ϕα (I ′) ϕβ

(
I ′∗
)
)1/2

d Aαβ

is invariant under the (ordered) interchange (9) of variables, while

d Ãαβ + d Ãβα for (α, β) ∈ I2

is invariant under the (ordered) interchange (10) of variables

The weak form of the linearized collision operator L reads

(Lh, g) =
s∑

α,β=1

∫
Z2

α×Z2
β

�αβ

(
h

M1/2

)
gα

M1/2
α

d Ãαβ

=
s∑

α,β=1

∫
Z2

α×Z2
β

�αβ

(
h

M1/2

)
gβ∗
M1/2

β∗
d Ãαβ
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= −
s∑

α,β=1

∫
Z2

α×Z2
β

�αβ

(
h

M1/2

)
g′
α(

M ′
α

)1/2 d Ãαβ

= −
s∑

α,β=1

∫
Z2

α×Z2
β

�αβ

(
h

M1/2

) g′
β∗(

M ′
β∗

)1/2 d Ãαβ ,

for any function g = (g1, . . . , gs), with gα = gα(Z), such that the first integrals are defined
for all {α, β} ⊆ I, while the following equalities are obtained by applying Lemma 2. The
following lemma follows.

Lemma 3 Let g = (g1, . . . , gs), where gα = gα(Z), be such that

∫
Z2

α×Z2
β

�αβ

(
h

M1/2

)
gα

M1/2
α

d Ãαβ ,

is defined for any (α, β) ∈ I2. Then

(Lh, g) = 1

4

s∑
α,β=1

∫
Z2

α×Z2
β

�αβ

(
h

M1/2

)
�αβ

( g

M1/2

)
d Ãαβ.

Proposition 3 The linearized collision operator is symmetric and nonnegative,

(Lh, g) = (h,Lg) and (Lh, h) ≥ 0,

and the kernel of L, kerL, is generated by

{M1/2e1, . . . ,M1/2es,M1/2mξx ,M1/2mξy,M1/2mξz,M1/2 (m |ξ |2 + 2I
)}

,

where m = (m1, . . . ,ms), I = (0, . . . , 0︸ ︷︷ ︸
s0

, I , . . . , I︸ ︷︷ ︸
s1

), and M = diag (M1, . . . , Ms).

Proof By Lemma 3, it is immediate that (Lh, g) = (h,Lg), and

(Lh, h) = 1

4

s∑
α,β=1

∫
Z2

α×Z2
β

(
�αβ

(
h

M1/2

))2

d Ãαβ.

Furthermore, h ∈ kerL if and only if (Lh, h) = 0, which will be fulfilled if and only if for
all (α, β) ∈ I2

�αβ

(
h

M1/2

)
Wαβ(Z,Z∗

∣∣Z′,Z′∗ ) = 0 a.e.,

i.e., if and only if M−1/2h is a collision invariant. The last part of the lemma follows by
Proposition 2. ��

Remark 3 Note also that the quadratic term is orthogonal to the kernel of L, i.e., we have that
� (h, h) ∈ (kerL)⊥h .
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3 Main Results

This section is devoted to the main results, concerning compact properties in Theorem 1
and bounds of collision frequencies in Theorem 2. Below we restrict to the particular case
ϕα (I ) = I δ(α)/2−1 for α ∈ I.

Assume that for some positive number γ , such that 0 < γ < 1, there is for all (α, β) ∈ I2

a bound

0 ≤ σαβ

(|g| , cos θ, I , I∗, I ′, I ′∗
) ≤ C

�αβ + (
�αβ

)γ /2

|g|2 ϒαβ ,

whereϒαβ = ϕα

(
I ′)ϕβ

(
I ′∗
)

Eδ(α)/2
αβ

(
E∗

αβ

)δ(β)/2
and �αβ = |g|

√
|g|2 − 2�I

μαβ

, (15)

for μαβ |g|2 > 2�I , on the scattering cross sections, or, equivalently, the bound

0 ≤ Biαβ

(|g| , cos θ, I , I∗, I ′, I ′∗
) ≤ CE1/2

αβ

(
1 + 1

�
1−γ /2
αβ

)
(16)

for μαβ |g|2 > 2�I , on the collision kernels. Here, for (α, β) ∈ I2, Eαβ = 1 if α ∈ Imono

and E∗
αβ = 1 if β ∈ Imono, while, otherwise,

Eαβ = E∗
αβ = μαβ |g|2 /2 + 1α∈Ipoly I + 1β∈Ipoly I∗

= μαβ

∣∣g′∣∣2 /2 + 1α∈Ipoly I
′ + 1β∈Ipoly I

′∗.

Remark 4 In the single polyatomic case, i.e., with s = s1 = 1, assumption (15) (or, (16)),
differs from the one in [4], by an extra factor E1/2 = E1/2

11 in the denominator, resulting

in the factor E1/2 = E1/2
11 instead of E in assumption (16). This rules out the superhard

potential like models considered in [4], while it opens up for some soft potential like models,
not covered in [4], in return.

The following result may be obtained.

Theorem 1 Assume that for all {α, β} ⊆ I the scattering cross sections σαβ satisfy the bound
(15) for some positive number γ , 0 < γ < 1.

Then the operator K = (K1, . . . , Ks), with the components Kα given by (14) is a self-
adjoint compact operator on h = (

L2 (dξ)
)s0 × (

L2 (dξd I )
)s1 .

The proof of Theorem 1 will be addressed in Sect. 4.

Corollary 1 The linearized collision operatorL, with scattering cross sections satisfying (15),
is a closed, densely defined, self-adjoint operator on h.

Proof By Theorem 1, the linear operator L = � − K is closed as the sum of a closed and a
bounded operator, and densely defined, since the domains of the linear operatorsL and� are
equal; D(L) = D(�). Furthermore, it is a self-adjoint operator, since the set of self-adjoint
operators is closed under addition of bounded self-adjoint operators, see Theorem 4.3 of
Chapter V in [19]. ��
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Now consider the scattering cross sections

σαβ = Cαβ

√
|g|2 − 2�I

μαβ

|g| Eη/2
αβ

ϕα

(
I ′)ϕβ

(
I ′∗
)

Eδ(α)/2
αβ

(
E∗

αβ

)δ(β)/2
, if μαβ |g|2 > 2�I , (17)

for some positive constants Cαβ > 0 for all (α, β) ∈ I2 and nonnegative number η less than
1, 0 ≤ η < 1,—cf. hard sphere models for η = 0.

In fact, it would be enough with the bounds (for μαβ |g|2 > 2�I )

C−

√
|g|2 − 2�I

μαβ

|g| Eη/2
αβ

ϒαβ ≤ σαβ ≤ C+

√
|g|2 − 2�I

μαβ

|g| Eη/2
αβ

ϒαβ ,

with ϒαβ = ϕα

(
I ′)ϕβ

(
I ′∗
)

Eδ(α)/2
αβ

(
E∗

αβ

)δ(β)/2
, (18)

for some nonnegative number η less than 1, 0 ≤ η < 1, and some positive constantsC± > 0,
on the scattering cross sections—cf. hard potential with cut-off models.

The following bounds restricted to single species were obtained in [5, 15]. In [15] the
improved—compared to the one in [5]—upper bound below was shown for single species.

Theorem 2 The linearized collision operatorL, with scattering cross sections (17) (or (18)),
can be split into a positive multiplication operator �, where � ( f ) = ν f , with ν = ν(Z),
minus a compact operator K on h, such that there exist positive numbers ν− and ν+, where
0 < ν− < ν+, for which, for any α ∈ I

ν−
(
1 + |ξ | + 1α∈Ipoly

√
I
)1−η ≤ να ≤ ν+

(
1 + |ξ | + 1α∈Ipoly

√
I
)1−η

. (19)

The decomposition follows by decomposition (13), (14) and Theorem 1, while the bounds
(19) on the collision frequency will be proven in Sect. 5.

Corollary 2 The linearized collision operator L, with scattering cross section (17) (or (18)),
is a Fredholm operator with domain

D(L) = (
L2 ((1 + |ξ |)1−η dξ

))s0 ×
(
L2

((
1 + |ξ | + √

I
)1−η

dξd I

))s1
.

Proof By Theorem 2 the multiplication operator � is coercive, and thus it is a Fredholm
operator. Furthermore, the set of Fredholm operators is closed under addition of compact
operators, see Theorem 5.26 of Chapter IV in [19] and its proof, so, by Theorem 2, L is a
Fredholm operator. ��

We stress that Corollary 2 finally yields the Fredholmness of the linearized operator
assumed in [1] for kernels of the form (17) or (18).

For hard sphere like models we obtain the following result.

Corollary 3 For the linearized collision operator L, with scattering cross section (17 (or
(18)) where η = 0, there exists a positive number λ, 0 < λ < 1, such that

(h,Lh) ≥ λ (h, ν(Z)h) ≥ λν− (h, (1 + |ξ |) h)

for all h ∈ D (L) ∩ ImL.
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Proof Let h ∈ D (L) ∩ (kerL)⊥ = D (L) ∩ ImL. As a Fredholm operator, L is closed with
a closed range, and as a compact operator, K is bounded, and so there are positive constants
ν0 > 0 and cK > 0, such that

(h,Lh) ≥ ν0(h, h) and (h, Kh) ≤ cK (h, h).

Let λ = ν0

ν0 + cK
. Then the corollary follows, since

(h,Lh) = (1 − λ)(h,Lh) + λ(h, (ν(Z) − K )h)

≥ (1 − λ)ν0(h, h) + λ(h, ν(Z)h) − λcK (h, h)

= (ν0 − λ(ν0 + cK ))(h, h) + λ(h, ν(Z)h) = λ(h, ν(Z)h).

��
Remark 5 By Proposition 3 and Corollary 1-3 the linearized operator L fulfills the properties
assumed on the linear operators in [3], and, hence, the results for the abstract linearized half-
space problem therein can be applied to hard sphere like models for mixtures of monatomic
and polyatomic gases.

4 Compactness

This section concerns the proof of Theorem 1. Note that in the proof the kernels are rewritten
in such a way that Z∗—and not Z′ or Z′∗—always will be arguments of the distribution
functions. As for single species, either Z∗ is an argument in the loss term (like Z) or in the
gain term (unlike Z) of the collision operator. However, in the latter case, unlike for single
species, for mixtures one has to differ between two different cases; either Z∗ is associated
to the same species as Z, or not. The kernels of the terms from the loss part of the collision
operator will be shown to be Hilbert–Schmidt in a quite direct way. The kernels of some of
the terms—for which Z∗ is associated to the same species as Z—from the gain parts of the
collision operators will be shown to be uniform limits of Hilbert–Schmidt integral operators,
i.e., approximately Hilbert–Schmidt in the sense of Lemma 4. Furthermore, it will be shown
that the kernels of the remaining terms—for which Z∗ is associated to the opposite species
to Z—from the gain parts of the collision operators are Hilbert–Schmidt.

To show the compactness properties—when the terms are not necessarilyHilbert–Schmidt
integral operators themselves—the following result will be applied.Denote, for any (nonzero)
natural number N ,

hN :=
{
(Z,Z∗) ∈ Y × Y∗ : ∣∣ξ − ξ∗

∣∣ ≥ 1

N
; |ξ | ≤ N

}
, and

b(N ) = b(N )(Z,Z∗) := b(Z,Z∗)1hN .

Here, either Z = ξ and Y = R
3, or, Z = (ξ , I ) and Y = R

3 × R+, and correspondingly,
either Z∗ = ξ∗ and Y∗ = R

3, or, Z∗ = (
ξ∗, I∗

)
and Y∗ = R

3 × R+. Then we have the
following lemma, cf. Glassey [17, Lemma 3.5.1] and Drange [14].

Lemma 4 Assume that T f (Z) = ∫
Y∗ b(Z,Z∗) f (Z∗) dZ∗, with b(Z,Z∗) ≥ 0. Then T is

compact on L2 (dZ) if

(i)
∫
Y
b(Z,Z∗) dZ is bounded in Z∗;

(ii) b(N ) ∈ L2 (dZ dZ∗) for any (nonzero) natural number N;
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(iii) sup
Z∈Y

∫
Y∗ b(Z,Z∗) − b(N )(Z,Z∗) dZ∗ → 0 as N → ∞.

Then T is the uniform limit of Hilbert–Schmidt integral operators [17, Lemma 3.5.1] and
we say that the kernel b(Z,Z∗) is approximately Hilbert–Schmidt, while T is an approx-
imately Hilbert–Schmidt integral operator. The reader is referred to Glassey [17, Lemma
3.5.1] for a proof of Lemma 4.

Now we turn to the proof of Theorem 1. Note that throughout the proof C will denote a
generic positive constant. Moreover, remind that ϕα (I ) = I δ(α)/2−1 for α ∈ I below.

Proof For α ∈ I rewrite expression (14) as

Kα = (Mα)−1/2
s∑

β=1

∫
Zα×Z2

β

wαβ(Z,Z∗
∣∣Z′,Z′∗ )

×
⎛
⎜⎝ h′

α(
M ′

α

)1/2 + h′
β∗(

M ′
β∗

)1/2 − hβ∗
M1/2

β∗

⎞
⎟⎠ dZ∗dZ′dZ′∗,

with

wαβ(Z,Z∗
∣∣Z′,Z′∗ ) =

(
MαMβ∗M ′

αM
′
β∗

ϕα (I ) ϕβ (I∗) ϕα (I ′) ϕβ

(
I ′∗
)
)1/2

Wαβ(Z,Z∗
∣∣Z′,Z′∗ ).

Due to relations (7), the relations

wαβ(Z,Z∗
∣∣Z′,Z′∗ ) = wβα(Z∗,Z

∣∣Z′∗,Z′ )
wαβ(Z,Z∗

∣∣Z′,Z′∗ ) = wαβ(Z′,Z′∗ |Z,Z∗ )

wαα(Z,Z∗
∣∣Z′,Z′∗ ) = wαα(Z,Z∗

∣∣Z′∗,Z′ ) (20)

are satisfied. By renaming {Z∗} �
{
Z′∗

}
,

∫
Zα×Z2

β

wαβ(Z,Z∗
∣∣Z′,Z′∗ )

h′
β∗(

M ′
β∗

)1/2 dZ∗dZ′dZ′∗

=
∫
Zα×Z2

β

wαβ(Z,Z′∗
∣∣Z′,Z∗ )

hβ∗
M1/2

β∗
dZ∗dZ′dZ′∗.

Moreover, by renaming {Z∗} �
{
Z′},

∫
Zα×Z2

β

wαβ(Z,Z∗
∣∣Z′,Z′∗ )

h′
α,k(

M ′
α

)1/2 dZ∗dZ′dZ′∗

=
∫
Zα×Z2

β

wαβ(Z,Z′ ∣∣Z∗,Z′∗ )
hα∗
M1/2

α∗
dZ∗dZ′dZ′∗.

It follows that

Kα (h) =
s∑

β=1

∫
Zγ

kαβ

(
ξ , ξ∗, I , I∗

)
h∗ dZ∗, where

kαβh∗ = δαγ k
(α)
αβ hα∗ + δβγ k

(β)
αβ hβ∗
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= δαγ k
(α)
αβ hα∗ + δβγ

(
k(β)
αβ2 − k(β)

αβ1

)
hβ∗, with

k(α)
αβ (Z,Z∗) =

∫
Z2

β

wαβ(Z,Z′ ∣∣Z∗,Z′∗ )

(MαMα∗)1/2
dZ′dZ′∗,

k(β)
αβ1(Z,Z∗) =

∫
Zα×Zβ

wαβ(Z,Z∗
∣∣Z′,Z′∗ )(

MαMβ∗
)1/2 dZ′dZ′∗, and

k(β)
αβ2(Z,Z∗) =

∫
Zα×Zβ

wαβ(Z,Z′∗
∣∣Z′,Z∗ )(

MαMβ∗
)1/2 dZ′dZ′∗. (21)

By applying the second relation of (20) and renaming
{
Z′} �

{
Z′∗

}
,

k(α)
αβ (Z,Z∗) =

∫
Z2

β

wαβ(Z,Z′ ∣∣Z∗,Z′∗ )

(MαMα∗)1/2
dZ′dZ′∗

=
∫
Z2

β

wαβ(Z∗,Z′ ∣∣Z,Z′∗ )

(MαMα∗)1/2
dZ′dZ′∗ = k(α)

αβ (Z∗,Z). (22)

Moreover,

k(β)
αβ (Z,Z∗) = k(α)

βα1(Z∗,Z) − k(α)
βα2(Z∗,Z) = k(α)

βα (Z∗,Z), (23)

since, by applying the first relation of (20) and renaming
{
Z′} �

{
Z′∗

}
,

k(β)
αβ1(Z,Z∗) =

∫
Zα×Zβ

wβα(Z∗,Z
∣∣Z′∗,Z′ )(

MαMβ∗
)1/2 dZ′dZ′∗

=
∫
Zα×Zβ

wβα(Z∗,Z
∣∣Z′,Z′∗ )(

MαMβ∗
)1/2 dZ′dZ′∗ = k(α)

βα1(Z∗,Z),

while, by renaming
{
Z′} �

{
Z′∗

}
, after applying the first two relations of (20)

k(β)
αβ2(Z,Z∗) =

∫
Zα×Zβ

wβα(Z′∗,Z
∣∣Z∗,Z′ )(

MαMβ∗
)1/2 dZ′dZ′∗

=
∫
Zα×Zβ

wβα(Z∗,Z′ ∣∣Z′∗,Z )(
MαMβ∗

)1/2 dZ′dZ′∗

=
∫
Zα×Zβ

wβα(Z∗,Z′∗
∣∣Z′,Z )(

MαMβ∗
)1/2 dZ′dZ′∗ = k(α)

βα2(Z∗,Z).

Now the compactness of the three different types of collision kernelwill be considered sep-
arately. Note that, if α = β, by applying the last relation of (20), k(β)

αβ2(Z,Z∗) = k(α)
αβ (Z,Z∗),

and we will remain with only two cases—the first two below. Even if mα = mβ , the kernels

k(α)
αβ (Z,Z∗) and k(β)

αβ2(Z,Z∗) are structurally equal, and we (in principle) remain with (first)
two cases (the second one twice).

I. Compactness of Kαβ1 = ∫
Zβ

k(β)
αβ1(Z,Z∗) hβ∗ dZ∗ for any indices (α, β) ∈ I2.

By a change of variables, cf. Figure1,

{
ξ ′, ξ ′∗

} →
{∣∣g′∣∣ = ∣∣ξ ′ − ξ ′∗

∣∣ , σ = g′

|g′| ,G
′
αβ = mαξ ′ + mβξ ′∗

mα + mβ

}
,
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Fig. 1 Classical representation of an inelastic collision between particles of different species

noting identity (8) and using relation (12), expression (21) of k(β)
αβ1 may be written as

k(β)
αβ1(Z,Z∗) =

∫
Zα×Zβ

(
M ′

αM
′
β∗

)1/2
Wαβ(

ϕα (I ) ϕβ (I∗) ϕα (I ′) ϕβ

(
I ′∗
))1/2 dZ′dZ′∗

=
∫

R3×R
3+×S2

(
M ′

αM
′
β∗

)1/2
Wαβ1I ′≤Eαβ

1I ′∗≤E∗
αβ(

ϕα (I ) ϕβ (I∗) ϕα (I ′) ϕβ

(
I ′∗
))1/2

∣∣g′∣∣2 dG′
αβd

∣∣g′∣∣ dσd I ′d I ′∗

= (
MαMβ∗

)1/2 |g|
∫
S2×R

2+
1μαβ |g|2>2�I 1I ′≤Eαβ

1I ′∗≤E∗
αβ

σαβ dσ d I ′d I ′∗.

Note that

if (α, β) ∈ I2
mono, 1μαβ |g|2>2�I 1I ′≤Eαβ

1I ′∗≤E∗
αβ

= 1I ′≤11I ′∗≤1, while

1μαβ |g|2>2�I 1I ′≤Eαβ
1I ′∗≤E∗

αβ
= 1I ′≤11μαβ |g|2>2�I = 1I ′≤11I ′∗≤E∗

αβ

if (α, β) ∈ Imono × Ipoly ,

1μαβ |g|2>2�I 1I ′≤Eαβ
1I ′∗≤E∗

αβ
= 1μαβ |g|2>2�I 1I ′∗≤1 = 1I ′≤Eαβ

1I ′∗≤1

if (α, β) ∈ Ipoly × Imono, and if (α, β) ∈ I2
poly

1μαβ |g|2>2�I 1I ′≤Eαβ
1I ′∗≤E∗

αβ
= 1μαβ |g|2>2�I = 1I ′+I ′∗≤Eαβ

.

Since Eαβ ≥ C�αβ , it follows, by assumption (15), that
(
k(β)
αβ1(Z,Z∗)

)2

≤ C

(∫
S2×R

2+
ϒαβ

(
�αβ + �

γ/2
αβ

)
1I ′≤Eαβ

1I ′∗≤E∗
αβ
dσ d I ′d I ′∗

)2
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≤ C
MαMβ∗

|g|2
(
1 + Eαβ

)2
⎛
⎝∫ Eαβ

0

(
I ′)δ(α)/2−1

Eδ(α)/2
αβ

d I ′
⎞
⎠

2
⎛
⎜⎝
∫ E∗

αβ

0

(
I ′∗
)δ(β)/2−1

(
E∗

αβ

)δ(β)/2
d I ′∗

⎞
⎟⎠

2

= C
MαMβ∗

ϕα (I ) ϕβ (I∗)
ϕα (I ) ϕβ (I∗)

|g|2
(
1 + Eαβ

)2
.

Then, by assumption (15) and

mα

|ξ |2
2

+ mβ

∣∣ξ∗
∣∣2

2
+ 1α∈Ipoly I + 1β∈Ipoly I∗ = mα + mβ

2

∣∣Gαβ

∣∣2 + Eαβ ,

where Eαβ = μαβ |g|2 /2 + 1α∈Ipoly I + 1β∈Ipoly I∗, the bound(
k(β)
αβ1(Z,Z∗)

)2 ≤ Ce−(mα+mβ)|Gαβ |2/2−Eαβ
ϕα (I ) ϕβ (I∗)

|g|2
(
1 + E2

αβ

)

≤ Ce−(mα+mβ)|Gαβ |2/2−Eαβ

(
1 + |g|2)2

|g|2
× (

1 + 1β∈Ipoly I∗
)2

ϕβ (I∗)
(
1 + 1α∈Ipoly I

)2
ϕα (I ) (24)

maybe obtained.Hence, by applying the bound (24) andfirst changing variables of integration{
ξ , ξ∗

} → {
g,Gαβ

}
, with unitary Jacobian, and then to spherical coordinates,∫

Zα×Zβ

(
k(β)
αβ1(Z,Z∗)

)2
dZ′dZ′∗

≤ C
∫
(R3)

2
e−(mα+mβ)|Gαβ |2/2e−μαβ |g|2/2 1 + |g|4

|g|2 dg dGαβ

×
∫ ∞

0
(1 + I )2 e−I I δ(α)/2−1d I

∫ ∞

0
(1 + I∗)2 e−I∗ I δ(β)/2−1∗ d I∗

= C
∫ ∞

0
e−μαβr2/4

(
1 + r4

)
dr

∫ ∞

0
R2e−R2

dR = C

Therefore,

Kαβ1 =
∫
Zβ

k(β)
αβ1(Z,Z∗) hβ∗ dZ∗

are Hilbert–Schmidt integral operators and as such compact on L2 (dZ), see, e.g., Theorem
7.83 in [22], for (α, β) ∈ I2.

II. Compactness of Kαβ3 = ∫
Zα

k(α)
αβ (Z,Z∗) hα∗ dZ∗ for any indices (α, β) ∈ I2.

Note that, cf. Figure2,

Wαβ(Z,Z′ ∣∣Z∗,Z′∗ ) = (
mα + mβ

)2
mαmβϕα (I ) ϕβ

(
I ′) δ3

(
mαg + mβg′)

× |̃g|
|g∗| σ̃αβδ1

(
|g|mα

(
χ+ − mα − mβ

2mβ

|g|
)

− �I∗
)

= |̃g|(mα + mβ

)2
|g∗| |g|m2

β

ϕα (I ) ϕβ

(
I ′) σ̃αβδ3

(
mα

mβ

g + g′
)

×δ1

(
χ+ − mα − mβ

2mβ

|g| − �I∗
mα |g|

)
,
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Fig. 2 Typical collision of Kαβ3

with σ̃αβ = σαβ

(
|̃g| , g̃ · g∗

|̃g| |g∗| , I , I
′, I∗, I ′∗

)
, g = ξ − ξ∗, g′ = ξ ′ − ξ ′∗, g̃ = ξ − ξ ′,

g∗ = ξ∗ − ξ ′∗, �I∗ = 1α∈Ipoly (I∗ − I ) + 1β∈Ipoly

(
I ′∗ − I ′), and χ+ = (

ξ ′∗ − ξ
) · n, where

n = g
|g| .

By performing the change of variables
{
ξ ′, ξ ′∗

} → {
g′ = ξ ′ − ξ ′∗, ĝ = ξ ′∗ − ξ

}
, with

dξ ′dξ ′∗ = dg′d ĝ = dg′dχ+dw, where w = ξ ′∗ − ξ − χ+n,

the expression (21) of k(α)
αβ may be rewritten in the following way

k(α)
αβ (Z,Z∗) =

∫
Z2

β

(
M ′

βM
′
β∗

)1/2 Wαβ(Z,Z′ ∣∣Z∗,Z′∗ )1I ′≤Ẽ∗
αβ
1I ′∗≤Ẽ∗

αβ(
ϕα (I ) ϕβ (I ′) ϕα (I∗) ϕβ

(
I ′∗
))1/2 dg′d ĝd I ′d I ′∗

= ϕ
1/2
α (I )

ϕ
1/2
α (I∗)

∫
(R3)

⊥n×R
2+

(
mα + mβ

)2
m2

β

|̃g|
(
M ′

βM
′
β∗

)1/2
|g∗| |g|

ϕ
1/2
β

(
I ′)

ϕ
1/2
β

(
I ′∗
)

×σ̃αβ1μαβ |̃g|2>2�I∗1I ′≤Ẽ∗
αβ
1I ′∗≤Ẽ∗

αβ
dwd I ′d I ′∗.

Here, see Fig. 2,

{
ξ ′ = ξ∗ + w − χ−n
ξ ′∗ = ξ + w − χ+n

, with χ± = �I∗
mα |g| ± mα − mβ

2mβ

|g| ,

implying that

∣∣ξ ′∣∣2
2

+
∣∣ξ ′∗

∣∣2
2

=
∣∣∣∣ ξ + ξ∗

2
− �I∗

mα |g|n + w

∣∣∣∣
2

+ m2
α

4m2
β

∣∣ξ − ξ∗
∣∣2

=
∣∣∣∣∣
(
ξ + ξ∗

)
⊥n

2
+ w

∣∣∣∣∣
2

+
((

ξ + ξ∗
)
n

2
− �I∗

mα |g|

)2

+ m2
α

4m2
β

|g|2
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=
∣∣∣∣∣
(
ξ + ξ∗

)
⊥n

2
+ w

∣∣∣∣∣
2

+
(
mα

(∣∣ξ∗
∣∣2 − |ξ |2

)
+ 2�I∗

)2
4m2

α |g|2 + m2
α

4m2
β

|g|2 ,

where

(
ξ + ξ∗

)
n = (

ξ + ξ∗
) · n = |ξ |2 − ∣∣ξ∗

∣∣2∣∣ξ − ξ∗
∣∣ and

(
ξ + ξ∗

)
⊥n

= ξ + ξ∗ − (
ξ + ξ∗

)
n n.

Denote Ẽαβ = 1 if α ∈ Imono and Ẽ∗
αβ = 1 if β ∈ Imono, while, otherwise,

Ẽαβ = Ẽ∗
αβ = μαβ |̃g|2 /2 + 1α∈Ipoly I + 1β∈Ipoly I

′

= μαβ |g∗|2 /2 + 1α∈Ipoly I∗ + 1β∈Ipoly I
′∗.

Let 0 ≤ � ≤ 1, with � ≡ 0 if α ∈ Imono. If α ∈ Ipoly , then

(I I∗)δ
(α)/4−1/2

Ẽδ(α)/2
αβ

≤ C

Ẽ�
αβ I

κ I 1−κ−�∗
≤ C

|g|2� I κ I 1−κ−�∗
for 0 ≤ κ ≤ 1 − �. (25)

Denoting
(
R
3
)⊥n = {

w ∈ R
3; w ⊥ n

}
, we obtain the bound

∫
(R3)

⊥n

(
1 +

1μαβ |̃g|2>2�I∗

�̃
1−γ /2
αβ

)
exp

⎛
⎝−mβ

2

∣∣∣∣∣
(
ξ + ξ∗

)
⊥n

2
+ w

∣∣∣∣∣
2
⎞
⎠ dw

≤ C
∫
(R3)

⊥n

(
1 + |w|γ−2) exp

⎛
⎝−mβ

2

∣∣∣∣∣
(
ξ + ξ∗

)
⊥n

2
+ w

∣∣∣∣∣
2
⎞
⎠ dw

≤ C

⎛
⎜⎝

∫
|w|≤1

1 + |w|γ−2 dw + 2
∫

|w|≥1

exp

⎛
⎝−mβ

2

∣∣∣∣∣
(
ξ + ξ∗

)
⊥n

2
+ w

∣∣∣∣∣
2
⎞
⎠ dw

⎞
⎟⎠

≤ C

(∫
|w|≤1

1 + |w|γ−2 dw +
∫
(R3)

⊥n
e−|w̃|2 dw̃

)

= C

(∫ 1

0
1 + rγ−1 dr +

∫ ∞

0
re−r2 dr

)
= C , where �̃αβ = |̃g| |g∗| . (26)

By the bounds (25) and (26), and assumption (15), for any number κ , 0 ≤ κ ≤ 1 − � ,

k(α)
αβ (Z,Z∗) ≤ C

|g|1+2�

(
1α∈Imono + 1α∈Ipoly

I κ I 1−κ−�∗

)

×
∫

R
2+

exp

⎛
⎜⎝−mβ

(
mα

(∣∣ξ∗
∣∣2 − |ξ |2

)
+ 2�I∗

)2
8m2

α |g|2 − m2
α

8mβ

|g|2
⎞
⎟⎠

×
∫

(R3)
⊥n

(
1 +

1μαβ |̃g|2>2�I∗

�̃
1−γ /2
αβ

)
exp

⎛
⎝−mβ

2

∣∣∣∣∣
(
ξ + ξ∗

)
⊥n

2
+ w

∣∣∣∣∣
2
⎞
⎠ dw
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× e−(I ′+I ′∗)/2
(
I ′ I ′∗

)δ(β)/2−1

Ẽδ(β)/2
αβ

d I ′d I ′∗

≤ C

|g|1+2�

(
1α∈Imono + 1α∈Ipoly

I κ I 1−κ−�∗

)∫
R
2+

e−(I ′+I ′∗)/2(
I ′ I ′∗

)1−δ(β)/4

× exp

(
−mβ

8
(|g| − 2 |ξ | cosϕ + 2χα)2 − m2

α

8mβ

|g|2
)
d I ′d I ′∗,

where χα = �I∗
mα |g| and cosϕ = n · ξ

|ξ | . (27)

For 0 ≤ κ ≤ 1 − � , by the bound (27) and the Cauchy-Schwarz inequality,
(
k(α)
αβ (Z,Z∗)

)2

≤ C

|g|2+4�

(
1α∈Imono + 1α∈Ipoly

I 2κ I 2−2κ−2�∗

) ∫

R
2+

e−(I ′+I ′∗)/2(
I ′ I ′∗

)1−δ(β)/4
d I ′d I ′∗

∫

R
2+

e−(I ′+I ′∗)/2(
I ′ I ′∗

)1−δ(β)/4

× exp

(
−mβ

4
(|g| − 2 |ξ | cosϕ + 2χα)2 − m2

α

4mβ

|g|2
)
d I ′d I ′∗

≤ C

⎛
⎝∫

R
2+
exp

(
−mβ

4
(|g| − 2 |ξ | cosϕ + 2χα)2

) e−(I ′+I ′∗)/2(
I ′ I ′∗

)1−δ(β)/4
d I ′d I ′∗

× 1α∈Ipoly

|g|4� I 2κ I 2−2κ−2�∗
+ 1α∈Imono

)
e−m2

α |g|2/(4mβ)

|g|2 , with cosϕ = n · ξ

|ξ | . (28)

If α ∈ Ipoly , by the change of variables I∗ → � = |g| − 2 |ξ | cosϕ + 2χα , noting that

d I∗ = mα

2
|g| d�,

for any positive number a > 0, the bound

∫
R
3+
exp

(
−mβ

a
(|g| − 2 |ξ | cosϕ + 2χα)2

) e−(I ′+I ′∗)/2(
I ′ I ′∗

)1−δ(β)/4
d I∗d I ′d I ′∗

≤ C |g|
∫ ∞

−∞
e−mβ�2/a d�

(∫ ∞

0

e−I ′/2

(I ′)1−δ(β)/4
d I ′

)2

= C |g| (29)

may be obtained. Note also that
∫
R+

(
1

|g|4 1I≤1 + 1

I 2
1I≥1

)
d I ≤ C

(
1 + 1

|g|4
)

and
1

|g| ≤ 1 + 1

|g|4 . (30)

Then, by the bounds (28) for κ = 1 − � =
{
0 if I ≤ 1
1 if I > 1

, (29), and (30), one have that,

k(α)
αβ (Z,Z∗)1hN ∈ L2 (dZdZ∗) for any (nonzero) natural number N , since

∫
hN

(
k(α)
αβ (Z,Z∗)

)2
dZdZ∗
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≤ C
∫

|g|≥ 1
N

(
1

|g| + 1

|g|5
)
e−m2

α |g|2/(4mβ) dg
∫

|ξ |≤N
dξ

= C
∫ ∞

1/N

(
R + 1

R3

)
e−m2

αR
2/(4mβ)dR

∫ N

0
r2 dr

≤ CN 3
∫ ∞

0
e−m2

αR
2/(4mβ)(1 + R4)N 3dR = CN 6.

Note that, by the bound (27) for κ = 0 and if I∗ > 1, � ≡ 0,

k(α)
αβ (Z,Z∗)

≤ C

|g|
∫
R
2+
exp

(
−mβ

8
(|g| − 2 |ξ | cosϕ + 2χα)2 − m2

α

8mβ

|g|2
)

e−(I ′+I ′∗)/2(
I ′ I ′∗

)1−δ(β)/4
d I ′d I ′∗�α∗� ,

with �α∗� =
(

1

|g|2� I 1−�∗
1I∗≤1 + 1α∈Ipoly

I∗
1I∗≥1

)

≤
(
1 + 1

|g|2�
)(

1

I 1−�∗
1I∗≤1 + 1α∈Ipoly

I∗
1I∗≥1

)
. (31)

The integral of k(α)
αβ (Z,Z∗) with respect to Z over Zα is bounded in Z∗. Indeed, due to

the symmetry (22) of the kernel k(α)
αβ , follows, by the bounds (29) and (31), that

∫
Zα

k(α)
αβ (Z,Z∗) dZ =

∫
Zα

k(α)
αβ (Z∗,Z) dZ

≤
∫ ∞

0

∫
R3

k(α)
αβ (Z∗,Z)

(
1I≤1 + I1α∈Ipoly

)
dg d I

≤
∫
R3

C

|g|

⎛
⎝
(
1 + 1

|g|
)∫ 1

0

1

I 1/2
d I

(∫ ∞

0

e−I ′/2

(I ′)1−δ(β)/4
d I ′

)2

+ |g|
⎞
⎠

×e−m2
α |g|2/(8mβ)dg

≤ C
∫ ∞

0

(
1 + R2) e−m2

αR
2/(8mβ)dR = C .

Aiming to prove that∫
Zα

k(α)
αβ (Z,Z∗) dZ∗ =

∫
R3×R+

k(α)
αβ (Z,Z∗)

(
1I∗≤1 + 1α∈Ipoly1I∗≥1

)
d I∗dξ∗

≤ C
1 + log (1 + |ξ |)

|ξ | , (32)

for |ξ | �= 0, split the domain R3 × R+ into two subdomains

D+ = {
R
3 × R+; I∗ ≥ |ξ |} and D− = {

R
3 × R+; I∗ ≤ |ξ |} .

By the bounds (29) and (31) (for � = 0), it can be shown that the restriction of bound (32)
to the domain D+ is satisfied for |ξ | �= 0

∫
R3

∫ ∞

|ξ |
k(α)
αβ (Z,Z∗)

(
1I∗≤1 + 1α∈Ipoly1I∗≥1

)
d I∗dξ∗
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≤ C

|ξ |
∫
R3

∫ ∞

0
k(α)
αβ (Z,Z∗)I∗

(
1I∗≤1 + 1α∈Ipoly

)
d I∗dξ∗

≤ C

|ξ |
∫
R3

(
1 + 1

|g|
)
e−m2

α |g|2/(8mβ)dg

= C

|ξ |
∫ ∞

0

(
R + R2) e−m2

αR
2/(8mβ)dR = C

|ξ |
≤ C

1 + log (1 + |ξ |)
|ξ | .

On the other hand, by the bound (31) (for � = 1/2 if α ∈ Ipoly), it can be shown that the
restriction of bound (32) to the domain D− is satisfied for |ξ | �= 0

∫
R3

∫ |ξ |

0
k(α)
αβ (Z,Z∗)

(
1I∗≤1 + 1α∈Ipoly1I∗≥1

)
d I∗dξ∗

≤ C
∫
R
2+

∫ |ξ |

0

∫
R3

exp

(
−mβ

8
(|g| − 2 |ξ | cosϕ + χα)2 − m2

α

8mβ

|g|2
)
1 + |g|
|g|2 dg

×
(

1

I 1/2∗
1I∗≤1 + 1

I∗
1I∗≥1

)
e−(I ′+I ′∗)/2(
I ′ I ′∗

)1−δ(β)/4
d I∗d I ′d I ′∗

≤ C

|ξ |

(∫ 1

0

1

I 1/2∗
d I∗ + 1|ξ |≥1

∫ |ξ |

1

1

I∗
d I∗

)(∫ ∞

0

e−I ′/2

(I ′)1−δ(β)/4
d I ′

)2

≤ C

|ξ |
(
1 + 1|ξ |≥1 log |ξ |) ≤ C

1 + log (1 + |ξ |)
|ξ | .

Here the second inequality follows for |ξ | �= 0, with χα
R = �I∗/ (mαR), by

C
∫
R3

1 + |g|
|g|2 exp

(
−mβ

8
(|g| − 2 |ξ | cosϕ + 2χα)2 − m2

α

8mβ

|g|2
)

dg

= C

∞∫
0

π∫
0

(1 + R) exp

(
−mβ

8

(
R − 2 |ξ | cosϕ + 2χα

R

)2 − m2
α

8mβ

R2
)
sin ϕ dϕ dR

= C

|ξ |
∫ ∞

0

∫ R+2χα
R+2|ξ |

R+2χα
R−2|ξ |

e−mβ�2/8(1 + R)e−m2
α R

2/(8mβ)d�dR

≤ C

|ξ |
∫ ∞

0
e−m2

α R
2/(8mβ)(1 + R) dR

∫ ∞

−∞
e−mβ�2/8d� = C

|ξ | ,

which is obtained by a change to spherical coordinates followed by the change of variables
ϕ → � = R − 2 |ξ | cosϕ + 2χα

R , with d� = |ξ | sin ϕ dϕ.

Note that f (x) = 1 + log(1 + x)

x
is a decreasing function for x > 0. Therefore, by the

bounds (29), (31), and (32),

sup
Z∈Zα

∫
Zα

k(α)
αβ (Z,Z∗) − k(α)

αβ (Z,Z∗)1hN dZ∗

≤ sup
Z∈Zα

∞∫
0

∫

|g|≤ 1
N

k(α)
αβ (Z,Z∗)

(
1I∗≤1 + 1α∈Ipoly1I∗≥1

)
dg d I∗ + sup

|ξ |≥N

1 + log (1 + |ξ |)
|ξ |

123



Compactness Property of the Linearized Boltzmann Collision Operator... Page 25 of 35 32

Fig. 3 Typical collision of Kαβ2

≤ sup
Z∈Zα

∞∫
0

∫

|g|≤ 1
N

k(α)
αβ (Z,Z∗)

(
1I∗≤1 + 1α∈Ipoly I∗

)
dg d I∗ + C

1 + log (1 + N )

N

≤
∫

|g|≤ 1
N

C

|g|

(
1

|g|
∫ 1

0

1

I 1/2∗
d I∗ + |g|

)
dg + C

1 + log (1 + N )

N

≤ C

(∫
|g|≤ 1

N

1

|g|2 dg + 1 + log (1 + N )

N

)

= C

(∫ 1
N

0
d |g| + 1 + log (1 + N )

N

)
→ 0 as N → ∞.

Hence, by Lemma 4, the operators

Kαβ3 =
∫
Zα

k(α)
αβ (Z,Z∗) h∗ dZ∗

are compact on L2 (dZα) for (α, β) ∈ I2.
III. Compactness of Kαβ2 = ∫

Zβ

k(β)
αβ2(Z,Z∗) hβ∗ dZ∗ for any indices (α, β) ∈ I2.

Assume that mα �= mβ and denote

g = ξ − ξ∗, g′ = ξ ′ − ξ ′∗, ĝ = ξ ′∗ − ξ , g = ξ∗ − ξ ′, gαβ = mαξ − mβξ∗
mα − mβ

,

g′
αβ = mαξ ′ − mβξ ′∗

mα − mβ

, σ̂αβ = σαβ

(
|̂g| , ĝ · g

|̂g| |g| , I , I
′∗, I ′, I∗

)
,

�̂αβ I# = mβ − mα

mαmβ

�I#, and �I# = 1α∈Ipoly

(
I ′ − I

) + 1β∈Ipoly

(
I∗ − I ′∗

)
.
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Furthermore, denote Êαβ = 1 if α ∈ Imono and Ê∗
αβ = 1 if β ∈ Imono, while, otherwise,

Êαβ = Ê∗
αβ = μαβ |̂g|2 /2 + 1α∈Ipoly I + 1β∈Ipoly I

′∗
= μαβ |g|2 /2 + 1α∈Ipoly I

′ + 1β∈Ipoly I∗.

Note that, cf. Figure3,

Wαβ

(
Z,Z′∗

∣∣Z′,Z∗
)

= (
mα + mβ

)2
mαmβϕα (I ) ϕβ

(
I ′∗
)
σ̂αβδ3

((
mα − mβ

) (
gαβ − g′

αβ

))

×|̂g|
|g|δ1

(
mαmβ

2
(
mα − mβ

) (∣∣g′∣∣2 − |g|2
)

− �I#

)

=
(
mα + mβ

)2
(
mα − mβ

)2 ϕα (I ) ϕβ

(
I ′∗
)
σ̂αβ1|g|2>2�̂αβ I#

|̂g|
|g′| |g|δ3

(
gαβ − g′

αβ

)

×δ1

(∣∣g′∣∣ −
√

|g|2 − 2�̂αβ I#

)
, (33)

Then, by a change of variables
{
ξ ′, ξ ′∗

} →
{∣∣g′∣∣ , σ = g′

|g′| , g
′
αβ = mαξ ′ − mβξ ′∗

mα − mβ

}
, with

g′ = ξ ′ − ξ ′∗, where

dξ ′dξ ′∗ = dg′dg′
αβ = ∣∣g′∣∣2 d ∣∣g′∣∣ dg′

αβdσ ,

and substitution of expression (33) in the expression (21) of k(β)
αβ2, one obtain

k(β)
αβ2(Z,Z∗) =

∫
Zα×Zβ

wαβ(Z,Z′∗
∣∣Z′,Z∗ )(

MαMβ∗
)1/2 dZ′dZ′∗

=
∫
R3×S2×R

3+

(
M ′

αM
′
β∗

)1/2 Wαβ(Z,Z′∗
∣∣Z′,Z∗ )

∣∣g′∣∣2(
ϕα (I ) ϕβ

(
I ′∗
)
ϕα (I ′) ϕβ (I∗)

)1/2
×1|g|2>2�̂αβ I#

1I ′≤Êαβ
1I ′∗≤Ê∗

αβ
dg′

αβdσd
∣∣g′∣∣ d I ′d I ′∗

=
(
mα + mβ

)2
(
mα − mβ

)2
∫
S2×R

2+

(
M ′

αM
′
β∗

)1/2 |̂g| ∣∣g′∣∣
|g|

(
ϕα (I ) ϕβ

(
I ′∗
)

ϕα (I ′) ϕβ (I∗)

)1/2

×σ̂αβ1|g|2>2�̂αβ I#
1I ′≤Êαβ

1I ′∗≤Ê∗
αβ
dσd I ′d I ′∗. (34)

However, also

k(β)
αβ2(Z,Z∗) =

∫
S2×R

2+
|̂g|

(
M ′

αM
′
β∗

)1/2 ( ϕα (I ) ϕβ

(
I ′∗
)

ϕα (I ′) ϕβ (I∗)

)1/2

σ̂αβ

× 1μαβ |̂g|2>2�I#
1I ′≤Êαβ

1I ′∗≤Ê∗
αβ
dσ̂d I ′d I ′∗, with σ̂ = g

|g| , (35)

and, furthermore,

k(β)
αβ2(Z,Z∗) =

∫
S2×R

2+
|g|

(
M ′

αM
′
β∗

)1/2 (ϕα

(
I ′)ϕβ (I∗)

ϕα (I ) ϕβ

(
I ′∗
)
)1/2

σαβ
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×1μαβ |g|2>−2�I#
1I ′≤Êαβ

1I ′∗≤Ê∗
αβ
dσ d I ′d I ′∗, with

σαβ = σαβ

(
|g| , ĝ · g

|̂g| |g| , I
′, I∗, I , I ′∗

)
and σ = ĝ

|̂g| . (36)

By straightforward calculations, with σ = g′/
∣∣g′∣∣,

⎧⎪⎨
⎪⎩

ξ ′ = g′
αβ − mβ

mα − mβ

g′ = gαβ − mβσ

mα − mβ

√
|g|2 − 2�̂αβ I#

ξ ′∗ = g′
αβ − mα

mα − mβ

g′ = gαβ − mασ

mα − mβ

√
|g|2 − 2�̂αβ I#

.

It follows, again by straightforward calculations, that

mα

∣∣ξ ′∣∣2 + mβ

∣∣ξ ′∗
∣∣2 = (

mα + mβ

) (∣∣∣g′
αβ

∣∣∣2 + mαmβ(
mα − mβ

)2
∣∣g′∣∣2

)
− 4mαmβ

mα − mβ

g′
αβ · g′

= (√
mα − √

mβ

)2 (∣∣∣g′
αβ

∣∣∣2 + mαmβ(
mα − mβ

)2
∣∣g′∣∣2

)

+2
√
mαmβ

(
g′
αβ −

√
mαmβ

mα − mβ

g′
)2

≥ (√
mα − √

mβ

)2 ∣∣∣g′
αβ

∣∣∣2 + 4A2
∣∣g′∣∣2

= (√
mα − √

mβ

)2 ∣∣gαβ

∣∣2 + 4A2
(|g|2 − 2�̂αβ I#

)
,where

A2 = mαmβ

4
(√

mα + √
mβ

)2 > 0. (37)

Applying the Cauchy-Schwarz inequality, we obtain that

⎛
⎜⎝
∫
S2×R

2+

(
M ′

αM
′
β∗

)1/4 (
ϕα (I ) ϕβ

(
I ′∗
)
ϕα

(
I ′)ϕβ (I∗)

)1/2
Êδ(α)/2

αβ

(
Ê∗

αβ

)δ(β)/2
e−(I ′+I ′∗)/4dσd I ′d I ′∗

⎞
⎟⎠

2

≤
∫
S2×R

2+

(
M ′

αM
′
β∗

)1/2 (
ϕα (I ) ϕβ

(
I ′∗
)
ϕα

(
I ′)ϕβ (I∗)

)1/2
Êδ(α)

αβ

(
Ê∗

αβ

)δ(β)
e−(I ′+I ′∗)/4dσd I ′d I ′∗

×
∫
S2×R

2+
e−(I ′+I ′∗)/4dσd I ′d I ′∗

≤ 64π
∫
S2×R

2+

(
M ′

αM
′
β∗

)1/2

Ê2
αβ

(
Ê∗

αβ

)2 e−(I ′+I ′∗)/4dσd I ′d I ′∗, (38)

since for (α, β) ∈ I2

Êδ(α)−2
αβ

(
Ê∗

αβ

)δ(β)−2 ≥ (
I I ′)δ(α)/2−1 (

I∗ I ′∗
)δ(β)/2−1 = ϕα (I ) ϕβ

(
I ′∗
)
ϕα

(
I ′)ϕβ (I∗) .

Note that max (|̂g| , |g|) ≥ |g|, cf. Figure3.
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H1. If min (|̂g| , |g|) ≥ 1, then |̂g| |g| ≥ max (|̂g| , |g|) ≥ |g|, and
|̂g| |g| + (|̂g| |g|)γ /2

|̂g|2 = |g|
|̂g|

(
1 + 1

(|̂g| |g|)1−γ /2

)

≤ |g|
|̂g|

(
1 + 1

|g|1−γ /2

)
≤ |g|

|̂g|
(
1 + 1

|g|
)

.

Observe that
∣∣g′∣∣2 (M ′

αM
′
β∗

)1/4 ≤ Ce−(I ′+I ′∗)/4, since x2e−ax2 ≤ 1/ (ae) for any positive

number a > 0. Hence, by expression (34), assumption (15), and inequalities (37)-(38), one
may obtain the following bound

(
k(β)
αβ2(Z,Z∗)

)2 ≤ C
∫
R
2+

(
ϕα

(
I ′)ϕβ

(
I ′∗
))1/2

Ê2
αβ

(
Ê∗

αβ

)2 e2A2�̂αβ I#−(I ′+I ′∗)/21|g|2>2�̂αβ I#
d I ′d I ′∗

×
(
1 + 1

|g|2
)
e−(

√
mα−√

mβ)
2|gαβ |2/4e−A2|g|2 (39)

H2. If min (|̂g| , |g|) < 1, then either of the two cases below apply:

(i) |̂g| = max (|̂g| , |g|) ≥ |g| and |g| = min (|̂g| , |g|) < 1, and, hence,

|̂g| |g| + (|̂g| |g|)γ /2

|̂g|2 ≤ 1

|̂g|
(
1 + 1

|g|1−γ /2

)
≤ C

|̂g|
(
1 + 1

|g|
)
,

and then, by expression (35), assumption (15), and inequalities (37)–(38), the bound (39)
is again satisfied.

(ii) |g| = max (|̂g| , |g|) ≥ |g| and |̂g| = min (|̂g| , |g|) < 1, implying, correspondingly, that

|̂g| |g| + (|̂g| |g|)γ /2

|g|2 ≤ C

|g|
(
1 + 1

|g|
)

,

and, hence, by expression (36), assumption (15), and inequalities (37)–(38), the bound
(39) is again obtained.

Note that

4A2�̂αβ I# − (
1α∈Ipoly I

′ + 1β∈Ipoly I
′∗
)

= 2A1�I# − (
1α∈Ipoly I

′ + 1β∈Ipoly I
′∗
)

= 2A1
(
1α∈Ipoly I − 1β∈Ipoly I∗

) − 1α∈Ipoly

√
mα I ′ + 1β∈Ipoly

√
mβ I ′∗√

mα + √
mβ

, (40)

where

A1 =
√
mα − √

mβ

2
(√

mα + √
mβ

) and A2 = mαmβ

4
(√

mα + √
mβ

)2 > 0.

Moreover, for α ∈ Ipoly

Êαβ ≥ I 1−ζα−πα
(
I ′)ζα I |g|2πα , (41)

and for β ∈ Ipoly

Ê∗
αβ ≥ I

1−ζβ−πβ∗
(
I ′∗
)ζβ |g|2πβ , (42)

123



Compactness Property of the Linearized Boltzmann Collision Operator... Page 29 of 35 32

where 0 ≤ πγ ≤ 1 − ζγ and 0 ≤ ζγ < 1/2 for γ ∈ {α, β}. If the species aγ is monatomic,
γ ∈ Imono, let 1 − ζγ = πγ = 0.

Therefore, by the bounds (39), (41), and (42), and expression (40), changing variables of
integration

{
ξ , ξ∗

} → {
g, gαβ

}
, with unitary Jacobian,

∫
R3×�

(
k(β)
αβ2(Z,Z∗)

)2
dξdξ∗

≤ C
∫

�

e
A1

(
1α∈Ipoly

I−1β∈Ipoly
I∗
)
−A2|g|2

I 2−2ζα−2πα I
2−2ζβ−2πβ∗ |g|4(πα+πβ)

(
1 + 1

|g|2
)
dg

×
∫
R3

e−(
√
mα−√

mβ)
2|gαβ |2/4dgαβ

×
∫ ∞

0

(
I ′)δ(α)/4−1/2−2ζα1α∈Ipoly e−√

mα I ′/(2(
√
mα+√

mβ))d I ′

×
∫ ∞

0

(
I ′∗
)δ(β)/4−1/2−2ζβ1β∈Ipoly e−√

mβ I ′∗/(2(
√
mα+√

mβ))d I ′∗

≤ C
∫

�

e
A1

(
1α∈Ipoly

I−1β∈Ipoly
I∗
)
−A2|g|2

I 2−2ζα−2πα I
2−2ζβ−2πβ∗ |g|4(πα+πβ)

(
1 + 1

|g|2
)
dg, (43)

for � ⊆ R
3, since, by a change to spherical coordinates,

∫
R3

e−(
√
mα−√

mβ)
2|gαβ |2/2dgαβ = C

∫ ∞

0
R2e−R2

dR = C .

Without loss of generality we can assume that mα > mβ , and then A1 > 0. On the other
hand, for � ⊆ R

3, by inequality (37), and the bounds (39), (41), and (42), also

∫
R3×�

(
k(β)
αβ2(Z,Z∗)

)2
dξdξ∗

≤ C
∫

�×R
2+

e−A2
(|g|2−2�̂αβ I#

)
1|g|2>2�̂αβ I#

I 2−2ζα−2πα I
2−2ζβ−2πβ∗ |g|4(πα+πβ)

(
1 + 1

|g|2
)
dg

× (
I ′)δ(α)/4−1/2−2ζα1α∈Ipoly e−I ′/2 (I ′∗

)δ(β)/4−1/2−2ζβ1β∈Ipoly e−I ′∗/2d I ′d I ′∗

×
∫
R3

e−(
√
mα−√

mβ)
2|gαβ |2/4dgαβ

≤ C
∫

�

1

I 2−2ζα−2πα I
2−2ζβ−2πβ∗ |g|4(πα+πβ)

(
1 + 1

|g|2
)
dg

×
∫ ∞

0

(
I ′)δ(α)/4−1/2−2ζα1α∈Ipoly e−I ′/2d I ′

×
∫ ∞

0

(
I ′∗
)δ(β)/4−1/2−2ζβ1β∈Ipoly e−I ′∗/2d I ′∗

≤ C
∫

�

1

I 2−2ζα−2πα I
2−2ζβ−2πβ∗ |g|4(πα+πβ)

(
1 + 1

|g|2
)
dg. (44)
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By the bound (43), with ζγ = 4πγ = 4/9 if γ ∈ Ipoly—remind that 1 − ζγ = πγ = 0 if
γ ∈ Imono—∫

(R3×[0,1])
2

(
k(β)
αβ2(Z,Z∗)

)2
dξdξ∗d I∗ d I

≤ C
∫
R3

(
1 + |g|2) e−A2|g|2

|g|2+4(πα+πβ)
dg

∫ 1

0
I 2(ζα+πα−1) d I

∫ 1

0
I
2(ζβ+πβ−1)
∗ d I∗

≤ C
∫
R3

1 + R2

R4(πα+πβ)
e−A2R2

dR = C .

This covers the case (α, β) ∈ I2
mono completely.

Now assume that β ∈ Ipoly , and consider the case I∗ ≥ I , assuming that

I∗ > 1—else (I , I∗) ∈ [0, 1]2. Then, by the bound (43), with ζα = 2πα =
{
2/5 if I ≤ 1
0 if I > 1

if

α ∈ Ipoly − πα = 0 if α ∈ Imono—and ζβ = 10πβ = 10/21,

∫ ∞

1

∫ I∗

0

∫
(R3)

2

(
k(β)
αβ2(Z,Z∗)

)2 (
1I≤11α∈Imono + 1α∈Ipoly

)
dξdξ∗d Id I∗

≤ C

(
1 +

∫ ∞

0

1α∈Ipoly

I 2−2ζα−2πα
d I

)∫
R3

(
1 + |g|2) e−A2|g|2

|g|2+4(πα+πβ)
dg

×
∫ ∞

0

e−A1(I∗−I )

(I∗ − I )2−2ζβ−2πβ
d (I∗ − I )

≤ C

(
1 +

∫ 1

0
I−4/5d I +

∫ ∞

1
I−2d I

)∫ ∞

0

e−A2R2

R4(πα+πβ)

(
1 + R2) dR = C .

This covers the case (α, β) ∈ Imono × Ipoly completely, and the case (α, β) ∈ I2
poly partly.

On the other hand, if α ∈ Ipoly , considering the case I ≥ I∗, assume that I > 1—else
(I , I∗) ∈ [0, 1]2. Then, by the bound (44), with πα = ζα = 0 and ζβ = 2πβ = 2/5 if
β ∈ Ipoly ,

∫ ∞

1

∫ I

0

∫
|g|≤1

(
k(β)
αβ2(Z,Z∗)

)2 (
1I∗≤11β∈Imono + 1β∈Ipoly

)
dξdξ∗d I∗ d I

≤ C
∫ ∞

1
I−2

(
1 + 1β∈Ipoly

∫ I

0
I−4/5∗ d I∗

)
d I

∫
|g|≤1

|g|−2−4/5 dg

≤ C
∫ ∞

1
I−2 I 1/5d I

∫ 1

0
R−4/5dR = C

∫ ∞

1
I−9/5d I = C .

If, additionally, assuming that the species aβ is polyatomic, β ∈ Ipoly , then, again by the
bound (44), with ζα = ζβ = 0 and 1 − 2πα = πβ = 3/5,

∫ ∞

1

∫ I

0

∫
|g|≥1

(
k(β)
αβ2(Z,Z∗)

)2
dξdξ∗d I∗ d I

≤ C
∫ ∞

1
I−8/5

∫ I

0
I−4/5∗ d I∗d I

∫
|g|≥1

|g|−16/5 dg

= C
∫ ∞

1
I−7/5d I

∫ ∞

1
R−6/5dR = C .
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This completes the case (α, β) ∈ I2
poly .

Assume now instead that, additionally, the species aβ is monatomic, β ∈ Imono. Then, If
A1 I ≤ A2 |g|2, by the bound (43), with ζα = ζβ = 1 − πβ = πα = 0,

∫
|g|≥1

∫ A2|g|2/A1

1

(
k(β)
αβ2(Z,Z∗)

)2
d Idξdξ∗

≤ C
∫

|g|≥1
|g|−4

∫ A2|g|2/A1

1
eA1 I−A2|g|2d Idg ≤ C

∫ ∞

1
R−2dR = C .

On the other hand, if A1 I ≥ A2 |g|2, noting that
A2

A1

(∣∣g′∣∣2 − |g|2
)

+ I − I ′ = mαmβ

2
(
mα − mβ

) (∣∣g′∣∣2 − |g|2
)

− �I# = 0,

and, hence,

I ′ = I + A2

A1

(∣∣g′∣∣2 − |g|2
)

≥ I − A2

A1
|g|2 ≥ 0,

then, by the bounds (39), (37), and (41), with ζα = 1 − πα = 0, changing variables of
integration

{
ξ , ξ∗

} → {
g, gαβ

}
, with unitary Jacobian,

∫
|g|≥1

∫ ∞

A2|g|2/A1

(
k(β)
αβ2(Z,Z∗)

)2
d Idξ dξ∗

≤ C
∫ ∞

1
|g|−4

∫ ∞

A2|g|2/A1

e−(
I−A2|g|2/A1

)
/4d Idg

×
∫
R3

e−(
√
mα−√

mβ)
2|gαβ |2/4dgαβ

∫ ∞

0

(
I ′)δ(α)/2−1

e−I ′/4d I ′

≤ C
∫ ∞

1
R−2dR = C .

Then the case (α, β) ∈ Ipoly × Imono is covered completely.

Concluding,
(
k(β)
αβ2(Z,Z∗)

)2 ∈ L2 (dZ dZ∗), implying that

Kαβ2 =
∫
Zβ

k(β)
αβ2(Z,Z∗)hβ∗ dZ∗

are Hilbert–Schmidt integral operators, and as such continuous and compact on L2 (dZ), see
[22, Theorem 7.83], for (α, β) ∈ I2.

On the other hand, if mα = mβ , then

k(β)
αβ2(Z,Z∗) =

∫
(R3)

⊥n×R
2+
4
|̂g|

(
M ′

αM
′
β∗

)1/2
|g| |g|

(
ϕα (I ) ϕβ

(
I ′∗
)

ϕα (I ′) ϕβ (I∗)

)1/2

×σ̂αβ1mα |̂g|2>4�I#
1I ′≤Ẽαβ

1I ′∗≤Ẽ∗
αβ
dwd I ′d I ′∗,

with ĝ = ξ − ξ ′∗ and g = ξ∗ − ξ . Here, with g = ξ − ξ∗ and n = g/ |g|,
{

ξ ′ = ξ + w − χαn
ξ ′∗ = ξ∗ + w − χαn

, where w ⊥ g and χα = �I

mα |g| .
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Then similar arguments to the ones for k(α)
αβ (Z,Z∗) (with mα = mβ ) above, can be applied.

Concluding, the operator

K = (K1, . . . , Ks) =
s∑

β=1

(K1β2 + K1β3 − K1β1, . . . , Ksβ2 + Ksβ3 − Ksβ1),

is a compact self-adjoint operator on h. Self-adjointness is due to the symmetry relations
(22), (23), cf. [23, p. 198]. ��

5 Bounds on the Collision Frequency

This section concerns the proof of Theorem 2. Note that throughout the proof, C will denote
a generic positive constants. Moreover, remind that ϕα (I ) = I δ(α)/2−1 for α ∈ I below.

Proof Noting identity (8), under assumption (17), the collision frequencies να equal

να =
s∑

β=1

∫
Zα×Z2

β

Mβ∗
ϕα (I ) ϕβ (I∗)

WαβdZ∗dZ′dZ′∗

=
s∑

β=1

∫
Zβ×R3×(R+)3S2

Mβ∗σαβ |g| δ1
(√

|g|2 − 2�I

μαβ

− ∣∣g′∣∣
)
1μαβ |g|2>2�I

×1I ′≤Eαβ
1I ′∗≤E∗

αβ
δ3

(
Gαβ − G′

αβ

)
dZ∗dG′

αβd
∣∣g′∣∣ dσd I ′d I ′∗

=
s∑

β=1

Cαβ

∫
S2
dσ

∫
R3×(R+)3

ϕβ (I∗) e−I∗e−mβ |ξ∗|2/2σαβ

×1μαβ |g|2>2�I 1I ′≤Eαβ
1I ′∗≤E∗

αβ
|g| dξ∗d I∗d I ′d I ′∗

=
s∑

β=1

Cαβ

∫
R3×(R+)3

e−mβ |ξ∗|2/2e−I∗ ϕα

(
I ′)ϕβ (I∗) ϕβ

(
I ′∗
)

Eδ(α)/2
αβ

(
E∗

αβ

)δ(β)/2
Eη/2

αβ

×1μαβ |g|2>2�I 1I ′≤Eαβ
1I ′∗≤E∗

αβ

√
|g|2 − 2�̃αβ I dξ∗d I∗d I ′d I ′∗

for α ∈ I. Clearly,

να ≥ Cαα

∫
R3×(R+)3

ϕα (I∗) ϕα

(
I ′)ϕα

(
I ′∗
)
e−I∗

Eδ(α)

αα Eη/2
αα

√
|g|2 − 4

mα

�I

×e−mα|ξ∗|2/21I ′+I ′∗≤Eαα
dξ∗d I∗d I ′d I ′∗.

Then, if the species aα is monatomic, α ∈ Imono,

να ≥ C
∫
R3×(R+)3

e−mα|ξ∗|2/2 |g|1−η dξ∗

≥ C
∫
R3×(R+)3

e−mα|ξ∗|2/2 (∣∣|ξ | − ∣∣ξ∗
∣∣∣∣2)(1−η)/2

dξ∗.
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while if aα is polyatomic, α ∈ Ipoly ,

να ≥ C
∫
R3×R+

∫
I ′+I ′∗≤Eαα/2

e−mα|ξ∗|2/2 ϕα (I∗) ϕα

(
I ′)ϕα

(
I ′∗
)
e−I∗

Eδ(α)

αα Eη/2
αα

×
√
Eαα − (

I ′ + I ′∗
)
dξ∗d I∗d I ′d I ′∗

≥ C
∫
R3×R+

E1/2
αα e−mα|ξ∗|2/2
Eδ(α)

αα Eη/2
αα

ϕα (I∗) e−I∗
(∫ Eαα/4

0

(
I ′)δ(α)/2−1

d I ′
)2

dξ∗d I∗

= C
∫
R3×R+

E (1−η)/2
αα e−mα|ξ∗|2/2ϕα (I∗) e−I∗ dξ∗d I∗

≥ C
∫
R3

(|g|2 + I
)(1−η)/2

e−mα|ξ∗|2/2 dξ∗
∫ ∞

0
I δ(α)/2−1∗ e−I∗ d I∗

≥ C
∫
R3

(∣∣|ξ | − ∣∣ξ∗
∣∣∣∣2 + I

)(1−η)/2
e−mα|ξ∗|2/2 dξ∗.

Now it follows that

να ≥ C
∫
R3

((|ξ | − ∣∣ξ∗
∣∣)2 + 1α∈Ipoly I

)(1−η)/2
e−mα|ξ∗|2/2

×
(
1|ξ∗|≤1/21|ξ |≥1 + 1|ξ∗|≥21|ξ |≤1

)
dξ∗

≥ C

((|ξ |2 + 1α∈Ipoly I
)(1−η)/2

1|ξ |≥1

∫
|ξ∗|≤1/2

e−mα|ξ∗|2/2 dξ∗

+ (
1 + 1α∈Ipoly I

)(1−η)/2 1|ξ |≤1

∫
|ξ∗|≥2

e−mα|ξ∗|2/2 dξ∗

)

≥ C
((|ξ |2 + 1α∈Ipoly I

)(1−η)/2
1|ξ |≥1 + (1 + 1α∈Ipoly I )

(1−η)/21|ξ |≤1

)

≥ C
(
1 + |ξ |2 + 1α∈Ipoly I

)(1−η)/2

≥ C
(
1 + |ξ | + 1α∈Ipoly

√
I
)1−η

.

Hence, there is a positive constant υ− > 0, such that for all α ∈ I

να ≥ ν−
(
1 + |ξ | + 1α∈Ipoly

√
I
)1−η

.

On the other hand,

να ≤ C
s∑

β=1

∫
R3×(R+)3

e−mβ |ξ∗|2/2e−I∗E (1−η)/2
αβ

ϕα

(
I ′)ϕβ (I∗) ϕβ

(
I ′∗
)

Eδ(α)/2
αβ

(
E∗

αβ

)δ(β)/2

×1I ′≤Eαβ
1I ′∗≤E∗

αβ
dξ∗d I∗d I ′d I ′∗

= C
s∑

β=1

∫

R3×R+

e−mβ |ξ∗|2/2e−I∗

Eαβ∫
0

(
I ′)δ(α)/2−1

Eδ(α)/2
αβ

d I ′
E∗

αβ∫
0

(
I ′∗
)δ(β)/2−1

(
E∗

αβ

)δ(β)/2
d I ′∗

×ϕβ (I∗) E (1−η)/2
αβ d I∗dξ∗
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= C
s∑

β=1

∫
R3×R+

e−mβ |ξ∗|2/2e−I∗ϕβ (I∗) E (1−η)/2
αβ d I∗dξ∗

implying, since, clearly, Eαβ ≤ (
1 + μαβ |g|2 /2 + 1α∈Ipoly I

) (
1 + 1β∈Ipoly I∗

)
, that

να ≤ C
s∑

β=1

∫
R3

(
1 + μαβ

2
|g|2 + 1α∈Ipoly I

)(1−η)/2
e−mβ |ξ∗|2/2dξ∗

×
∫ ∞

0
(1 + I∗)(1−η)/2 I δ(β)/2−1∗ e−I∗d I∗

≤ C
(
1 + |ξ |2 + 1α∈Ipoly I

)(1−η)/2
∫
R3

(
1 + ∣∣ξ∗

∣∣2)(1−η)/2
e−mβ |ξ∗|2/2dξ∗

≤ C
(
1 + |ξ | + 1α∈Ipoly

√
I
)1−η

∫ ∞

0

(
1 + r2

)(1−η)/2
r2e−mβr2/2dr

= C
(
1 + |ξ | + 1α∈Ipoly

√
I
)1−η

.

Hence, there is a positive constant ν+ > 0, such that for all α ∈ I

να ≤ ν+
(
1 + |ξ | + 1α∈Ipoly

√
I
)1−η

.
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