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Abstract
This paper develops an averaging approach on macroscopic scales to derive Smoluchowski–
Kramers approximation for a Langevin equation with state dependent friction in d-
dimensional space. In this approach we couple the microscopic dynamics to the macroscopic
scales. The weak convergence rate is also presented.

Keywords Smoluchowski–Kramers approximation · State-dependent friction · Lyapunov
equation · Averaging

1 Introduction

TheSmoluchowski–Kramers (SK) approximation is useful to describe themotion of a particle
with small mass which has been studied in lots of works beginning with Smoluchowski [20]
and Kramers [17]. The motion of a particle with mass 0 < ε � 1 in Rd (d ≥ 1) is described
by the following Langevin equation

ε ẍε
t + αẋε

t = F(xε
t ) + σ(xε

t )Ḃt , xε(0) = x0 , ẋε(0) = v0,

where constant friction α > 0 , F(x) : R
d → R

d , σ(x) : R
d → R

d×k and {Bt } is k-
dimensional standard Wiener process. The classical SK approximation states that for every
T > 0

lim
ε→0

E sup
0≤t≤T

‖xε
t − xt‖Rd = 0,
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with

αẋt = F(xt ) + σ(xt )Ḃt , x(0) = x0 .

For more detail one can refer to [8] . The above limit equation, with just letting ε = 0 , is
not surprising for such constant friction α. However a noise-induced drift was observed in
experiment [21] for the case of state dependent friction, which implies the limit equation can
not be obtained by letting ε = 0 . Recent work byHottovy et al. [14] presented amathematical
explanation, but lack of some intuition, by a theory of the convergence of stochastic integral
with respect to semimartingale, for such experimental observation.

In this paper we present a new approach which makes the limit equation more intuitively,
although in a weak sense. We consider the following Langevin equation with state dependent
friction,

ε ẍε
t + α(xε

t )ẋε
t = F(xε

t ) + σ(xε
t )Ḃt , (1.1)

xε
0 = x0 , ẋε

0 = v0, x0, v0 ∈ R
d , (1.2)

where α(x) : Rd → R
d×d is a d×d invertiblematrix-valued function. Our idea is to consider

the limit of ρε
t , the law of xε

t , as ε → 0 . For this we first write out the equations solved
by ρε

t (see (1.6)–(1.7)). However, these equations are not closed, we couple the equations
(1.1)–(1.2) to (1.6)–(1.7) . Then we pass the limit ε → 0 in equations (1.6)–(1.7) via an
averaging approach.

Typically, write the equation (1.1) into the following equivalent form

ẋε
t = vε

t , (1.3)

εv̇ε
t = −α(xε

t )vε
t + F(xε

t ) + σ(xε
t )Ḃt . (1.4)

First it is known that the law f ε
t ∈ P(Rd ×R

d), the set consisting of all probability measures
on R

d × R
d , of (xε

t , ẋε
t ) satisfies the Fokker–Planck equation

∂t f ε
t + v · ∇x f ε

t − 1

ε
∇v · (α(x)v f ε

t − F(x) f ε
t ) = 1

ε2

d∑

i=1

d∑

j=1

∂vi ∂v j

(
ai j (x) f ε

t

)
(1.5)

in the weak sense, where a(x) = σ(x)σ	(x) and σ	(x) is the transpose of σ(x), that is for
ϕ ∈ C∞

0 (Rd × R
d),

〈 f ε
t , ϕ〉 − 〈 f ε

0 , ϕ〉
=

∫ t

0

∫

Rd×Rd

[
v · ∇xϕ

−1

ε
(α(x)v − F(x)) · ∇vϕ + 1

ε2

d∑

i=1

d∑

j=1

ai j (x)∂vi ∂v j ϕ
]

f ε
s (dx, dv)ds.

The law of xε
t is

ρε
t (x) =

∫

Rd
f ε
t (x, v)dv,

and define

Y ε
t (x) =

∫

Rd
v f ε

t (x, v)dv.

123



Averaging on Macroscopic Scales… Page 3 of 17 22

Integrating both sides of the equation (1.5) with respect to v, and multiplying both sides of
(1.5) by v , then integrating with respect to v, we get

∂tρ
ε
t (x) = −∇x · Y ε

t (x), (1.6)

∂t Y
ε
t (x) = −

[
∇x ·

(∫
v ⊗ v f ε

t dv

)]	
− 1

ε
α(x)Y ε

t (x) + 1

ε
F(x)ρε

t (x). (1.7)

Notice that
∫

v ⊗ v f ε
t dv = ρε

t (x)

∫
v ⊗ v

f ε
t

ρε
t (x)

dv = ρε
t (x)Ex (vε

t ⊗ vε
t ),

providing ρε
t �= 0 . Here Ex (vε

t ⊗vε
t ) is the expectation with fixing xε = x in equation (1.4) .

Thus, we obtain the following closed system
⎧
⎪⎪⎨

⎪⎪⎩

∂tρ
ε
t (x) = −∇x · Y ε

t (x),

∂t Y ε
t (x) = − 1

ε
α(x)Y ε

t (x) + 1
ε

F(x)ρε
t (x) − [∇x · (ρε

t (x)Ex (vε
t ⊗ vε

t ))
]	

,

ẋε
t = vε

t ,

εvε
t = −α(xε

t )vε
t + F(xε

t ) + σ(xε
t )Ḃt .

(1.8)

The above equations (1.8) is in the form of a slow-fast system with slow component
(ρε

t , xε
t ) and fast component (Y ε

t , vε
t ). So an averaging method is applicable to pass the limit

ε → 0 [7, 13, 18, 19, e.g.]. In fact, by the idea of averaging approach [7, Chapter 5], fixing
ρε

t to a probability measure ρ (see equation (4.1) and Remark 4.1), we have Y ε
t , as ε → 0 ,

converges weakly to (see Lemma 4.1)

Y ∗,ρ(x) = α−1(x)F(x)ρ(x) − α−1(x) [∇x · (ρ(x)J (x))]	 .

Then we formally derive the limit equation (2.4) by replacing Y ε
t by Y ∗,ρ in the first equation

of (1.8). We call the above an averaging principle on macroscopic scale.
There are a lot of literature about SK approximation in case of variable friction. Freidlin

and Hu [9] considered the SK approximation for (1.1) by regularizing the noise. Freidlin,
Hu andWentzell [10], also by regularization method, considered the SK approximation with
some degenerating friction. There are also some works on SK approximation of infinite
dimensional system with constant damping [3] and state–dependent damping [5, 6, e.g.] and
some related problem, large deviation e.g. [4].

The rest of this paper is organized as follows. In Sect. 2, we give some preliminaries,
assumptions and the main result. The tightness of {ρε

t } is shown in Sect. 3, then the averaging
procedure is implemented in the last section. It should be clarified that the positive constant
C and CT may be different from line to line in the proofs.

2 Preliminaries andMain Result

Let (�,F,P) be a complete probability space, and E denote the expectation with respect to
P . Denote by | · | the norm on R

d and 〈·, ·〉 the inner product in space L2(Rd) .
We make the following assumptions.
(H1) α(x) : Rd → R

d×d is continuous differentiable function. The smallest eigenvalue
λ1(x) of 1

2 (α + α	) is positive uniformly with respect to x , i.e. for some constant Cλα > 0 ,

λ1(x) ≥ Cλα > 0 . (2.1)

123
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(H2) F(x) and σ(x) are continuous differentiable and Lipschitz functions with Lipschitz
constant CF and Cσ respectively, i.e., for x, y ∈ R

d ,

|F(x) − F(y)| ≤ CF |x − y|, (2.2)

|σ(x) − σ(y)| ≤ Cσ |x − y|. (2.3)

(H3)There is a constantC > 0 such that |∂xk αi j (x)| ≤ C , for all 1 ≤ i, j, k ≤ d , x ∈ R
d .

Remark 2.1 Since the global Lipschitz condition implies linear growth, from (2.2), we have
|F(x)| ≤ CF (1 + |x |). Here we keep the same notation CF for simplicity. In the following,
we also use |F(x)| ≤ CF

√
1 + |x |2. A similar bound holds for σ(x).

Hottovy et al. [14] assumed that the solutions are tight, that they just needed some conti-
nuity property of F and σ , to pass the limit ε → 0. Here we pose the Lipschitz assumption
on F and σ to show the tightness of the solutions.

Next we present our main result.

Theorem 2.1 Under the assumptions of (H1)–(H3), for every t > 0 , ρε
t , the solution to

equation (1.8), converges weakly to ρt solving the following equation in weak sense

∂tρt (x) = −∇x · (α−1(x)F(x)ρt (x) + α−1(x)(∇x · (ρt (x)J (x)))	), (2.4)

which corresponds to the following stochastic differential equation (SDE)

ẋt = α−1(xt )F(xt ) + S(xt ) + α−1(xt )σ (xt )Ḃt . (2.5)

Here

Si (x) = ∂

∂xk
(α−1(x))i j J jk(x).

and J (x) is the solution of the Lyapunov equation

J (x)α	(x) + α(x)J (x) = σ(x)σ	(x). (2.6)

Furthermore, there is a constant CT > 0 such that for every t ∈ (0, T ) and ψ ∈ C∞
0 (Rd)

|〈ρε
t (x) − ρt (x), ψ〉| ≤ εCT ‖∇ψ‖Lip, (2.7)

where ‖ · ‖Lip denotes the Lipschitz norm defined by

‖ f ‖Lip = ‖ f ‖∞ + sup
x �=y

| f (x) − f (y)|
|x − y| .

Remark 2.2 The above convergence rate in (2.7), from the estimate (4.11) in the proof, is
sharp. So an interesting problem is the higher order correction to ρε

t , that is what is the limit
of

1

ε
(ρε

t − ρt )

as ε → 0 . To determine the limit we have to give a more detail estimation than that in
Lemma 4.1. This will be considered in our future work.
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Remark 2.3 The unique solution to equation (2.6) has the following explicit expression [2,
Page 179]

J (x) =
∫ ∞

0
e−α(x)tσ(x)σ	(x)e−α	(x)t dt .

In fact the matrix J (x) is the limit, as ε → 0 , of the covariance of
√

εvε
t with freezing

xε = x (Lemma 3.3) .

Remark 2.4 To see the relationship between (2.4) and (2.5), by Einstein summation notation,
write (2.4) as

∂tρt (x) = −∇x · (α−1(x)F(x)ρt (x)) + ∂xi (α
−1
ik ∂x j (ρt (x)J jk))

= −∇x · (α−1(x)F(x)ρt (x)) + ∂xi (α
−1
ik (∂x j ρt (x)J jk + ρt (x)∂x j J jk))

= −∇x · (α−1(x)F(x)ρt (x)) + ∂xi (∂x j ρt (x)α−1
ik J jk + ρt (x)α−1

ik ∂x j J jk)

= −∇x · (α−1(x)F(x)ρt (x)) + ∂xi (∂x j (ρt (x)α−1
ik J jk) − ρt (x)J jk∂x j α

−1
ik ).

From (2.6), we have

α−1(x)J (x) + J (x)[α−1(x)]	 = α−1(x)σ (x)σ	(x)[α−1(x)]	. (2.8)

Denote the right hand side of (2.8) by A, and extract the (i, j) element of both sides,

α−1
ik Jk j + Jikα

−1
jk = Ai j .

By the symmetry of J (x), we get

∂tρt (x) = −∇x · (α−1(x)F(x)ρt (x)) + ∂xi (
1

2
∂x j (Ai jρt (x)) − ρt (x)J jk∂x j α

−1
ik )

= −∇x · (α−1(x)F(x)ρt (x) + S(xt )ρt (x)) + 1

2
∂xi ∂x j (Ai jρt (x)),

which corresponds to SDE (2.5).

To prove Theorem 2.1, we first show the tightness of {xε
t } in Sect. 3, then for all sequences

of {ρε· } there exits a subsequence {ρεk· } converges weakly to {ρ·} as εk → 0. Then, for the
convergent subsequence ρ

εk· , we apply the averaging approach (Sect. 4) to the slow-fast
system (1.8) to derive the limit equation.

The following lemma is used to give an explicit representation for the covariance of
√

εvε
t

with freezing xε = x in Lemma 3.3 .

Lemma 2.1 [1, Theorem2]Let I ⊆ Rbe an open interval with t0 ∈ I , A ∈ C
n×n, B ∈ C

m×m,
C ∈ C(I ,Cn×m) and D ∈ C

m×n. The Lyapunov differential equation

Ẋ(t) = AX(t) + X(t)B + C(t), X(t0) = D,

has the unique solution

X(t) = eA(t−t0) DeB(t−t0) +
∫ t

t0
eA(t−s)C(s)eB(t−s)ds.

The following lemma is important in the averaging approach in Sect. 4 .

123
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Lemma 2.2 [15, p. 120] Let A = (ai j )1≤i, j≤d and u = (ui )1≤i≤d be d × d matrix and d × 1
vector respectively. Each element of A and u is a function of x = (x1, x2, . . . , xd), then

∇ · (Au) = (∇ · A)u + tr(A grad u),

where grad u =
(

∂ui
∂x j

)

1≤i, j≤d
and (∇ · A) j = ∇ · A j = ∑d

i=1
∂ai j
∂xi

where A j is the j-th

column of A.

3 Tightness of {x�}�
To prove the tightness of {xε}ε in space C(0, T ;Rd), we need to show the boundedness in
C(0, T ;Rd) and the Hölder continuity of {xε}ε .
Lemma 3.1 Under assumptions (H1) and (H2), for all T > 0,

E sup
0≤t≤T

|xε
t |2 ≤ CT , (3.1)

and for 0 ≤ t1 , t2 ≤ T ,

E|xε
t2 − xε

t1 |2 ≤ C |t2 − t1|. (3.2)

Proof We intend to write an expression of xε
t in a mild formulation. Due to the state depen-

dent friction, this is of some difficulty. For this we first consider the linear part of the
vε-equation (1.4), that is the following equation

ẏt = −1

ε
α(xε

t )yt ,

y0 = Id .

Then

d

dt
(y−1

t ẋε
t ) = d

dt
y−1

t ẋε
t + y−1

t ẍε
t

= −y−1
t

dyt

dt
y−1

t ẋε
t + y−1

t ẍε
t

= 1

ε
y−1

t α(xε
t )ẋε

t + y−1
t

(
−α(xε

t )

ε
ẋε

t + 1

ε
F(xε

t ) + 1

ε
σ (xε

t )Ḃt

)

= 1

ε
y−1

t F(xε
t ) + 1

ε
y−1

t σ(xε
t )Ḃt .

Integrating from 0 to τ yields

y−1
τ ẋε

τ = v0 + 1

ε

∫ τ

0
y−1

s F(xε
s )ds + 1

ε

∫ τ

0
y−1

s σ(xε
s )d Bs,

and

ẋε
τ = yτ v0 + 1

ε

∫ τ

0
yτ y−1

s F(xε
s )ds + 1

ε

∫ τ

0
yτ y−1

s σ(xε
s )d Bs . (3.3)

Integrating from 0 to t for equation (3.3) yields

xε
t = x0 +

∫ t

0
yτ v0dτ

123
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+1

ε

∫ t

0

∫ τ

0
yτ y−1

s F(xε
s )dsdτ

+1

ε

∫ t

0

∫ τ

0
yτ y−1

s σ(xε
s )d Bsdτ � x0 +

3∑

i=1

Ii (t).

Now define

zτ = yτ y−1
s F(xε

s ), τ ≥ s, (3.4)

then

zs = F(xε
s ),

and

dzτ

dτ
= dyτ

dτ
y−1

s F(xε
s )

= −1

ε
α(xε

τ )yτ y−1
s F(xε

s )

= −1

ε
α(xε

τ )zτ .

Thus we have [12, Lemma 4.2 of Chpter IV],

|zτ | ≤ |F(xε
s )|e− ∫ τ

s
1
ε
λ1(x)dt ≤ |F(xε

s )|e− 1
ε

Cλα (τ−s).

Similarly,

|yτ y−1
s σ(xε

s )| ≤ |σ(xε
s )|e− 1

ε
Cλα (τ−s),

and

|yτ v0| ≤ |v0|e− 1
ε

Cλα τ .

Then we derive

E sup
0≤t≤T

|I1(t)|2 = E sup
0≤t≤T

∣∣∣∣
∫ t

0
yτ v0dτ

∣∣∣∣
2

≤ |v0|2E sup
0≤t≤T

∣∣∣∣
∫ t

0
e− 1

ε
Cλα τ dτ

∣∣∣∣
2

≤ |v0|2 ε2

C2
λα

. (3.5)

By Hölder inequality and Fubini theorem

E sup
0≤t≤T

|I2(t)|2 = E sup
0≤t≤T

∣∣∣∣
1

ε

∫ t

0

∫ τ

0
zτ dsdτ

∣∣∣∣
2

≤ 1

ε2
E sup

0≤t≤T

∣∣∣∣
∫ t

0

∫ τ

0
‖F(xε

t )‖e− 1
ε

Cλα (τ−s)dsdτ

∣∣∣∣
2

= 1

ε2
E sup

0≤t≤T

∣∣∣∣
∫ t

0

∫ t

s
‖F(xε

t )‖e− 1
ε

Cλα (τ−s)dτds

∣∣∣∣
2

123
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≤ E sup
0≤t≤T

∣∣∣∣
∫ t

0
‖F(xε

t )‖ 1

Cλα

∣∣∣∣
2

ds

≤ CT

C2
λα

(
1 +

∫ T

0
E sup

0≤r≤s
|xε

r |2ds

)
. (3.6)

By Doob’s maximal inequality, Fubini theorem and Hölder inequality, we obtain

E sup
0≤t≤T

|I3(t)|2 = E sup
0≤t≤T

∣∣∣∣
1

ε

∫ t

0

∫ τ

0
yτ y−1

s σ(xε
s )d Bsdτ

∣∣∣∣
2

= E sup
0≤t≤T

∣∣∣∣
1

ε

∫ t

0

∫ t

s
yτ y−1

s σ(xε
s )dτd Bs

∣∣∣∣
2

≤ 4

ε2
E

∣∣∣∣
∫ T

0

∫ t

s
yτ y−1

s σ(xε
s )dτd Bs

∣∣∣∣
2

≤ 4

ε2
E

∫ T

0

(∫ t

s
|σ(xε

s )|e− 1
ε

Cλα (τ−s)dτ

)2

ds

≤ CT

C2
λα

(
1 +

∫ T

0
E sup

0≤r≤s
|xε

r |2ds

)
. (3.7)

Combining (3.5), (3.6) with (3.7) yields

E sup
0≤t≤T

|xε
t |2 ≤ C

(
|x0|2 + |v0|2 ε2

C2
λα

+ CT

C2
λα

(
1 +

∫ T

0
E sup

0≤r≤s
|xε

r |2ds

))
.

Then Gronwall inequality yields

E sup
0≤t≤T

|xε
t |2 ≤ C

(
|x0|2 + |v0|2 ε2

C2
λα

+ CT

C2
λα

)
e

CT
C2

λα ≤ CT .

Next, let 0 ≤ t1 < t2 ≤ T ,

xε
t2 − xε

t1 =
∫ t2

t1
yτ v0dτ + 1

ε

∫ t2

t1

∫ τ

0
yτ y−1

s F(xε
s )dsdτ

+ 1

ε

∫ t2

t1

∫ τ

0
yτ y−1

s σ(xε
s )d Bsdτ

�
3∑

i=1

Ji .

First, Hölder inequality yields

E|J1|2 = E

∣∣∣∣
∫ t2

t1
yτ v0dτ

∣∣∣∣
2

≤ |v0|2E
∣∣∣∣
∫ t2

t1
e− 1

ε
Cλα τ dτ

∣∣∣∣
2

≤ C |t2 − t1|2. (3.8)

Further by Hölder inequality, Fubini theorem and integral median theorem we have

E|J2|2 = 1

ε2
E

∣∣∣∣
∫ t2

t1

∫ τ

0
yτ y−1

s F(xε
s )dsdτ

∣∣∣∣
2

= 1

ε2
E

∣∣∣∣
∫ t1

0

∫ t2

t1
yτ y−1

s F(xε
s )dτds +

∫ t2

t1

∫ t2

s
yτ y−1

s F(xε
s )dτds

∣∣∣∣
2
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≤ 2

ε2
E

∣∣∣∣
∫ t1

0

∫ t2

t1
yτ y−1

s F(xε
s )dτds

∣∣∣∣
2

+ 2

ε2

∣∣∣∣
∫ t2

t1

∫ t2

s
yτ y−1

s F(xε
s )dτds

∣∣∣∣
2

≤ 2

ε2
E

(∫ t1

0

∫ t2

t1
|F(xε

s )|e− 1
ε

Cλα (τ−s)dτds

)2

+ 2

ε2
E

(∫ t2

t1

∫ t2

s
|F(xε

s )|e− 1
ε

Cλα (τ−s)dτds

)2

= 2

ε2
E

(∫ t1

0
|F(xε

s )|e− 1
ε

Cλα (ξ−s)|t2 − t1|ds

)2

+ 2

C2
λα

E

(∫ t2

t1
|F(xε

s )|(1 − e− 1
ε

Cλα (t2−s))ds

)2

≤ 2

ε2
|t2 − t1|2E

∫ t1

0
|F(xε

s )|2dsE
∫ t1

0
e− 1

ε
Cλα (ξ−s)ds

+ 2

C2
λα

E

∫ t2

t1
|F(xε

s )|2ds|t2 − t1|

≤ C2
F

εCλα

|t2 − t1|2
∫ t1

0
(1 + E sup

0<u≤s
|xε

u |2)ds(e− 2
ε

Cλα (ξ−t1) − e− 2
ε

Cλα ξ )

+ 2C

C2
λα

∫ t2

t1
(1 + E sup

0<u≤s
|xε

u |2)ds|t2 − t1|

≤ C

ε
|t2 − t1|2(e− 2

ε
Cλα (ξ−t1) + e− 2

ε
Cλα ξ ) + C |t2 − t1|2

≤ C |t2 − t1|2. (3.9)

In the last step of (3.9), we have used the fact that f (x) = xe−ax , a > 0, x ∈ (0,+∞) is
bounded. Similarly, we have

E|J3|2 = 1

ε2
E

∣∣∣∣∣

∫ t2

t1

∫ τ

0
yτ y−1

s σ(xε
s )d Bsdτ

∣∣∣∣∣

2

= 1

ε2
E

∣∣∣∣∣

∫ t1

0

∫ t2

t1
yτ y−1

s σ(xε
s )dτd Bs +

∫ t2

t1

∫ t2

s
yτ y−1

s σ(xε
s )dτd Bs

∣∣∣∣∣

2

≤ 2

ε2
E

∣∣∣∣∣

∫ t1

0

∫ t2

t1
yτ y−1

s σ(xε
s )dτd Bs

∣∣∣∣∣

2

+ 2

ε2
E

∣∣∣∣∣

∫ t2

t1

∫ t2

s
yτ y−1

s σ(xε
s )dτd Bs

∣∣∣∣∣

2

≤ 2

ε2

∫ t1

0
E

(∫ t2

t1
|σ(xε

s )|e− 1
ε Cλα (τ−s)dτ

)2

ds + 2

ε2

∫ t2

t1
E

(∫ t2

s
|σ(xε

s )|e− 1
ε Cλα (τ−s)dτ

)2
ds

≤ 2

ε2

∫ t1

0
E|σ(xε

s )|2e− 2
ε Cλα (ξ−s)|t2 − t1|2ds + 2

C
λ2α

∫ t2

t1
E|σ(xε

s )|2(1 − e− 1
ε Cλα (t2−s))2ds

≤ 2C2
σ

ε2
|t2 − t1|2

∫ t1

0
(1 + E sup

0<u≤s
|xε

u |2)(e− 2
ε Cλα (ξ−s))ds + 2C2

σ

C2
λα

∫ t2

t1
(1 + E sup

0<u≤s
|xε

u |2)ds

≤ C

ε
|t2 − t1|2(e− 2

ε Cλα (ξ−t1) − e− 2
ε Cλα ξ ) + C |t2 − t1|

≤ C |t2 − t1|. (3.10)

Now (3.8)–(3.10) yields (3.2). The proof is complete. ��
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Now by Lemma 3.1 and the Garcia–Rademich–Rumsey theorem [11], we have the tight-
ness of solutions.

Lemma 3.2 The process {xε}ε is tight in space C(0, T ,Rd) for all T > 0 .

Remark 3.1 The above result is assumed by Hottovy et al. [14, Assumption 3].

Next we show the limit of the covariance of
√

εvε
t as ε → 0 with frozen xε = x . For this

we consider the following linear equation for x ∈ R
d ,

εv̇
ε,x
t = −α(x)v

ε,x
t + F(x) + σ(x)Ḃt .

Then we have

Lemma 3.3 Assume (H1) and (H2) hold, for x ∈ R
d

εEv
ε,x
t ⊗ v

ε,x
t = J (x) + εC(x, t),

where |C(x, t)| ≤ C(1 + |x |2) and J (x) solves (2.6).

Proof First by the Itô’s formula,

d

dt
E(εv

ε,x
t ⊗ v

ε,x
t ) = −α(x)

ε
E(εv

ε,x
t ⊗ v

ε,x
t )

+ F(x) ⊗ Ev
ε,x
t − 1

ε
E(εv

ε,x
t ⊗ v

ε,x
t )α	(x)

+ Ev
ε,x
t ⊗ F(x) + 1

ε
σ (x)σ	(x), (3.11)

and

d

dt
Ev

ε,x
t = −1

ε
α(x)Ev

ε,x
t + 1

ε
F(x). (3.12)

Applying Lemme 2.1 to equation (3.11) and the Duhamel’s principle to equation (3.12)
respectively, yields

E(εv
ε,x
t ⊗ v

ε,x
t )

= e− α(x)
ε

t
E(εv0 ⊗ v0)e

− α	(x)
ε

t

+
∫ t

0
e− α(x)

ε
(t−s)

(
F(x) ⊗ Ev

ε,x
t + Ev

ε,x
t ⊗ F(x) + 1

ε
σ (x)σ	(x)

)
e− α	(x)

ε
(t−s)ds,

and

Ev
ε,x
t = e− α(x)

ε
tv0 + 1

ε

∫ t

0
e− α(x)

ε
(t−s)F(x)ds

= e− α(x)
ε

tv0 + α−1(x)(I − e− α(x)
ε

t )F(x).

Thus

|Ev
ε,x
t | ≤ |e− α(x)

ε
tv0| + |α−1(x)(I − e− α(x)

ε
t )F(x)|

≤ C + CF

Cλα

(1 + |x |)
≤ C(1 + |x |),
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and then |F(x) ⊗ Ev
ε,x
t | ≤ C(1 + |x |2). Now let τ = t−s

ε
, we have

∫ t

0
e− α(x)

ε
(t−s)

(
F(x) ⊗ Ev

ε,x
t + Ev

ε,x
t ⊗ F(x) + 1

ε
σ (x)σ	(x)

)
e− α	(x)

ε
(t−s)ds

=
∫ t

ε

0
e−α(x)τ (εF(x) ⊗ Ev

ε,x
t + εEv

ε,x
t ⊗ F(x) + σ(x)σ	(x))e−α	(x)τ dτ

= J (x) + ε

∫ t
ε

0
e−α(x)τ (F(x) ⊗ Ev

ε,x
t + Ev

ε,x
t ⊗ F(x))e−α	(x)τ dτ

−
∫ ∞

t
ε

e−α(x)τ σ (x)σ	(x)e−α	(x)τ dτ

= J (x) + εC(x, t) .

The proof is complete. ��
Remark 3.2 Here we point out that an important step is to estimate εE|vε

t |2 in the work of
Hottovy et al. [14] . However, in our approach we need the estimate of εEv

ε,x
t ⊗ v

ε,x
t instead

with fixed x .

4 Averaging Approach

In this section we just consider a convergent subsequence ρ
εk· and for simplicity we still write

it as ρε· . Let ρ· be the limit of ρε· . Next we determine the equation for ρ· by an averaging
approach.

Averaging is effective to study the approximation for a slow-fast system [7, 13, 16]. Here
we apply the Khasminskii’s scheme [16] to (1.8). For small ε, ρε

t evolves slow, so we can
consider the fast part Y ε by freezing the slow part ρε

t to be some ρ ∈ P(Rd) and fix t = τ

in E
x (vε

t ⊗ vε
t ) . For this we introduce Ỹ ε,ρ,τ

t (x) the solution of the following equation

∂t Ỹ
ε,ρ,τ
t (x) = −α(x)

ε
Ỹ ε,ρ,τ

t (x) + 1

ε
F(x)ρ(x) − [∇x · (ρ(x)Ex (vε

τ ⊗ vε
τ ))]	, (4.1)

with Ỹ ε,ρ,τ
0 (x) = Y0. The following lemma shows that the fast part converges uniformly in

τ to some vector with frozen slow part as ε → 0 .

Lemma 4.1 For every fixed t∗ > 0 , under the assumptions (H1)–(H3), fix ρε
t = ρ ∈ P(Rd)

with
∫ |x |2ρ(x)dx and ‖|Y0|‖L1 bounded, there is a constant CT > 0 such that for ϕ ∈

C∞
0 (Rd ,Rd), and t ≥ t∗,

|〈Ỹ ε,ρ,τ
t (x) − Y ∗,ρ(x), ϕ〉| ≤ CT ε‖ϕ‖Lip,

where

Y ∗,ρ(x) = α−1(x)F(x)ρ(x) − α−1(x) [∇x · (ρ(x)J (x))]	 .

Proof Applying Duhamel’s principle to equation (4.1) yields

Ỹ ε,ρ,τ
t (x) = e− α(x)

ε
t Y0 + 1

ε

∫ t

0
e− α(x)

ε
(t−s)F(x)ρ(x)ds

− 1

ε

∫ t

0
e− α(x)

ε
(t−s)[∇x · (ρ(x)Ex (εvε

τ ⊗ vε
τ ))]	ds. (4.2)

123
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Multiplying both sides of the equation (4.2) by the test function ϕ yields

〈Ỹ ε,ρ,τ
t (x), ϕ〉 =

〈
e− α(x)

ε
t Y0, ϕ

〉
+ 1

ε

∫ t

0

〈
e− α(x)

ε
(t−s)F(x)ρ(x), ϕ

〉
ds

− 1

ε

∫ t

0

〈
e− α(x)

ε
(t−s)[∇x · (ρ(x)Ex (εvε

τ ⊗ vε
τ ))]	, ϕ

〉
ds

� J1 + J2 + J3.

By Hölder inequality,

|J1| = |〈e− α(x)
ε

t Y0, ϕ〉| ≤ e− Cλα
ε

t∗‖|Y0|‖L1‖ϕ‖Lip ≤ Cε‖ϕ‖Lip. (4.3)

Next,

J2 =
〈
α−1(x)

(
I − e− α(x)

ε
t
)

F(x)ρ(x), ϕ
〉

= 〈α−1(x)F(x)ρ(x), ϕ〉 −
〈
α−1(x)e− α(x)

ε
t F(x)ρ(x), ϕ

〉
,

by (H1) and (H2),

|J2 − 〈α−1(x)F(x)ρ(x), ϕ〉| ≤ Cε‖F(x)
√

ρ(x)‖L2‖ϕ
√

ρ(x)‖L2 ≤ CT ε‖ϕ‖Lip. (4.4)

At last, by Lemma 3.3,

J3 = −
〈
α−1(x)

(
I − e− α(x)

ε
t
)

[∇x · (ρ(x)Ex (vε
τ ⊗ vε

τ ))]	, ϕ
〉

= −〈α−1(x)
(

I − e− α(x)
ε

t
)

[∇x · (ρ(x)(J (x) + εC(x, τ )))]	, ϕ〉
= −〈α−1(x)(∇x · (ρ(x)J (x)))	, ϕ〉 − ε〈α−1(x)[∇x · (ρ(x)C(x, τ ))]	, ϕ〉

+ 〈α−1(x)e− α(x)
ε

t [∇x · (ρ(x)(J (x) + εC(x, τ )))]	, ϕ〉.
By Gaussian property and the definition of J (x), |∇x · (ρ(x)J (x))| ≤ C(1+ |x |)ρ(x), then

|〈α−1(x)e− α(x)
ε

t [∇x · (ρ(x)J (x))]	, ϕ〉| ≤ Cε‖(1 + |x |)ρ(x)‖L1‖ϕ‖Lip ≤ Cε‖ϕ‖Lip,

and

|〈α−1(x)e− α(x)
ε

t [∇x · (ερ(x)C(x, τ ))]	, ϕ〉| = ε|〈tr(ρ(x)C(x, τ )grad(α−1(x)e− α(x)
ε

tϕ))〉|
≤ Cε‖(1 + |x |2)ρ(x)‖L1‖ϕ‖Lip

≤ Cε‖ϕ‖Lip.

Thus

|J3 + 〈α−1(x)(∇x · (ρ(x)J (x)))	, ϕ〉|
≤ ε|〈tr(ρ(x)C(x, τ )grad(α−1(x)ϕ))〉| + Cε‖ϕ‖Lip

≤ Cε‖(1 + |x |2)ρ(x)‖L1‖ϕ‖Lip

≤ CT ε‖ϕ‖Lip. (4.5)

By (4.3), (4.4) and (4.5), the proof is complete. ��
Remark 4.1 As we have mentioned in the Introduction, one can derive the limit equation
formally for ρt by replacing Y ε

t by Y ∗,ρ in the first equation of (1.8) .
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However the slow part ρε
t does evolve, in order to approximate Y ε

t we follow the Khasmin-
skii’s scheme. For this we restrict the system in a small time interval, for example [tk, tk+1]
and freeze the slow part to be ρε

tk . We show that (Lemma 4.2) Y ε
t is approximated well by Ŷ ε

t
with frozen ρε

t = ρε
tk if the length of time interval [tk, tk+1] is small. For this we divide the

time interval [0, T ] into small intervals of size δ > 0, i.e. 0 = t0 < t1 < . . . < t�T /δ�+1 = T ,
tk = kδ, k = 0, 1, . . . , �T /δ�. For t ∈ [tk, tk+1], we define the auxiliary process
{ρ̂ε

t (x), Ŷ ε
t (x)}0≤t≤T satisfying

∂t ρ̂
ε
t (x) = −∇x · Ŷ ε

t (x),

∂t Ŷ
ε
t (x) = −1

ε
α(x)Ŷ ε

t (x) + 1

ε
F(x)ρε

tk (x) − [∇x · (ρε
tk (x)Ex (vε

tk ⊗ vε
tk )

]	
,

ρ̂ε
tk (x) = ρε

tk (x), Ŷ ε
0 (x) = Y0.

Remark 4.2 One can see that Ŷ ε
t = Ỹ

ε,ρε
tk

,tk
t .

Lemma 4.2 Assume (H1)–(H3) hold, for T > 0 and ϕ ∈ C∞
0 (Rd ,Rd),

sup
0≤t≤T

|〈Y ε
t (x) − Ŷ ε

t (x), ϕ〉| ≤ CT

(
δ

ε2
+ δ

ε

)
‖ϕ‖Lip .

Proof Let Z ε
t (x) = Y ε

t (x) − Ŷ ε
t (x). For all t ∈ [tk, tk+1], we have

∂t Z ε
t (x) = −1

ε
α(x)Z ε

t (x) + 1

ε
F(x)(ρε

t (x) − ρε
tk (x))

− [∇x · (ρε
t (x)Ex (vε

t ⊗ vε
t ) − ∇x · (ρε

tk (x)Ex (vε
tk ⊗ vε

tk )
]	

.

By Duhamel’s principle,

Z ε
t (x) = 1

ε

∫ t

tk
e− 1

ε
α(x)(t−s)F(x)(ρε

s (x) − ρε
tk (x))ds

−
∫ t

tk
e− 1

ε
α(x)(t−s)[∇x · (ρε

s (x)Ex (vε
s ⊗ vε

s ) − ∇x · (ρε
tk (x)Ex (vε

tk ⊗ vε
tk )]	ds.

For ϕ ∈ C∞
0 (Rd ,Rd), we obtain

〈Z ε
t (x), ϕ〉

= 1

ε

∫ t

tk
〈e− 1

ε
α(x)(t−s)F(x)(ρε

s (x) − ρε
tk (x)), ϕ〉ds

−
∫ t

tk
〈e− 1

ε
α(x)(t−s)[∇x · (ρε

s (x)Ex (vε
s ⊗ vε

s ) − ∇x · (ρε
tk (x)Ex (vε

tk ⊗ vε
tk )]	, ϕ〉ds

� I1 + I2.

First

|I1| = 1

ε

∣∣∣∣
∫ t

tk
[E(e− 1

ε
α(xε

s )(t−s)F(xε
s )ϕ(xε

s )) − E(e− 1
ε
α(xε

tk
)(t−s)F(xε

tk )ϕ(xε
tk ))]ds

∣∣∣∣

≤ 1

ε

∫ t

tk
[|E(e− 1

ε
α(xε

s )(t−s)F(xε
s )ϕ(xε

s ))| + |E(e− 1
ε
α(xε

tk
)(t−s)F(xε

tk )ϕ(xε
tk ))|]ds
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≤ 1

ε

∫ t

tk
CF‖ϕ‖Lip(1 + E|xs |)ds + 1

ε

∫ t

tk
CF‖ϕ‖Lip(1 + E|xtk |)ds .

Then, by Lemma 3.1, we have

|I1| ≤ CT
δ

ε
‖ϕ‖Lip. (4.6)

Further by Lemma 2.2,

I2 = −
∫ t

tk
〈[∇x · (ρε

s (x)Ex (vε
s ⊗ vε

s ) − ∇x · (ρε
tk (x)Ex (vε

tk ⊗ vε
tk )], e− 1

ε
α	(x)(t−s)ϕ〉ds

=
∫ t

tk

∫

Rd
tr

[
(ρε

s (x)Ex (vε
s ⊗ vε

s ) − ρε
tk (x)Ex (vε

tk ⊗ vε
tk ))grad

(
e− 1

ε
α	(x)(t−s)ϕ

)]
dxds .

Let g(x) = e− 1
ε
α	(x)(t−s)ϕ(x), by the chain rule,

∂

∂xi
g(x) = ∂

∂xi
(e− 1

ε
α	(x)(t−s))ϕ(x) + e− 1

ε
α	(x)(t−s) ∂

∂xi
ϕ(x) .

Then, by assumptions (H1) and (H3),

| ∂

∂xi
g(x)| ≤ C(

1

ε
+ 1)‖ϕ‖Lip, (4.7)

thus

|grad(g(x))| ≤ C(
1

ε
+ 1)‖ϕ‖Lip. (4.8)

By Lemma 3.3 and (4.8),
∣∣∣∣
∫

Rd
tr(ρε

s (x)Ex (vε
s ⊗ vε

s )grad(g(x)))dx

∣∣∣∣

= 1

ε
|tr[E(Exε

s (εvε
s ⊗ vε

s )grad(g(xε
s )))]|

≤ C

ε
E[(J (xε

s ) + εC(xε
s , s))(

1

ε
+ 1)‖ϕ‖Lip

≤ CT (
1

ε2
+ 1

ε
)‖ϕ‖Lip.

Similarly,
∣∣∣∣
∫

Rd
tr(ρε

tk (x)Ex (vε
tk ⊗ vε

tk )grad(g(x)))dx

∣∣∣∣ ≤ CT (
1

ε2
+ 1

ε
)‖ϕ‖Lip.

Then we have

|I2| ≤ CT (
δ

ε2
+ δ

ε
)‖ϕ‖Lip.

The proof is complete. ��
Proof of Theorem 2.1. From the first equation of (1.8), for ψ ∈ C∞

0 (Rd) and ϕ = ∇ψ we
derive

〈ρε
t (x), ψ〉 = 〈ρt∗ , ψ〉 +

∫ t

t∗
〈Y ε

s (x), ϕ〉ds
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= 〈ρt∗ , ψ〉 +
∫ t

t∗
〈Y ∗,ρε

s (x), ϕ〉ds

+
∫ t

t∗
〈Y ε

s (x) − Ŷ ε
s (x), ϕ〉ds +

∫ t

t∗
〈Ŷ ε

s (x) − Y ∗,ρε
s (x), ϕ〉ds

� 〈ρt∗ , ψ〉 + K1 + K2 + K3.

First, by the expression of Y ∗,ρ ,

K1 =
∫ t

t0
〈Y ∗,ρε

s (x), ϕ〉ds →
∫ t

t0
〈Y ∗,ρs (x), ϕ〉ds. (4.9)

Next, by Lemma 4.2,

|K2| ≤ CT

(
δ

ε2
+ δ

ε

)
‖ϕ‖Lip → 0, (4.10)

by choosing δ = O(ε3).

Note that on the time interval [tk, tk+1], {Ŷ ε
t } = {Ỹ ε,ρε

tk
,tk

t }, let t∗ ∈ [ti0 , ti0+1],

K3 =
∫ ti0+1

t∗
〈Ỹ ε,ρε

ti0
,ti0

s − Y
∗,ρε

ti0 , ϕ〉ds +
�t/δ�−1∑

k=i0+1

∫ tk+1

tk
〈Ỹ ε,ρε

tk
,tk

s − Y ∗,ρε
tk , ϕ〉ds

+
∫ t

t�t/δ�
〈Ỹ ε,ρε

t�t/δ� ,t�t/δ�
s − Y

∗,ρε
t�t/δ� , ϕ〉ds +

∫ ti0+1

t∗
〈Y ∗,ρε

ti0+1 − Y ∗,ρε
s , ϕ〉ds

+
�t/δ�−1∑

k=i0+1

∫ tk+1

tk
〈Y ∗,ρε

tk − Y ∗,ρε
s , ϕ〉ds +

∫ t

t�t/δ�
〈Y ∗,ρε

t�t/δ� − Y ∗,ρε
s , ϕ〉ds

� K31 + K32 + K33 + K34 + K35 + K36.

By Lemma 4.1,

|K31 + K32 + K33| ≤ CT ε‖ϕ‖Lip. (4.11)

By the defination of Y ∗,ρ and Lemma 3.1,

|K34 + K35 + K36| ≤ CT

⎛

⎝
∫ ti0+1

t∗
E|xε

ti0+1
− xε

t∗ |2ds +
�t/δ�−1∑

k=i0+1

∫ tk+1

tk
E|xε

tk − xε
s |2ds

+
∫ t

t�t/δ�
E|xε

t�t/δ� − xε
s |2ds

)
‖ϕ‖Lip

≤ CT ‖ϕ‖Lipδ. (4.12)

By (4.9)–(4.12), passing the limit ε → 0 yields

〈ρε
t (x), ψ〉 → 〈ρt∗ , ψ〉 +

∫ t

t∗
〈Y ∗,ρs (x), ϕ〉ds.

Since ϕ = ∇xψ , it yields

〈∂tρt (x), ψ〉 = 〈Y ∗,ρt (x),∇xψ〉 = −〈∇x · Y ∗,ρt (x), ψ〉,
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which is the weak form of

∂tρt (x) = −∇x · (α−1(x)F(x)ρt (x) + α−1(x)(∇x · (ρt (x)J (x)))	).

The proof is complete. ��
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