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Abstract
We study the stochastic dynamics of a two-dimensional particle whose coordinates are
described by two coupled one-dimensional random-acceleration processes, that evolve in
a confining parabolic potential and are subject to independent Gaussian white noises with
different amplitudes (temperatures). We first determine standard characteristics: the mixed
moments of positions and velocities, as well as the position-velocity probability density
function (PDF) and those of its kinetic and potential energies. Going then beyond these
standard characteristics, we consider the emerging rotational motion of the particle around
the origin: We show that if the amplitudes of the noises are not equal, the particle experiences
a non-zero (on average) torque, such that the angular momentum L and the angular velocity
W have non-zeromean valueswhich both are (irregularly) oscillatingwith time t.We evaluate
the PDF-s of L and W and show that the former has exponential tails for any fixed t , and
hence, all moments. In the large-time limit this PDF converges to a uniform distribution with
a diverging variance. The PDF of W possesses heavy power-law tails such that the mean W
is the only existing moment. However, this PDF converges to a well-defined large-time limit
manifesting the possibility of stabilizing phenomenon even in frictionless driven systems.
Surprisingly, the limit is independent of the amplitudes of noises.
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1 Introduction

When a physical system is brought in contact with several heat baths maintained at different
temperatures, the whole system evolves towards a non-equilibrium steady-state characterized
by a non-zero current and non-equilibrium fluctuations. One-dimensional solvable models
have been developed to demonstrate this behavior [1–3] as well as the validity of fluctuation
theorems and relations (see, e.g., [4–7]).

In higher dimensions, the Brownian gyrator model (BGM) provides an exactly solvable,
albeit a minimalist example of a system that exhibits such a non-trivial non-equilibrium
behavior. Ind-dimensions themodel consists ofd linearly coupled one-dimensionalOrnstein-
Uhlenbeck (OU) processes (see, e.g., [8]) each with its own zero-mean Gaussian white noise
that is statistically-independent of the noises of other components and is characterized by its
own amplitude. In general, the amplitudes of the noises are not all equal to each other, and
the amplitudes of the correlation function of noises (called in what follows, for simplicity, as
the temperatures) do not obey the standard Einstein relations, i.e., are not simply proportional
to the product of the bath temperature and the damping constant. This could require rather
sophisticated methods for experimental realization of systems in question (see below).

The BGM was first introduced in [9] for the analysis of the emerging steady-state and
its effective temperature in a system of two coupled single-spin paramagnets, each being in
contact with its own thermal bath. Some years after, it was argued in [10] that, in fact, the
BGMrepresents aminimal heat engine: there emerges a non-zero currentwhichmoreover has
a non-zero curl, generating therefore a non-zero torque. As a result, if these d OU processes
are used to describe the components of an instantaneous position of a particle living in a
d-dimensional space, then the particle would “gyrate” around the origin, which explains the
name of the model.

Various aspects of the dynamical and the steady-state behavior of the BGMhave been ana-
lyzed in case of standard delta-correlated in time noises acting on the position components of
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the particle (see, e.g., [11–20]) and also for the noises with long-ranged temporal correlations
[21, 22]. The versions of the model that have been studied deal with the entropy production
[23, 24], effects of anisotropic fluctuations [25, 26] and non-harmonic potentials [27], rota-
tional dynamics of a Brownian ellipsoid in isotropic potential or of an inertial chiral ellipsoid
[28], the spectral properties of individual trajectories of a gyrator [29, 30], emerging coop-
erative behavior of several Brownian gyrators [31, 32], as well as a synchronization of two
out-of-equilibrium Kuramoto oscillators living at different temperatures [33]. By exerting
an external force on the Brownian gyrator, it was possible to derive the asymmetry relations
obeyed by the position probability density [34–36]. The probability densities of the gyra-
tion characteristics – the angular momentum and the angular velocity – have been evaluated
in recent work [37], while in [38, 39] the moment-generating function of a time-averaged
angular momentum has been studied within a somewhat different context.

The BGM, being clearly a minimalist model, is experimentally-realizable. In [11–13] the
BGM was conceived by constructing an effective electric circuit comprising a capacitance
and two resistors kept at different temperatures. In turn, in [40] the BGM was ingeniously
devised very directly in a system with a single colloidal Brownian particle that is optically
trapped in an elliptical potential well and coupled simultaneously to two heat baths with
different temperatures acting along perpendicular directions. As we have already remarked,
producing an effective coupling to two “heat baths” with different temperatures requires a
special set-up. In particular, in [40] the isotropic thermal environment was made anisotropic
via a fluctuating electric field with a near-white frequency spectrum applied along the x-
direction. This electric fluctuating field was generated by two thin wires with electric white
noise placed on either side of the optical trap and raised the bath noise temperature along the
x-direction to 1750K, while the bath noise temperature along the y-direction remained at 292
K (room temperature). Alternatively, in [13] the temperature difference has been achieved
by imposing an additional noise on the position of the tweezer. In both experimental set-ups,
noises not only with the temperatures that differ from the one of the thermal bath can be
generated, but also noises with controlled long-ranged temporal correlations, such as, e.g.,
fractional Gaussian noise. Some additional realizations of the model have been mentioned
in [10] and [16, 41, 42].

Most of available analytical analysis,with an exceptionof those in [16, 17],were concerned
with the simplest case of a massless particle, i.e., the effects of inertia were discarded. While
such effects were only briefly discussed in [16], a more systematic analysis was developed in
[17] by using an appropriately generalized Langevin description and numerical simulations.
The analysis in [17] evidenced some interesting effects of the inertia in the steady-state
such as, e.g., a reduction of the non-equilibrium effects by diminishing the declination of
the probability density and the mean value of a specific angular momentum. It was also
demonstrated that rotation is maximized at a particular anisotropy while the stability of the
rotation is minimized at a particular anisotropy or mass. We note, however, that the analysis
in [16, 17] was focused exclusively on the behavior in the steady-state attained in the limit
t → ∞ just because of the dissipation due to the friction term γ ẋ in the corresponding
dynamical equation.

In this paper we study a two-dimensional BGM with inertia and, in contrast to [16, 17]
which analyzed solely the behavior in the steady-state, we concentrate here on the tempo-
ral evolution of the standard characteristic properties, such as, e.g., positions, velocities,
their mixed moments and their full probability density functions (PDF)s, as well as on the
characteristics of the emerging gyration process; that being, the angular momentum L and
the angular velocity W . To get the understanding of possible effects of the inertia, and to
make our analysis more transparent and the corresponding effects more pronounced, we
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exclude the friction term, hence, the dissipation. In fact, we assume the validity of the strong
inequality m � γ t between the particle, the friction constant and the time of evolution. An
experimental realization of this set-up could be the one similar to that in [40], i.e., dealing
with a massive colloidal particle placed in a low-viscosity fluid. In this case our model will
describe the transient behavior of the particle.

We note that this simplified case is also of interest from a purelymathematical perspective:
In our situation one deals with two coupled one-dimensional random-acceleration processes,
each living at its own temperature and both evolving in a parabolic potential. The random-
acceleration process, mainly in one-dimensional systems, has received much interest within
the last decade as a simple example of a super-diffusive non-Markovian stochastic process
which exhibits ageing and a non-trivial behavior of the extremal properties [43–50]. More-
over, this process appears in rather diverse contexts in physical systems. To name a few, we
mention dynamics of a granular particle in presence of an inelastic wall [51–54], the short-
time dynamics of active particles as observed for different kinds of microorganisms [55, 56]
or in active trapmodel [57, 58], decaying turbulence in Burgers equation [59], particlemotion
in a sheared medium [60], as well conformational statistics of semi-flexible polymer chains
in narrow channels [61, 62].

Returning to our case, we note that, not counter-intuitively, the dynamics of our system
shows a completely different behavior as compared to that of the standard BGM. In the
absence of dissipation, an ongoing pumping of energy delocalizes the particle such that its
mean-squared distance from the origin grows linearly with time, while for the BGM it tends
to a constant as t → ∞. As a consequence, the steady state does not exist. On average,
the particle still performs a rotational motion (likewise the BGM) when the temperatures of
the components are not equal to each other and when the confining potential is anisotropic,
but it gradually travels away from the origin. The temporal evolution of the characteristic
properties of the gyration process is also strikingly different from that of the standardBGM. In
particular, the mean angular moment (which approaches a constant value for the BGM) in our
case oscillates with time between its maximal andminimal values which have different signs.
Correspondingly, the torque imposed on the particle also oscillates prompting the particle to
rotate clockwise and counter-clockwise at different time intervals. The time-averaged mean
angular momentum approaches nonetheless a constant value as t → ∞, such that the particle
eventually gyrates around the origin, on average, and the gyration direction is defined solely
by the relation between the temperatures of the components. Accordingly, the mean angular
velocity is an oscillatory function of time, and the amplitude of oscillations decreases as the
first inverse power of time due to an displacement of the particle away from the origin.

Further on, motivated by the analysis in recent work [37], we calculate the full probability
densities of the angularmomentum and the angular velocity.We find that, at a finite time t , the
probability density of the angular momentum has exponential tails and hence, all moments
are finite. However, this distribution is effectively broad and its variance diverges with t as t2,
while the expectation is bounded in t . This signifies that the expectation does not bear signif-
icant physical information and only indicates a certain non-zero trend (once the temperatures
of the components are unequal) in an ensemble of the processes under study rather than the
behavior to be observed for each individual realization. Thus, the complete description of
such strongly fluctuating observables is given only by their probability distribution. This is,
in particular, clear for the observables with infinite second moment. We show that this is the
case for the angular velocity whose probability density has heavy power-law tails so that the
mean angular velocity is the only finite moment. Curiously enough, in the limit t → ∞,
the probability density of the angular velocity converges to a remarkably simple limiting
form which is completely independent of the temperatures of the components. Therefore,
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one observes quite a non-trivial irregular behavior of the angular momentum and the angular
velocity as functions of time, with quite significant fluctuations.

The paper is organized as follows: in Sect. 2, we formulate the model and introduce basic
notations. In Sect. 3 we concentrate on the moments and the cross-moments of the particle’s
position and velocities, while in Sect. 4 we discuss the behavior of the two-time correlation
function of the particle’s position. Section5 is devoted to the position-velocity probability
densities. In Sect. 6 we focus on the gyration characteristics, i.e., the angular momentum and
the angular velocity.We derive explicit expressions for themean values of these characteristic
properties and also their full probability densities. We analyze the statistical properties of the
kinetic, potential and total energy in Sect. 7.

Finally, in Sect. 8 we conclude with a brief recapitulation of our results and a short
discussion.

2 TheModel

Weconsider the dynamics of a particle ofmassm in a two-dimensional system, in the presence
of a potential that consists of two parts:

(i) The confining potential which we assume, following the trend of the field, to be the
paraboloid

U (x, y) = λ
(1
2
x2 + 1

2
y2 + u xy

)
, (1)

where λ > 0 controls the amplitude of attraction to the origin (e.g., the strength of an
optical trap), while u is the (relative to λ) coupling parameter between the x- and y-
components. We assume that |u| < 1, to guarantee thatU is a paraboloid and hence, that
exp(−U ) is integrable.

(ii) The additive random "potential"

�(x, y, t) = xξ1(t) + yξ2(t), (2)

where ξ1(t) and ξ2(t) are mutually-independent stochastic noises with zero mean and
the covariances 〈

ξx (t
′)ξx (t)

〉 = 2T1δ(t − t ′),〈
ξy(t

′)ξy(t)
〉 = 2T2δ(t − t ′).

(3)

The angle brackets in Eqs. (3) denote averaging with respect to realizations of ther-
mal noises, and T1 and T2 are the respective “temperatures” of the two thermal baths,
(which are in general unequal). We will characterize the situation as equilibrium or non-
equilibrium in cases where T1 = T2 or T1 �= T2 respectively.

Denoting by r(t) = (x(t), y(t)) the instantaneous coordinates of the particle, we can write
down its equation of motion as1

m ẍ(t) + λx(t) + λuy(t) = ξ1(t),

m ÿ(t) + λy(t) + λux(t) = ξ2(t).
(4)

1 Recall that in the standard BGM one has the first derivatives of the position components x(t) and y(t) with
respect to time, in place of terms mẍ(t) and mÿ(t), i.e;

ν ẋ(t) + λx(t) + λuy(t) = ξ1(t), ν ẏ(t) + λy(t) + λux(t) = ξ2(t),

where ν is the damping constant and the potential is defined in Eq. (1).
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To define uniquely the dynamics we have to add the initial conditions. We will be mostly
interested by the large-time dynamics of the particle due to the presence of the noise, and
hence, it seems quite natural to assume, for simplicity, that the particle starts from the very
bottom of the confining potential. Without any significant lack of generality, we also stipulate
that the particle’s velocity is equal zero at time t = 0. Therefore, Eqs. (4) are to be solved
subject to the initial conditions

x(0) = y(0) = 0,

ẋ(0) = ẏ(0) = 0.
(5)

The general case of non-zero initial conditions can be easily obtained from the case (5)
by replacing r(t) above by r(t) + r0(t), where r0(t) is the standard linear combination of
simple harmonic functions, the solution of Eqs. (4) with given initial conditions and zero
right-hand-side (r.h.s).

There are several properties of focal interest, which characterize the stochastic process
defined in Eqs. (3) – (5). First of all, these are the moments of instantaneous positions x(t)
and y(t) and the velocities ẋ(t) and ẏ(t), as well as their mixed moments. More generally,
this is the joint position-velocity probability density Pt = Pt (x, y, ẋ, ẏ). Taking into account
that � of Eqs. (2)–(3) is a pair of independent white noises, the collection

X = {X j }4j=1 = {x, y, ẋ, ẏ} (6)

forms a four component Markov process, hence, their Pt solves the corresponding Fokker-
Planck equation. This proved to be a fairly efficient and adequate tool in the case of non-linear
dynamics and/or non Gaussian but Markovian � (see e.g. [63]), where the collection {X , �}
forms a Markov process. In our case of linear dynamics and Gaussian white noise � of
Eqs. (2)–(3) the collection, Eq. (6), is also Gaussian. In addition it follows from Eqs. (3) to
(5) that

〈X j (t)〉 = 0, j = 1, 2, 3, 4. (7)

Thus, it suffices to find the (covariance) matrix of X(t),

M(t) = {m jk}4j,k=1, m jk = 〈X j (t)Xk(t)〉,

M(t) =

⎛
⎜⎜⎝

〈x2(t)〉 〈x(t)y(t)〉 〈x(t)ẋ(t)〉 〈x(t)ẏ(t)〉
〈x(t)y(t)〉 〈y2(t)〉 〈y(t)ẋ(t)〉 〈y(t)ẏ(t)〉
〈x(t)ẋ(t)〉 〈y(t)ẋ(t)〉 〈ẋ2(t)〉 〈ẋ(t)ẏ(t)〉
〈x(t)ẏ(t)〉 〈y(t)ẏ(t)〉 〈ẋ(t)ẏ(t)〉 〈ẏ2(t)〉

⎞
⎟⎟⎠ , (8)

to be able to obtain its characteristic function

�t (ω) =
∫

R4
ei(ω,X) Pt (X)dX = exp{−(M(t)ω,ω)/2}, (9)

where ω = {ω j }4j=1 are the Fourier components of the position and velocity. (ω,X) denotes
the dot product between the two vectors.

Likewise, the corresponding joint probability distribution density Pt of X is, in general

Pt (X) = ((2π)4 det M(t))−1/2 exp{−(M−1(t)X , X)/2}. (10)

However, for this formula to be well defined, the covariance matrix (8) has to admit the
inverse matrix M−1(t). It follows from the results of Sections 3.1–3.2 that the leading terms
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of the large-t asymptotics of the diagonal entries of M(t) are proportional to t , while the off-
diagonal entries are bounded in t . This implies the invertibility of M(t) if t is large enough. A
more sophisticated argument shows that M(t) is invertible for any t > 0 (see Appendix A).

Theknowledgeof�t or/and Pt allowsone to study the behavior of two important quantities
that characterize, as in the case of the BGM, the emerging rotational motion of the particle.

The first is its angular momentum

L(t) = mr(t) × v(t), v(t) = ṙ(t), (11)

where r(t) × v(t) is the cross product of the position and the velocity of the particle, so that
L is perpendicular to the plane of motion

L(t) = (0, 0, L), L(t) = m (x(t)ẏ(t) − y(t)ẋ(t)) . (12)

The second characteristic of interest is the angular velocity, which is formally defined as

W(t) = (0, 0,W (t)), W (t) = x(t)ẏ(t) − y(t)ẋ(t)

x2(t) + y2(t)
. (13)

We will study below certain moments of these random variables, and will also derive exact
expressions for their probability densities.

Lastly, to simplify the subsequent formulas,we setm = 1 inwhat follows. The dependence
of m can be easily recovered in our final results by simply multiplying L(t) and W (t) by m,
by replacing λ by λ/m, and the temperatures T1,2 by T1,2/m2.

3 Particle’s Trajectories and Velocities, and Their Moments

Wewill omit the argument t in many functions belowwhere this does not lead to a confusion.
The solution of the system of two ordinary linear differential equations (4) with constant

coefficients for the initial conditions in Eqs. (5) and a fixed realization of noises, Eqs. (2) and
(3), is obtained by standard method and is (see also Appendix A for its another form): is

x = x(t) = 1

2

∫ t

0
dτ

[
Q+(t − τ)ξ1(τ ) + Q−(t − τ)ξ2(τ )

]
,

y = y(t) = 1

2

∫ t

0
dτ

[
Q−(t − τ)ξ1(τ ) + Q+(t − τ)ξ2(τ )

]
,

(14)

where we denoted

Q±(t) = sin (�+t)
�+

± sin (�−t)
�−

, �± = √λ(1 ± u), |u| < 1. (15)

In turn, differentiating Eqs. (14) and (15) with respect to time, we find the instantaneous
velocities ẋ(t) and ẏ(t):

ẋ = ẋ(t) = 1

2

∫ t

0
dτ

[
Q̇+(t − τ)ξ1(τ ) + Q̇−(t − τ)ξ2(τ )

]
,

ẏ = ẏ(t) = 1

2

∫ t

0
dτ

[
Q̇−(t − τ)ξ1(τ ) + Q̇+(t − τ)ξ2(τ )

]
,

(16)

with

Q̇±(t) = cos (�+t) ± cos (�−t) . (17)
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Fig. 1 Reduced position
moments 〈x2〉/t and 〈y2〉/t
versus time for T1 = 1 and
T2 = 1 and T2 = 3

We will analyze now the behavior of the moments of the instantaneous positions and
velocities.

3.1 SecondMoments of Positions

Explicit expressions for the mean-squared displacements from the origin follow readily from
Eqs. (14) and (15):

〈
x2
〉 = (T1 + T2)

2λ(1 − u2)
t − (T1 + T2)

8

(
sin (2�+ t)

�3+
+ sin (2�− t)

�3−

)

+ (T1 − T2)

2uλ

[
cos (�− t) sin (�+ t)

�+
− cos (�+ t) sin (�− t)

�−

]
,

(18)

and the expression of 〈y2〉 is obtained fromEq.(18) by exchanging the temperatures T1 ↔ T2.
We observe that

〈
x2
〉
and

〈
y2
〉
differ only if T1 �= T2 (“non-equilibrium” situation) as they

should. The corresponding terms are proportional to T1−T2 and are denoted here and below
by square brackets. The leading large-t behavior of 〈x2〉 and similarly 〈y2〉 is identical and
comes from the first terms in Eq. (18)which grow linearlywith t . In the absence of friction, the
harmonic force does not compensate the random force and progressively the particlemoves at
larger and larger distances with time. The signature of an oscillatory behavior appears in the
two subdominant terms which remain bounded and exhibit irregular oscillations, due to the
fact that the frequencies �± are continuous functions of λ and u, hence, are incommensurate
generically.

Fig. 1 shows the time evolution of the reduced moments 〈x2〉/t and 〈y2〉/t for T1 = 1
and T2 = 1 and 3. For T2 = T1, the reduced moments coincide, as they should. Approach to
their asymptotic values is governed by oscillatory subleading terms. For T2 �= T1, 〈x2〉/t and
〈y2〉/t converge to the same asymptotic value (T1 + T2)/(2λ(1 − u2)), but their behaviors
at the intermediate times are very different.
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It is also worth mentioning that in the limit λ → 0, in which the potential in Eq. (1)
vanishes, Eq.(18) predicts a much faster growth

〈x2〉 = 2T1
3

t3, 〈y2〉 = 2T2
3

t3, λ = 0, (19)

which is a well-known result for the random-acceleration process [43–49] (see also recent
[50] and references therein). In addition, for u = 0, when the coordinates decouple, while
λ > 0, we have two independent random-acceleration processes evolving in a quadratic
potential. In this case, we get from Eq. (18)

〈x2〉 = T1
λ

t − T1
2λ3/2

sin
(
2
√

λt
)

,

〈y2〉 = T2
λ

t − T2
2λ3/2

sin
(
2
√

λt
)

, u = 0, λ > 0,
(20)

i.e., that the mean square displacements increase linearly with time and have additional
oscillating terms, whose frequency is determined by the amplitude of the potential.

Therefore, at long times the behavior of both 〈x2〉 and 〈y2〉 is effectively "diffusive". This
does not imply, of course, that the processes x(t) and y(t) are standard Brownian motions
but rather signifies that such a behavior results from an interplay between an ongoing input
of energy (leading to a super-diffusive motion, Eq. (19)) and the restoring force due to
the confining potential, which partially counter-balance each other. Indeed, one notices that
because of this trade-off the prefactors in the leading terms in Eq. (18) is proportional to
the sum of the temperatures, and are inversely proportional to λ. In Sect. 4 we will discuss
the ageing behavior of the process x(t) as embodied in its two-time covariance 〈x(t)x(t1)〉,
which manifests significant departures from the standard Brownian motion.

Lastly, we find the mixed moment 〈xy〉 of the components of instantaneous position.
Using our Eqs. (14) and (15), we find that for any t > 0

〈xy〉 = −u (T1 + T2)

2λ(1 − u2)
t − (T1 + T2)

8

(
sin (2�+t)

�3+
− sin (2�−t)

�3−

)
, (21)

We observe that the covariance depends only on the sum of the temperatures, unlike the
moments

〈
x2
〉
and

〈
y2
〉
in Eq. (18). The leading large- t term of Eq. (21) grows linearly with

time and its sign is opposed to that of the coupling parameter u and the sub-leading term
oscillates irregularly.

3.2 SecondMoments of Velocities andVelocity-Position Correlations

The second moments of the velocities ẋ(t) and ẏ(t) can be straightforwardly evaluated from
our Eqs. (16) and (17). Skipping the details of the intermediate calculations, we get

〈
ẋ2
〉 = (T1 + T2)

2
t + (T1 + T2)

8

(
sin (2�+t)

�+
+ sin (2�−t)

�−

)

+ (T1 − T2)

2uλ

[
�+ cos (�−t) sin (�+t) − �− cos (�+t) sin (�−t)

]
,

(22)

and
〈
ẏ2
〉
is obtained from of Eq.(22) upon a replacement T1 ↔ T2.

We see that in the long time limit fluctuations of the velocities grow “diffusively”, i.e.,
the second moments of velocities increase in proportion to the first power of time. The
transient terms, important at the intermediate stages, exhibit irregular oscillations, because
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the frequencies �± are incommensurate generically. Such an ultimate diffusive growth is
very similar (apart of a dimensional prefactor) to the one which we have previously observed
for the second moments of x(t) and y(t) (see Eqs. (18)). There is, however, an important
difference in the behavior of the moments of the position and those of the velocities. Namely,
consider the limit λ → 0, in which case the potential vanishes and x(t) and y(t) are standard
independent random-acceleration processes that display a strongly super-diffusive behavior,
(see Eq. (19)). Setting λ = 0 in Eq. (22) we get

〈ẋ2〉 = 2T1 t, 〈ẏ2〉 = 2T2 t, λ = 0. (23)

Next, for λ > 0 but u = 0, when the components x(t) and y(t) are two decoupled random-
acceleration processes evolving each in a quadratic potential, Eq. (22) yields

〈ẋ2〉 = T1 t + T1
2λ1/2

sin
(
2
√

λt
)

u = 0, λ > 0., (24)

and 〈ẏ2〉 is obtained by switching T1 ↔ T2 in Eq. (24). We conclude that the diffusive
growth of fluctuations of velocities is a universal feature independent of the fact whether the
potential in Eq. (1) is present or not, while the fluctuations of positions themselves behave
very differently depending whether potential is present or not.

Further on, we find that the covariance 〈ẋ ẏ〉 of the components of velocities is given by

〈ẋ ẏ〉 = (T1 + T2)

8
√

λ(1 − u2)

(
sin (2�+t)

�+
− sin (2�−t)

�−

)
, (25)

hence, do not grow with time (unlike the correlations of positions, Eq. (21) ), and oscillate
around zero. The right-hand-side of Eq. (25) vanishes, as it should, when λ → 0 or u → 0.

Consider next the covariance of positions and velocities. One readily finds

〈x ẋ〉 = 1

2

d
〈
x2
〉

dt
= (T1 + T2)

4

(
sin2 (�+t)

�2+
+ sin2 (�−t)

�2−

)

− (T1 − T2)

2λ
sin (�+ t) sin (�−t) ,

(26)

and 〈y ẏ〉 is obtained by switching T1 ↔ T2 in Eq.(26).
Thus, the position-velocity covariances consist of two terms: the first one, which is propor-

tional to the sum of two temperatures, is oscillating with time but is strictly positive and yields
the positive contribution to the covariance. The second term, which is proportional to the dif-
ference of two temperatures and thus appears in out-of-equilibrium situations only, is also
oscillating and is changing its sign with time. It is also easy to check that the position-velocity
covariance is always positive.

Lastly, we determine the position-velocity correlations of the form 〈x ẏ〉 and 〈yẋ〉. We
find

〈x ẏ〉 = − u(T1 + T2)

4λ(1 − u2)
+ (T1 + T2)

8

(
cos (2�−t)

�2−
− cos (2�+t)

�2+

)

+ (T2 − T1)

2λu

[
1 − cos (�−t) cos (�+t) − sin (�−t) sin (�+t)√

1 − u2

]
,

(27)

and 〈yẋ〉 is obtained by switching T1 ↔ T2 in Eq.(27).
Equations (27) show that the correlation function between the either position and the

velocity of the other component is a bounded oscillating function of time which attains
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both negative and positive values at different time moments. These moments vanish, as they
should, when either λ → 0 or when u → 0.

Together with the expressions for other the moments presented above they determine
completely the joint probability density Pt and the characteristic function �t in Eqs. (10)
and (9).

4 Two-Time Correlations

To get some additional insight into the time evolution of the processes under study, say
of x(t), consider the two-time covariance 〈x(t)x(t1)〉. Recall that the analogous covariance
of standard Brownian motion is 〈x(t)x(t1)〉 = 2Dmin(t1, t) (e.g., 〈x(t)x(t1)〉 = 2Dt1
for t1 ≤ t) with D being the diffusion coefficient. Using Eqs. (14) and performing some
straightforward calculations, we find that in our case the covariance function for t ≥ t1 is

〈x(t)x(t1)〉 = (T1 + T2)

4
t1

(
cos (�+(t − t1))

�2+
+ cos (�−(t − t1))

�2−

)

+ (T1 + T2)

4

(
sin (�+t1) cos (�+t)

�3+
+ sin (�−t1) cos (�−t)

�3−

)

− (T1 − T2)

4uλ

[(
cos (�+ t1) − cos (�− t1)

)( sin (�+t)
�+

+ sin (�−t)
�−

)

+
(
cos (�+ t) + cos (�− t)

)( sin (�−t1)
�−

− sin (�+t)
�+

)]

(28)

Viewing t1 as a parameter and t as a variable, we observe that for sufficiently large t1 (but
t ≥ t1), the dominant contribution comes from the terms in the first line of the r.h.s. of Eq.
(28), while the terms in the second and the third lines show a purely oscillatory behavior and
are bounded function of both t and t1. The amplitude of the dominant terms is proportional
to the sum of the temperatures and to t1, (similarly to the standard Brownian motion). In
contrast to the Brownian motion, the amplitude is multiplied by a function of t − t1, which
exhibits irregular oscillations. The covariance function is depicted in Fig. 2 as a function of
t for two values of t1 and two values of the temperatures.

5 Position-Velocity Probability Densities

From the joint probability density Pt in Eq. (10) or the characteristic function �t , Eq. (9),
together with the exact expressions for the moments and the mixed moments of position
and velocity derived in Sect. 3, we can readily calculate the marginal position-velocity dis-
tributions Pt (x, ẋ) and Pt (y, ẏ). Performing the corresponding Gaussian integrations, we
find

Pt (x, ẋ) = 1

2π
√〈x2〉〈ẋ2〉 − 〈x ẋ〉2 exp

(
−〈ẋ2〉x2 − 2〈x ẋ〉x ẋ + 〈x2〉ẋ2

2
(〈x2〉〈ẋ2〉 − 〈x ẋ〉2)

)
, (29)

and

Pt (y, ẏ) = 1

2π
√〈y2〉〈ẏ2〉 − 〈y ẏ〉2 exp

(
−〈ẏ2〉y2 − 2〈y ẏ〉y ẏ + 〈y2〉ẏ2

2
(〈y2〉〈ẏ2〉 − 〈y ẏ〉2)

)
. (30)
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Fig. 2 The covariance function 〈x(t)x(t1)〉 versus time t (for t ≥ t1) for two values of t1 and temperatures
T1 = 1 and T2 = 1, 3. The coupling parameter u = 0.5. Left panel: t1 = 5. Right panel: t1 = 20. Dashed
curves correspond to the exact expression, Eq. (28)

Equations (10), (29) and (30) are exponentials of certain quadratic forms of the variables,
i.e., are Gaussian as they should be, but the coefficients of the forms are rather complicated
functions of the moments. This makes difficult to write them explicitly and we confine
ourselves only to their large-time forms

Pt→∞(x, ẋ) 
√

λ(1 − u2)

π(T1 + T2)t
exp

(
− λ(1 − u2)x2

(T1 + T2)t
− ẋ2

(T1 + T2)t

+
[
λ

(
sin2(�+t)

�2+
+ sin2(�−t)

�2−

)
− 2(T1 − T2)

(T1 + T2)
sin (�+t) sin (�−t)

]
x ẋ

(T1 + T2)t2

)
,

(31)

and

Pt→∞(y, ẏ) 
√

λ(1 − u2)

π(T1 + T2)t
exp

(
− λ(1 − u2)y2

(T1 + T2)t
− ẏ2

(T1 + T2)t

+
[
λ

(
sin2(�+t)

�2+
+ sin2(�−t)

�2−

)
+ 2(T1 − T2)

(T1 + T2)
sin (�+t) sin (�−t)

]
y ẏ

(T1 + T2)t2

)
.

(32)

We observe that the quadratic terms in the exponents in Eqs. (31) and (32) contain the
first inverse power of time, as can be expected from the “diffusive” growth of the second
moments of positions and the velocities (see Eqs. (18) and (22) ), while the amplitudes of the
cross-terms decay at a faster rate proportional to 1/t2, showing that the velocities effectively
decouple from the positions in the large-t limit. The amplitudes of the cross-terms also
contain oscillatory functions that change (aperiodically) their sign with time. We note that
this behavior also persists for the total joint probability density Pt (x, y, ẋ, ẏ) in Eq. (10).
However, the explicit expression for the corresponding exponent is quite cumbersome even
in the limit t → ∞ and we do not present it here. We only mention that, in contrast to the
Brownian gyrator model, the limiting forms of Pt (x, y, ẋ, ẏ) and its marginals (Eqs. (31)
and (32) ) do not exist for the two-dimensional random-acceleration process at t = ∞.
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6 Gyration Characteristics: Angular Momentum and Angular Velocity

Similarly to the standard analysis of the BGM, we will study now the behavior of the angular
momentum L(t), Eq. (12), and the angular velocity W (t), Eq. (13). Recall that the former,
which is also called the rotational moment, determines the torque exerted on the particle
being at some given instantaneous position, while the latter represents the rate at which the
particle at position r(t) rotates around a fixed origin. Most of available analysis concentrated
on the mean values of these characteristic properties in the limit t → ∞; both attain finite
non-zero values when T1 �= T2 and equal zero in equilibrium conditions T1 = T2 (see,
e.g., [10, 14, 16, 17]). On this basis, it was often concluded that the Brownian gyrator is a
kind of a “nano-machine” that steadily gyrates around the origin. A recent work [37] has
questioned this conclusion by looking on the behavior beyond the mean values. In particular,
the probability densities of L and W have been calculated and it was shown that the latter
exist only for a time-discretized (with time-step δt) version of the model. In particular, it
was also shown that for finite δt the probability density Pt (L) of the angular momentum
is always sharply peaked at L = 0, and has the exponential tails with different slopes for
T1 �= T2. This implies that moments of angular momentum of arbitrary order exist, but their
values are supported by the tails of the distribution and consequently, do not represent the
typical behavior L . Moreover, it was demonstrated that the variance of L is always much
larger than the squared first moment, i.e., the “noise” is always greater than the “signal”, and
diverges in the limit δt → 0. More strikingly, the probability density Pt (W ) of the angular
velocity has algebraic large-W tails of the form Pt (W )  1/|W |3 such that, in fact, the first
moment is the only existing moment. This signifies that the spread of the values of angular
velocities is infinitely large, although for a large ensemble of “gyrators” there exists some
non-zero averaged value of the velocity in out-of-equilibrium conditions. In the limit δt → 0,
both probability densities converge to uniform distributions with a vanishing amplitude and
diverging variance.

Wewill analyze below the behavior of themoments of the angularmomentumand velocity,
as well as their probability densities for a random-acceleration process under study along
exactly the same lines as it was for the BGM.

6.1 Angular Momentum

According to Eq. (12), the mean value of the angular momentum is given by (recall that we
have set m = 1)

〈L〉 = 〈x ẏ〉 − 〈yẋ〉, (33)

where the terms in the r.h.s. were derived above. Performing some simple calculations, we
find that the first moment of the angular momentum obeys for any t > 0

〈L〉 = (T2 − T1)

λu

(
1 − cos(�+t) cos(�−t) − sin(�+t) sin(�−t)√

1 − u2

)
. (34)

Therefore, the first moment is not identically equal to zero if T1 �= T2. Moreover, it is easy
to show that the first moment is an odd function of u, and vanishes when u = 0. This latter
case corresponding to two independent random acceleration processes, such that no angular
momentum is expected. However, in contrast to the BGM, 〈L〉 does not approach a constant
value as t → ∞, but rather exhibits irregular oscillations with time and can be positive or
negative at different timemoments. Thismeans that the torque exerted on the particle changes
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the direction at different time moments and the fraction of time that 〈L〉 has positive values
is controlled by the sign of the temperature difference T2 − T1. For T2 − T1 > 0, the mean
value of the angular moment is predominantly positive, as one can observe from the plot
presented on the left panel in Fig. 3.

Consider next the fluctuations of L around its mean value. To this end, it is convenient
to use the generalized Wick theorem, according to which if X = {X j }mj=1 is the collection
of Gaussian random variables with zero mean and f is a function of X , then we have for
j = 1, 2, . . . ,m

〈X j f (X)〉 =
m∑

k=1

〈X j Xk〉
〈
Xk

∂ f

∂Xk

〉
.

The theorem follows readily from Eqs. (10) or (9)). This implies, in view of Eq. (12), that
〈
L2〉 = 2 〈x ẏ〉2 + 2 〈ẋ y〉2 + 〈x2〉 〈ẏ2〉+ 〈ẋ2〉 〈y2〉

− 2
(

〈xy〉 〈ẋ ẏ〉 + 〈x ẏ〉 〈ẋ y〉 + 〈x ẋ〉 〈y ẏ〉
)
.

(35)

This and Eq. (33) yield the following expression for the variance of the angular momentum

Var{L} = 〈L2〉− 〈L〉2 = 〈x ẏ〉2 + 〈ẋ y〉2 + 〈x2〉 〈ẏ2〉+ 〈ẋ2〉 〈y2〉

− 2 〈x ẋ〉 〈y ẏ〉 − 2 〈xy〉 〈ẋ ẏ〉 ,
(36)

which is valid for any t . Then, by using the results of Sect. 3, we determine the leading term
of the large-t asymptotic form

Var{L}  (T1 + T2)2

2λ(1 − u2)
t2. (37)

It follows from Eq. (34) that |〈L〉| ≤ 3|T2 − T1|(λu(1 − u2)1/2)−1, and hence, we find that
the relative mean square deviation of L (i. e., the coefficient of variation of the corresponding
probability density, see, e.g., [64]) obeys the inequality:

(Var {L})1/2
|〈L〉| ≥ Ct, C = (T1 + T2)u

√
λ

|T1 − T2|3
√
2

. (38)

Thus, the relative fluctuations of L grow at least linearly in t . Hence, the first moment of the
angular momentum does not have much of a physical significance and only indicates some
trend in the statistical ensemble.

We conclude that in contrast to many-body physics, where macroscopic observables do
not fluctuate and are therefore completely characterized by their mean values, the angular
momentum, (as well as the angular velocity, as we will demonstrate below), in our model do
not have this property (known as representativeness of averages in statistical physics and self-
averaging in disordered media physics). Therefore, in order to obtain complete information
about such strongly fluctuating observables, it is necessary to have their complete probability
distribution.

This is why we will turn now to the analysis of the probability density of the angular
momentum L , Eq. (12). We will begin with the characteristic function of L

�L(ν) = 〈exp (iν (x ẏ − yẋ))〉 . (39)

It is shown Appendix B that

�L(ν) = 1

ν2
√
det(Mν)

(40)
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Fig. 3 Angularmomentum. Left panel:Mean angularmomentum 〈L〉 versus time for T1 = 1, T2 = 4, u = 1/2
and λ = 1. Solid curve depicts the exact result in Eq. (34). Right panel: Logarithm of the probability density
Pt (L) as function of scaled variable L/t for T1 = 1, T2 = 4, u = 1/2 and λ = 1. Dashed curves correspond
to a numerical evaluation of the integral in Eq. (42) for t = 20 (blue), t = 30 (red) and t = 40 (green). Solid
curves with the same color code correspond to the asymptotic large-L form in Eq. (43). Note that since all
the curves appear too close to each other in the plot, for notational convenience we shifted upwards both blue
curves by +2, both red curves are shifted downwards by −1 units, and the green curves - by −4 (Color figure
online)

where Mν is a 4 × 4 matrix

Mν = M(t) + 1

ν

(
0 −σy

σy 0

)
, σy =

(
0 −i
i 0

)
(41)

and M(t) is given in Eq. (8).
Therefore, the characteristic function �L(ν) is the inverse of a square root of a quartic

polynomial in ν, whose coefficients can be expressed via the moments of L . In particular,
it can be shown that the coefficient in front of ν is −2i〈L〉, the coefficient in front of ν2 is
(〈L2〉 − 3〈L〉2), etc.

Given �L(ν), the probability density Pt (L) of L is:

Pt (L) = 1

2π

∫ ∞

−∞
dν

ν2
√
det(Mν)

exp(−iνL). (42)

Despite a relatively simple form of the integrand, the above integral cannot be performed
exactly. We hence resort to a numerical evaluation of this integral and its asymptotic analysis
in the limit |L| → ∞.

Figure 3 presents the results of a numerical evaluation of Pt (L) in Eq. (42), together with
its asymptotic forms (see Eq. (43) below). For convenience, we plot the logarithm of Pt (L)

versus a scaled variable L/t . Numerically evaluated Pt (L) is depicted by dashed curves
for three values of t : t = 20 (blue), t = 30 (red) and t = 40 (green). We observe that
Pt (L) has a cusp at L = 0 where it attains the maximal value, similarly to the case of the
BGM. Consequently, the first moment of L does not correspond to the typical behavior, when
T1 �= T2, and is therefore supported by the whole tails of Pt (L) (cf. Equation (38)). For larger
L , both right and left tails of the probability density seem to be exponential functions of L/t .
In order to verify if this is indeed the case, we turn to Eq. (42) and change the integration
variable ν → ν/t . Then, we find that the terms with the odd powers of ν in the denominator
vanish as t → ∞, and the term ν4 is relevant only for the short-L behavior. Discarding this
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latter term, we get the following large-L asymptotic formula

Pt (L) =
√

λ(1 − u2)

(T1 + T2) t
exp

(
−2
√

λ(1 − u2)

(T1 + T2)

|L|
t

)

×
(
1 + 2

√
λ(1 − u2)

(T1 + T2)t
〈L〉 sign(L) + O

(
1

t2

))
.

(43)

Hence, the large-L tails of the probability density of the angular momentum are indeed
exponential functions of L . Moreover, the left and right tails have the same slope so that
Pt (L) for sufficiently large L and t is a symmetric function of L with respect to L = 0. This
is quite different from the behavior of probability density of L observed in the BGM, where
the right and left tails have different slopes [37]. The maximal value Pt (L = 0) decays as
t−1 and the slope of the tails tends to zero as t → ∞, which explains why the variance of
L grows in proportion to t2. The asymptotic form of Eq. (43) is depicted in Fig. (3) and
we observe that already for t = 40 it becomes almost indistinguishable from the numerical
result.

6.2 Angular Velocity

As in the above case of the angular momentum, it is convenient to use the characteristic
function, Eq. (9). In particular, the mean value of the angular velocity (see Eq. (13) with
m = 1) can be conveniently represented as

〈W 〉 = 1

4π

∫ ∞

0

dξ

ξ

∫ ∞

−∞

∫ ∞

−∞
dω1dω2 exp

(
−ω2

1 + ω2
2

4ξ

)

×
{(

− ∂2

∂ω1∂ω4
+ ∂2

∂ω2∂ω3

)
�t (ω)

}∣∣∣∣
ω3=ω4=0

,

(44)

where the derivatives with respect to ω-s give the angular momentum, while the integrations
over ω1 and ω2, and eventually, over ξ , produce the first inverse power of the moment of
inertia x2 + y2. Performing straightforward calculations, we get for any t > 0 (cf. Equation
(34))

〈W 〉 = −
(
〈x2〉 + 〈y2〉 − 2

√〈x2〉〈y2〉 − 〈xy〉2
)

(
4〈xy〉2 + (〈x2〉 − 〈y2〉)2

)√〈x2〉〈y2〉 − 〈xy〉2
(〈xy〉 (〈y ẏ〉 − 〈x ẋ〉)

+〈yẋ〉
(

〈x2〉 +
√

〈x2〉〈y2〉 − 〈xy〉2
)

− 〈x ẏ〉
(

〈y2〉 +
√

〈x2〉〈y2〉 − 〈xy〉2
))

,

(45)

The moments entering the above expression are given in Sect. 3.
In the large-t limit, Eq. (45) simplifies considerably to give (cf. Equation (34))

〈W 〉  (T2 − T1)
√
1 − u2

(T1 + T2)ut

(
1 − cos (�+t) cos (�−t)

)
. (46)

Likewise the first moment of L , Eq. (34), the mean value ofW is not identically equal to zero
only in “out-of-equilibrium” case where T1 �= T2; it is also an odd function of u that vanishes
for u = 0. As shown in Fig. 4 (upper panel), 〈W 〉 is an oscillatory function of time whose
envelope first rises to some peak value and then decays as the first inverse power of time.
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Fig. 4 Angular velocity. Upper panel: Mean angular velocity 〈W 〉 versus time t for T1 = 1, T2 = 4, u = 1/2
and λ = 1. Solid (black) curve depicts the exact result in Eq. (45), while the thin (red) curve presents the
large-t asymptotic form in Eq. (46). Lower panel: Logarithm of the probability density P(W ) as function of
angular velocity for T1 = 1, T2 = 4, u = 1/2 and λ = 1. Dashed green and red curves are the exact results
for t = 5 and t = 30, respectively, obtained by a numerical evaluation of expression (51). Black solid line
corresponds to the limiting large-t form in Eq. (54). Solid (magenta) curve depicts the exact result in Eq. (51)
for two distinctly different temperatures T1 = 50 and T2 = 1 (Color figure online)

The decay stems from the fact that the particle becomes delocalized and moves away from
the origin with time. In addition, similarly to 〈L〉, 〈W 〉 assumes both positive and negative
values. Recall that in the standard BGM the mean angular velocity approaches a constant
value in the limit t → ∞ whose sign is defined by the temperature difference.

Consider now the second moment of the angular velocity. This moment can be formally
represented as

〈
W 2〉 = 1

4π

∫ ∞

0
dξ

∫ ∞

−∞

∫ ∞

−∞
dω1dω2 exp

(
−ω2

1 + ω2
2

4ξ

)

×
{(

∂4

∂ω2
1∂ω2

4

+ ∂4

∂ω2
2∂ω2

3

− 2
∂4

∂ω1∂ω2∂ω3∂ω4

)
�t (ω)

}∣∣∣∣∣
ω3=ω4=0

,

(47)

where the differential operator yields the second power of L , while the integration over ξ

gives here the second inverse power of the moment of inertia. Performing differentiations,
and then integrating over ω1 and ω2, we find some complicated function of ξ . Analyzing the
decay of this function in the large-ξ limit, we find that it vanishes as 1/ξ . This signifies that
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the integral over ξ diverges logarithmically at infinity, hence,

〈
W 2〉 = ∞, (48)

which is precisely the behavior encountered previously in the BGM. Consequently, the prob-
ability density of the angular velocity has heavy power-tails such that the mean angular
velocity is the only existing moment.

We turn therefore to the analysis of the probability density of the angular velocity. As in
the previous subsection, we consider first the characteristic function of the angular velocity
and we find

�W (z) =
〈
exp

(
i z

(x ẏ − yẋ)

x2 + y2

)〉

= |z|
2π

√
�

∫ 2π

0
dθ

(
Cθ

Aθ

)1/2

K1

(√
AθCθ

�
|z|
)

exp
(

− i Bθ z

2�

)
,

(49)

where K1(x) is the modified Bessel function,

� = 〈x2〉〈y2〉 − 〈xy〉2, (50)

while the coefficients Aθ , Bθ and Cθ are functions of θ and t but do not depend onW . These
functions (see Eqs. (C9)), as well as the details of intermediate calculations are presented
in Appendix C.

Inverting the Fourier transform, we find next that the probability density function of the
angular velocity valid for any t admits the integral representation

Pt (W ) = 2�3/2

π

∫ 2π

0

Cθ dθ
(
4AθCθ + (Bθ + 2�W )2

)3/2 (51)

A simple analysis shows that the large-W asymptotic form of Pt is

Pt (W )  α

|W |3 , α = 1

4π�3/2

∫ 2π

0
Cθ dθ. (52)

i.e., α depends on time, both temperatures and the parameters characterizing the potential
(see Eqs. (C9)). In Fig. 4 we depict the results of a numerical evaluation of the integral in
Eq. (51) together with the asymptotic form in Eq. (52) (see below).

Now, we consider the behavior of Pt (W ) in Eq. (51) in the limit t → ∞ and W bounded
away from zero, which appears to be quite non-trivial. To this end, we observe that in the
limit t → ∞ the function Bθ (see Eqs. (C9)) grows linearly with time, i.e., Bθ  t �θ , where
�θ is a rather complicated function of θ , u, λ and both temperatures, but is independent of
time. On the other hand, the asymptotic behavior of the functions

Aθ  (T1 + T2)(1 + u sin(2θ))

2λ(1 − u2)
t,

Cθ  (T1 + T2)3

8λ2(1 − u2)
t3,

�  (T1 + T2)2

4λ2(1 − u2)
t2,

(53)
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is given by explicit and fairly compact expressions. Inserting these expressions into Eq. (51),
we find that Pt (W ) attains the following limiting (t = ∞) form, valid for any W �= 0:

P∞(W )  λ
√
1 − u2

8π
(
λ + W 2

)3/2
∫ π

0

dθ

(1 + κ sin(θ))3/2
, κ = λu

λ + W 2 . (54)

The integral in Eq. (54) can be expressed through the elliptic integrals. But its large-W
asymptotic form follows directly from Eq. (54), (e.g., by expanding the integrand into the
Taylor series in powers of κ):

P(W )  λ
√
1 − u2

8|W |3 ,W → ±∞, (55)

(cf. Equation (52)).
We observe a certain stabilization effect appearing in a driven system without friction.
Curiously enough, in the limit t → ∞, the amplitude α in Eq. (52) does not depend on

the temperatures T1 and T2. To verify this rather strange prediction, we also depict by the
solid magenta curve in Fig. 4 the result of a numerical evaluation of the expression (51) for
two quite different temperatures T1 = 50 and T2 = 1 (note that other curves correspond to
T1 = 1 and T2 = 4) at time t = 30. We observe that even for this quite moderate value of
t , the curve is very close to our prediction in Eq. (55) thereby confirming the temperature-
independent form of the long-time limit in Eq. (55). While we are unable to provide simple
physical arguments explaining this intriguing behavior, it seems to be quite evident from the
mathematical point of view. Indeed, the angular velocity is formally defined as the ratio of the
angular momentum and the moment of inertia I = x2 + y2 (see Eq. (13)) which is formally
equal to 2Uu=0(t)/λ, whereUu=0(t) is the potential energy of the particle at zero value of the
coupling parameter u. In the next Section, we determine the large-t asymptotic form of the
probability density of U (t), see Eq. (63), and show that the temperatures enter this function
only via their sum T1 + T2. In other words, for t → ∞ and for most of realizations of the
process we have I = (T1+T2)I, where I is a temperature-independent random variable with
exponential distribution. In turn, our analysis of the large-t asymptotic form of the probability
density of the angular momentum (see Eq. (43)) also shows that the latter incorporates the
temperatures only via their sum, suggesting that for the most of the realizations the angular
momentum behaves as L = (T1 + T2)L where L is temperature-independent. In view of this
argument, it does not seem surprising that the large-t and large-W asymptotic form of the
probability density function of W = I/L is independent of the temperatures.

7 Kinetic, Potential and Total Energy

The energy is continuously pumped into the system and, in absence of a dissipation, is
therefore increasing with time. Concurrently, since the particle performs a random motion,
its energy is a random variable and it seems interesting to study its statistical properties. We
consider separately the potential energy U (t), defined in Eq. (1), kinetic energy

K (t) = (ẋ2 + ẏ2
)
/2, (56)

and the total energy E(t) = U (t) + K (t).
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Fig. 5 The total energy E(t) of the particle for a given realization of noises, u = 1/2, T1 = 1 and T2 = 2.
Left panel: The spread of E(t) for consecutive positions of the particle on the (x, y)-plane. Right panel: E(t)
as function of time for a given trajectory of the particle (blue noisy curve). The dashed line depicts the mean
total energy 〈E(t)〉 in Eq. (58) (Color figure online)

Using the expressions for the moments of positions and velocities, derived in Sect. 3, we
readily find that the first moments of the energies obey

〈U (t)〉 = (T1 + T2)

2
t − (T1 + T2)

8

(
sin (2�+t)

�+
+ sin (2�−t)

�−

)
,

〈K (t)〉 = (T1 + T2)

2
t + (T1 + T2)

8

(
sin (2�+t)

�+
+ sin (2�−t)

�−

)
,

(57)

and therefore,

〈E(t)〉 = (T1 + T2) t . (58)

We note that the mean potential and the kinetic energies are both linearly growing with time,
in the leading order, and also contain some sub-dominant oscillatory terms. The prefactor
in the dominant linear dependence on time is just the sum of the temperatures, as it should
be, and is independent of the strength λ of the potential and of the coupling parameter u. In
turn, the mean total energy is simply a monotonically growing function of time, because the
sub-dominant oscillatory terms cancel each other.

In Fig. 5 we depict the total energy of the particle for a single realization of the particle’s
trajectory. We observe significant fluctuations: indeed, the spread of realization-dependent
values around themean one appears to be very large. Therefore, to fully quantify the temporal
evolution of the energies it is necessary to go beyond the mean values and to determine the
full probability density functions of the energies. This can be done by standard means, i.e., by
evaluating first the respective characteristic functions and then inverting the corresponding
Laplace transforms. In doing so and omitting the intermediate calculations, we find that the
probability densities Pt (U ) and Pt (K ) of the potential and of the kinetic energies are
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Fig. 6 Probability densities of the energies. Solid (red) curves depict the asymptotic forms in Eq. (63), while
the noisy curves represents the probability density functions deduced from numerical simulations (Color figure
online)

Pt (U ) = 1

λ
√

(1 − u2)�
exp

(
− 〈U 〉

(1 − u2)�λ2
U

)
I0 (bU ) ,

b =
√〈U 〉2 − (1 − u2)�λ2

(1 − u2)�λ2
, � = 〈x2〉〈y2〉 − 〈xy〉2,

Pt (K ) = 1√
�′ exp

(
−〈K 〉

�′ K

)
I0

(√〈K 〉2 − �′
�′ K

)
, �′ = 〈ẋ2〉〈ẏ2〉 − 〈ẋ ẏ〉2

(59)

where I0(z) is the modified Bessel function, while 〈U 〉 and 〈K 〉 are defined in Eqs. (57). In
turn, the probability density of the total energy cannot be obtained in a closed form but rather
in form of the inverse Laplace transform of the inverse of a square root of a fourth-order
polynomial of the Laplace parameter s:

Pt (E) = L−1
s,E

⎧
⎨
⎩

1√(
1 + 2〈K 〉s + �′ s2

) (
1 + 2〈U 〉s + (1 − u2)λ2� s2

)

⎫
⎬
⎭ . (60)

To quantify fluctuations of the energies, we determine their variances. This can be done
directly by integrating the probability density functions in Eqs. (59), and by differentiating
the kernel function in Eq. (60) with respect to s and then setting s = 0. This gives the
following exact expressions

Var{U } = 2〈U 〉2 − (1 − u2)�λ2,

Var{K } = 2〈K 〉2 − �′,
Var{E} = 2〈U 〉2 + 2〈K 〉2 − �′ − (1 − u2)�λ2.

(61)

In particular, we find that the coefficients of variation of the probability density of the energies
admits the limits

lim
t→∞

√
Var{U }
〈U 〉 = lim

t→∞

√
Var{K }
〈K 〉 = lim

t→∞

√
Var{E}
〈E〉 = 1, (62)

signifying that fluctuations are exactly of the same order of magnitude as the mean values
themselves. Consequently, the corresponding probability densities are effectively broad (see,
e.g., [64]) and the mean values do not characterize the behavior of energies adequately well.

Lastly, we analyze the large-energy tails of the probability densities (59) and (60). It is
quite straightforward for the potential and kinetic energies whose distributions are given by
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simple explicit forms in Eqs. (59) and only slightly more involved for the total energy whose
probability density is given implicitly, in form of the inverse Laplace transform in Eq. (60).
We proceed here exactly in the same way as in Sect. 6 for the evaluation of the limiting form
of the probability density of the angular moment. That being, we turn to the variable E/t
and consider the large-t behavior of the coefficients of the fourth-order polynomial in s. In
doing so, we eventually find that all three probability densities have simple exponential tails
of the form:

Pt→∞(U )  2

(T1 + T2)t
exp

(
− 2U

(T1 + T2)t

)
,

Pt→∞(K )  2

(T1 + T2)t
exp

(
− 2K

(T1 + T2)t

)
,

Pt→∞(E)  4E

(T1 + T2)2t2
exp

(
− 2E

(T1 + T2)t

)
.

(63)

The probability densities in Eqs. (63) are depicted in Fig. 6 together with the corresponding
forms obtained in the numerical simulations. We observe an excellent agreement between
our theoretical predictions and numerics even for quite modest times. Lastly, we note that,
in contrast to the probability densities of the kinetic and the potential energies which are
monotonically decreasing functions, the probability density function of the total energy has
a maximum, which determines the most probable total energy, i.e., the value that should be
observed for the majority of realizations of the process,

Emp = (T1 + T2)t

2
, (64)

which appears to be two times smaller than the mean total energy, Eq. (58). This again
signifies that fluctuations are very important.

8 Conclusions

To conclude, we studied here the dynamics of a particlewhichmoves randomly on a plane and
the position components are defined as two linearly coupled random-acceleration processes
evolving in a parabolic confining potential. Each position component is subject to its own
independent Gaussian noise with the amplitude (temperature) is, in general, not equal to that
of the noise acting on the other component. Our analysis was motivated, in part, by recent
interesting observations made in [16, 17] for a finite-mass Brownian gyrator model in the
non-equilibrium steady-state attained in the limit t → ∞. Here we concentrated rather on
the large-_ but finite-time behavior in a somewhat simplified system in which the damping
(and hence, the dissipation) is set equal to zero. Therefore, apart of being of an interest in its
own right, our model and the results can be considered as describing the temporal evolution
of a finite-mass gyrator at transient stages, if the mass is sufficiently large.

In addition to the standard characteristics, such as, e.g., the moments and the mixed
moments, the two-time correlations and the position-velocity probability density function,
we also determined the characteristics of the rotational motion - the angular momentum and
the angular velocity. We have shown that in case when the amplitudes of noises acting on the
components are not equal, the angular momentum and the angular velocity have non-zero
mean values. However, unlike it happens for the Brownian gyrator for which these properties
approach constant values, for the model under study they show irregular oscillations with
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time, meaning that the torque exerted on the particle aperiodically changes its sign at different
time moments and the particle is prompted to rotate clockwise and then counter-clockwise.

Looking on these random variables from a broader perspective, we found the full prob-
ability densities of the angular momentum L and of the angular velocity W . We showed
that the former has simple exponential large-L tails for any large but fixed time, and hence,
all moments are finite at a finite t . These asymptotic tails are symmetric with respect to the
sign of L and hence, a non-zero value of the first moment stems from the asymmetry of the
probability density at small values of L . In the limit t → ∞, this latter probability density
function converges to a uniform distribution with a diverging variance, which signifies that
fluctuations become very significant. In turn, we found that the probability density of the
angular velocity possesses heavy power-law tails 1/|W |3 and hence, the mean angular veloc-
ity is the only existing moment. Therefore, fluctuations of the angular velocity destroy any
systematic rotational motion.

We note parenthetically that the heavy tails of the form 1/|W |3 are exactly the same that
were previously found for the standard Brownian gyrator [37]. Given that the dynamics in
both models is quite different, it is tempting to believe that such tails is a generic feature
resulted from the Gaussian noise acting on the particle. In this regard, it seems interesting to
verify whether this feature will remain valid also for a more general model of a finite-mass
Brownian gyrator.
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Appendix A The Proof of Invertibility ofM(t)

It is convenient to rewrite the system (4) – (5) of two equation of second order for x(t) and
y(t) as the system of four equation of first order for X(t) of (6):

.

X(t) = AX(t) + Bξ(t), X(0) = 0, (A1)

where

A =
(

0 1
−a 0

)
, B =

(
0 0
0 1

)
, ξ(t) =

(
0

ξ (2)(t)

)
,

i.e., A and B are 4 × 4 matrices written as 2 × 2 matrices with 2 × 2 blocks and ξ is 4 × 1
vector written as 2 × 1 vector with 2 × 1 components

0 =
(
0 0
0 0

)
, 1 =

(
1 0
0 1

)
, a = λ

(
1 u
u 1

)
, ξ (2)(t) =

(
ξ1(t)
ξ2(t)

)
.

Then

X(t) =
∫ t

0
eA(t−s)Bξ(s)ds,
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and (3) and (8) yield

M(t) =
∫ t

0
eAsBeAT sds, (A2)

where

B =
(
0 0
0 b

)
, b =

(
2T1/m2 0

0 2T2/m2

)
.

We have

A2 = −
(
a 0
0 a

)
= −

(
a1/2 0
0 a1/2

)2

= −A2,

hence, eAs = cosAs + A(sinAs)/A. This, the spectral expansion of

a = λ(1 + u)|ψ+〉〈ψ+| + λ(1 − u)|ψ−〉〈ψ−|, |ψ+〉 = 2−1/2
(

1
±1

)
.

and a simple but somewhat tedious algebra allow us to show that M(t) is invertible for any
t > 0.

Appendix B Characteristic Function of the Angular Momentum

We start with the formal definition

�L(ν) = 〈exp (iν (x ẏ − yẋ))〉
=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dx dy dẋ d ẏ exp (iν (x ẏ − yẋ)) Pt (x, y, ẋ, ẏ) .

(B3)

Expressing the joint position-velocity probability density through its characteristic function,
we have that the characteristic function of the angular momentum can be formally written
as

�L(ν) = 1

(2π)4

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dω1 dω2 dω3 dω4 �t (ω)

×
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dx dy dẋ d ẏ exp (iν (x ẏ − yẋ)

−iω1x − iω2y − iω3 ẋ − iω4 ẏ)

= 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dω1 dω2 dω3 dω4 �t (ω)

×
∫ ∞

−∞

∫ ∞

−∞
dẋ d ẏ exp

(−iω3 ẋ − iω4 ẏ) δ (ν ẏ − ω1) δ (ν ẋ + ω2) .

(B4)

Performing next the integrals over ẋ and ẏ, we get

�L(ν) = 1
(2π)2ν2

∫∞
−∞

∫∞
−∞

∫∞
−∞

∫∞
−∞ dω1 dω2 dω3 dω4 �t (ω) exp

(
i ω2ω3

ν
− i ω1ω4

ν

)
.

(B5)

Performing Gaussian integrals yields the exact expression in Eqs. (40) and (41).
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Appendix C Characteristic Function of the Angular Velocity

We start with the formal definition

�W (z) =
〈
exp

(
i z

(x ẏ − yẋ)

x2 + y2

)〉

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dx dy dẋ d ẏ exp

(
i z

(x ẏ − yẋ)

x2 + y2

)
Pt (x, y, ẋ, ẏ) .

(C6)

Expressing again the joint position-velocity probability density through its characteristic
function, we find that the characteristic function of the angular velocity can be formally
written as

�W (z) = 1

(2π)4

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dω1 dω2 dω3 dω4 �t (ω)

×
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dx dy dẋ d ẏ exp

(
i z

(x ẏ − yẋ)

x2 + y2
− iω1x − iω2y − iω3 ẋ − iω4 ẏ

)

= 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
dω1 dω2 dω3 dω4 �t (ω)

×
∫ ∞

−∞

∫ ∞

−∞
dx dy exp (−iω1x − iω2y) δ

(
zy

x2 + y2
+ ω3

)
δ

(
zx

x2 + y2
− ω4

)
.

(C7)

Performing first the integrals over ω3 and ω4, then over ω1 and ω2, we change the integration
variables x and y for polar coordinates x = ρ cos(θ) and y = ρ sin(θ) to get

�W (z) = 1

2π
√〈x2〉〈y2〉 − 〈xy〉2

∫ 2π

0
dθ

∫ ∞

0
ρ dρ exp

(
− Aθρ

2 + i Bθ z + Cθ z2/ρ2

2
(〈x2〉〈y2〉 − 〈xy〉2)

)
,

(C8)

where the functions Aθ , Bθ and Cθ are given explicitly by

Aθ = 〈x2〉 sin2(θ) + 〈y2〉 cos2(θ) − 〈xy〉 sin(2θ)

Bθ = 2
(〈xy〉〈y ẏ〉 − 〈y2〉〈x ẏ〉) cos2(θ) − 2

(〈xy〉〈x ẋ〉 − 〈x2〉〈yẋ〉) sin2(θ)

+ (〈xy〉〈x ẏ〉 − 〈xy〉〈yẋ〉 + 〈y2〉〈x ẋ〉 − 〈x2〉〈y ẏ〉) sin(2θ)

Cθ = 1

2

[ (〈x2〉〈y2〉 − 〈xy〉2) (〈ẋ2〉 + 〈ẏ2〉)− 2
(
〈y2〉〈x ẏ〉2 + 〈x2〉〈y ẏ〉2

− 2〈xy〉〈x ẏ〉〈y ẏ〉
)
cos2(θ) − 2

(
〈x2〉〈yẋ〉2 + 〈y2〉〈x ẋ〉2 − 2〈xy〉〈x ẋ〉〈yẋ〉

)
sin2(θ)

− (〈x2〉〈y2〉 − 〈xy〉2) (〈ẋ2〉 − 〈ẏ2〉) cos(2θ) + 2
(
〈xy〉2〈ẋ ẏ〉 + 〈x2〉〈yẋ〉〈y ẏ〉

+ 〈y2〉〈x ẋ〉〈x ẏ〉 − 〈xy〉〈x ẏ〉〈yẋ〉 − 〈xy〉〈x ẋ〉〈y ẏ〉 − 〈x2〉〈y2〉〈ẋ ẏ〉
)
sin(2θ)

]
.

(C9)

Performing in Eq. (C8) the integration over ρ, we arrive at our Eq. (49).
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