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Abstract
The dissipative spectral form factor (DSFF), recently introduced in Li et al. (Phys Rev Lett
127(17):170602, 2021) for the Ginibre ensemble, is a key tool to study universal properties
of dissipative quantum systems. In this work we compute the DSFF for a large class of
random matrices with real or complex entries up to an intermediate time scale, confirming
the predictions from Li et al. (Phys Rev Lett 127(17):170602, 2021). The analytic formula
for the DSFF in the real case was previously unknown. Furthermore, we show that for short
times the connected component of the DSFF exhibits a non-universal correction depending
on the fourth cumulant of the entries. These results are based on the central limit theorem
for linear eigenvalue statistics of non-Hermitian random matrices Cipolloni et al. (Electron J
Prob 26:1–61, 2021) and Cipolloni et al. (Commun Pure Appl Math 76(5): 946–1034, 2023).
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1 Introduction

Non-Hermitian physics has significantly advanced in recent years, leading to a deeper under-
standing of open (dissipative) quantum systems [6, 16, 42, 44, 46], optics [17, 18], biological
systems [37, 40], acoustics [15, 36], and many more. The relaxation of the Hermiticity
assumption led to the discovery of new interesting phenomena including: non-Hermitian skin-
effect [47], new universality classes [31], dynamical phase transition [33], replica symmetry
breaking in the Sachdev-Ye-Kitaev (SYK) model [23], and violation of the Eigenstate Ther-
malizationHypothesis [12, 13]. In analogywith theHermitian case, it is expected that spectral
statistics of non-Hermitian systems exhibit universal behavior.More precisely, in [29, 30], the
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authors formulated the dissipative analogs of theBerry–Tabor andBohigas–Giannoni–Schmit
conjectures: chaotic systems follow Random Matrix statistics, while integrable systems fol-
low Poisson statistics. To better understand this phenomena, Li, Prosen, and Chan introduced
the so called dissipative spectral form factor (DSFF) [35] (see also [4, Sect. 6.2] for a recent
review). For a non-Hermitian operator X , with complex eigenvalues {σi = xi + iyi }Ni=1, the
Dissipative Spectral Form Factor (DSFF), introduced in [35], for a complex time parameter
τ := t + is, with t, s ∈ R, is given by

DSFF (t, s) := 1

N 2

N∑

i, j=1

eit(xi−x j)+is(yi−y j). (1)

In the case when X is a random matrix we consider its expectation

KF(t, s) := E[DSFF (t, s)], (2)

with F ∈ {R,C} denoting the fact that X has real or complex entries. The DSFF consists of
the two dimensional Fourier transform of the two point correlation function of X given by
ρ(z)ρ(z + w); in particular, as τ varies, it studies the correlations of the eigenvalues of X
on all scales at the same time. Note that the DSFF reduces to the Hermitian Spectral Form
Factor (SFF) [34]

SFF(t) := 1

N 2

N∑

i, j=1

eit(xi−x j), (3)

when the spectrum of X is real. Additionally, by rewriting τ = |τ | (cosϕ + i sin ϕ) and
denoting zi j := (

xi − x j
) + i

(
yi − y j

)
, we may also write KF(t, s) = KF(τ, τ ) =

EN−2 ∑N
i, j=1 e

i〈zi j ,τ 〉, which for a fixed angle ϕ offers a natural interpretation of the DSFF

as SFF of the projection of
{
zi j

}
i j onto the radial axis relative to ϕ. Here 〈zi j , τ 〉 denotes the

scalar product viewing zi j and τ as vectors in R
2, i.e. 〈zi j , τ 〉 := (xi − x j )t + (yi − y j )s. In

particular, heuristically, one can think of the DSFF at time τ as a statistic of the eigenvalues
of X which studies the spectrum projected onto the axis relative to ϕ on a scale ∼ 1/|τ |.
Throughout this paper, we will make use of the notation KF(τ, τ ), rather than KF(s, t), to
stress the dependence on τ as the underlying complex time parameter.

Before describing several properties of K (τ, τ ), we recall some properties and results
about the well known Hermitian SFF (3). As a function of t , for chaotic systems, K (t) :=
E[SFF(t)] exhibits the so called slope-dip-ramp-plateau behavior (see e.g. [11, Fig. 1]): for
short times K (t) decreases with an oscillatory behavior until a "dip-time", tdip ∼ N 1/2, then
in the regime N 1/2 � t � N the SFF grows linearly until the Heisenberg time tHei ∼ N when
K (t) becomes flat and stays equal to 1/N for t ≥ tHei.We point out that tHei is proportional to
the inverse level spacing, which is ∼ 1/N in the Hermitian case. Despite its great relevance
within the physics literature on disordered quantum systems [14, 24, 26, 32, 45], the SFF was
notmathematically rigorously investigated until very recently. In [19, 20], Forrester computed
the large N limit of K (t) for the Gaussian Unitary Ensemble (GUE) and for the Laguerre
Unitary Ensemble (LUE), respectively, in the entire slope-dip-ramp-plateau regime, relying
on the integrable structure of these models (see the remarkable identities in [3, 43]). More
recently, K (t) has been computed also for the Dyson Brownian motion on the unitary group
U (N ) [21]. Only very recently, in [11], the SFF has been studied for more general Hermitian
random matrix models (i.e. for models with entries which are not necessarily Gaussian). In
this case, unlike previous works, no exact identities are available, so the SFF was analyzed
relying on the recent multi-resolvent local laws (see e.g. [8, 9]), which allowed a rigorous
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computation of K (t) up to the intermediate time scales t � N 5/11. The understanding of
K (t), for the whole t � N regime, for matrices with non Gaussian entries is still completely
missing.

Much less is known in the harder dissipative (non-Hermitian) case. In [35] the authors com-
puted KC(τ, τ ) for X being a complex Ginibre matrix and they numerically conjectured that
a similar behavior is expected for more general classes of non-Hermitian chaotic operators.
They also numerically compute the DSFF for X drawn from the real or quaternionic Ginibre
ensemble, but no analytical results are available in [35] for these cases. In more recent works,
the DSFF has been numerically computed also for the dissipative version of the celebrated
Sachdev-Ye-Kitaev (SYK) model [25] and for other interacting non-Hermitian systems [27].
We also point out that very recently in [39, Sect. 5.4] the authors introduced a different eigen-
value statistic to detect if a non-Hermitian Hamiltonian is chaotic, the Deformed Spectral
Form Factor1 (see also [38] for its extension to non-Markovian channels).

For concreteness, we now focus only on the complex Ginibre ensemble. According to the
predictions in [35], the qualitative behaviour of the DSFF, as a function of |τ |, also follows
a slope-dip-ramp-plateau behavior, but with fundamental different properties compared to
the Hermitian SFF. At leading order, in the large N limit, the DSFF for the complex Ginibre
ensemble is given by

KGinUE(τ, τ ) ≈ 1

N
+ 4

J1(|τ |2)
|τ |2 − 1

N
exp

(
−|τ |2

4N

)
(4)

where J1 is the Bessel function of the first kind (see Definition 1 below) and the three terms
appearing on the right-hand side of (4) are referred to as contact, disconnected, and connected
components, respectively. From (4), one notices that the DSFF is rotationally symmetric in
the complex time τ , as it depends solely on |τ |.

Figure 1 below shows the slope-dip-ramp-plateau behavior for the DSFF. By standard
asymptotic of Bessel functions (see e.g. Fact 1 below) we notice that the Heisenberg time
scales as the inverse of the mean eigenvalue spacing, that is τHei ∼ √

N (in analogy with the
Hermitian SFF when tHei ∼ N ). In addition, by relying on the fact that the non-oscillatory
part of the disconnected component asymptotically scales as |τ |−3, for |τ | 
 1, and by
considering the time at which the disconnected and connected contributions are of the same
order, one obtains that τedge ∼ N 2/5 (this is the analog of tdip in the Hermitian case).
Furthermore, using that that J1(z)/z ∼ 1 as z → 0, one also deduces that the initial decay
of the DSFF from K (0, 0) = 1 for |τ | � τedge is governed by the disconnected component.
In the intermediate regime, for τedge � |τ | � τHei, the DSFF increases quadratically at
a rate |τ |2/4N 2, which may be seen by combining the contact component with the Taylor
expansion of the exponential term around zero. This is in stark contrast to the Hermitian SFF,
where the intermediate ramp behaviour exhibits linear growth with respect to time. Finally,
at time |τ | � τHei, the DSFF has a plateau at the mean eigenvalue spacing 1/

√
N , in analogy

to the Hermitian case.
In [35] the authors analytically computed the asymptotic of the DSFF only in the complex

Ginibre ensemble relying on its integrable structure [28, 41]; for the real Ginibre ensemble
only numerics are available. Although the joint distribution of the eigenvalues is explicitly
known also for the real Ginibre ensemble [2, 22] (see also the recent review [5]), it is much
more involved due to the special role played by the real axis, thus making its analysis less
amenable. The aim of this work is to consider non-Hermitian matrices with generic (i.e.

1 Not to be confused with the Dissipative Spectral Form Factor (abbreviated to DSFF), which is considered
in this paper and was introduced in [35].
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Fig. 1 Numerical results in the complex Ginibre case for K (τ, τ ) vs |τ | (matrix size N = 1000, ϕ = 0, sample
size = 1000), displaying a typical realization of the dip-ramp-plateau profile of DSSF. On the right, the curves
of interest are plotted without the disconnected component to highlight the quadratic growth of the DSFF in
the ramp regime

not necessarily Gaussian) real or complex entry distribution (see Assumption 1 below). In
particular, in Theorem 1 below, we rigorously prove (4) for a large class of non-Hermitian
matrices with complex entries up to intermediate time scales |τ | ≤ N 2/7. Additionally,
we give an analog of (4) for matrices with real entries which we conjecture to hold up to
|τ | � √

N (andprove for |τ | ≤ N 2/7).More precisely,we conjecture that for 1 � |τ | � √
N

it holds

KF(τ, τ ) ≈ 4
J1(|τ |)2

|τ |2 + |τ |2
4N 2 + (t2 − s2)(2/β − 1)

4sN 2 J1(2s), (5)

with β a parameter such that β = 1 in the real case F = R and β = 2 in the complex case
F = C. In particular, we show that also in the non-Hermitian case the DSFF can be used
to distinguish different universality classes. We remark that the expression (5) in the real
case was unknown even for the real Ginibre ensemble. Furthermore, in Theorem 1 below,
we show that for matrices X with general entry distribution there is an additional correction
to the connected component of KF(τ, τ ) for |τ | ∼ 1 depending on the fourth moment of
the entries. We remark that to compute this asymptotic for the DSFF we rely on the recent
CLT-type results for linear eigenvalue statistics of non-Hermitian randommatrices appearing
in [7] for the real case and in [10] for the complex case.

1.1 Notation and Conventions

For positive quantities f , g, the notation f ∼ g is used to indicate asymptotic equivalence up
to multiplicative constants, i.e. that there exist constants c,C > 0, such that c ≤ f /g ≤ C .
When c,C may be taken to be both equal to one in some specified limit, we write f ≈ g.
Analogously, f � g, f � g are used to indicate that f /g → 0, f /g ≤ C , respectively. In
addition, we make use of standard asymptotic notation, according to f = O(g), f = o(g).
By D ⊂ C we denote the open unit disk, and for any z = x + iy ∈ C we use the notation
d2z := dxdy.
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2 Main Results

We consider N × N non-Hermitian matrices X satisfying the following assumption.

Assumption 1 Let X be an N × N matrix with real or complex independent identically

distributed (i.i.d.) entries Xi j
d= N−1/2χ . The random variable χ is such that Eχ = 0,

E|χ |2 = 1; additionally, in the complex case we also assume that Eχ2 = 0. Furthermore,
we assume that for all p ∈ N, there exists a constant Cp > 0 such that E|χ |p ≤ Cp .

The main result of this paper is to prove the asymptotic of the DSFF for a large class of
models satisfying Assumption 1, up to some intermediate time |τ | ≤ N 2/7.

Theorem 1 Let X be a real or complex i.i.d. matrix satisfying Assumption 1. For s, t ∈ R,
and τ = t + is let KF(τ, τ ) = KF(t, s) be defined as in (1). Then for 0 ≤ |τ | ≤ N 2/7 we
have

KF(τ, τ ) =
[
e(τ, τ )2 + v(τ, τ )

N 2

]
(1 + o(1)), F ∈ {R,C}, (6)

where

e(τ, τ ) : = 2
J1(|τ |)

|τ | − |τ |J1(|τ |)
4N

+ 4κ4
J3 (|τ |)
N |τ |

+ 2/β − 1

N

(
1

4π

∫

D

eitx (1 − eisy)

y2
dxdy − J0(|τ |) + J0(t)

2
+ cos(t)

2

)

v(τ, τ ) : = |τ |2
4

+ κ4

(
2
J1(|τ |)

|τ | − J0 (|τ |)
)2

+
∑

k∈Z
|k|[β − 1 + (2β − 1)| sin(ϕk)|2]Jk (|τ |)2

+ (t2 − s2)(2/β − 1)

4s
J1(2s),

(7)

with κ4 := E|χ |4 − (1+2/β) denoting the fourth cumulant of the entries of X, and the angle
ϕ = ϕ(t, s) defined so that

sin ϕ = t/
√
t2 + s2 cosϕ = s/

√
t2 + s2.

Here β is a parameter such that β = 1 in the real case and β = 2 in the complex case.

We remark that for |τ | � 1 the connected component of the DSFF in (6) depends on κ4,
i.e. it is sensitive to the fourth moment of the distribution of the entries of X . This shows that
the DSFF for fairly short times deviates from the Ginibre ensemble (when κ4 = 0) given in
[35, Eq. (4)].

Next, we show that the expression in (6) substantially simplifies for |τ | 
 1. In particular,
in this regime there is no dependence on the fourth cumulant κ4, but there is still a substancial
difference between the complex and the real case.

Corollary 1 Let X be a real or complex i.i.d. matrix satisfying Assumption 1. For s, t ∈ R,
and τ = t + is let KF(τ, τ ) = KF(t, s) be defined as in (1). Then for 1 � |τ | ≤ N 2/7 we
have

KF(τ, τ ) =
[
4
J1(|τ |)2

|τ |2 + 1

N 2

( |τ |2
4

+ (t2 − s2)(2/β − 1)

4s
J1(2s)

)]
(1+o(1)), F ∈ {R,C},

(8)
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where β is a parameter such that β = 1 in the real case and β = 2 in the complex case.

We remark that in the regime 1 � |τ | ≤ N 2/7 only the first term in (8) matters, i.e. in this

regime we have KF(τ, τ ) = 4 J1(|τ |)2
|τ |2 . We kept both terms in (8) because we conjecture that

this equality holds up to |τ | � √
N , and for N 2/5 � |τ | � √

N the term with coefficient
N−2 in (8) is the leading one. The first term (which dominates for |τ | � N 2/5) comes
from the the global density of the eigenvalues, which is model dependent, whilst the second
term (which dominates for N 2/5 � |τ | � √

N ) is expected to be universal, i.e. depends
only on the symmetry class of the matrix X . Furthermore, note that KC(τ, τ ) is rotationally
symmetric, whilst KR(τ, τ ) is not, as a consequence of the symmetry of the spectrum with
respect to the real axis. In particular, we note that in the time regime 1 � |τ | � √

N , the
expression for the DSFF obtained in (8) agrees with [35, Eq. (4)] in the complex case; this
follows by considering the Taylor expansion of x �→ e−x around x = 0, which yields

KGinUE(τ, τ ) = N + 4N 2 J1(|τ |)2
|τ |2 − N exp

(
−|τ |2

4N

)
= 4N 2 J1(|τ |)2

|τ |2 + |τ |2
4

+ o

( |τ |2
4

)
.

Additionally, in the real case, for N 2/5 � |τ | � √
N (i.e. we only consider the con-

nected component) we have KR(τ, τ ) = 2KC(τ, τ ) for ϕ = 0, which follows from (8) by
J1(2s)/s → 1 as s → 0, and KR(τ, τ ) = KC(τ, τ ) for ϕ ∈ (0, π/2], confirming numerical
predictions from [35, Appendix A]. We point out that in [35, Appendix A] the authors notice
a different behavior of KR(τ, τ ) when θ = π/2 as well, however this phenomenon is not
visible on the time scales |τ | � √

N we consider here, since this different behaviour is
caused by the degeneracy of the spectrum due to the ∼ √

N real eigenvalues, which would
be visible only at scales |τ | �

√
N . On the other hand, we are able to detect the transition of

KR(τ, τ ) as ϕ → 0 since this effect is caused by the 2-fold degeneracy of ∼ N eigenvalues
(i.e. each complex eigenvalue is counted twice).

Remark 1 In Theorem 1 (and in Corollary 1) we computed only the expectation of the DSFF;
however, our method, relying on [7, 10], also allows to compute higher moments

E

∣∣∣∣∣∣
1

N 2

N∑

i, j=1

eit(xi−x j)+is(yi−y j)

∣∣∣∣∣∣

k

for k ∈ N.

We refrain from doing this here as it is out of the scope of the current paper.

We conclude this section pointing out that the methods used in the current paper allow us
to rigorously prove (8) only up to the intermediate time |τ | ≤ N 2/7; however, we expect (8)
and our proof method in Sect. 3, to be correct for times τ much smaller (in absolute value)
than the Heisenberg time, i.e. up to |τ | � τHei ∼ √

N (this is also hinted at by the numerics
in Fig. 1).

3 Asymptotic of the DSFF: Proof of Theorem 1

We start by rewriting the DSFF as a linear statistic of the eigenvalues of X for a specific test
function. For this purpose we introduce the function

fτ,τ (z) := eit�z+is�z = eit
z+z
2 +s z−z

2 = eiτ
z
2+iτ z

2 (9)
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for τ = s + i t , and s, t ∈ R. We can thus write the averaged DSFF as follows

N 2 · KF(τ, τ ) = E

⎡

⎣
∣∣∣∣∣

N∑

i=1

fτ,τ (σi )

∣∣∣∣∣

2⎤

⎦ =
∣∣∣∣∣E

[
N∑

i=1

fτ,τ (σi )

]∣∣∣∣∣

2

+ Var

[
N∑

i=1

fτ,τ (σi )

]
,

(10)

withE andVar denoting the expectation and the variancewith respect to the randommatrix X .
From now on, for concreteness, we focus on the proof in the complex case. The computations
in the real case are similar and rely on [7, Theorem 2.2] rather than [10, Theorem 2.2]; we
present the main differences in Sect. 3.1 below.

Define

LN ( f ) :=
N∑

i=1

f (σi ) − E
N∑

i=1

f (σi ).

Then, by [10, Theorem 2.2] (together with [10, Corollary 2.4] for the effective convergence
of moments2), for any sufficiently smooth test function f we have3 (recall that κ4 denotes
the fourth cumulant of the entries)

ELN ( f ) = N

π

∫

D
f (z)d2z + 1

8π

∫

D
� f (z) d2z

− κ4

π

∫

D
f (z)

(
2|z|2 − 1

)
d2z + O

(‖� f ‖2
Nc

)

E|LN ( f )|2 = 1

4π

∫

D
|∇ f |2 d2z + 1

2

∑

k∈Z
|k|

∣∣∣ f̂ |∂D(k)
∣∣∣
2

+ κ4

∣∣∣∣
1

π

∫

D
f (z)d2z − 1

2π

∫ 2π

0
f (eiθ )dθ

∣∣∣∣
2

+ O

(
‖� f ‖22
Nc

)
,

(11)

for some small fixed c > 0.
For τ as prescribed above, fτ,τ defined in (9) satisfies the assumptions of the above CLT,

so in particular it satisfies (11) with ‖� fτ,τ‖2 � |τ |2. We now compute the explicit terms in
the rhs. of (11) when f = fτ,τ . For this purpose, we recall the definition of Bessel functions
of the first kind.

Definition 1 For n ∈ Z, z ∈ C, we define the n-th Bessel function of the first kind by

Jn(z) := 1

2π

∫ π

−π

ei(nθ−z sin θ)dθ.

Next, we will use several important properties of Bessel functions (see [1, Sect. 9]), which
we gather below for the reader’s convenience.

Fact 1 For k, l ∈ N, n ∈ Z, and z, ω, u ∈ C, we have

2 We remark that in [10, Corollary 2.4] the dependence on ‖� f ‖2 is not explicitly written, but it can be
deduced by inspection of the proof.
3 Here ‖·‖2 denotes the usual L2-norm. Furthermore, for h defined on the boundary of the unit disk ∂D, we
define its Fourier transform by

ĥ(k) := 1

2π

∫ 2π

0
h(eiθ )e−iθkdθ, k ∈ Z.

123



21 Page 8 of 14 G. Cipolloni, N. Grometto

(i) Jn may equivalently be defined by the following series

Jn(z) :=
∞∑

m=0

(−1)m

m!�(m + n + 1)

( z

2

)2m+n ;

(ii) J−n(z) = (−1)n Jn(z);

(iii) For |z| 
 |k2 − 1
4 |, Jk(z) =

√
2
π z cos

(
z − kπ

2 − π
4

)
(1+o(1));

(iv)
∑

k∈Z Jk(ω)Jk(u)e−ikθ = J0
(√

ω2 + u2 − 2ωu cos θ
)
, for θ ∈ (−π, π];

(v)
( 1
z

d
dz

)l (
zk Jk(z)

) = zk−l Jk−l(z).

By relying on the above, we proceed to derive expressions for the desired quantities in
(10); the proof of this lemma is postponed at the end of this section.

Lemma 1 For s, t ∈ R, and τ = t + is, there exists c > 0 such that

E

[
N∑

i=1

fτ,τ (σi )

]
= 2N

J1(|τ |)
|τ | − |τ |J1(|τ |)

4
+ 4κ4

J3 (|τ |)
|τ | + O

( |τ |2
Nc

)

Var

[
N∑

i=1

fτ,τ (σi )

]
= |τ |2

4
+ 1

2

∑

k∈Z
|k|Jk (|τ |)2 + κ4

(
2
J1(|τ |)

|τ | − J0 (|τ |)
)2

+ O

( |τ |4
Nc

)
.

(12)

We are now ready to conclude Theorem 1.

Proof of Theorem 1 (complex case) The asymptotic in (6) in the complex case (β = 2) imme-
diately follows from Lemma 1. In particular, the threshold |τ | ≤ N 2/7 comes from the fact
that for 1 � |τ | � N 2/5, by standard asymptotics of J1(|τ |) for |τ | 
 1, we have

e(τ, τ )2 + v(τ, τ )

N 2 ∼ 1

|τ |3 ,

and that the leading term |τ |−3 is smaller than the error |τ |4/N 2+c as long as |τ | ≤ N 2/7.

Then, in order to conclude the asymptotic in Corollary 1 from Theorem 1, i.e. to identify
the leading term of (6) for |τ | 
 1, we will use the following additional technical lemma,
whose proof is presented at the end of this section.

Lemma 2 For x > 0 we have
∑

k∈Z |k|Jk (x)2 � x.

Proof of Corollary 1 Upon squaring the result obtained for the expectation in (12) and using
(iii) of Fact 1, we readily obtain that

∣∣E
∑

i fτ,τ (σi )
∣∣2 ∼ 4N 2 J1(|τ |)2/|τ |2. In addition, by

Lemma 2 we also have that for |τ | 
 1, the leading terms in the expression for the variance
in (12) is |τ |2/4. This yields the desired result, upon recalling (10). ��

We now conclude this section with the proof of Lemmas 1–2.

Proof of Lemma 1 We start with the computation of the expectation in the first line of (11).
Recall the definition of fτ,τ (z) from (9), thenusing the parametrizations z = r(cos θ+i sin θ),
we obtain

∫

D
fτ,τ (z)d

2z =
∫

x2+y2<1
eitx+isydxdy =

∫ 1

0
r
∫ π

−π

ei(tr cos θ+sr sin θ) dθdr . (13)
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By standard double-angle identities, we note that we may write

t cos θ + s sin θ =
√
t2 + s2 sin (ϕ + θ) (14)

for a unique ϕ ∈ (−π, π], s.t. sin ϕ = t/
√
t2 + s2, cosϕ = s/

√
t2 + s2. This implies that

the inner integral in (13) can be written as
∫ π

−π

ei(tr cos θ+sr sin θ)dθ =
∫ π

−π

eir
√
t2+s2 sin(ϕ+θ)dθ

=
∫ π

−π

e−ir
√
t2+s2 sin(θ)dθ

= 2π J0
(
r
√
t2 + s2

)
,

(15)

where in the second equality we used that, by periodicity, the integral over (−π + ϕ, π + ϕ]
is equal to the one over (−π, π]. Plugging (15) into (13), and using the series expansion from
(i) of Fact 1, we obtain

∫

D
fτ,τ (z)d

2z = 2π
∫ 1

0
r J0

(
r
√
t2 + s2

)
dr

= 2π
∞∑

m=0

(−1)m

m!�(m + 1)

(√
t2 + s2

2

)2m ∫ 1

0
r2m+1dr

= 2π√
t2 + s2

∞∑

m=0

(−1)m

m!�(m + 2)

(√
t2 + s2

2

)2m+1

= 2π
J1(|τ |)

|τ | .

(16)

By a similar argument, we compute the third integral in the first line of (11)
∫

D
fτ,τ (z)

(
2|z|2 − 1

)
d2z =

∫ 1

0

∫ π

−π

eitr cos θ+isr sin θ
(
2r3 − r

)
dθdr

=
∫ 1

0

(
2r3 − r

) ∫ π

−π

ei(tr cos θ+sr sin θ)dθdr .

Using again (13) to compute the θ -integral, we obtain
∫

D
fτ,τ (z)

(
2|z|2 − 1

)
d2z = 2π

∫ 1

0

(
2r3 − r

)
J0

(
r
√
t2 + s2

)
dr

= −2π

(√
t2 + s2

2

)2 ∞∑

m=1

(−1)m−1

(m − 1)!�(m + 3)

(√
t2 + s2

2

)2(m−1)

= −2π

(√
t2 + s2

2

)−1 ∞∑

m=0

(−1)m

m!�(m + 4)

(√
t2 + s2

2

)2m+3

= −4π
J3 (|τ |)

|τ | .

(17)

Combining (16) and (17), and using that � fτ,τ = −|τ |2 fτ,τ , yield the desired result for
the expectation term in (12).
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Next, we consider the terms in the variance in (11). We start from the term consisting of
the square of the L2(D)-norm of ∇ f , which is given by

1

4π

∥∥∇ fτ,τ
∥∥2
L2(D)

= 1

4π

∫

D
(t2 + s2) d2z = |τ |2

4
, (18)

where we used that ∇ fτ,τ = i(t, s) fτ,τ . For the second term in (11), choosing ϕ as in (14),
we have

f̂ (k) = 1

2π

∫ 2π

0
eit cos θ+is sin θ−iθkdθ = eiϕk

2π

∫ ϕ+2π

ϕ

e
i
(
−kα+√

t2+s2 sin α
)

dα

= eiϕk J−k

(
−

√
t2 + s2

)

= eiϕk(−1)k+1 Jk (|τ |) ,

(19)

where in the last step we used (ii) of Fact 1 and the expansion of Jk in (i) of Fact 1. We thus
obtain

1

2

∑

k∈Z
|k|

∣∣∣ ̂( fτ,τ )|∂D(k)
∣∣∣
2 = 1

2

∑

k∈Z
|k|Jk (|τ |)2 . (20)

Using computations analogous to the ones used to obtain (16)–(17), we get

1

π

∫

D
fτ,τ (z)d

2z = 2
J1 (|τ |)

|τ |
1

2π

∫ 2π

0
fτ,τ (e

iθ )dθ =
∑

n∈Z
(−i)n Jn(t)Jn(s) = J0(

√
t2 + s2)

(21)

where the last equality follows from (iv) of Fact 1, upon choosing θ = π/2.
Finally, combining (18)–(21), we obtain the desired expression for the variance in (12). ��

Proof of Lemma 2 By theCauchy-Schwarz inequality, togetherwith the fact that
∑

k∈Z Jk(x)2 =
J0(0) = 1 (see e.g. (v) of Fact 1 for θ = 0 and ω = u), we obtain

∑

k∈Z
|k|Jk(x)2 ≤

√∑

k∈Z
k2 Jk(x)2. (22)

Next, by differentiating both sides of the expression in (iv) of Fact 1 with respect to θ , and
relying on the differentiation rule for Bessel functions of the first kind in (v) of Fact 1, we
obtain

∑

k∈Z
k2 Jk(x)

2e−ikθ = J0
(
x
√
2 (1 − cos θ)

) x2 sin2 θ

2 (1 − cos θ)

+ J1
(
x
√
2 (1 − cos θ)

)

x
√
2 (1 − cos θ)

(
cos θ − sin2 θ

1 − cos θ

)
x2.

(23)

Hence, in the limit θ → 0, using that J1(z)/z → 1/2 for z → 0, the relation in (23) yields

∑

k∈Z
k2 Jk(x)

2 = x2

2
,

which together with (22) gives the desired result. ��
We conclude this section with the computations in the real case.
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3.1 DSFF in the Real Case

By [7, Theorem 2.2] we have (recall that κ4 denotes the fourth cumulant of the entries)

ELN ( f ) = N

π

∫

D
f (z)d2z − κ4

π

∫

D
f (z)

(
2|z|2 − 1

)
d2z

+ 1

4π

∫

D

f (�z) − f (z)

(�z)2 d2z + 1

8π

∫

D
� f (z) d2z

− 1

2π

∫ 2π

0
f (eiθ ) dθ + 1

2π

∫ 1

−1

f (x)√
1 − x2

dx

+ f (1) + f (−1)

4
+ O

(‖� f ‖2
Nc

)

E|LN ( f )|2 = 1

2π

∫

D

∣∣∇ fsym
∣∣2 d2z +

∑

k∈Z
|k|

∣∣∣ f̂sym|∂D(k)
∣∣∣
2

+ κ4

∣∣∣∣
1

π

∫

D
f (z)d2z − 1

2π

∫ 2π

0
f (eiθ )dθ

∣∣∣∣
2

+ O

(
‖� f ‖22
Nc

)
,

(24)

for some small fixed c > 0, with

fsym(z) := f (z) + f (z)

2
.

Note that the variance of linear eigenvalue statistics depends on the symmetrization of the
test function with respect to the real axis; this reflects the fact that for matrices X with real
entries the spectrum is symmetric around the real axis.

We now consider f = fτ,τ , with fτ,τ from (9). Note that for this choice of f we have

fsym(x + iy) = eitx cos(sy).

We omit the computations of the expectation as they are completely analogous to (16)–
(17). Next, we compute the first term in the variance (24)

1

2π

∫

D

∣∣∇ fsym
∣∣2 d2z = 1

2π

∫

D

[
t2(cos(sy))2 + s2(sin(sy))2

]
dxdy

= 1

2π

∫ 1

0

∫ 2π

0
r
[
t2(cos(sr sin θ))2 + s2(sin(sr sin θ))2

]
dθdr .

(25)
Then, using that for any a ∈ R we have

∫ 2π

0
(cos(a sin x))2 dx = π(1 + J0(2a)),

∫ 2π

0
(sin(a sin x))2 dx = π(1 − J0(2a)),

by (25), we conclude

1

2π

∫

D

∣∣∇ fsym
∣∣2 d2z = |τ |2

4
+ t2 − s2

8s2

∫ 2s

0
x J0(x) dx . (26)

Noticing that
∫ u
0 x J0(x) dx = u J1(u) from (i) of Fact 1, this concludes the computations of

the first term in the variance in (24).
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We now proceed with the second term in (24). Similarly to (15) and (19), we compute

f̂sym|∂D(k) = 1

2π

∫ 2π

0
eit cos θ cos(s sin θ)e−iθk dθ

= eiϕ+k

4π

∫ 2π

0
ei[−θk+√

t2+s2 sin θ ] dθ

+ eiϕ−k

4π

∫ 2π

0
ei[−θk+√

t2+s2 sin θ ] dθ

= eiϕ+k + eiϕ−k

2
(−1)k+1 Jk(|τ |),

(27)

where we defined ϕ± so that

t cos θ ± s sin θ =
√
t2 + s2 sin (ϕ± + θ) ,

as done in (14). We thus finally obtain
∣∣∣ f̂sym|∂D(k)

∣∣∣
2 = (sin(ϕ+k))2 Jk(|τ |)2

as a direct consequence of the fact that sin ϕ+ = sin ϕ−, whilst cosϕ+ = − cosϕ−. This
concludes the proof of Theorem 1 in the real case as well. Finally, in order to conclude
Corollary 1, we notice that also in the real case, squaring e(τ, τ ) in(7) and using (iii) of Fact
1, we readily obtain

∣∣E
∑

i fτ,τ (σi )
∣∣2 ∼ 4N 2 J1(|τ |)2/|τ |2; the estimate of the variance is

completely analogous to the complex case and so omitted.
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