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Abstract
We study the long time behaviour of a Brownian particle evolving in a dynamic random
environment. Recently, Cannizzaro et al. (Ann Probab 50(6):2475–2498, 2022) proved sharp√
log-super diffusive bounds for a Brownian particle in the curl of (a regularisation of) the

2-D Gaussian Free Field (GFF) ω. We consider a one parameter family of Markovian and
Gaussian dynamic environments which are reversible with respect to the law of ω. Adapting
their method, we show that if s ≥ 1, with s = 1 corresponding to the standard stochastic heat
equation, then the particle stays

√
log-super diffusive, whereas if s < 1, corresponding to a

fractional heat equation, then the particle becomes diffusive. In fact, for s < 1, we show that
this is a particular case of Komorowski and Olla (J Funct Anal 197(1):179–211, 2003), which
yields an invariance principle through a Sector Condition result. Our main results agree with
theAlder–Wainwright scaling argument (seeAlder andWainwright in Phys Rev Lett 18:988–
990, 1967; Alder and Wainwright in Phys Rev A 1:18–21, 1970; Alder et al. in Phys Rev
A 4:233–237, 1971; Forster et al. in Phys Rev A 16:732–749, 1977) used originally in Tóth
and Valkó (J Stat Phys 147(1):113–131, 2012) to predict the log-corrections to diffusivity.
We also provide examples which display loga-super diffusive behaviour for a ∈ (0, 1/2].

Keywords Super-diffusivity · Diffusion in dynamic random environment · Gaussian Free
Field · Stochastic heat equation

1 Introduction andMain Result

We study themotion of aBrownian particle inR
2, evolving in a dynamic random environment

(DRE), given by the solution to the Itô SDE
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{
dX(t) = ωt (X(t)) dt + √

2 dB(t), t ≥ 0,

X(0) = 0,
(1)

where (B(t))t≥0 is a standard two-dimensional Brownian motion and (ωt (x))t≥0,x∈R2 is a
time-dependent random field which is independent from (B(t))t≥0. We take (ωt (x))t≥0,x∈R2

to be a regularised version of the curl of the solution to the (fractional) stochastic heat equation
with additive noise in R

2 and initial condition given by the curl of the regularised Gaussian
Free Field (GFF) ω. The coordinates of ωt = (ω1

t , ω
2
t ) satisfy{

dωk
t = −(−�)sωk

t dt + √
2∂⊥

k (−�)
s−1
2 dWt , t ≥ 0, k = 1, 2,

ω0 = ω,
(2)

where s ∈ [0,∞) and (∂⊥
1 , ∂⊥

2 ) := (∂x2 ,−∂x1). Here,W is a mollified (in space) space-time
white noise, with covariance E[Wr (x)Wt (y)] = min{r , t}V (x − y), and ω is distributed
according to the law of the curl of a mollified GFF. More precisely, for every k, l = 1, 2,

r , t ≥ 0 and x, y ∈ R
2, Ws

t (x) := (−�)
s−1
2 Wt (x) and ω have mean zero and covariance

E
[
∂⊥
k Ws

r (x)∂⊥
l W s

t (y)
] = min{r , t}∂⊥

k ∂⊥
l V ˙ g1−s(x − y)

= min{r , t}(∂⊥
k (−�)s−1δx , ∂

⊥
l δy

)
V if s ≤ 1 , (3)

E
[
∂⊥
k Ws

r (x)∂⊥
l W s

t (y)
] = min{r , t}∂⊥

k ∂⊥
l (−�)s−1V (x − y)

= min{r , t}(∂⊥
k (−�)s−1δx , ∂

⊥
l δy

)
V if s > 1 , (4)

E
[
ωk(x)ωl(y)

] = −∂⊥
k ∂⊥

l V ˙ g1(x − y) = (
∂⊥
k (−�)−1δx , ∂

⊥
l δy

)
V , (5)

where ˙ denotes the convolution over R
2 and, for every ϕ1, ϕ2 ∈ S(R2), the space of

Schwartz functions over R
2,

(ϕ1, ϕ2)V :=
∫
R2

∫
R2

ϕ1(x)V (x − y)ϕ2(y) dx dy. (6)

The smooth function V is given by

V := U ˙U , (7)

for a U ∈ C∞(R2), radially symmetric, decaying exponentially fast at infinity and with∫
R2 U (x) dx = 1. To simplify some computations, we may also assume that U has Fourier
transform supported in ball of radius 1. Also, the kernel gr : R

2 \ {0} → R in (3) and (5) is
given by ⎧⎪⎪⎨

⎪⎪⎩
g1(x) = −(2π)−1 log |x |;
gr (x) = �(1 − r)

4r�(r)π

1

|x |2−2r if r ∈ (0, 1);
g0 = δ0,

where � denotes the Gamma function. In other words, gr is the Green’s function of (−�)r

in R
2, for r ∈ [0, 1]. Also, the fractional Laplacian (−�)s−1 for s > 1 can be defined in

terms of its Fourier multiplier, as ̂(−�)s−1 f (p) = |p|2(s−1) f̂ (p).

Remark 1 Note that expressions (3)–(5)make sensedue to thepresenceof the smooth function
V . Plugging, e.g., the right-hand side of (5) into (6), we get

(
∂⊥
k (−�)−1δx , ∂

⊥
l δy

)
V =

∫
R2

∫
R2

δx (u)∂⊥
k ∂⊥

l (−�)−1V (u − v)δy(v) du dv,
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which is equal to the expression in the middle of (5). Furthermore, even though the GFF
in the full space is only defined up to a constant (i.e. inverting the Laplacian �), taking
the derivatives ∂⊥

k ∂⊥
l of its regularisation makes it rigorous without ambiguity. The same

reasoning holds to define the noise ∂⊥
k (−�)

s−1
2 Wt when s = 0.

Remark 2 As we show in Proposition 10, the dynamics (2) leave the law of ω invariant. The
case s = 1 corresponds to the standard stochastic heat equation (SHE), whereas s = 0 is
the infinite dimensional Ornstein Uhlenbeck process, as defined, for example in [16, Chapter
1.4]. The parameter s ∈ [0,∞) controls the speed of the environment on different scales:
smaller values of s correspond to faster movement of the larger scales.

By definition, the drift fieldωt (x) in (1) is divergence-free. Brownian particles evolving in
stationary divergence-free random fields have been considered as a toy model for anomalous
diffusions in inhomogeneous media, such as the motion of a tracer particle in an incompress-
ible turbulent flow. See e.g. the surveys [9, Chapter 11] and [13]. Depending on the decay
of the spatial correlations of the drift field, the particle could behave either diffusively or
superdiffusively, meaning that the mean square displacement satisfies for large t

D(t) := E[|X(t)|2]
t

≈
{
1 diffusive,

tν, ν > 0 superdiffusive.
(8)

Here,E denotes the expectation under the joint law of B and ω, see Sect. 2. If the correlations
of the environment decay fast enough (see e.g. [9, Chapter 11]), one gets diffusive behaviour,
and if the decay is too slow (see [10]), one gets superdiffusive behaviour. There is, however,
an intermediate regime for which the correlations decay in such a way that D(t) diverges
only as (log t)γ , for γ > 0. These logarithmic corrections are expected to be present in
two-dimensional Brownian particles evolving in isotropic random drift fields. Indeed, by the
Alder–Wainwright scaling argument (see [1–3, 7]), in 2d, if the displacement of the particle
scales faster than the correlations of the environment field, then the (only) expected behaviour
for themean square displacement of the particle is to be of order t

√
log t .We briefly elaborate

on this, following the Appendix of [19]. Let K (t, x) := E[ω0(0)ωt (x)]. Now, assume that
P(X(t) ∈ dx) ≈ α(t)−2ϕ(α(t)−1x) dx , where ϕ is a density and α(t) = tν(log t)γ for some
ν, γ ≥ 0. If we also assume that K (t, x) ≈ β(t)−2ψ(β(t)−1x), for another density ψ , then
if

β(t)

α(t)
≤ constant, for t ≥ 0, (9)

we must have ν = 1/2 and γ = 1/4, which yields X(t) ≈ t
1
2 (log t)

1
4 . We emphasise here

that this argument, even though instructive, it is not mathematically rigorous. Indeed, the√
log correction was rigorously established recently by Cannizzaro et al. [5]. They showed

that for a time-independent drift field ω distributed according to the law of ω, one has

D(t) ≈ √
log t as t → ∞, (10)

up to log log t corrections, confirming a conjecture made by Tóth and Valkó [19] based on
this scaling argument. The result was obtained in the Tauberian sense1, i.e., in terms of the
Laplace transform of the mean square displacement

DT (λ) :=
∫ ∞

0
e−λt

E
[|X(t)|2] dt, λ > 0. (11)

1 For a discussion on the connection between the asymptotics of D(t) and DT (λ), see [18, Lemma 1] or [5,
Remark 2.3].
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Note that in the case considered by [5, 19], the correlations of the drift field do not scale
in time since the drift field is time-independent, so (9) is trivially satisfied. Moving to the
time-dependent case treated in the present work, if we take s ≥ 1 in (2), we still have that

the correlations of the drift field do not scale fast enough - t
1
2s for ω vs. t

1
2 (log t)

1
4 for X .

Therefore, we should still expect for the particle X to behave
√
log-superdiffusively, since

condition (9) remains true. However, if we move to the case where s < 1 in (2), then the
picture changes substantially and condition (9) is no longer satisfied, since t

1
2 (log t)

1
4 << t

1
2s

for t >> 1. Theorems 3 and 4 below rigorously establish the expected abrupt difference
between super diffusive and diffusive behaviours depending on the exponent s, agreeing
with the scaling argument.

Theorem 3 If s ≥ 1 in (2), then, for every ε > 0, there exist constants Aε, Bε > 0, depending
only on ε and s, such that, for λ ∈ (0, 1), we have

Aε(log | log λ|)−1−ε ≤ λ2
DT (λ)√| log λ| ≤ Bε(log | log λ|)1+ε. (12)

For the case s ∈ [0, 1) we can apply a sector condition result of Komorowski and Olla [11]
to obtain the following invariance principle.

Theorem 4 If s ∈ [0, 1) in (2), then there exist constants A, B > 4, such that, for all t ≥ 0,
we have

A ≤ D(t) ≤ B. (13)

Furthermore, let (Qω
ε )ε∈(0,1] denote the laws of (εX( t

ε2
))t≥0, over C[0,∞), for ε ∈ (0, 1],

given the initial configuration ω0 = ω. Then (Qω
ε )ε∈(0,1] converge weakly, with respect to

the law of ω, as ε ↓ 0, to the law of a Brownian motion with deterministic covariance matrix
D, which only depends on s. The covariance matrix D is defined in (66).

The asymptotic behaviour of DT (λ) in (12) is a reflection of the fact that the dynamics
provided by the SHE (with the full Laplacian) does not mix the environment fast enough
to produce a scaling of the correlations which is faster than the scaling of the displacement
of the particle, as discussed above. On the other hand, the result in (13) confirms that the
fractional dynamics on the environment changes dramatically the behaviour of the particle.
Nonetheless, the fact that A > 4,with 4t being themean square displacement of theBrownian
part

√
2B(t), shows that the drift has a non-negligible effect on large scales. Moreover, the

estimates in (12) are exactly the same as the ones obtained in [5], and our proof is an adaptation
of theirs, which is based on Yau’s method [20] of recursive estimates of iterative truncations
of the resolvent equation in (21). Indeed, when s ≥ 1, the dominant terms in the estimates
are the ones coming from the stationary drift field, which are the same as for the static case.
What we show is that we can remove the additional terms coming from the dynamics of the
environment in the estimates, maintaining the same asymptotic behaviour. However, when
s < 1, the dominant terms are now precisely the ones coming from the dynamics of the
environment. The effect can be seen already in the first upper bound obtained by the first
truncation of (21), and it is enough to show (13) in Theorem 4, see Remark 13.

If now we consider intermediate regimes between s = 1 and s < 1, only adding a
logarithmic divergence to the operator� in (2), we obtain somethingwhichwas not predicted
by the Alder–Wainwright scaling argument. Namely, for any given a ∈ (0, 1

2 ], we can find
an interpolation between the regimes s = 1 and s < 1 such that we prove corrections to
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diffusivity of order (log t)a . More precisely, if we consider that the coordinates of ωt =
(ω1

t , ω
2
t ) satisfy⎧⎪⎨

⎪⎩
dωk

t = (
log

(
e + (−�)−1

))γ
�ωk

t dt

+√
2
(
log

(
e + (−�)−1

)) γ
2 ∂⊥

k dWt , t ≥ 0, k = 1, 2,

ω0 = ω,

(14)

for a parameter γ > 0. Then, we can show the following

Theorem 5 If (X(t))t≥0 is the solution to (1) with (ωt )t≥0 solution to (14), then, for every
γ ∈ [ 12 ,∞), there exist constants A, B > 0, only depending on γ , such that:
If γ ∈ [ 12 , 1), then for λ ∈ (0, 1),

A ≤ λ2DT (λ)

| log λ|1−γ
≤ B. (15)

If γ = 1, then for λ ∈ (0, 1),

A ≤ λ2DT (λ)

log | log λ| ≤ B. (16)

Furthermore, if γ > 1, we have

A ≤ D(t) ≤ B (17)

with A, B > 4.

Remark 6 The correlations of the field (ωt )t≥0 solution to (14) should scale as β(t) ≈
t
1
2 (log t)

γ
2 , providing a finer tuning of scaling than t

1
2s described by (2). While the regime

γ ∈ (1/2, 1] showcases behaviours of X(t) beyond the scope of the Alder–Wainwright scal-
ing argument, the case γ = 1/2 is borderline for the condition (9), for which the expected

behaviour X(t) ≈ t
1
2 (log t)

1
4 is obtained. We do not treat the case γ ∈ [0, 1/2) here, but we

do expect a similar behaviour to the one in (12) for the case s = 1 [i.e. γ = 0 in (14)].

Remark 7 The model described by (14) is a toy model to investigate the behaviour near the
critical scaling exponent s = 1 in (2). However, recent results in [6] suggest that the scaling

β(t) ≈ t
1
2 (log t)

1
4 arises in the 2-D stochastic Navier–Stokes equations.

1.1 Structure of the Paper

In Sect. 2 we define the environment seen from the particle process as a technical tool. In
Sect. 3 we derive the action of the infinitesimal generator of the environment seen from the
particle on Fock space, and show that the law of ω is invariant under the family of dynamics
given by (2). Section4 contains the proof of the main recursive estimates through an iterative
analysis of the resolvent equation in (21) and a proof of (13) in Theorem 4 using only the first
truncation of the resolvent equation. In Sect. 5 we prove Theorem 3 by using the recursive
estimates obtained in Sect. 4. In Sect. 6, we present a general overview of the method in [11]
of homogenisation of diffusions in divergence-free, Gaussian andMarkovian fields and show
that for s < 1 we may apply their results to get Theorem 4. In Sect. 7 we prove Theorem
5. Appendices A and B gather important ingredients from Cannizzaro et al. [5], and some
generalisations to the present setting, necessary in Sects. 4 and 5 and Appendix C presents
the final argument for the proof of Theorem 3, taken from [5].

123



16 Page 6 of 31 G.L. Feltes, H. Weber

2 Setting and preliminaries

LetT0 := (�,B,P) be a probability space supporting ω and an independent Wiener process
W as defined between displays (2) and (3). Let T1 := (�,F, Q) be another probability
space supporting a standard 2d Brownian motion B. We consider solutions to the system (1),
(2) on � × � equipped with the product measure P = P⊗ Q. The law of (X(t))t≥0 under P

is called the annealed law. Note, that under P, the process (X(t))t≥0 alone is not Markovian.
Notwithstanding, we may define a different Markovian process, the so-called environment
seen from the particle, which takes values on the larger space of functions over R

2 [12]. It
evolves by spatially shifting the environment by the position of the walker, at any given time
t ≥ 0. Precisely, we set

ηt := ωt (· + X(t)), t ≥ 0. (18)

The law of X is rotationally invariant, and therefore we have that E[|X(t)|2] = E[X1(t)2 +
X2(t)2] = 2E[X1(t)2]. Hence we may focus on its first coordinate only. Furthermore,
E[X(t)] = 0. Formula (18) allows us to write

X1(t) =
∫ t

0
V(ηr ) dr + √

2B1(t), t ≥ 0,

where V(ω) := ω1(0), for ω = (ω1, ω2). Using the so-called Yaglom-reversibility (see
Section 1.4 of [18]), we get that, for every 0 ≤ s < t , the random variables B(t) − B(s) and∫ t
s V(ηr ) dr are uncorrelated, so that

E
[
X1(t)

2] = 2E
[
B1(t)

2] + E

[(∫ t

0
V(ηr ) dr

)2
]

. (19)

This in turn implies that we can rewrite (11) as DT (λ) = DB(λ) + DV (λ), where for all
λ > 0,

DB(λ) := 4
∫ ∞

0
e−λt

E
[
B1(t)

2] dt = 4

λ2
and DV (λ)

:= 2
∫ ∞

0
e−λt

E

[(∫ t

0
V(ηr ) dr

)2
]
dt, (20)

and therefore, we may focus on DV (λ), which requires a good understanding of the process
(ηt )t≥0. Since the drift field is stationary (see Proposition 10) and divergence-free, the law
of ω is invariant also for (ηt )t≥0 (see e.g. Chapter 11 in [9]). This ensures that, by Lemma
5.1 in [4], we can write∫ ∞

0
e−λt

E

[(∫ t

0
V(ηr ) dr

)2
]
dt = 2

λ2
E
[V(λ − Ls)−1V], (21)

where Ls denotes the infinitesimal generator of (ηt )t≥0, defined in (32) below, and with a
slight abuse of notation we use E to denote the expectation with respect to the law of ω.

3 Operators on Fock Space

In order to analyse expression (21), we describe the infinitesimal generator of the infinite
dimensional Markov process t �→ ωt . With a small abuse of notation, let P denote the law of
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ω and consider F ∈ L2(P) of the form F(ω) = f (ωi1(x1), . . . , ωin (xn)) for arbitrary points
x1, . . . , xn ∈ R

2 and for an f ∈ C2
p(R

n, R), the C2 functions with polynomially growing
partial derivatives of order less or equal than 2. In this section, to emphasise its dependence in
s ∈ [0,∞), let us denote by Ls

0 the infinitesimal generator of (ωt )t≥0. For every s ∈ [0,∞),
an application of Itô’s formula gives

Ls
0F(ω) =

n∑
k=1

∂k f
(
ωi1(x1), . . . , ω

in (xn)
)
(−(−�)s)ωik (xk)

+
n∑

k,l=1

∂2kl f
(
ωi1(x1), . . . , ω

in (xn)
)(

(−�)s−1∂⊥
ik δxk , ∂

⊥
il δxl

)
V ,

(22)

where (·, ·)V is given by (6), ∂k f denotes the function y = (y1, . . . , yn) �→ ∂yk f (y) and for
every x ∈ R

2, the expression with δx is well defined by Remark 1.
Let us introduce the Wiener chaos with the respect to P, following the same convention

and notation as [5]. Let x1:n := (x1, . . . , xn), i := (i1, . . . , in) and : · · · : denotes the Wick
product with respect to P. Define H0 as the set of constant random variables and for n ≥ 1
let Hn be the set ⎧⎨

⎩ψn =
2∑

i1,...,in=1

∫
R2n

fi(x1:n) :
n∏

k=1

ωik (xk) : dx1:n
⎫⎬
⎭ (23)

where the functions fi are symmetric and such that

ψ̂n(p1:n) := (−ι)n
2∑

i1,...,in=1

n∏
k=1

p⊥
k,ik f̂i(p1:n), (24)

satisfies

E
[|ψn |2

] = n!
(2π)2n

∫
R2n

n∏
k=1

V̂ (pk)

|pk |2 |ψ̂n(p1:n)|2 dp1:n < ∞. (25)

Here, (p⊥
k,1, p

⊥
k,2) := (pk,2,−pk,1) for pk = (pk,1, pk,2) and f̂i denotes the Fourier trans-

form of fi, given by

f̂i(p1:n) :=
∫
R2n

fi(x1:n)e−ιx1:n ·p1:n dx1:n,

where x1:n · p1:n denotes the canonical inner product in R
2n and ι = √−1.

Remark 8 Note that since we have the mollification in the noise, the objects fi can be distri-
butions of any negative regularity, such as the delta Dirac distribution. The random variable
which we are most interested in here, namely V(ω) = ω1(0), defined in the previous section,
can be seen as

V(ω) =
∫
R2

δ0(x)ω
1(x) dx ∈ H1.

Furthermore, V̂(p) = p2 for p = (p1, p2).

123
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It is well known, see e.g. Nualart [16] or Janson [8], that

L2(P) =
∞⊕
n=0

Hn (26)

and for Fi ∈ L2(P), i = 1, 2 given by Fi = ∑∞
n=0 ψ i

n , for ψ i
n ∈ Hn , the expectation

E[F1F2] can be written as

E[F1F2] =
∞∑
n=0

〈ψ1
n , ψ2

n 〉 :=
∞∑
n=0

n!
(2π)2n

∫
R2n

n∏
k=1

V̂ (pk)

|pk |2 ψ̂1
n (p1:n)ψ̂2

n (p1:n) dp1:n . (27)

Remark 9 Henceforth we will implicitly identify a random variable F ∈ Hn ⊂ L2(P) of
the form (23) with its kernel ψ̂n in Fourier space. In the same philosophy, we will denote
linear operators acting on L2(P) with the correspondent operators acting on Fock space⊕

n L
2
sym(R2n), and we will denote them by the same symbol.

Now we are ready to prove

Proposition 10 The action of the infinitesimal generatorLs
0 in (22) is diagonal in Fock space

(Ls
0 : Hn → Hn), and is given by

Ls
0 : ωi1(x1) · · · ωin (xn) : =

n∑
k=1

: ωi1(x1) · · · (−(−�)s)ωik (xk) · · · ωin (xn) : (28)

on Wick monomials, and in Fourier variables by

̂(−Ls
0)ψn(p1:n) =

n∑
k=1

|pk |2sψ̂n(p1:n). (29)

Furthermore, the law of ω is invariant under the dynamics governed by Ls
0, i.e., the infinite

dimensional Markov process (ωt )t≥0 is stationary and it is distributed according to the law
of ω for every t ≥ 0.

Proof By the definition of Wick monomials, we have that

∂k : ωi1(x1) · · · ωin (xn) : = : ωi1(x1) · · ·����
ωik (xk) · · · ωin (xn) :,

where a�bc : = ac for a, b, c ∈ R. Now, the above applied to (22) with F = :
ωi1(x1) · · · ωin (xn) : gives

Ls
0F(ω) =

n∑
k=1

: ωi1(x1) · · ·����
ωik (xk) · · · ωin (xn) : (−(−�)s)ωik (xk) (30)

+
n∑

k,l=1
k �=l

: ωi1(x1) · · ·����
ωik (xk) · · ·���

ωil (xl) · · · ωin (xn) : ((−�)s−1∂⊥
ik δxk , ∂

⊥
il δxl

)
V .

(31)

Note that on Wick monomials, multiplication by ωik (xk), as in (30), produces both a term in
one higher homogeneous chaos and a term in one lower homogeneous chaos. Precisely, for
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each 1 ≤ k ≤ n in (30) we have

: ωi1(x1) · · ·����
ωik (xk) · · · ωin (xn) : (−(−�)s)ωik (xk) =

: ωi1(x1) · · · (−(−�)s)ωik (xk) · · · ωin (xn) :

+
n∑

l=1
l �=k

: ωi1(x1) · · ·����
ωik (xk) · · ·���

ωil (xl) · · · ωin (xn) : ((−�)−1(−(−�)s)∂⊥
ik δxk , ∂

⊥
il δxl

)
V ,

where ((−�)−1(−(−�)s)∂⊥
ik

δxk , ∂
⊥
il

δxl )V = E[(−(−�)s)ωik (xk), ωil (xl)]. Summing over
k, the first term after the equal sign gives us (28) and the second term after the equality
cancels out with (31). (29) is a direct consequence of (28) and (24). Now we move to the
invariance of the law of ω. It is known that a necessary and sufficient condition for this is
that (Ls

0)
∗1 = 0, where (Ls

0)
∗ denotes the adjoint of the operator Ls

0 in L2(P) and 1 denotes
the constant function equal to 1, see e.g. [14, Theorem 3.37]. Also, by (26), it is enough to
consider F = : ωi1(x1) · · · ωin (xn) :, so that

E[(Ls
0)

∗1F] = E[Ls
0F] =

n∑
k=1

E
[ : ωi1(x1) · · · (−(−�)s)ωik (xk) · · · ωin (xn) : ] = 0

completes the proof. ��
So far we gathered all the ingredients necessary to characterise the full generator L =: Ls

of (ηt )t≥0. Putting together the generator Ls
0 of the environmental process (ωt )t≥0 with

Proposition 10, the arguments in Section 2.1 of Tóth and Valkó [19] and the main result of
Komorowski [12], we get that the generator Ls is given by

Ls = Ls
0 + V∇ + � = Ls

0 + A+ − A ∗+ + �, (32)

where V∇ := V1D1+V2D2, with Vi (ω) = ωi (0) and Di is the infinitesimal generator of the
spatial shifts in the canonical directions of R

2, for i = 1, 2, see [12]. Also, V∇ = A+ −A ∗+
can be decomposed into a creation and annihilation parts, one being minus the adjoint of the
other, and it comes from the drift part of (1), i.e., the environment, while � = ∇2 comes
from the Brownian part in (1), see [19]. We have that

Ls
0,� : Hn → Hn , A+ : Hn → Hn+1 and A ∗+ : Hn → Hn−1.

As noted inCannizzaro et al. [5], adopting the conventions on Fock space discussed earlier,
one has

̂(−�)ψn(p1:n) =
∣∣∣∣∣

n∑
k=1

pk

∣∣∣∣∣
2

ψ̂n(p1:n) , (33)

Â+ψn(p1:n+1) = ι
1

n + 1

n+1∑
k=1

(
pk ×

n+1∑
l=1

pl

)
ψ̂n(p1:n+1\k) , (34)

where p1:n+1\l := (p1, . . . ,��pl , . . . , pn+1) and for p, q ∈ R
2, p×q denotes the scalar given

by the third coordinate of the cross product of p with q , when thought as vectors in R
3,

precisely, p × q = p1q2 − p2q1 = |p||q| sin θ , where θ is the angle between p and q .

Remark 11 Here we can see that if s = 1 in (29), the difference between the operators � and
L1
0 is simply the cross terms in (33). The most important observation here is that if s ≥ 1 and

|p| ≤ 1, in view of (21) and Remark 8, for any function ψ1 ∈ H1, we have that
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̂(−�)ψ1(p) = |p|2ψ̂1(p) ≥ |p|2sψ̂1(p) = ̂(−Ls
0)ψ1(p).

This is a good evidence to suggest (12), as can be further seen in Remark 13. Also, a good
heuristics for the drastic change in behaviour in s contained in Theorem 3 is that in Fourier
variables, the operator Ls

0 acts much more severely in large scales when s < 1 than when
s < 1 than when s ≥ 1, since |p|2s << |p|2s′ for |p| << 1, if s′ < s.

Now we proceed to the analysis of the resolvent equation in (21).

4 Iterative Analysis of the Resolvent Equation

We can write E[V(λ −Ls)−1V] as E[VV], where V is the solution to the resolvent equation
(λ − Ls)V = V . Note however that V ∈ H1 is in the first Wiener chaos and that the
operator Ls maps Hn to Hn−1 ⊕ Hn ⊕ Hn+1, one should expect that the solution V to the
resolvent equation has non-trivial componentes in all Wiener chaoses. Following the idea
introduced by Landim et al. [15] we truncate the generator Ls by using Ls

n := P≤nLs P≤n ,
where P≤n denotes the orthogonal projection onto the inhomogeneous chaos of order n, i.e.,
P≤n : L2(P) → ⊕n

k=0 Hk . Denote by Vn ∈ ⊕n
k=0 Hk the solution to the resolvent equation

truncated at level n, i.e.,

(λ − Ls
n)V

n = V and Vn =
n∑

k=0

Vn
k where Vn

k ∈ Hk, k = 0, 1, . . . , n.

Now, writing one equation for each of the components of V above we get that the equation
above is equivalent to the system of equations⎧⎪⎪⎪⎨

⎪⎪⎪⎩
(λ − � − Ls

0)V
n
n − A+Vn

n−1 = 0,

(λ − � − Ls
0)V

n
n−1 − A+Vn

n−2 + A ∗+Vn
n = 0,

· · ·
(λ − � − Ls

0)V
n
1 + A ∗+Vn

2 = V,

Note that as it was observed in [19, Section 2], A ∗+F = 0 for every F ∈ H1, so that Vn
0 = 0

and we do not write an equation for it. Note that since V ∈ H1 to evaluate (21) at the level of
the truncation, only the component in the first Wiener chaos is necessary, i.e., Vn

1 . For that,
the system above can be solved and shows that

Vn
1 = (λ − � − Ls

0 + Hn)
−1V,

where {
H1 := 0,

Hk+1 = A ∗+(λ − � − Ls
0 + Hk)

−1A+, k ≥ 1.
(35)

It is important to note that Hk : Hn → Hn for every k, n ∈ N. Recall that by (27) we can
write E[V(λ − Ls

n)
−1V] = 〈V,Vn

1〉. As it was first noticed in [15, Eq. (2.4)], the following
monotonicity formula follows from the fact that λ − � − Ls

0 is a positive operator.

Lemma 12 Let S := λ − � − Ls
0, then, for every n ≥ 1, we get the bounds

〈V, (S + H2n)
−1V〉=〈V,V2n

1 〉 ≤ 〈V, (λ−Ls)−1V〉≤〈V,V2n−1
1 〉=〈V, (S+H2n−1)

−1V〉.
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Remark 13 Let us look to the first upper bound when taking n = 1 in Lemma 12 above.
Recall that V ∈ H1 and that V̂(p) = p2 for p = (p1, p2). Thus by considering the solution
V1 to the truncation at the first level, we arrive at

〈V, (λ − Ls)−1V〉 ≤ 〈V, (λ − � − Ls
0)

−1V〉 = 1

(2π)2

∫
R2

V̂ (p)

|p|2
|V̂(p)|2 dp

λ + |p|2 + |p|2s

≤ C
∫ 1

0

r dr

λ + r2 + r2s
≤
⎧⎨
⎩

C if s < 1 ,

C log

(
1 + 1

λ

)
if s ≥ 1 ,

(36)

for a constant C > 0. Note now that for the case s < 1, the inequalities in (13) imply the
diffusive bounds (13) in Theorem 4, see (63) in Sect. 6 and the following discussion. On the
other hand, for the case of s ≥ 1, the estimates in (13) together with the first lower bound
obtained with n = 1 in Lemma 12, by the same argument for the lower bound in Sect. 7 for
the case γ = 1, gives

A log | log λ| ≤ λ2DT (λ) ≤ B| log λ| for λ ∈ (0, 1), (37)

for constants A, B > 0. These are precisely the estimates obtained in [19] for the static case.
In particular this already implies that the dynamics of SHE is not enough to remove the super
diffusivity caused by the random environment.

The estimates in (37) can be iterated for higher levels and be improved at each step. Indeed,
to get (12), it is necessary to use Lemma 12 in full by taking the level k to diverge with λ ↓ 0.
Moreover, an understanding of the estimates for every level is necessary, and for that it
suffices to analyse the operators Hk . For this, we make use of the following three lemmas,
taken from Cannizzaro et al. [5]. In what follows, S is an operator which acts diagonally in
Fock space with Fourier multiplier denoted by σ , such that Ŝψn(p1:n) = σn(p1:n)ψ̂n(p1:n)
for any ψn ∈ Hn , which will later be taken to be S = S + Hn , for n ≥ 1.

Lemma 14 For any ψn ∈ Hn, it holds that

〈ψn,A
∗+SA+ψn〉 = 〈ψn,A

∗+SA+ψn〉Diag + 〈ψn,A
∗+SA+ψn〉Off,

where

〈ψn,A
∗+SA+ψn〉Diag := n!

(2π)2(n+1)

∫
R2(n+1)

n+1∏
k=1

V̂ (pk)

|pk |2 |ψ̂n(p1:n)|2σn+1(p1:n+1)

(
pn+1 ×

n∑
k=1

pk

)2

dp1:n+1

and

〈ψn,A
∗+SA+ψn〉Off

:= n!n
(2π)2(n+1)

∫
R2(n+1)

n+1∏
k=1

V̂ (pk)

|pk |2 ψ̂n(p1:n)ψ̂n(p1:n+1\n)σn+1(p1:n+1)

(
pn+1 ×

n+1∑
k=1

pk

)(
pn ×

n+1∑
k=1

pk

)
dp1:n+1
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Lemma 15 If for every n ∈ N and any p1:n ∈ R
2n with

∑n
k=1 pk �= 0∫

R2
V̂ (q)(sin θ)2σn+1(p1:n, q) dq ≤ σ̃n(p1:n) (38)

with θ the angle between q and
∑n

k=1 pk, then for every ψn

〈ψn,A
∗+SA+ψn〉Diag ≤ 〈ψn, (−�)S̃ψn〉 (39)

where S̃ is the diagonal operador whose Fourier multiplier is σ̃ . If the inequality in (38) is
≥, then (39) holds with ≥ as well.

Lemma 16 If for every n ∈ N and any p1:n ∈ R
2n∣∣∣∣∣

n∑
k=1

pk

∣∣∣∣∣
∫
R2

V̂ (q)
(sin θ)2σn+1(p1:n, q)∣∣∣q + ∑n−1

k=1 pk
∣∣∣ dq ≤ σ̃n(p1:n)

with θ the angle between q and
∑n

k=1 pk, then for every ψn

|〈ψn,A
∗+SA+ψn〉Off| ≤ n〈ψn, (−�)S̃ψn〉

where S̃ is the diagonal operador whose Fourier multiplier is σ̃ .

Here are some preliminary definitions, needed to state and prove the next theorem. Expres-
sions (40) and (41) arise naturally when iterating the estimates for different levels k in Lemma
12. For k ∈ N, x > 0 and z ≥ 0, let L,LBk and UBk be given by

L(x, z) := z + log(1 + x−1), (40)

LBk(x, z) :=
k∑
j=0

(1/2 log L(x, z)) j

j ! and UBk(x, z) := L(x, z)

LBk(x, z)
(41)

and, for k ≥ 1, define σk as

σk(x, z) =
{

UB k−2
2

(x, z), if k is even,

LB k−1
2

(x, z), if k is odd.

We have that σk ≡ 1. Also, for n ∈ N, let

zk(n) = K1(n + k)2+2ε and fk(n) = K2

√
zk(n), (42)

where K1, K2 are constants to be chosen sufficiently large later and ε is the small positive
constant appearing in the main Theorem 3. Now, for k ≥ 1, let δk be an operator such that
its Fourier multiplier is σk , meaning

δk =
{

fk(N )σk(λ − � − Ls
0, zk(N )), if k is even,

1
fk (N )

(σk(λ − � − Ls
0, zk(N )) − fk(N )), if k is odd.

whereN denotes the so-called Number Operator, the infinitesimal generator of ∂t u = −u +√
2(−�)− 1

2 ξ , which acts diagonally on the n-th Wiener chaos by multiplying by n:Nψn =
nψn for every ψn ∈ Hn .

Remark 17 Note that the functions L,LBk and UBk are the same as in Cannizzaro et al.
[5], while the operators δk carry the the generator Ls

0, which is the difference between the
dynamic and the static settings.
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Gathering these we put them into the next theorem.

Theorem 18 If s ≥ 1 in (2), then for every ε > 0, we may choose K1 and K2 in (42) to be
large enough so that, for 0 < λ ≤ 1 and k ≥ 1, the following operator estimates hold true.

H2k−1 ≥ c2k−1(−�)δ2k−1 (43)

and

H2k ≤ c2k(−�)δ2k . (44)

where c1 = 1 and

c2k = π

c2k−1

(
1 + 1

k1+ε

)
, c2k+1 = π

c2k

(
1 − 1

(k + 1)1+ε

)
. (45)

Remark 19 We shall emphasise here that the sequences c2k and c2k+1 in (45) do converge to
finite, strictly positive constants, as k → ∞, provided that ε > 0. Furthermore, the limits
are strictly greater than 2π and strictly smaller than 1, respectively. This can be seen, e.g. for
the even sequence, c2k+2

c2k
= (1+ 1

k1+ε )(1− 1
(k+1)1+ε )−1 > 1 and c2 = 2π . Also, by iterating

the definition for c2k , it can be shown that convergence of the sequence is equivalent to the
convergence of

∑∞
l=1 l

−(1+ε), which only holds when ε > 0.

Now we will prove Theorem 18 by induction on k. Note that the induction alternates
between lower (43) and upper (44) bounds, being one the consequence of the other, and so
forth.

Proof of the Lower Bound (43) Recall that s ≥ 1. For k = 1 we note that, by definition,
H1 = 0 and δ1 is non-positive if we choose the constant K2 in (42) to be large enough.

We now show (43) with 2k + 1 for k ≥ 1, assuming by induction that (44) holds for 2k:

H2k+1 = A ∗+(λ − � − Ls
0 + H2k)

−1A+ ≥ A ∗+(λ − �(1 + c2kδ2k) − Ls
0)

−1A+. (46)

For every ψ ∈ Hn , we use Lemma 14 with S = (λ − �(1 + c2kδ2k) − Ls
0)

−1 to separate

〈ψ,A ∗+(λ − �(1 + c2kδ2k) − Ls
0)

−1A+ψ〉 = 〈ψ,A ∗+SA+ψ〉 (47)

into a diagonal and an off-diagonal part, and we treat each separately. For the diagonal part,
we apply Lemma 15 for which it suffices to lower bound∫
R2

V̂ (q)(sin θ)2 dq

λ + |p + q|2(1 + c2k f2k(n + 1)UBk−1(λ + |p + q|2 + |p1:n |2s + |q|2s , z2k(n + 1))) + |p1:n |2s + |q|2s
(48)

where p = ∑n
i=1 pi and |p1:n |2 s := ∑n

i=1 |pi |2 s , for p1, . . . , pn ∈ R
2, and θ is the

angle between p and q . Clearly, |p1:n |2s is different from |p|2 even for s = 1. Naturally, the
argument in z2k, f2k isn+1 sinceA+ψ ∈ Hn+1, but by (42)weget that z2k(n+1) = z2k+1(n)

and f2k(n + 1) = f2k+1(n) and henceforth we drop the argument n to lighten the notation.
We may upper bound the denominator in (48) by(

λ + |p + q|2 + |p1:n |2s
)(
1 + c2k f2k+1

UBk−1
(
λ + |p + q|2 + |p1:n |2s + |q|2s, z2k+1

)) + |q|2s

≤ c2k f2k+1

(
1 + 1

f2k+1

)
[(λ + |p + q|2 + |p1:n |2s)

UBk−1(λ + |p + q|2 + |p1:n |2s, z2k+1) + |q|2s],
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where we have used for both inequalities that c2k, f2k+1,UBk−1 ≥ 1 and the monotonicity
of UBk−1. Therefore, we may look to

∫
R2

V̂ (q)(sin θ)2 dq

(λ + |p1:n |2s + |p + q|2)UBk−1(λ + |p1:n |2s + |p + q|2, z2k+1) + |q|2s .

By Lemma 24, we get for the integral above, the lower bound

π

2

∫ 1

λ+|p|2+|p1:n |2s
d�

�UBk−1(�, z2k+1)
− CDiag

LBk(λ + |p|2 + |p1:n |2s, z2k+1)√
z2k+1

≥ π

2

∫ 1

λ+|p|2+|p1:n |2s
d�

(� + �2)UBk−1(�, z2k+1)
− CDiag

LBk(λ + |p|2 + |p1:n |2s, z2k+1)√
z2k+1

.

(49)

By (76) the primitive of the integral above is −2LBk(�, z2k+1), hence the expression above
equals

πLBk(λ + |p|2 + |p1:n |2s, z2k+1) − πLBk(1, z2k+1) − CDiag
LBk(λ + |p|2 + |p1:n |2s, z2k+1)√

z2k+1

≥ πLBk(λ + |p|2 + |p1:n |2s, z2k+1) − π f2k+1

2
− CDiag

LBk(λ + |p|2 + |p1:n |2s, z2k+1)√
z2k+1

where in the last inequality we have again used Lemma 20 and chosen the constant K2 in
(42) large enough so that for all k, n ∈ N, it holds that

LBk(1, z2k+1) ≤ √
L(1, z2k+1) = √

log(2) + z2k+1 ≤ 1

2
f2k+1. (50)

So by Lemma 15 we get that the diagonal part of (47) is lower bounded by 〈ψ, (−�)S̃ψ〉,
where

S̃ =
(
1 + 1

f2k+1(1)

)−1
π

c2k

[
LBk(λ − � − Ls

0, z2k+1(N ))

f2k+1(N )

(
1 − CDiag

π
√
z2k+1(1)

)
− 1

2

]
.

(51)

Here we have twice lower bounded z2k+1 = z2k+1(n) ≥ z2k+1(1) and f2k+1 = f2k+1(n) ≥
f2k+1(1).
For the off-diagonal part of (47) we use Lemma 16. For that, denote p = ∑n

i=1 pi and
p′ = ∑n−1

i=1 pi and we must upper bound

n|p|
∫
R2

V̂ (q)(sin θ)2 dq

[λ+|p+q|2(1+c2k f2k+1UBk−1(λ+|p+q|2+|p1:n |2s+|q|2s , z2k+1))+|p1:n |2s+|q|2s ]|p′+q|

≤ n|p|
∫
R2

V̂ (q)(sin θ)2 dq

[λ + |p1:n |2s + |p + q|2c2k f2k+1UBk−1(λ + |p1:n |2s + |p + q|2 + |q|2s , z2k+1)]|p′ + q|

≤ n|p|
∫
R2

V̂ (q)(sin θ)2 dq

[λ + |p1:n |2s + |p + q|2c2k f2k+1UBk−1(λ + |p1:n |2s + |p + q|2 + |q|2, z2k+1)]|p′ + q| ,

(52)

where in the last inequality we have used the monotonicity of UBk−1 and that since V̂ is
supported on |q| ≤ 1, we have that |q|2 s ≤ |q|2 if s ≥ 1. Thanks to Lemma 22 the functions
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f (x, z) = c2k f2k+1UBk−1(x, z) and g(x, z) = 1
c2k f2k+1

LBk−1(x, z) satisfy the assumptions
of Lemma 25 and we obtain the upper bound

nCOffLBk−1(λ + |p1:n |2s + |p|2, z2k+1)

c2k f2k+1z2k+1

≤ COff

c2k f2k+1K1(2k + 1)1+ε
LBk(λ + |p1:n |2s + |p|2, z2k+1) (53)

where we have used that LBk−1 ≤ LBk , the definition of z2k+1 = z2k+1(n) in (42) and the
fact that

n

z2k+1(n)
= n

K1(2k + 1 + n)2+2ε ≤ 1

K1(2k + 1 + n)1+ε
.

Altogether, Lemmas 15 and 16 combined with expressions (51) and (53), we obtain that
the operator A ∗+(λ − �(1 + c2kδ2k) − Ls

0)
−1A+ is lower bounded by

(−�)
π

c2k

[
LBk(λ − � − Ls

0, z2k+1(N ))

f2k+1(N )
A − B

]

where

A =
(
1 − CDiag

π
√
z2k+1(1)

)(
1 + 1

f2k+1(1)

)−1

− COff

πK1(2k + 1)1+ε

B = 1

2

(
1 + 1

f2k+1(1)

)−1

which by (46) is also a lower bound for H2k+1. Again, making the constants K1 and K2 in
(42) as large as necessary, we obtain that

A ≥ 1 − 1

(k + 1)1+ε
and B ≤ 1 − 1

(k + 1)1+ε
,

which combined with the definition of c2k+1 in (45) concludes the proof of the lower bound
in (43). ��
Proof of the Upper Bound (44) For k ≥ 1, by the induction hypothesis, we have that

H2k = A ∗+(λ − � − Ls
0 + H2k−1)

−1A+ ≤ A ∗+(λ − �(1 + c2k−1δ2k−1) − Ls
0)

−1A+.(54)

As we did before, for every ψ ∈ Hn , we use Lemma 14 with S = (λ−�(1+ c2k−1δ2k−1)−
Ls
0)

−1 to separate

〈ψ,A ∗+(λ − �(1 + c2k−1δ2k−1) − Ls
0)

−1A+ψ〉 = 〈ψ,A ∗+SA+ψ〉 (55)

into a diagonal and an off-diagonal part, and we treat each separately. For the diagonal part,
we apply Lemma 15, but this time we want to upper bound

∫
R2

V̂ (q)(sin θ)2 dq

λ + |p + q|2(1 + c2k−1
f2k

(LBk−1(λ + |p + q|2 + |p1:n |2s + |q|2s , z2k) − f2k)) + |p1:n |2s + |q|2s

≤ f2k
c2k−1

∫
R2

V̂ (q)(sin θ)2 dq

λ + |p1:n |2s + |p + q|2LBk−1(λ + |p1:n |2s + |p + q|2 + |q|2s , z2k) + |q|2s

≤ f2k
c2k−1

∫
R2

V̂ (q)(sin θ)2 dq

λ + |p1:n |2s + |p + q|2LBk−1(λ + |p1:n |2s + |p + q|2, z2k) , (56)
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since f2k−1(n + 1) = f2k(n), z2k−1(n + 1) = z2k(n). The first inequality is due to the fact
that c2k−1 < 1 and f2k > 1 and the second inequality is a consequence of

|p + q|2LBk−1(λ + |p1:n |2s + |p + q|2, z2k)
≤ |p + q|2LBk−1(λ + |p1:n |2s + |p + q|2 + |q|2s, z2k) + |q|2s

Note that the above is equivalent to

LBk−1(λ + |p1:n |2s + |p + q|2, z2k)
−LBk−1(λ + |p1:n |2s + |p + q|2 + |q|2s, z2k) ≤ |q|2s

|p + q|2 . (57)

Thanks to (78) and the Mean Value Theorem, we have that, for every k ∈ N and x < y ∈ R

|LBk(x) − LBk(y)| ≤ max
c∈[x,y]

1

2(c2 + c)UBk−1(c, z)
|x − y| ≤ 1

x
|x − y|

The above applied to the difference in (57), which is positive and hence equals its absolute
value, yields

LBk−1(λ + |p1:n |2s + |p + q|2, z2k) −LBk−1(λ + |p1:n |2s + |p + q|2 + |q|2s, z2k)
≤ |q|2s

λ + |p1:n |2s + |p + q|2 ≤ |q|2s
|p + q|2 .

To upper bound the integral in (56) we make use of Lemmas 21 and 22 considering λ̃ :=
λ + |p1:n |2s instead of λ, to obtain the upper bound

f2k
c2k−1

(
π

2

∫ 1

λ+|p1:n |2s+|p|2
d�

�LBk−1(�, z2k)
+ CDiagUBk−1(λ + |p1:n |2s + |p|2)√

z2k

)
.

The integral above, by Lemmas 20 and 23, is controlled by∫ 1

λ+|p1:n |2s+|p|2
d�

�LBk−1(�, z2k)
≤
∫ 1

λ+|p1:n |2s+|p|2
d�

(� + �2)LBk−1(�, z2k)

+ C
UBk−1(λ + |p1:n |2s + |p|2)

z2k

≤ 2UBk−1(λ + |p1:n |2s + |p|2) + C
UBk−1(λ + |p1:n |2s + |p|2)

z2k
.

We deal with the off-diagonal term in the same fashion than in (52), upper estimating

n|p|
∫
R2

V̂ (q)(sin θ)2 dq

[λ+|p + q|2(1+ c2k−1
f2k

(LBk−1(λ+|p+q|2+|p1:n |2s+|q|2s , z2k)− f2k))+|p1:n |2s+|q|2s ]|p′+q|

≤ n|p| f2k
c2k−1

∫
R2

V̂ (q)(sin θ)2 dq

[λ + |p1:n |2s + |p + q|2LBk−1(λ + |p + q|2 + |p1:n |2s + |q|2s , z2k)]|p′ + q|
Further, we make use of Lemma 25, this time with f = LBk−1 and g = UBk−1, to get the
upper bound

f2k
c2k−1

nCOffUBk−1(λ + |p1:n |2s + |p|2, z2k)
z2k

≤ f2k
c2k−1

COffUBk−1(λ + |p1:n |2s + |p|2, z2k)
K1(n + 2k)1+2ε .
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Putting all the estimates together and noting that z2k(n) > z2k(1), we establish that A ∗+(λ −
�(1 + c2k−1δ2k−1) − Ls

0)
−1A+ is upper bounded by

π

c2k−1
A′(−�)δ2k

where, by choosing K1 as big as necessary, we obtain

A′ = 1 + CDiag

π
√
K1(2k)1+ε

+ C

πK1(2k)2+2ε + COff

πK1(2k)1+2ε ≤ 1 + 1

k1+ε
.

This is enough to see that (44) holds with c2k defined in (45). ��

5 Proof of (12) in Theorem 3

In this section we finish proving Theorem 3 by using the full power of the iterative estimates
provided by Lemma 12. This is done by choosing the level of the truncation depending on λ,
i.e., as λ → 0, n → ∞ in Lemma 12. Again, C denotes a constant, which may change from
line to line, but is independent of p, z, λ and k.
Proof of Theorem 3 for s ≥ 1. Recall that for p = (p1, p2) ∈ R

2, V̂(p) = p2 and that
V ∈ H1 implies that the multiplier of−�−Ls

0 is |p|2 +|p|2s . Let us start with upper bound.
By Lemma 12 and (21) we get that

λ2

2
DV (λ) ≤ 〈V,V2k+1

1

〉 = 〈V, (λ − � − Ls
0 + H2k+1)

−1V〉,
which by (43) in Theorem 18 is upper bounded by

〈V, (λ − �(1 + c2k+1δ2k+1) − Ls
0)

−1V〉
= 1

(2π)2

∫
R2

V̂ (p)

|p|2
|V̂(p)|2 dp

λ + |p|2(1 + c2k+1
f2k+1

(LBk(λ + |p|2 + |p|2s, z2k+1) − f2k+1)) + |p|2s

≤ C
f2k+1

c2k+1

∫
R2

V̂ (p) dp

λ + |p|2LBk(λ + |p|2, z2k+1)
(58)

where we have used (57). Note that since V ∈ H1, the arguments in f2k+1 and z2k+1 are both
1 and therefore they are constants which only depend on k. Now we conclude exactly as [5],
since the expression above is equal to expression (5.1) in their paper. We include the missing
steps in Appendix C for completeness.

Now we proceed to the lower bound. Again, by Lemma 12 and (21), we get that

λ2

2
DV (λ) ≥ 〈V,V2k

1 〉 = 〈V, (λ − � − Ls
0 + H2k)

−1V〉,
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which in turn, by Theorem 18, is lower bounded by〈V, (λ − �(1 + c2kδ2k) − Ls
0)

−1V〉
= 1

(2π)2

∫
R2

V̂ (p)

|p|2
|V̂(p)|2 dp

λ + |p|2(1 + c2k f2kUBk−1(λ + |p|2 + |p|2s, z2k)) + |p|2s

≥ C
∫
R2

V̂ (p)

|p|2
p22 dp

(λ + |p|2)(1 + c2k f2kUBk−1(λ + |p|2, z2k)) + |p|2s

≥ C

f2k

∫
R2

V̂ (p)

|p|2
p22 dq

(λ + |p|2)UBk−1(λ + |p|2, z2k) + |p|2s (59)

where
we have substituted c2k by its limit as k → ∞ and used the monotonicity of UBk−1.
Now, note that since all the functions in (59) but p �→ p22 are rotationally invariant, the

integral has the exact same value as if we replace p �→ p22 with p �→ p21. Summing the
integrals with p �→ p22 and p �→ p21 and diving it by two, we get that expression (59) is
equal to (the 1/2 is merged into C)

C

f2k

∫
R2

V̂ (p) dp

(λ + |p|2)UBk−1(λ + |p|2, z2k) + |p|2s .

Thus, an application of (83) gives the lower bound

C

f2k+1

(∫ 1

λ

d�

�UBk−1(�, z2k+1)
− LBk(λ, z2k+1)√

z2k+1

)

≥ C

f2k+1

(∫ 1

λ

d�

(� + �2)UBk−1(�, z2k+1)
− LBk(λ, z2k+1)√

z2k+1

)

≥ C

f2k+1

(
LBk(λ, z2k+1) − LBk(1, z2k+1) − LBk(λ, z2k+1)√

z2k+1

)
, (60)

where the second inequality is a consequence of (76) in Lemma 20. Once again, expression
(60) above reduces to the exact same as the third line in display (5.7) in [5], and thus we
include the end of the proof in Appendix C for completeness.

��

6 Proof of Theorem 4

In this section, we show that our model for s < 1 is a particular case of the theory developed
in Komorowski and Olla [11] of homogenisation for diffusions in divergence free, Gaussian
and Markovian random environments. See also Chapters 11 and 12 of the monograph [9].

Let us consider here the function V(ω) := ω(0) = (ω1(0), ω2(0)) = (V1(ω),V2(ω)). In
view of Remark 8, we see that V i ∈ H1, i = 1, 2. Now, we may write

εX

(
t

ε2

)
= ε

∫ t
ε2

0
V(ηr ) dr + √

2εB

(
t

ε2

)
, t ≥ 0, ε > 0, (61)

and focus on the additive functionals of (ηt )t≥0 given by
∫ V i (ηs) ds, for i = 1, 2, since

εB(t/ε2)
d= B(t) for every ε > 0 and t ≥ 0. Let C := ⋃

n ⊕k≤nHk be a core for Ls and
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(Ls)∗. Let S := (Ls + (Ls)∗)/2 = Ls
0 + � be the symmetric part of the generator Ls . For

every ψ ∈ C , let ‖ψ‖21 := 〈ψ,−Lsψ〉 = 〈ψ,−Sψ〉 be a norm and

‖ψ‖2−1 := lim
λ→0

〈ψ, (λ − S)−1ψ〉 (62)

be another norm. By [17, Theorem 2.2], for every t ≥ 0, it holds that

E

⎡
⎣ sup
0≤t ′≤t

∣∣∣∣∣
∫ t ′

0
V i (ηr ) dr

∣∣∣∣∣
2
⎤
⎦ ≤ Ct‖V i‖−1 ≤ Ct, i = 1, 2, (63)

where the last inequality is a consequence of

‖V i‖2−1 = 1

(2π)2

∫
R2

V̂ (p)

|p|2
|V̂ i (p)|2 dp
|p|2 + |p|2s

≤ C
∫
R2

V̂ (p) dp

|p|2s ≤ C
∫ 1

0
r1−2s dr ≤ C , for i = 1, 2 (64)

since s < 1, as discussed previously in (36) in Remark 13 for i = 1. Note that (63) and (64)
prove the upper bound (13) in Theorem 4. Now recall that E[|X(t)|2] = 2E[X1(t)2], so the
lower bound follows from the Yaglom-reversibility (19), since the Brownianmotion provides
A ≥ 4 and the contribution from the drift is non-negative. In order to give an argument for
the positive contribution of the drift (i.e. A > 4), we use the Laplace transform (20) and
(21). We already know that by taking n = 1 in Lemma 12, it holds that E[V(λ −Ls)−1V] ≤
‖V i‖2−1 < ∞ is finite, so let us now show that E[V(λ − Ls)−1V] > 0. Indeed, we consider
the lower bound corresponding to n = 1 in Lemma 12 and note that s < 1 implies that
by adapting the proof of Lemma 25, the off diagonal part for this estimate is bounded by a
constant. Thus, for θ the angle between p, q ∈ R

2 below, we obtain

〈V, (λ − Ls)−1V〉 ≥ 〈V, (λ − � − Ls
0 + A ∗+(λ − � − Ls

0)A+)−1V〉

≥ C
∫
R2

V̂ (p)

|p|2
|V̂(p)|2 dp

λ + |p|2 + |p|2s + |p|2 ∫
R2

V̂ (q)(sin θ)2 dq
λ+|p+q|2+|p|2s+|q|2s dq

dp

≥ C
∫
R2

V̂ (p)

|p|2
|V̂(p)|2 dp

λ + |p|2 + |p|2s + C |p|2 dp ≥ C
∫ 1

0

r dr

λ + Cr2s
≥ C > 0.

Therefore, by (20) and (21) we get (see [18, Lemma 1] or [5, Remark 2.3])

DV (λ) ≥ C

λ2
�⇒ lim sup

t→∞
1

t
E

[(∫ t

0
V(ηr ) dr

)2
]

≥ C > 0,

which concludes that A > 4.
To conclude, we show that our model, for s < 1, is a particular case of the general

framework of divergence-free, Gaussian andMarkovian environments treated in [11, Section
6].

Proof of Theorem 4 In Section 6 of [11], the same SDE as in (1) is considered, with a dynamic
random environment (ωt )t≥0 which is divergence-free, Gaussian and Markovian. Moreover,
they assume that, in d = 2, the space-time correlations of the drift field ω satisfy expression
(1.2) in p. 181, which reads as
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R(t, x) =
∫
R2

eιx ·p exp
{ − |p|2β t}a(|p|)

|p|2α
(
I − p ⊗ p

|p|2
)
dp

=
∫
R2

eιx ·p exp
{ − |p|2β t} a(|p|)

|p|2α+2

(
I|p|2 − p ⊗ p

)
dp, (65)

where a : [0,∞) → [0,∞) is a compactly supported and bounded cut-off function, β ≥ 0
and α < 1. Also, the notation p ⊗ p represents the canonical tensor product in R

2 and I the
identity 2 × 2 matrix. Since here we consider the dyamics in (2), we identify β in (65) with
s. Also, since V̂ is rotationally invariant and has compact support, we may identify a(|p|) in
(65) with V̂ (p). Now, note that, for p = (p1, p2) ∈ R

2,

(
I|p|2 − p ⊗ p

) =
(
p21 + p22 0

0 p21 + p22

)
−
(
p1 p1 p1 p2
p2 p1 p2 p2

)
=
(

p22 −p1 p2
−p2 p1 p21,

)
.

In view of (27) and (24), we get that, for every ψ j ∈ H1, j = 1, 2, given by ψ j (ω) =∫
R2 f j

1 (x)ω1(x) dx + ∫
R2 f j

2 (x)ω2(x) dx , (in what follows we suppress p from f̂ ij (p))

〈ψ1, ψ2〉 = 1

(2π)2

∫
R2

V̂ (p)

|p|2 ψ̂1(p)ψ̂2(p) dp

= 1

(2π)2

∫
R2

V̂ (p)

|p|2
[
p22 f̂

1
1 f̂ 21 − p2 p1 f̂ 11 f̂ 22 − p1 p2 f̂ 12 f̂ 21 + p21 f̂

1
2 f̂ 22

]
dp

= 1

(2π)2

∫
R2

V̂ (p)

|p|2
(
f̂ 11 f̂ 12

)( p22 −p1 p2
−p2 p1 p21 ,

)(
f̂ 21
f̂ 22

)
dp .

With this observation, we see that α < 1 in (65) translates to α = 0.With the same argument,
we conclude that the law of ω satisfies assumption (E) in Section 6 of [11] with α = 0.
Therefore, since s = β < 1, by [11, Theorem 6.3], we get Theorem 4 with the covariance
matrix D given by

D = 2
[
δi, j + 〈ψ i∗, ψ

j∗ 〉1
]
i, j , i, j = 1, 2, (66)

where the objects ψ i∗, for i = 1, 2 satisfy limλ↓0 ‖ψ i
λ − ψ i∗‖1 = 0 for ψ i

λ solution to the
resolvent equations

λψ i
λ − Lsψ i

λ = −V i , λ > 0.

The inner product 〈·, ·, 〉1 is defined through polarisation by

〈ψ i∗, ψ
j∗ 〉1 := 1

4

(
‖ψ i∗ + ψ

j∗ ‖21 + ‖ψ i∗ − ψ
j∗ ‖21

)
, i, j = 1, 2.

��

7 Proof of Theorem 5

In this sectionweproveTheorem5bymaking use of the first upper and lower bounds provided
by Lemma 12, i.e., the estimates obtained for n = 1. When ωt = ω

γ
t is the solution to (14),

the dominant terms in the estimates are once again the ones coming from the dynamics of
the environment, as in the case of s < 1 in Theorem 3. This is the reason why we can find
matching upper and lower bounds just going to the first two estimates.
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Since (−�) is a self-adjoint, positive operador, we canmake sense of the operator (log(e+
(−�)−1))γ for every γ > 0 through its Fourier multiplier, in the spirit of Proposition 10,
given by

σγ (p1:n) =
n∑

i=0

|pi |2
(
log

(
e + |pi |−2))γ . (67)

Expression (67) is associated with the generator Lγ
0 of the process (ω

γ
t )t≥0 solution to (14).

Therefore, since we have the correction (log(e + (−�)−1))
γ
2 in front of the noise in (14),

Proposition 10 holds true with −(−�)s replaced by (log(e + (−�)−1))γ � and thus the
dynamics in (14) preserves the law of ω as invariant measure for every γ > 0. Note also that
(log(e + x−1))γ > 1 for every x ≥ 0.

Let us start with some calculus, which are analogous results to the ones in Lemma 20. For
every γ > 0, γ �= 1, the following holds:

∂x
(
log

(
e + x−1))γ = −γ

2

1

(ex2 + x)(log(e + x−1))1−γ
≥ −γ

1

x
, (68)

∂x
(
log

(
e + x−1))1−γ = −1 − γ

2

1

(ex2 + x)(log(e + x−1))γ
. (69)

Proof of Theorem 5 We denote Lγ = Lγ
0 + A+ − A ∗+ + �. Here again we only consider

V := V1 ∈ H1 given by V(ω) := ω1(0), as in Theorem 3. Recall that V̂(p) = p2 for
p = (p1, p2). Thus, by taking n = 1 in Lemma 12, we arrive at

〈V, (λ − Lγ )−1V 〉 ≤ 〈V, (λ − � − Lγ
0 )−1V 〉 = 1

(2π)2

∫
R2

V̂ (p)

|p|2
|V̂(p)|2 dp

λ + |p|2 + |p|2(log(e + |p|−2))γ

≤ C
∫
R2

V̂ (p) dp

λ + |p|2(log(e + (λ + |p|2)−1))γ
(70)

Now, adapting (81) in Lemma 21 and (93) in Lemma 24, we have that expression (70) is
upper bounded by

C
∫ 1

λ

ds

s
(
log

(
e + s−1

))γ + C ≤ C
∫ 1

λ

ds

(es2 + s)
(
log(e + s−1

))γ + C (71)

Therefore, by (69) and (21), we see that

DV (λ) ≤ C
(
log

(
e + λ−1))1−γ λ→0≤ C | log λ|1−γ . (72)

Note that if γ > 1, (72) is bounded by a constant and this is enough to show the diffusive
bounds in (17) with A > 4 in the same fashion as in Sect. 6 for the case of s < 1 in Theorem 4.
Also, if γ = 1 in (71), then by (76) with k = 0, we get the upper bound in (16).

Now, let us proceed to the lower bound by also taking n = 1 in Lemma 12, for the case
γ ∈ [ 12 , 1]. First, note that by adapting Lemma 25, the off diagonal term in the first lower
estimate is bounded above by a constant C . Also, note that by adapting (80) in Lemma 21
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and using (69) again, we see that, for a constant D > 0〈V, (λ − Lγ )−1V〉 ≥ 〈V,
(
λ − � − Lγ

0 + A ∗+
(
λ − � − Lγ

0

)
A+

)−1V〉
≥ C

∫
R2

V̂ (p)

|p|2
|V̂(p)|2 dp

λ + |p|2(log(e + |p|−2))γ + D|p|2(1 + (log(e + (λ + |p|2)−1))1−γ )

≥ C
∫
R2

V̂ (p) dp

λ + |p|2(log(e + |p|−2))γ + D|p|2(1 + (log(e + (λ + |p|2)−1))1−γ )

≥ C
∫
R2

V̂ (p) dp

λ + |p|2(log(e + |p|−2))γ
≥ C

∫
R2

V̂ (p) dp

λ + |p|2(log(e + (λ + |p|2)−1))γ
. (73)

The third inequality is a result of the same argument as in (59), the fourth inequality is
true because γ ∈ [ 12 , 1] ⇒ 1 − γ ≤ γ and thus we may absorb the lower order terms into
|p|2(log(e+|p|−2))γ by changing the constantC . The fifth inequality is due to an application
of the Mean Value Theorem together with the inequality in (68), in the same spirit of (57).
Once again, by adapting (81) in Lemma 21, we get that (73) is lower bounded by

C
∫ 1

λ

ds

s(log(e + s−1))γ
− C ≥ C

∫ 1

λ

ds

(es2 + s)(log(e + s−1))γ
− C .

Therefore, if γ ∈ [ 12 , 1), by (69) and (21), we get that

DV (λ) ≥ C(log(e + λ−1))1−γ − C ≥ C(log(e + λ−1))1−γ
λ→0≥ C | log λ|1−γ , (74)

and if γ = 1, by (76) with k = 0, we get the lower bound in (16), which concludes the proof
of Theorem 5. ��
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A Technical Lemmas I

In this section, for completeness, we list some important technical lemmas used throughout
the estimates in the proofs of Theorems 18 and 3, all of them due to Cannizzaro et al. [5].

Lemma 20 For k ∈ N let L, LBk and UBk be the functions defined in (40) and (41). Then,
the three are decreasing in the first variable and increasing in the second. For every x > 0
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and z ≥ 1, the following holds true

1 ≤ LBk(x, z) ≤ √
L(x, z),

1 ≤ √
z ≤ √

L(x, z) ≤ UBk(x, z) ≤ L(x, z).
(75)

Furthermore, for every 0 < a < b, one has

∫ b

a

dx

(x2 + x)UBk(x, z)
= 2(LBk+1(a, z) − LBk+1(b, z)) , (76)

∫ b

a

dx

(x2 + x)LBk(x, z)
≤ 2(UBk(a, z) − UBk(b, z)) . (77)

Finally, it also holds that

∂xL(x, z) = − 1

x2 + x
, ∂xLBk(x, z) = − 1

2(x2 + x)UBk−1(x, z)
,

∂xUBk(x, z) = − 1

2(x2 + x)LBk(x, z)

(
1 +

( 1
2 log L(x, z)

)k
k!LBk(x, z)

)
.

(78)

Lemma 21 Let V be as in (7). Let z > 1 and f (·, z) : [0,∞) �→ [1,∞) be a strictly
decreasing and differentiable function, such that

− f (x)

x
≤ f ′(x) < 0 for all x ∈ R (79)

and the function g(·, z) : [0,∞) �→ [1,∞) a strictly decreasing function such that
g(x, z) f (x, z) ≥ z. Then, there exists a constant CDiag > 0 such that, for all z > 1,
one gets the bound∣∣∣∣∣

∫
R2

V̂ (q)(sin θ)2 dq

λ + |p + q|2 f (λ + |p + q|2, z) − π

2

∫ 1

λ+|p|2
d�

� f (�, z)

∣∣∣∣∣ ≤ CDiag
g(λ + |p|2, z)√

z

(80)

where p = ∑n
i=1 pi for some n ∈ N and p1, . . . , pn ∈ R

2 and θ is the angle between p and
q. The second integral is zero if λ + |p|2 ≥ 1. Moreover, for λ ≤ 1,∣∣∣∣∣12

∫
R2

V̂ (q) dq

λ + |q|2 f (λ + |q|2, z) − π

2

∫ 1

λ

d�

� f (�, z)

∣∣∣∣∣ ≤ CDiag
g(λ, z)√

z

(81)

Lemma 22 The functions UBk(·, z) and LBk(·, z) satisfy the conditions of the previous lem-
mas.

Lemma 23 For every z ≥ 1, λ ∈ R+ and p ∈ R
2 such that λ + |p|2 ≤ 1, one has

∣∣∣∣
∫ 1

λ+|p|2
d�

�LBk(�, z)
−
∫ 1

λ+|p|2
d�

(� + �2)LBk(�, z)

∣∣∣∣ ≤ UBk(λ + |p|2, z)
z

.

123



16 Page 24 of 31 G.L. Feltes, H. Weber

B Technical Lemmas II

The two lemmas in this section aremodifications of Lemma 21 andLemmaA.3 inCannizzaro
et al. [5]. Throughout this section we use a generic constant C which may change from line
to line, but is always independent of p, q, z, λ, k and n.

Lemma 24 Let s ≥ 1 in (2) and λ̃ := λ + |p1:n |2s . Then, there exists a constant CDiag > 0
such that, for all z > 1 and every k ≥ 0, we get the bound∣∣∣∣∣

∫
R2

V̂ (q)(sin θ)2 dq

(λ̃ + |p + q|2)UBk(λ̃ + |p + q|2, z) + |q|2s − π

2

∫ 1

λ̃+|p|2
d�

�UBk(�, z)

∣∣∣∣∣
≤ CDiag

LBk+1(λ̃ + |p|2, z)√
z

(82)

where p = ∑n
i=1 pi for some n ∈ N and p1, . . . , pn ∈ R

2 and θ is the angle between p and
q. The second integral is zero if λ̃ + |p|2 ≥ 1. Moreover, for λ ≤ 1,∣∣∣∣∣12

∫
R2

V̂ (q) dq

(λ + |q|2)UBk(λ + |q|2, z) + |q|2s − π

2

∫ 1

λ

d�

�UBk(�, z)

∣∣∣∣∣ ≤ CDiag
LBk+1(λ, z)√

z

(83)

Proof Since z is fixed, we suppress the dependence ofUBk andLBk on it. A fact usedmultiple
times here is that for all a, b > 0 and z ≥ 1 we have

1

UBk(a + b, z)
≤ LBk(a + b, z)

z
≤ LBk(a, z)

z
≤ LBk(a, z)√

z
≤ LBk+1(a, z)√

z
. (84)

First, we separate the left hand side of (82) into three terms∣∣∣∣∣
∫
R2

V̂ (q)(sin θ)2 dq

(λ̃ + |p + q|2)UBk(λ̃ + |p + q|2) + |q|2s

−
∫
R2

V̂ (q)(sin θ)2 dq

(λ̃ + |p|2 + |q|2)UBk(λ̃ + |p|2 + |q|2) + |q|2s
∣∣∣∣∣ (85)

+
∣∣∣∣∣
∫
R2

V̂ (q)(sin θ)2 dq

(λ̃ + |p|2 + |q|2)UBk(λ̃ + |p|2 + |q|2) + |q|2s

−
∫
R2

V̂ (q)(sin θ)2 dq

(λ̃ + |p|2 + |q|2)UBk(λ̃ + |p|2 + |q|2)

∣∣∣∣∣ (86)

+
∣∣∣∣∣
∫
R2

V̂ (q)(sin θ)2 dq

(λ̃ + |p|2 + |q|2)UBk(λ̃ + |p|2 + |q|2) − π

2

∫ 1

λ̃+|p|2
d�

�UBk(�)

∣∣∣∣∣ (87)

Note that (85) and (87) have the same flavour as (A.11) and (A.12) in [5, Lemma A.2],
respectively.

In fact, we handle them almost indentically and we add the proof here for completeness.
Themain difference is then in the term (86).We start with (85). Note that under the restriction
|p+q| < |p|, we may bound each integral individually. In fact, for the first we use (sin θ)2 ≤
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|p+q|2
|p|2 to get

∫
|p+q|<|p|

V̂ (q)(sin θ)2 dq

(λ̃ + |p + q|2)UBk(λ̃ + |p + q|2) + |q|2s ≤ |p|−2
∫

|p+q|<|p|
V̂ (q) dq

UBk(λ̃ + |p + q|2)
≤ |p|−2

UBk(λ̃ + |p|2)
∫

|p+q|<|p|
dq ≤ C

LBk+1(λ̃ + |p|2)√
z

.

For the second,we see that |p+q| < |p| ⇒ |q| < 2|p| and therefore (λ̃+|p|2+|q|2)UBk(λ̃+
|p|2 + |q|2) + |q|2 s ≥ |p|2UBk(λ̃ + 5|p|2) and again ∫|p+q|<|p| dq ≤ C |p|2.

For the region |p+ q| ≥ |p|, let h(x) = xUBk(x), which by Lemma 22 satisfies (79) and
thus |h′(x)| ≤ 2|UBk(x)|. So by the Mean Value Theorem,

|h(x) − h(y)| ≤ 2|x − y|UBk(min{x, y}) and |p + q|2 − |p|2 − |q|2 = |p||q| cos θ.

(88)

Note that by trashing both |q|2s ≥ 0 in the denominator of the difference in (85), over
|p + q| ≥ |p| the difference is bounded by
∫

|p+q|≥|p|
V̂ (q)(sin θ)2|h(λ̃ + |p + q|2) − h(λ̃ + |p|2 + |q|2)| dq

(λ̃ + |p + q|2)(λ̃ + |p|2 + |q|2)UBk(λ̃ + |p + q|2)UBk(λ̃ + |p|2 + |q|2)
≤ C

∫
|p+q|≥|p|

V̂ (q)(sin θ)2|p||q|| cos θ | dq
(λ̃ + |p + q|2)(λ̃ + |p|2 + |q|2)UBk(λ̃ + max{|p + q|2, |p|2 + |q|2})

≤ C |p|
∫

|p+q|≥|p|
V̂ (q)|q| dq

(λ̃ + |p + q|2)(λ̃ + |p|2 + |q|2)UBk(λ̃ + 2|p|2 + 2|q|2)
≤ C

LBk(λ̃ + |p|2)√
z

|p|
∫

|p+q|≥|p|
V̂ (q)|q| dq

(λ̃ + |p + q|2)(λ̃ + |p|2 + |q|2) ≤ C
LBk+1(λ̃ + |p|2)√

z
,

where the last inequality is a consequence of the integral in the last line being of order |p|−1.
To see that, further divide the integral into the regions |q| ≥ 2|p| and |q| < 2|p|. For the
first, note that |q| ≥ 2|p| ⇒ |p + q| ≥ |q|

2

∫
|p+q|≥|p|
|q|≥2|p|

V̂ (q)|q| dq
(λ̃ + |p + q|2)(λ̃ + |p|2 + |q|2) ≤ C

∫
|q|≥|p|

V̂ (q)|q|−3 dq ≤ C
∫ 1

|p|
r−2 dr ≤ C

|p| ,

while for the second

∫
|p+q|≥|p|
|q|<2|p|

V̂ (q)|q| dq
(λ̃ + |p + q|2)(λ̃ + |p|2 + |q|2)

≤ C

(λ̃ + |p|2)2
∫

|q|<2|p|
|q| dq ≤ C

|p|4
∫ 2|p|

0
r2 dr ≤ C

|p| .

This concludes the estimate of the first term.
Now, we move to (87) and conclude with (86) at the end since we will need (87) for its

proof. Here, we consider the first integral over the region |q|2 ≥ 1−(λ̃+|p|2), which implies
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(λ̃ + |p|2 + |q|2)−1 ≤ 1. Using (84), we obtain the following upper bound

∫
R2

V̂ (q)(sin θ)2 dq

(λ̃ + |p|2 + |q|2)UBk(λ̃ + |p|2 + |q|2)
≤ LBk(λ̃ + |p|2)

z

∫
R2

V̂ (q) dq ≤ C
LBk+1(λ̃ + |p|2)√

z
.

Still the first integral in (87) but now in the complement of the previous region, we first
observe that since V̂ is smooth and rotationally invariant, there exists a constant C > 0 such
that |V̂ (q) − V̂ (0)| < C |q|2 for |q| ≤ 1. Then, we may re-write that integral as

∫
|q|2<1−(λ̃+|p|2)

V̂ (0)(sin θ)2 dq

(λ̃ + |p|2 + |q|2)UBk(λ̃ + |p|2 + |q|2) (89)

+
∫

|q|2<1−(λ̃+|p|2)
(V̂ (q) − V̂ (0))(sin θ)2 dq

(λ̃ + |p|2 + |q|2)UBk(λ̃ + |p|2 + |q|2) . (90)

Passing the integral in (89) into polar coordinates and then setting s = λ̃+|p|2 + r2, we get

∫ 2π

0
(sin θ)2 dθ

∫ √
1−λ̃−|p|2

0

r dr

(λ̃ + |p|2 + r2)UBk(λ̃ + |p|2 + r2)
= π

2

∫ 1

λ̃+|p|2
ds

sUBk(s)

(91)

Lastly, we control the integral in (90) using |V̂ (q) − V̂ (0)| < C |q|2 for |q| ≤ 1 and (84)

∫
|q|2<1−(λ̃+|p|2)

|V̂ (q) − V̂ (0)|(sin θ)2 dq

(λ̃ + |p|2 + |q|2)UBk(λ̃ + |p|2 + |q|2)
≤ C

LBk(λ̃ + |p|2)
z

∫
|q|2<1−(λ̃+|p|2)

|q|2 dq
λ̃ + |p|2 + |q|2

≤ C
LBk+1(λ̃ + |p|2)√

z

∫
|q|<1

dq ≤ C
LBk+1(λ̃ + |p|2)√

z
.

The estimate of the third term is then concluded.
Finally, we deal with (86), even though not necessary, we treat the cases s > 1 and s = 1

differently, to emphasise the influence of the exponent 2s. Consider first s > 1. We see that
the difference in (86) is equal to

∫
R2

V̂ (q)(sin θ)2|q|2s dq
[(λ̃ + |p|2 + |q|2)UBk(λ̃ + |p|2 + |q|2) + |q|2s ](λ̃ + |p|2 + |q|2)UBk(λ̃ + |p|2 + |q|2)

≤
∫
R2

V̂ (q)|q|2s dq
(λ̃ + |p|2 + |q|2)2UBk(λ̃ + |p|2 + |q|2)

≤ C
LBk(λ̃ + |p|2)

z

∫
R2

V̂ (q)|q|2s−4 dq ≤ C
LBk+1(λ̃ + |p|2)√

z
,
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where in the first inequality we have used that |q|2s ≥ 0 and that UBk ≥ 1, and the integral
in the last line is of order

∫ 1
0 r2s−3 dr ≤ C since s > 1. Now, we treat s = 1. The difference

in (86) is equal to∫
R2

V̂ (q)(sin θ)2|q|2 dq
[(λ̃ + |p|2 + |q|2)UBk(λ̃ + |p|2 + |q|2) + |q|2](λ̃ + |p|2 + |q|2)UBk(λ̃ + |p|2 + |q|2)

≤
∫
R2

V̂ (q)(sin θ)2|q|2 dq
(λ̃ + |p|2 + |q|2)2(UBk(λ̃ + |p|2 + |q|2))2

≤ 1√
z

∫
R2

V̂ (q)(sin θ)2 dq

(λ̃ + |p|2 + |q|2)UBk(λ̃ + |p|2 + |q|2) ,

where in the last inequality we have used (75). Now, by the estimate obtained for (87), we
have the following upper bound

1√
z

[
π

2

∫ 1

λ̃+|p|2
d�

�UBk(�)
+ C

LBk+1(λ̃ + |p|2, z)√
z

]
. (92)

Now, note that ∫ 1

λ̃+|p|2
d�

�UBk(�)
−
∫ 1

λ̃+|p|2
d�

(�2 + �)UBk(�)

=
∫ 1

λ̃+|p|2
d�

(1 + �)UBk(�)
≤ LBk+1(λ̃ + |p|2, z)√

z
. (93)

Therefore, (92) is upper bounded by

1√
z

[
π

2

∫ 1

λ̃+|p|2
d�

(�2 + �)UBk(�)
+ C

LBk+1(λ̃ + |p|2, z)√
z

]
≤ C

LBk+1(λ̃ + |p|2, z)√
z

.

where the last inequality is a consequence of (76) in Lemma 21. The result follows from
collecting all the estimates so far. ��
Lemma 25 Let the same assumptions of Lemma 21 to hold and let λ̃ = λ+|p1:n |2s , for every
s ≥ 1. Then, there exists a constant COff > 0, such that

|p|
∫
R2

V̂ (q)(sin θ)2 dq

[λ̃ + |p + q|2 f (λ̃ + |p + q|2 + |q|2)]|p′ + q| ≤ COff
g(λ̃ + |p|2)

z
,

where p = ∑n
i=1 pi , p

′ = ∑n−1
i=1 pi and |p1:n |2s = ∑n

i=1 |pi |2s .
Proof We split R

2 into three regions, �1 = {q : |p + q| <
|p|
2 }, �2 = {q : |p′ + q| <

|p|
2 }

and �3 = R
2\(�1 ∪ �2). Note that since we are looking for an upper bound, it is irrelevant

whether �1 intersects �2 or not. In �1, note that |p+q| <
|p|
2 ⇒ |q| < 3

2 |p| ⇒ |p+q|2 +
|q|2 < 5

2 |p|2, so use the monotonicity of f to get f (λ̃ + |p + q|2 + |q|2) ≥ f (λ̃ + 5
2 |p|2)

and also (sin θ)2 ≤ |p+q|2
|p|2 to obtain

|p|
∫

�1

V̂ (q)(sin θ)2 dq

[λ̃ + |p + q|2 f (λ̃ + |p + q|2 + |q|2)]|p′ + q| ≤
∫

�1

C |p|−1|p + q|2 dq
[λ̃ + |p + q|2 f (λ̃ + 5

2 |p|2)]|p′ + q|

≤ C |p|−1

f (λ̃ + 5
2 |p|2)

∫
�1

dq

|p′ + q| ≤ C
g(λ̃ + |p|2)

z
,
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since by assumption f (x, z) ≥ z
g(x,z) and g is decreasing in x . Also, since in �1 we have

|p+q| <
|p|
2 ⇒ |q| <

3|p|
2 , the last integral is of order |p|. Indeed, note that denoting BR(a)

the ball of radius R centred at a,∫
�1

dq

|p′ + q| ≤
∫
B 3
2 |p|(0)

dq

|p′ + q| =
∫
B 3
2 |p|(−p′)

dq

|q| ≤
∫
B6|p|(0)

dq

|q| ≤ C
∫ 6|p|

0
dr ≤ C |p|,

since q �→ |q|−1 has a singularity at zero. For the region �2 we use

(sin θ)2 ≤ 4|p + q|2
|p|2 ∨ ( 14 |p′|2) ,

where a∨ b := max{a, b}. This is true since, for |p′| ≤ 2|p|, it is a weaker estimate than the
previous one, and for |p′| > 2|p| it can be shown that, in the region �2, the right hand side
is always greater or equal than 1 (see [5, (A.13)]). Inserting this into the integral it follows
that ∫

�2

|p|V̂ (q)(sin θ)2 dq

[λ̃ + |p + q|2 f (λ̃ + |p + q|2 + |q|2)]|p′ + q|
≤ C |p|

|p|2 ∨ ( 14 |p′|2)
∫

�2

dq

f (λ̃ + |p + q|2 + |q|2)|p′ + q| .

Note that, in �2, we have that |p + q|2 + |q|2 ≤ ( 32 |p| + |p′|)2 + ( 12 |p| + |p′|)2 ≤
2( 32 |p| + |p′|)2, so using the monotonicity of f we obtain the upper bound

C |p|
|p|2 ∨ ( 14 |p′|2) f (λ̃ + 2( 32 |p| + |p′|)2)

∫
�2

dq

|p′ + q|

= C |p|2
|p|2 ∨ ( 14 |p′|2) f (λ̃ + 2( 32 |p| + |p′|)2) . (94)

In order to estimate the last term we maximise in |p′| (here we think of p′ as any vector in
R
2). It can be easily seen that it is monotonously increasing for |p′| < 2|p|. For |p′| ≥ 2|p|

we show that it is monotonously decreasing: since f satisfies (79),
for any a, b ≥ 0, it holds that

d

dr

(
1

r2 f (a + 2(b + r)2)

)
= −2r f + 4r2(b + r) f ′

r4 f 2

= − 2

r3 f 2
( f + 2r(b + r) f ′) < − 2

r3 f

(
1 − 2r(b + r)

a + 2(b + r)2

)
< 0 ,

where the argument of f and f ′ is always a + 2(b + r)2. Therefore, the maximum over p′
of the right hand side of (94) is attained at |p′| = 2|p| and is equal to

C

f (λ̃ + 2( 72 |p|)2)
≤ C

g(λ̃ + |p|2)
z

.

The final part of the proof is to consider the region �3, for which we use (sin θ)2 ≤ 1 and
apply Hölder inequality with exponents 3

2 and 3, to the functions [λ̃ + |p + q|2 f (λ̃ + |p +
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q|2 + |q|2)]−1 and |p′ + q|−1 with respect to the measure V̂ (q) dq to get

|p|
∫

�3

V̂ (q)(sin θ)2 dq

[λ̃ + |p + q|2 f (λ̃ + |p + q|2 + |q|2)]|p′ + q|

≤ |p|
(∫

�3

V̂ (q) dq

[λ̃ + |p + q|2 f (λ̃ + |p + q|2 + |q|2)] 3
2

) 2
3
(∫

�3

V̂ (q) dq

|p′ + q|3
) 1

3

. (95)

Since in �3 we have that |p′ + q| ≥ |p|
2 , the second term in (95) is bounded by a constant

times |p|− 1
3 .

Moving to the integral inside the first parenthesis in (95), note that in �3 we have that
|p + q| ≥ |p|

2 ⇒ |q| ≤ 3|p + q| and then by the monotonicity of f we get the upper bound∫
�3

V̂ (q) dq

[λ̃ + |p + q|2 f (λ̃ + 10|p + q|2)] 3
2

≤
∫ ∞

|p|
2

Cr dr

(λ̃ + r2 f (λ̃ + 10r2))
3
2

(96)

where the last inequality is obtained by bounding V̂ (q) by a constant, setting q̃ = p+ q and
passing to polar coordinates. Now, we divide the domain of integration |p|

2 ≤ r < ∞ into
two regions, λ̃ < r2 and its possibly empty complement λ̃ ≥ r2. In the first, it holds that

λ̃ + r2 f
(
λ̃ + 10r2

) ≥ 1

20

(
λ̃ + 10r2

)
f
(
λ̃ + 10r2

)
. (97)

Using that by assumption f (x, z) ≥ z
g(x,z) and that g is decreasing in x , together with (97),

we can control (96) by

∫ ∞
|p|
2

Cr dr(
(λ̃ + 10r2) f (λ̃ + 10r2)

) 3
2

≤ C

(
g
(
λ̃ + 5

2 |p|2
)

z

) 3
2 ∫ ∞

|p|
2

r dr(
(λ̃ + 10r2)

) 3
2

≤ C

(
g
(
λ̃ + |p|2)

z

) 3
2 ∫ ∞

|p|
2

r−2 dr ≤ C |p|−1

(
g
(
λ̃ + |p|2)

z

) 3
2

(98)

The last step is to consider the region λ̃ ≥ r2. For that, we have

∫ √
λ̃

|p|
2

Cr dr

(λ̃ + r2 f (λ̃ + 10r2))
3
2

≤ 1

f (11(λ̃ + |p|2)) 3
2

∫ ∞
|p|
2

dr

r2
≤ C |p|−1

(
g(λ̃ + |p|2)

z

) 3
2

.

Inserting all the estimates for the region �3 into (95) we obtain the desired upper bound

C
g(λ̃ + |p|2)

z

which completes the proof. ��

C End of Proof of Theorem 3

end of proof of (12) in Theorem 3 We start with the end of the proof for the upper bound. Note
that the sequence c2k+1 in (58) is monotonously decreasing and convergent, so we may
replace it by its limit and merge it into the constant C below. By (81), expression (58) is
bounded, by

123



16 Page 30 of 31 G.L. Feltes, H. Weber

C f2k+1

(∫ 1

λ

d�

�LBk(�, z2k+1)
+ UBk(λ, z2k+1)√

z2k+1

)
≤ C f2k+1

(∫ 1

λ

d�

(� + �2)LBk(�, z2k+1)
+ UBk(λ, z2k+1)√

z2k+1

)

≤ C f2k+1UBk(λ, z2k+1) ≤ C f2k+1
L(λ, 0) + z2k+1

LBk(λ, 0)
(99)

where we have used Lemma 23 for the first inequality, (77) in Lemma 20 for the second
and that LBk is increasing in z for the last. Nowwe invoke the Central Limit Theorem applied
to Poisson random variables of rate one to get

lim
k→∞

k∑
i=0

ki

i ! e
−k = 1

2
,

which yieds that uppon the choice

k = k(λ) =
⌊ log L(λ, 0)

2

⌋
and recalling the definition of LBk in (41), for λ small enough, the bound

e−k

LBk(λ, 0)e−k
≤ C√

L(λ, 0)
. (100)

Inserting the above into (99) and using the definitions of z2k+1 = z2k+1(1) and f2k+1 =
f2k+1(1) in (42), we arrive at

λ2 D̃(λ) ≤ C(log L(λ, 0))1+ε
√
L(λ, 0),

which completes the proof of the upper bound, since

L(λ, 0) = log

(
1 + 1

λ

)
λ→0∼ | log λ|.

Moving to the lower bound, recall (60)

C

f2k+1

(
LBk(λ, z2k+1)−LBk(1, z2k+1)−LBk(λ, z2k+1)√

z2k+1

)
≥ C

f2k+1
(LBk(λ, z2k+1)− f2k+1)

where we use (50) and that, for k large enough, 1 − 1√
z2k+1

≥ c > 0. Also, the − f2k+1

term only produces a constant contribution, which can be absorved by reducing C if λ is
sufficiently small. Using (100) with the same choice of k, we obtain

LBk(λ, 0) ≥ C
√
L(λ, 0),

which allied to the definition of f2k+1 = f2k+1(1) in (42), concludes that

λ2 D̃ ≥ C(log L(λ, 0))−1−ε
√
L(λ, 0).

Therefore, (12) follows from (20) and (21) and the proof of Theorem 3 is concluded. ��
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