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Abstract
The general covariant Fokker-Planck equations associated with the two different versions of
covariant Langevin equation in Part I of this series of work are derived, both lead to the same
reduced Fokker-Planck equation for the non-normalized one particle distribution function
(1PDF). The relationship between various distribution functions is clarified in this process.
Several macroscopic quantities are introduced by use of the 1PDF, and the results indicate
an intimate connection with the description in relativistic kinetic theory. The concept of
relativistic equilibrium state of the heat reservoir is also clarified, and, under the working
assumption that the Brownian particle should approach the same equilibrium distribution as
the heat reservoir in the long time limit, a general covariant version of Einstein relation arises.

Keywords Stochastic mechanics · Relativistic · General covariance · Fokker–Planck
equation · Einstein relation

1 Introduction

This is Part II of our series of works on relativistic stochastic mechanics. Part I of this series
has already been presented in [1]. The major subject of concern in Part I is the construction
of manifestly general covariant Langevin equation from the observer’s perspective. Two
different versions of relativistic Langevin equation (denoted LEτ and LEt respectively) were
proposed, among which LEτ takes the proper time τ of the Brownian particle as evolution
parameter andLEt takes the proper time t of some prescribed observer as evolution parameter.
It was shown that although LEτ contains some conceptual issues from the point of view of the
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prescribed observer, there is numerical evidence indicating that LEτ and LEt can produce
the same distribution in the same space of micro states (SoMS) for the case of (1 + 1)-
dimensional Minkowski spacetime, which in turn suggests that we may be able to extract
useful probability distributions from LEτ .

Besides Langevin equation, Fokker-Planck equation (FPE) is another important equation
in stochastic mechanics. The route leading from Langevin equation to FPE can be regarded
as a bridge from mechanics to statistical physics. The study of FPE was initiated about a
hundred years ago [2, 3], and the purpose is to analyze the diffusion phenomena (in the
configuration space) of suspended particles in solution. Kolmogoroff [4] gave an explanation
of the equation of the same form from the perspective of stochastic processes, therefore the
corresponding equation is also called Kolmogoroff equation. Later, Klein [5] and Kramers
[6] generalized the equation to the phase space. Chandrasekhar provided a detailed report on
the relevant topics [7], and the solution to the Klein-Kramers equation describing a relaxation
process was also given. All these works used the transition probability to study the evolution
of random variables. With the development of stochastic differential equations, related topics
have been extensively studied by use of Ito calculus [8], and some more modern methods
about this topic can be found in [9].

In the relativistic regime, there is noMarkov process satisfying causality on the spacetime
manifold [10, 11]. The only choice is to study FPE on the SoMS— a subspace of the future
mass shell bundle. This means that the equation to be considered needs to be of the Klein-
Kramers type. However, with the usual abuse of terminology, we still use the name FPE for
convenience.

The study of relativistic stochastic process can be traced back to Dudley [10, 12] and
Hakim [11, 13], who first discussed the space of states for stochastic processes in a model
independent way. The study of concrete relativistic stochastic processes, e.g. the relativistic
Ornstein-Uhlenbeck process, was carried out by Debbasch et al in [14]. Barbachoux et al [15,
16] made some discussions about the corresponding FPE (Kolmogoroff equation). Dunkel
et al [17–21] also studied similar topics in the special relativistic context, and their model
gave an intuitive understanding of the relativistic Brownian motion. Herrmann [22] and Haba
[23] extended the studies to general relativistic context, with some emphasis placed on the
manifest general covariance.

It is necessary to point out that, in all previous works, the important role played by
the observer has not beed sufficiently addressed. In this work, we shall show that properly
addressing the role played by the observer is the starting point in understanding different
versions of general covariant FPE that arise either directly or indirectly from the Langevin
equations LEτ and/or LEt proposed in [1]. In particular, the observer plays an important
role in the interpretation of various distribution functions that appear in different versions of
covariant FPE.

Another important aspect which has not been made sufficiently clear in previous works is
the state of the heat reservoir. The description for the non-relativistic Brownian motion of a
heavy particle inside a heat reservoir relies on two basic assumptions. First, the heat reservoir
should have reached thermodynamic equilibrium, and the only impact of the reservoir on the
Brownian particle is provided through thermal fluctuations, of which the fast and slow parts
manifest respectively in the Langevin equation in the form of stochastic and damping forces.
Second, the stochastic motion of the Brownian particle should be able to mimic a relaxation
process, which means that, after sufficiently long time, the probability distribution for the
Brownian particle should approach the same equilibrium distribution obeyed by the particles
from the heat reservoir. We shall see in Sect. 6 that the concept of equilibrium state for the
heat reservoir needs to be re-examined carefully in the relativistic context.
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This paper is organized as follows. In Sect. 2, we presents an introduction to the SoMS for
the Brownian particle and prepare the notations to be used in the forthcoming sections. The
description for the SoMS is placed on the same ground as in relativistic kinetic theory [24–
26], with the expectation that the deep connection between these complementary approaches
to non-equilibrium statistical physics could be further elucidated. Such a treatment is more
appealing than the alternative approaches, e.g. those making use of jet bundles. In Sect. 3, we
deduce the covariant FPEs from the Langevin equations with different evolution parameters
introduced in [1]. Sect. 4 is devoted to clarifying the relationship betweendifferent distribution
functions. In this section, we also introduce a new distribution, which is identified to be the
one particle distribution function (1PDF) in the sense of relativistic kinetic theory, together
with its evolution equation, i.e. the reduced FPE. Sect. 5 introduces some thermodynamic
quantities and thermodynamic relations, and the formulation seems to indicate some deep
connections between the approaches of stochastic mechanics and relativistic kinetic theory.
In Sect. 6, we clarify the meaning of the equilibrium state of the heat reservoir, and, by
assuming that the 1PDF should approach the intrinsic equilibrium distribution of the heat
reservoir, we deduce a general relativistic version of the Einstein relation. Finally, in Sect. 7,
we present a brief summary of the results.

2 The SoMS and Its Geometry

Since this work is a followup to Ref. [1], we use exactly the same notations and conventions
as in [1]. In particular, the spacetime manifoldM is taken to be a curved pseudo-Riemannian
manifold of dimension (d+1)with a mostly positive signature. The future mass shell bundle
�+
m over M is defined as

�+
m := {(x, p) ∈ TM | gμν(x)p

μ pν = −m2 and pμZμ(x) < 0}, (1)

in which Zμ(x) denotes the proper velocity of some observer field. Later on, we shall omit
the word “future” and simply refer to �+

m as the mass shell bundle. The momentum space
of the Brownian particle at the event x is identified as the intersection of the tangent space
TxM with the mass shell bundle and is referred to simply as the mass shell at x ,

(
�+
m

)
x := TxM ∩ �+

m , (2)

and the configuration space is labeled by the proper time t of a single prescribed observer,
Alice, as the level set

St := {x ∈ M|t(x) = t = const.},
where t(x) is an extension of the proper time t overM as a scalar field. Denoting the proper
velocity of Alice also by Zμ should produce no confusions. The SoMS of the Brownian
particle is then given by

�t :=
⋃

x∈St

(�+
m )x = {(x, p) ∈ �+

m |x ∈ St }, (3)

which is clearly observer-dependent. The above specification for the SoMS of the Brownian
particle naturally falls inline with the tangent bundle formalism of relativistic kinetic the-
ory [24–26]. This will certainly benefit for the communication between the two important
branches of non-equilibrium relativistic statistical physics. An immediate benefit is to adopt
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the Sasaki metric [27] for describing the local geometry of the tangent bundle (and subspaces
thereof).

Before proceeding, let us introduce our conventions on indices. We use both concrete
and abstract index notations, however with omissions of the abstract indices when there no
confusions could arise. Lower-case Greek letters α, β, μ, ν, ρ, ... denote concrete indices
and range from 0 to d . Latin capital letters A, B, ... and some lower-case Latin letters,
such as i, j, ..., also denote concrete indices. The upper-case Latin indices range from 0
to 2d and is associated with tensors on the mass shell bundle, while the lower-case Latin
indices i, j, ... range from 1 to d . The other lower-case Latin letters a, b, ... denote abstract
indices. Additionally, we use the calligraphy fonts, like F ,R andK, to denote tensors on the
momentum space (�+

m )x , and the cursive fonts, like N , Z and L , to denote tensors on the
mass shell bundle �+

m .
Since �+

m , (�+
m )x and �t are all subspaces of the tangent bundle TM, it is appropriate

to begin by describing the relevant geometric structures on TM. What really matters is the
tangent space of the tangent bundle, which can be subdivided into the direct sum of horizontal
and vertical subspaces [28, 29],

T(x,p)(TM) = H(x,p) ⊕ V(x,p), (4)

where H(x,p) is spanned by

eμ = ∂

∂xμ
− �α

μβ p
β ∂

∂ pα
, (5)

and V(x,p) is spanned by ∂/∂ pμ. Here �α
μβ represents the usual Christoffel connection

associated with the spacetime metric gμν .
The metric on the tangent bundle TM is given by the Sasaki metric, which can be written

as a direct sum of metrics on the two subspaces,

ĝab := gμνdx
μ
adx

ν
b︸ ︷︷ ︸

the metric of H(x,p)

+ gμν θμ
aθ

ν
b︸ ︷︷ ︸

the metric of V(x,p)

, (6)

where

θμ = dpμ + �μ
αβ p

αdxβ . (7)

{eμ, ∂/∂ pμ} and {dxμ, θμ} are dual bases on the tangent and cotangent spaces of the tangent
bundle respectively.As ahypersurface on the tangent bundle, themass shell bundle is naturally
equipped with an induced metric

ĥab := ĝab + N̂a N̂b, N̂ a := (m)−1 pμ

(
∂

∂ pμ

)a

, (8)

where N̂ a is the unit normal vector of the mass shell bundle. The metric of the mass shell
bundle can also be written as the direct sum of the metrics of the horizontal subspace and the
momentum space,

ĥab = gμνdx
μ
adx

ν
b︸ ︷︷ ︸

the metric of H(x,p)

+ �μν(p)θ
μ
aθ

ν
b︸ ︷︷ ︸

the metric of T(x,p)(�
+
m )x

, (9)

where

�μν(p) := gμν + m−2 pμ pν

123



Relativistic Stochastic Mechanics II: Reduced… Page 5 of 21 181

is the orthogonal projection tensor associated with pμ. The inverse of the metric ĥ reads

ĥab = gμνeμ
aeν

b + �μν(p)

(
∂

∂ pμ

)a (
∂

∂ pν

)b

. (10)

It is obvious that the metric on the momentum space (�+
m )x and its inverse are respectively

hab = �μν(p)θ
μ
aθ

ν
b, hab = �μν(p)

(
∂

∂ pμ

)a (
∂

∂ pν

)b

. (11)

Please remember that we use ĥab for the metric on the mass shell bundle and hab for the
metric on the fiber space alone.

Since �t is a hypersurface on the mass shell bundle, there is a normal vector field. This
normal vector field is given by

Z a = Zμeμ
a . (12)

Z a is actually an up-lift of the observer field onto the mass shell bundle.
Using the above metrics, it is easy to find the invariant volume elements on TM, �+

m and
(�+

m )x , respectively [25],

ηTM = g dx0 ∧ dx1 ∧ ... ∧ dxd ∧ dp0 ∧ ... ∧ dpd , (13)

η�+
m

= g

p0
dx0 ∧ dx1 ∧ ... ∧ dxd ∧ dp1 ∧ ... ∧ dpd , (14)

η(�+
m )x

=
√
g

p0
dp1 ∧ ... ∧ dpd , (15)

where we have introduced g = | det(gμν)|.
As mentioned above, {eμ, ∂/∂ pμ} is the basis of T(x,p)(TM), so an arbitrary tangent

vector on TM can be written as

V a = Vμe a
μ + Vμ

(
∂

∂ pμ

)a

. (16)

The vectors with vanishing components Vμ can also be treated as tangent vectors on the
tangent space, and these will be denoted as

Va = Vμ

(
∂

∂ pμ

)a

. (17)

For tangent vectors on the mass shell (�+
m )x , it is convenient to introduce the following

vector basis,
(

∂

∂ p̆i

)a

:=
(

∂

∂ pi

)a

− pi
p0

(
∂

∂ p0

)a

. (18)

Notice that, due to the mass shell condition, (�+
m )x has one less dimension than TxM, and so

are their respective tangent spaces. Since (�+
m )x is a hypersurface in TxM with normalized

normal vector N̂ a given in eq.(8), any tangent vector on (�+
m )x is automatically a tangent

vector on TxM. Therefore, we can also write the tangent vectors on (�+
m )x in terms of the

basis {(∂/∂ pμ)a}. In other words, any tangent vector Va on (�+
m )x acquires two different

component representations

Va = V i
(

∂

∂ p̆i

)a

and Va = Vμ

(
∂

∂ pμ

)a

.
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It is straightforward to check that these two representations are equivalent,

V i
(

∂

∂ p̆i

)a

= V i
(

∂

∂ pi

)a

− V i pi
p0

(
∂

∂ p0

)a

= V i
(

∂

∂ pi

)a

+ V0
(

∂

∂ p0

)a

= Vμ

(
∂

∂ pμ

)a

, (19)

wherein we have used the orthogonal condition Vμ pμ = V0 p0 + V i pi = 0. Similarly, the
inverse metric on the momentum space can be expressed in two different bases,

hab = �μν(p)

(
∂

∂ pμ

)a (
∂

∂ pν

)b

= �i j (p)

(
∂

∂ p̆i

)a (
∂

∂ p̆ j

)b

. (20)

In order to describe the different versions of FPE, it is customary to introduce the covariant
derivatives on each of the relevant manifolds using the standard conventions with the aid of
the metrics introduced above. However, this step can be skiped, because we only need the
covariant divergences. For a vector F A = (Fμ,F i ) on the mass shell bundle, the covariant
divergence is simply given by

∇̂(ĥ)
A F A = p0

g

∂

∂xμ

(
g

p0
Fμ

)
+ p0

∂

∂ p̆i

(
1

p0
F i

)
, (21)

where ∇̂(ĥ) is the covariant derivative on the mass shell bundle. If Fμ = 0, F reduces into
a vector on the momentum space, and the above equation becomes

∇̂(ĥ)
A F A = ∇(h)

i F i , (22)

which is automatically the covariant divergence on the the momentum space, with∇(h) being
the corresponding covariant derivative.

Finally, let us make some remarks on the notations and conventions. For any vector field
V a and any scalar field , the map from  to V a is denoted as V a[]. On the contrary, the
action of the vector field V a on  is denoted as V (). It is crucial to distinguish these two
notations in the following text.

3 Covariant FPEs

In this section, we shall derive the FPE associated with each version of the Langevin equation
presented in [1] and try to make sense of the corresponding probability distribution functions
(PDFs). In practice, there are different ways to obtain FPE from Langevin equation [30, 31].
To highlight the geometric interpretation, we will adopt the diffusion operator method [32].
A brief review of the method is presented in Appendix A, and the construction below will
be made as brief as possible in order to focus on the physical interpretations.

3.1 FPE Associated with LE�

The Langevin equation LEτ is given as follows,

dx̃μ
τ = p̃μ

τ

m
dτ, (23)
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d p̃μ
τ = [Rμ

a ◦S dw̃a
τ + Fμ

adddτ
] + KμνUνdτ − 1

m
�μ

αβ p̃
α
τ p̃

β
τ dτ, (24)

and the meaning of each term is described in detail in [1]. Since the stochastic forces arise
from thermal fluctuations from the heat reservoir, it is natural to expect that

Rμ
a → 0, Fμ

add → 0

in the low temperature limit.
Since LEτ preserves the mass shell condition, not all components of p̃μ could be viewed

as independent, and it is appropriate to take only p̃i as independent random variables. One
can introduce a corresponding probability distribution function (PDF)

τ (x
μ, pi ) := Pr[x̃μ

τ = xμ, p̃iτ = pi ] (25)

which describes the probability for the Brownian particle to appear at the position xμ in
the spacetime and meanwhile has the momentum pi at the proper time τ of the Brownian
particle itself. This PDF is pathological for two reasons. First, τ (xμ, pi ) depends on two
time variables τ and x0, which makes it hard to assign a physical interpretation; Second,
τ (xμ, pi ) is not a distribution on the SoMS�t , but rather on the full mass shell bundle �+

m .
However, there is no technical obstacle which prevents us from constructing the FPE obeyed
by τ (xμ, pi ).

In order to get the desired FPE, we need to construct the diffusion operator of eq.(24).
For Stratonovich type Langevin equation, the diffusion operator can always be written in the
form

A = δab

2
LaLb + L0. (26)

In the case of eq.(24), we have

La = Rμ
a

∂

∂ pμ
= Ri

a
∂

∂ p̆i
, (27)

L0 = pμ

m

∂

∂xμ
− 1

m
Γ μ

αβ p
α pβ ∂

∂ pμ
+ (Fμ

add + KμνUν

) ∂

∂ pμ

= 1

m
L +

(
F i
add + KiνUν

) ∂

∂ p̆i
, (28)

where L = pμeμ is the Liouville vector field [25]. Using the volume element of
mass shell bundle eq.(14), the adjoint of coordinate derivative operators can be obtained
straightforwardly,

(
∂

∂xμ

)∗
= − p0

g

∂

∂xμ

g

p0
, (29)

(
∂

∂ p̆i

)∗
= − p0

g

∂

∂ p̆i
g

p0
= − p0√

g

∂

∂ p̆i

√
g

p0
. (30)

With these operators, the adjoint of La and L0 can be obtained, which read

L∗
a = −∇(h)

i Ri
a, L∗

0 = − 1

m
L − ∇(h)

i

(
F i
add + KiνUν

)
, (31)

where we have used L ∗ = −L . The FPE can then be written as

∂ττ = A∗τ
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=
(

δab

2
L∗
aL

∗
b + L∗

0

)

τ

= δab

2
∇(h)
i Ri

a∇(h)
j R j

bτ − ∇(h)
i

(
F i
addτ + KiνUντ

)
− 1

m
L (τ )

= ∇(h)
i

[
1

2
Di j∇(h)

j τ + δab

2

(
Ri

a∇(h)
j R j

b

)
τ − F i

addτ − KiνUντ

]

− 1

m
L (τ ), (32)

where we have introduced the diffusion tensor Dμν := Rμ
aRν

a. Defining the vector field

Ia[τ ] :=
[
1

2
Di j∇(h)

j τ + δab

2

(
Ri

a∇(h)
j R j

b

)
τ − F i

addτ − KiνUντ

](
∂

∂ p̆i

)a

,

(33)

the FPE for τ can be written in more concise form

∂ττ = ∇(h)
i Ii [τ ] − 1

m
L (τ ). (34)

Eq.(34) can be viewed as a continuity equation for the PDF τ and its associated probability
flow J [τ ], which is defined as

J [τ ] := τ

m
L − I[τ ]. (35)

Here, the term proportional to the Liouville vector field corresponds to the contribution from
the free motion of the Brownian particle, while I[τ ] represents the contribution from the
interaction between the Brownian particle and the heat reservoir.

Please be reminded that we use the term “flow” instead of “current” to refer to the spatial
components of the objects which obey the continuity equation. The term “current” is reserved
for the full object, including the temporal component. Using the definition (35), eq. (34) can
be rewritten in the form

∂ττ + ∇̂(ĥ)
A J A[τ ] = 0. (36)

Eq.(36) implies that the surface integral

−
∫

�

η�tZAJ
A[τ ] (37)

should be the probability that theBrownian particle passes through the subarea� in the SoMS
�t per unit proper time of the Brownian particle. Although it looks puzzling to understand
eq.(36) as a continuity equation because of the presence of two time variables, this equation
still plays a key role while making connection to the alternative distribution function to be
introduced shortly.

3.2 FPE Associated with LEt

The second Langevin equation proposed in [1], i.e. LEt , arises from a reparametrization of
LEτ . The concrete form of LEt reads

d ỹμ
t = k̃μ

t

m
γ −1dt, (38)
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dk̃μ
t =

[
R̂μ

a ◦S dW̃a
t + F̂μ

adddt
]

+ K̂μνUνdt − 1

m
�μ

αβ k̃
α
t k̃

β
t γ −1dt, (39)

where t represents the proper time of Alice, the prescribed observer, and

ỹμ(t) = x̃μ(τ(t)), k̃μ(t) = p̃μ(τ(t)).

R̂μ
a, K̂μν and F̂μ

add are connected with their respective un-hatted counterparts via

R̂μ
a := γ −1/2Rμ

a,

K̂μν := γ −1Kμν, F̂μ
add := γ −1Fμ

add − δab

2
Rμ

aR j
b(γ −1/2∇̂ jγ

−1/2), (40)

and

λ := |∇t |, γ (x̃, p̃) := −λZμ p̃μ

m
. (41)

γ (x̃, p̃) plays the role of a local Lorentz factor, i.e. dτ = γ −1dt , which is also random-valued
because of the randommotion of the Brownian particle. The fact that the proper time τ of the
Brownian particle becomes a random variable from the observer’s perspective is the reason
why the reparametrization leading from LEτ to LEt is unavoidable.

The PDF for the Brownian particle described by eqs.(38)-(39) is

�t (x
μ, pi ) := Pr[ỹμ

t = xμ, k̃it = pi ]. (42)

Apparently, this PDF is also a two-time distribution, just like τ (xμ, pi ) given in eq.(25),
which is hard to understand physically. However, the PDF �t (xμ, pi ) actually encodes the
physical PDF f (xμ, pi ) on �t in the following manner. Recall that �t can be regarded as a
hypersurface on the mass shell bundle with normal vector fieldZ a . This relationship allows
us to introduce an invariant volume form on �t , i.e.

(η�t )a1,...,a2d := Z a0(η�+
m
)a0,a1,...,a2d . (43)

Since t is the proper time of Alice, there is no randomness in t , therefore, using the co-area
formula [33, 34] of geometric measure theory, we can write

�t (x
μ, pi ) = λδ(t(x) − t) f (xμ, pi ), (44)

in which f (xμ, pi ) is the desired physical PDF on�t . Let us stress that the volume elements
associated with �t (xμ, pi ) and f (xμ, pi ) are, respectively, η�+

m
and η�t .

Following a similar procedure which leads to the FPE (32), we can get the FPE for
�t (xμ, pi ), which is associated with LEt ,

∂

∂t
�t + 1

m
L (γ −1�t )

= ∇(h)
i

[
1

2
D̂i j∇(h)

j �t + δab

2

(
R̂i

a∇(h)
j R̂ j

b

)
�t − F̂ i

add�t − K̂iνUν�t

]

, (45)

where D̂μν := γ −1Dμν .
Now since

[
∂

∂t
+ γ −1 p

μ

m

∂

∂xμ

]
δ(t(x) − t) =

[
−1 + γ −1 p

μ

m

∂t

∂xμ

]
δ′(t(x) − t)

=
[
−1 + γ −1 dt

dτ

]
δ′(t(x) − t) = 0, (46)
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substituting eq.(44) into the left hand side of eq.(45) yields

∂

∂t
�t + 1

m
L (γ −1�t ) = δ(t(x) − t)

1

m
L (γ −1λ f ). (47)

On the other hand, the first three terms in the square bracket on the right hand side of eq.(45)
can be rearranged in the form

1

2
D̂i j∇(h)

j �t + δab

2

(
R̂i

a∇(h)
j R̂ j

b

)
�t − F̂ i

add�t

= 1

2
Di j∇(h)

j (γ −1�t ) + δab

2

(
Ri

a∇(h)
j R j

b

)
(γ −1�t ) − F i

add(γ
−1�t ). (48)

Therefore, the substitution of eq.(44) into eq.(45) yields

1

m
L (γ −1λ f ) = ∇(h)

i Ii [γ −1λ f ], (49)

where Ii [γ −1λ f ] is defined in a similar fashion as in eq.(34).
Notice that the FPEs (34) and (49) have a similar form. By dropping the time derivative

term ∂ττ in eq.(34) and replacing τ with γ −1λ f , eq.(34) can be changed into eq.(49).
This is certainly not a coincidence, and we will demonstrate in the next section how eq.(34)
is intimately related to eq.(49).

4 Reduced FPE

In Part I of this series of research [1], we used numerical method to investigate whether the
random paths generated by LEτ and LEt produce the same physical PDF on the SoMS �t .
The results in the example case of (1 + 1)-dimensional Minkowski spacetime indicate that
nearly identical distributions arise from the two Langevin equations LEτ and LEt . In this
section, we will provide an analytical proof in generic spacetimes. During this proof, we will
introduce a new distribution function, ϕ, together with its evolution equation, which we call
the reduced FPE.

Recall from eq.(37) that the integral −
∫

�

η�tZAJ
A[τ ] represents the probability that

the Brownian particle passes through the subregion � in the SoMS �t per unit proper time
of the Brownian particle. From the observer’s perspective, the condition “per unit proper
time of the Brownian particle” is irrelevant, the actual probability that the Brownian particle
passes through the subarea � should read

Pr[The particle passes through �] = −
∫

R

dτ
∫

�

η�tZAJ
A[τ ]

= −
∫

�

η�tZAJ
A[ϕ], (50)

where we have introduced

ϕ(x, p) :=
∫

R

dτ τ (x, p). (51)

Since � is an arbitrary subregion in the SoMS �t , the integrand −ZAJ
A[ϕ] in eq.(50)

should be the PDF for the intersection points of the random paths with the SoMS �t , i.e.

f = −ZAJ
A[ϕ] = − 1

m
Zμ pμϕ = γ λ−1ϕ. (52)
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Now let us consider a scenario in which the random paths of the Brownian particles are
infinitely stretched, i.e. extending from τ = −∞ to τ = ∞. It is natural to introduce the
boundary conditions

−∞(x, p) = +∞(x, p) = 0 (53)

for the PDFτ , because otherwiseτ will not be normalizable. Then, by integrating eq.(34)
with respect to τ , we can get

1

m
L (ϕ) = ∇(h)

i Ii [ϕ], (54)

where again Ii [ϕ] is defined in a similar way as in eq.(34).
Since ϕ differs from the true PDF f by the scalar factor γ λ−1, it cannot be a normalized

PDF. Therefore, the equation (54) obeyed by ϕ will not be referred to as FPE, but rather as
reduced FPE. Bearing in mind the relationship (52), one can easily recognize that eq.(54) is
actually identical to eq.(49). In other words, both the FPEs (34) and (45) give rise to the same
reduced FPE. This fact gives an analytical evidence for the correctness of the numerical test
presented in [1].

Some remarks are in due here.
(1) Since the reduced FPE (54) is homogeneous in ϕ and there is no need to normalize ϕ,

there is a freedom to multiply ϕ with a constant factor which preserves eq.(54). This freedom
will be used in the next section while defining the particle number density of the Brownian
particle.

(2) There is a common misconception about the role ofτ regarding a particular case, i.e.
the stationary distribution τ (x, p) := (x, p), which is often considered to be identical to
the equilibrium distribution for the particles of the heat reservoir, i.e. the Jüttner distribution.
Technically it is true that, when τ is independent of τ , eq. (34) will take the same form as
eq.(54). However, this coincidence does not imply that ϕ(x, p) is identical to the stationary
distribution (x, p). There are two primary reasons for this difference: (i) The stationary
distribution is a distribution which does not change with the time of some stationary observer,
rather than of the Brownian particle; (ii) The identification of ϕ(x, p) with the stationary
distribution (x, p) implies that the reduced FPE can only describe the stationary states,
whereas it can actually describe the whole relaxation process, as will be demonstrated in
Sect. 5 and Sect. 6.

Following a similar fashion with eq.(35), we can introduce a current associated with ϕ,

J [ϕ] := ϕ

m
L − I[ϕ].

Then the reduced FPE (54) could be rewritten as the current conservation equation

∇̂(ĥ)
A J A[ϕ] = 0 (55)

on the mass shell bundle. Let us stress that J [ϕ] is now interpreted as a current, rather
than flow, because only a single time variable is present in the above equation which is
hidden behind the index A. The conservation of the current J A[ϕ] does not correspond to
conservation of probability, but rather to conservation of matter. More details on this point
will be presented in the next section.

123



181 Page 12 of 21 Y. Cai et al.

5 Macroscopic Quantities and Interpretation of '(x,p)

Let S be an arbitrary subregion in the configuration space St , and� := {(x, p) ∈ �+
m |x ∈ S}

is the corresponding subregion in the SoMS. When Alice is not bound together with the
coordinate system, the proper time t will be different from the coordinate time x0, which
means that St is not the coordinate hypersurface with fixed x0, but rather a tilted hypersurface
with mixtures between x0 and xi . Nevertheless, since the PDF f (x, p) is by definition the
probability density on �t , and that η�t = ηSt ∧ η(�+

m )x
, we can calculate the probability for

the Brownian particle to appear in S at the time t as

Pr[S] = Pr[�] =
∫

�

η�t f

= −
∫

�

η�tZaJ
a[ϕ] = −

∫

S
ηSt Zμ

∫

(�+
m )x

η(�+
m )x

pμ

m
ϕ. (56)

The change from f to ϕ in the integrand of the last equality reflects the tiltedness of St in
the spacetime.

Now consider the case with N non-interacting Brownian particles coexisting in the same
heat reservoir. By putting an extra factor N in front of the integrals in eq.(56) and enlarging
� into �t , we should get N as the final value of the integration. Therefore, by dropping the
integral over S, we get the particle number density in the configuration space

n̄ = −N Zμ

∫

(�+
m )x

η(�+
m )x

pμ

m
ϕ. (57)

Recall that the particle number density should be defined as

n̄ = −ZμN
μ[ϕ],

wherein Nμ denotes the particle number current. At present, the particle number current
reads

Nμ[ϕ] =
∫

(�+
m )x

η(�+
m )x

pμ

m
Nϕ. (58)

It is remarkable that the above form of the particle number current is identical to that given
in relativistic kinetic theory (except for the constant factor N ), provided that ϕ is identified
with the 1PDF which obeys the relativistic Boltzmann equation. This resemblance reminds
us that there may be some deep connections between the approaches of relativistic stochastic
mechanics and of relativistic kinetic theory.

Since there is no chemical reactions between the Brownian particles, the particle current
must be conserved. This fact can be proved using Stokes’ theorem. Let V be an region in
the spacetime manifold M, and � = {(x, p) ∈ �+

m | x ∈ V } is the corresponding region on
the mass shell bundle. Let nμ be the unit normal vector field of ∂V which induces the unit
normal vector field N of ∂�. The Stokes’ theorem on the mass shell bundle reads

∫

�

η�+
m
∇̂(ĥ)

A J A[ϕ] =
∫

∂�

η∂�NAJ
A[ϕ]. (59)

Using the fact that ∂� = {(x, p) ∈ �+
m | x ∈ ∂V } and that N a = nμeμ

a , we can rewrite the
above equation as

∫

V
ηM

∫

(�+
m )x

η(�+
m )x

∇̂(ĥ)
A J A[ϕ] =

∫

∂V
η∂V

∫

(�+
m )x

η(�+
m )x

NAJ
A[ϕ]

123



Relativistic Stochastic Mechanics II: Reduced… Page 13 of 21 181

= 1

N

∫

∂V
η∂V nμN

μ[ϕ] = 1

N

∫

V
ηM∇μN

μ[ϕ], (60)

where ∇μ denotes the usual covariant derivative on the spacetime manifold. Due to the
arbitrariness of V , we can drop the integration with respect to the measure ηM and get

∇μN
μ[ϕ] = N

∫

(�+
m )x

η(�+
m )x

∇̂(ĥ)
A J A[ϕ] = 0, (61)

which means that Nμ[ϕ] is a conservation current on the spacetime.
The energy of a single Brownian particle measured by Alice is defined as

E := −pμZμ. (62)

Thus the single particle contribution to the average energy flux through the subregion � in
the SoMS �t should read

Ē[�] :=
∫

�

η�ZAJ
A[ϕ]pμZμ =

∫

S
ηS ZμZν

∫

(�+
m )x

η(�+
m )x

pν pμ

m
ϕ. (63)

The second integration factor, i.e.

Tμν[ϕ] :=
∫

(�+
m )x

η(�+
m )x

pν pμ

m
ϕ, (64)

is recognized to be the single particle contribution to the energy-momentum tensor, and

ρ := ZμZνT
μν[ϕ] = ZμZν

∫

(�+
m )x

η(�+
m )x

pν pμ

m
ϕ (65)

is naturally the single particle contribution to the energy density.
The single particle contribution to the average energy-momentum vector of the Brownian

particle is defined as

Eμ[ϕ] := −ZνT
μν[ϕ].

In general, Eμ[ϕ] is non-conserved because of the joint effects of gravitational work and
heat transfer from the heat reservoir. Since

−
∫

V
ηM∇μ(ZνT

μν[ϕ]) = −
∫

∂V
η∂V nμZνT

μν[ϕ]

= −
∫

∂V
η∂V

∫

(�+
m )x

η(�+
m )x

(Zν p
ν)nμ

pμ

m
ϕ

=
∫

∂V
η∂V

∫

(�+
m )x

η(�+
m )x

NAJ
A[ϕ]E =

∫

V
ηM

∫

(�+
m )x

η(�+
m )x

∇̂(ĥ)
A (EJ A[ϕ]), (66)

we have

∇μE
μ[ϕ] = −∇μ

(
ZνT

μν[ϕ]) = −
∫

(�+
m )x

η(�+
m )x

∇̂(ĥ)
A

(
pν ZνJ

A[ϕ]
)

= −
∫

(�+
m )x

η(�+
m )x

J A[ϕ]∇̂(ĥ)
A

(
pν Zν

)

= −
∫

(�+
m )x

η(�+
m )x

( ϕ

m
L (Zν p

ν) − ZνIν[ϕ]
)

= −Tμν[ϕ]∇μZν + Zν

∫

(�+
m )x

η(�+
m )x

Iν[ϕ]. (67)
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The first term on the right hand side of eq.(67) is the average gravitational power acting on
the Brownian particle, i.e.

Pgrav[ϕ] := −Tμν[ϕ]∇μZν =
∫

(�+
m )x

η(�+
m )x

Pgrav(Z)ϕ, (68)

where

Pgrav(Z) = − pμ pν

m
∇μZν (69)

is the the gravitational power along a single trajectory of the particle [35] as measured by
Alice. Thus the second term on the right hand side of eq.(67) should be interpreted as the
heat transfer rate from the heat reservoir,

Q[ϕ] :=
∫

(�+
m )x

η(�+
m )x

ZνIν[ϕ] = −Zν∇μT
μν[ϕ]. (70)

In the end, we have

∇μE
μ[ϕ] = Pgrav[ϕ] + Q[ϕ], (71)

which is reminiscent to the first law of thermodynamics, but is presented in terms of the
divergence of the average energy-momentum vector, the gravitational power and the heat
transfer rate. Please note that the last equation is valid for any observer. However, for different
observers, the values of Pgrav[ϕ] and Q[ϕ] can be different.

6 Relativistic Equilibrium State and Einstein Relation

So far, we have not paid a word on the state of the heat reservoir, except for the implicit
assumption of an equilibrium state. This does not make any harm to the formal construction
of FPE. However, when the solution to the FPE is concerned, an explicit description for the
equilibrium state of the reservoir becomes inevitable.

As mentioned in the introduction, there are two basic assumptions in the description for
the Brownian motion of a heavy particle in a heat reservoir. In the relativistic context, these
assumptions need to be re-examined.

The first problem one encounters is the proper definition for the equilibrium state of the
reservoir. It is well known that, in the presence of gravity, a macroscopic system cannot reach
the thermodynamic equilibrium in the usual sense, i.e. the one with uniform temperature and
chemical potential. The reason lies in that there is a bilateral interaction between thermal and
gravitational effects. On the one hand, thermal energy as a form of energy should generate
gravity; on the other hand, gravity, as a long range interaction, has nontrivial impact on the
relaxation process, leading to the final state with non-uniform temperature and chemical
potential.

Meanwhile, the choice of observer also brings about some subtleties in describing the state
of the heat reservoir. The importance of the role of observer can be revealed in two different
aspects: i) According to the equivalence principle, gravity is locally indistinguishable from
acceleration. Therefore, the strength of the gravitational force experienced by the observer
and by the macroscopic system being observed could be different, provided the amounts
of accelerations are different. ii) There has long been a dispute on the of relativistic trans-
formation rules of thermodynamic parameters, mostly about the transform of temperature,
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but also include the transform of chemical potential. According to the results of [36], these
transformation rules are related to the choice of observer.

Due to the above reasons, we need to answer the following questions in order to clarify
the state of the heat reservoir:

Q1.What is a relativistic equilibrium state? Is the equilibrium state observer-dependent?
Q2.What is the equilibrium distribution for particles of the heat reservoir?
Q3. Is this distribution observer-dependent?

Fortunately the answers to these questions can be inferred from the studies on relativistic
kinetic theory. To answer Q1, let us infer that equilibrium states could be viewed as the final
states of relaxation processes, and a system carrying out a relaxation process should not care
about who is observing it. Therefore, the final state of the relaxation process should not be
affected by the choice of observer. Given an isolated system, there can only be one intrinsic
equilibrium state, i.e. the state in detailed balance, which is characterized by several macro-
scopic features, including the absence of entropy production rate and vanishing collision
integral in the Boltzmann equation.

From the point of view of the comoving observer, Bob, the equilibrium state has one extra
feature, i.e. the absence of transport flows.Bydefinition, the proper velocity ofBob is identical
to the proper velocity Uμ of an element of the heat reservoir viewed as a relativistic fluid.
The same Uμ also appeared in the damping force term in the Langevin equation. According
to [37, 38], the driving forces for the relativistic transports are the generalized gradients for
the temperature and chemical potential, which are dependent on the proper velocity of the
observer. For the comoving observer Bob, the generalized gradients for the temperature and
chemical potential read

DνTB = ∇νTB + TBU
ρ∇ρUν = 0, DνμB = ∇νμB + μBU

ρ∇ρUν = 0, (72)

where TB andμB respectively are the temperature and chemical potential of the heat reservoir
measured by Bob. One immediately sees that the ordinary gradients ∇νTB and ∇νμB are
nonzero, unless Bob undergoes geodesic motion, i.e. Uρ∇ρUν = 0. In the latter case, TB
and μB becomes uniform, which is fully consistent with the definition of equilibrium state
in the non-relativistic thermodynamics.

The answer to Q2 is also provided by relativistic kinetic theory, and the explicit 1PDF for
the heat reservoir is given by the Jüttner-like distribution [39]

ϕHR(x, p) = g

eα−Bμ pμ − ς
= g

eα−Uμ pμ/TB − ς
= g

e(εB−μB)/TB − ς
(73)

provided that the background spacetime is stationary, where ς = 0,±1, g denotes the
quantum degeneracy, εB = −Uμ pμ is the energy of the particle measured by Bob, μB is
the chemical potential of the heat reservoir, and α = −μB/TB is a constant in spacetime. In
order that the distribution (73) indeed describes a state in detailed balance, the vector field
Bμ = Uμ/TB is required to be timelike Killing, i.e.

∇(μBν) = 0. (74)

The existence of a timelike Killing field implies that the underlying spacetime needs to be
stationary.

We assume that the heat reservoir is consisted of purely classical particles. In this case,
the above 1PDF becomes the standard Jüttner distribution

ϕHR(x, p) = e−α+Uμ pμ/TB = e(μB−εB)/TB . (75)
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The 1PDF ϕHR(x, p) as presented in the form (75) contains the proper velocity Uμ of Bob
and the temperature TB measured by Bob, thus it is explicitly dependent on the choice of
observer. This answers Q3. It is remarkable that the distribution (75) has the same form as the
non-relativistic Boltzmann distribution. However, due to eq.(72), the above distribution is in
fact different from the Boltzmann distribution, because TB and μB are now non-uniform.

It is interesting to ask what the distribution (75) would look like from the point of view
of Alice. To answer this question, let us remind that all measurements in curved spacetime
must be made on the spot. Therefore, to consider the distributions of the same particles, Alice
and Bob must appear at the same spacetime event, and their proper velocities can differ by
at most a local Lorentz boost. Let γAB denotes the relative Lorentz factor between Alice and
Bob. Then the proper velocity Uμ of Bob can be expressed as

Uμ = γAB
(
Zμ + zμ

)
, γAB = −(UμZ

μ)−1, zμUμ = 0, (76)

The energy of the particle observed by Alice reads εA = −Zμ pμ. Denoting the temperature
and chemical potential of the heat reservoir measured by Alice as TA and μA respectively,
we get, by inserting the eq.(76) into eq.(75), the following distribution,

ϕHR(x, p) = e−α+γAB(Zμ+zμ)pμ/TB = e[μB+γAB(Zμ+zμ)pμ]/TB

= e[(γAB)−1μB+Zμ pμ+zμ pμ]/TA = e(μA−εA+zμ pμ)/TA , (77)

where the temperatures and the chemical potentials measured by both observers are related
as [36]

TA = (γAB)−1TB, μA = (γAB)−1μB. (78)

Now let us proceed with the second basic assumption for the Brownian motion un-altered,
hence the the probability distribution for the Brownian particle should approach the same
form as the 1PDF for the heat reservoir after sufficient long time, i.e.

ϕ(x, p) → ϕHR(x, p) = e−α+Uμ pμ/TB as t → ∞. (79)

The above assumption also implies that the long time limit of the heat transfer rate Q[ϕ]
should approach zero, because for the Jüttner distribution ϕ, we always have ∇μTμν[ϕ] = 0
and thus Q[ϕ] = Zν∇μTμν[ϕ] = 0. This result is independent of Zμ. It is worth noting
that the condition Q[ϕ] = 0 does not necessarily imply ZμIμ[ϕ] = 0. When the latter fails
to vanish, it means that the Brownian particle is more likely to absorb heat from in some
states and is more likely to transfer heat to the heat reservoir in some other states. Although
the heat transfer between different micro states cancels out, this may lead to a deviation
from detailed balance in the transition probabilities between different micro states, causing
a change in the momentum distribution of the Brownian particle. Therefore, the detailed
thermal equilibrium between the Brownian particle and the heat reservoir should be given
by the stronger condition ZμIμ[ϕ] = 0. Due to the arbitrariness in the choice of Zμ, this
condition can be further reduced to I[ϕ] = 0, i.e.

1

2
Di j∇(h)

j ϕ + δab

2

(
Ri

a∇(h)
j R j

b

)
ϕ − F i

addϕ − KiνUνϕ = 0. (80)

Inserting eq.(79) into eq.(80) we have

Fμ
add =

[
1

2TB
Dμν − Kμν

]
Uν + δab

2
Rμ

a∇(h)
j R j

b. (81)
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In the low temperature limit, both Fμ
add and

δab

2
Rμ

a∇(h)
j R j

b tends to vanish at least as

O(TB). Therefore we get

Dμν = 2TBKμν + O(T 2
B ), (82)

where the extraO(T 2
B ) term is dependent on the choice of damping model. When appropriate

damping model is taken, e.g. like in [40], this term can be removed completely, yielding

Dμν = 2TBKμν. (83)

This relation is the general relativistic analogue of the celebrated Einstein relation.
As a simple intuitive example case, let us consider the isotropic damping model in which

the diffusion tensor and tensorial damping coefficients are given as

Kμν = κ�μν(p), Dμν = D�μν(p), (84)

where k and D are both scalar functions, i.e. the scalar friction coefficient and diffusion
coefficient respectively. Then the Einstein relation will degenerate into

D = 2κTB, (85)

which is formally identical to that arises from non-relativistic linear response theory, except
that TB now could have a nonvanishing ordinary gradient because of eq.(72). This result
suggests that linear response theory should still hold in the relativistic context, at least locally.

When the Einstein relation (83) holds precisely, we have

Fμ
add = δab

2
Rμ

a∇(h)
j R j

b. (86)

This result has already been adopted in [1] while constructing the general covariant Langevin
equations. Inserting eq.(86) into the definition of I[ϕ] yields

I[ϕ] =
[
1

2
Di j∇(h)

j ϕ − KiνUνϕ

]
∂

∂ p̆i
. (87)

This formula provides a physical image of how the Brownian particle reaches equilibrium
after long time of relaxation. The damping force causes a heat transfer from the Brownian
particle to the heat reservoir, while the stochastic force causes a heat transfer form the heat
reservoir to the Brownian particle. After long time of relaxation, the damping and stochastic
forces balances each other in the statistical sense.

As a final remark, let us mention that, due to the transformation rule (78), the Einstein
relation rewritten in terms of the temperature measured by Alice should read

Dμν = 2γABTAKμν.

7 Conclusion

The major results of the present work can be summarized as follows.
1) The general covariant FPEs associated with both versions of the general relativistic

Langevin equation proposed in Ref. [1] are presented, both give rise to the same reduced FPE
obeyed by the 1PDF ϕ(x, p) for the Brownian particle. The relationship between different
distribution functions is clarified.
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2) Several important macroscopic quantities and the quantitative relationships between
them are obtained with the aid of the 1PDF which obeys the reduced FPE. These quantities
and relationships reveal a close connection between the approaches of stochastic mechanics
and relativistic kinetic theory.

3) The meaning of the relativistic equilibrium state of the heat reservoir is properly
addressed, and, by assuming that the long time relaxation result for the 1PDF of the Brownian
particle should be identical to the 1PDF of the heat reservoir, we derive a general covariant
version of the Einstein relation.

These results resolve several common confusions which exist in the literature. Moreover,
we hope to use these results as the starting point for further exploring some important subjects
in relativistic macroscopic systems, e.g. the origin of irreversibility in relativistic systems,
the area law of near horizon entropies, etc. More on these topics will come about later.
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Appendex A: Diffusion Operator Approach to the FPE

In order to derive the FPE from a stochastic differential equation (SDE), we need to use Ito’s
lemma to calculate the differential of an arbitrary scalar function, and perform integration by
parts twice. When the SDE is defined on a manifold, this procedure can be very complicated.

There is a simpler approach, i.e. the diffusion operator approach [32], for obtaining the
FPE on a manifold. Here we give a brief review of this alternative method.

The Ito type SDE on Riemannian manifold or Pseudo-Riemannian manifold (M, g) can
be written as

d X̃μ
t = Fμdt + Cμ

a ◦I dw̃a
t . (88)

Let h be an arbitrary scalar field on M , then the time differential of h̃t := h(X̃t ) can be
derived by Ito’s lemma:

dh̃t =
[

∂h

∂xμ
Fμ + δab

2

∂2h

∂xμ∂xν
Cμ

aC
ν
b

]

dt + ∂h

∂xμ
Cμ

a ◦I dw̃a
t . (89)

Therefore, the expectation of dh̃t is

〈dh̃t 〉 =
〈

∂h

∂xμ
Fμ + δab

2

∂2h

∂xμ∂xν
Cμ

aC
ν
b

〉

dt . (90)

This means 〈h̃t 〉 is differentiable with respect to time in spite of the fact that h̃t isn’t
differentiable. Defining the diffusion operator as

A = Fμ ∂

∂xμ
+ δab

2
Cμ

aC
ν
b

∂2

∂xμ∂xν
, (91)
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the derivative of 〈h̃t 〉 can be written as

d

dt
〈h̃t 〉 = 〈Ah̃t 〉. (92)

Let t (x) := Pr[X̃t = x] be a PDF associated with the invariant volume element
√
gdnx

of M , above equation actually means

d

dt

∫

M
ht

√
gdnx =

∫

M
h∂tt

√
gdnx =

∫

M
tAh

√
gdnx =

∫

M
(A∗t )h

√
gdnx, (93)

where A∗ is the adjoint of A. Since h is arbitrary, the above equation implies

∂tt = A∗t , (94)

which is the FPE associated with the SDE (88).
There are four rules for computing the adjoint operator:

1. (A + B)∗ = A∗ + B∗.
2. (AB)∗ = B∗A∗.

3.

(
∂

∂xμ

)∗
= − 1√

g

∂

∂xμ

√
g, where the right hand side needs to be understood as a right

associative operator.
4. (Fμ)∗ = Fμ.

Using these rules, the adjoint of the diffusion operator (91) is evaluated to be

A∗ = − 1√
g

∂

∂xμ

√
gFμ + δab

2

1√
g

∂2

∂xμ∂xν

√
gCμ

aC
ν
b. (95)

Since the Stratonovich type SDE

d X̃μ = Fμdt + Cμ
a ◦S dw̃a (96)

is equivalent to the Ito type SDE

d X̃μ =
(

Fμ + δab

2
Cν

a
∂

∂xν
Cμ

b

)

dt + Cμ
a ◦I dw̃a, (97)

the corresponding diffusion operation reads

A =
(

Fμ + δab

2
Cν

a
∂

∂xν
Cμ

b

)
∂

∂xμ
+ δab

2
Cν

aC
μ
b

∂2

∂xμ∂xν

= Fμ ∂

∂xμ
+ δab

2
Cν

a
∂

∂xν
Cμ

b
∂

∂xμ
. (98)

Introducing the vector fields

L0 = Fμ ∂

∂xμ
La = Cμ

a
∂

∂xμ
, (99)

the diffusion operation can be written as simpler form

A = δab

2
LaLb + L0. (100)

It is easy to see that L0 provides the drift term of FPE and La provides the diffusion term.
Notice that the adjoint of the coordinate derivative operator looks like the covariant divergence
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operator when acting on a vector field. Therefore, the action of the adjoint of A on the PDF
becomes

A∗t = δab

2
L∗
aL

∗
bt + L∗

0t

= δab

2
∇μ(Cμ

a(∇νC
ν
bt )) − ∇μ(Fμt ). (101)

Inserting this result into eq.(94) gives rise to the Fokker-Planck equation associated with the
Stratonovich type SDE (96).
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