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Abstract
Two different versions of relativistic Langevin equation in curved spacetime background
are constructed, both are manifestly general covariant. It is argued that, from the observer’s
point of view, the version which takes the proper time of the Brownian particle as evolution
parameter contains some conceptual issues, while the one which makes use of the proper
time of the observer is more physically sound. The two versions of the relativistic Langevin
equation are connected by a reparametrization scheme. In spite of the issues contained in
the first version of the relativistic Langevin equation, it still permits to extract the physical
probability distributions of the Brownian particles, as is shown by Monte Carlo simulation
in the example case of Brownian motion in (1 + 1)-dimensional Minkowski spacetime.

Keywords Relativistic Langevin equation · General covariance · Observer dependence ·
Reparametrization

1 Introduction

General relativity and non-equilibrium statistical physics are two important frontiers of mod-
ern theoretical physics. In spite of the significant progresses in their respective fields, the study
on the overlap between these two fields remains inactive. However, owing to the develop-
ment in astrophysics, there are more and more scenarios in which both general relativity
and non-equilibrium statistical physics are important. Therefore, it becomes necessary and
of utmost importance to take the combination of general relativity and non-equilibrium sta-
tistical physics more seriously.
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There are two major branches in non-relativistic non-equilibrium statistical physics, i.e.
kinetic theory and stochasticmechanics. The study of kinetic theory started fromBoltzmann’s
works, and its relativistic version also has a long history (which can be traced back to Jüt-
tner’s works in 1911 [1]). Currently, the framework of relativistic kinetic theory looks fairly
complete [2–5]. In contrast, the study of relativistic stochastic mechanics is still far from
being accomplished. Since the relativistic Ornstein-Uhlenbeck process was proposed about
20 years ago [6], there appeared some attempts in relativistic stochastic mechanics [7–15],
mostly in the special relativistic regime. However, apart from Herrmann [14, 15] and Haba’s
[16] works, the manifest covariance of stochastic mechanics is typically absent. Some work
[11] considered concrete curved spacetime background without paying particular attention
to general covariance. There are also some other works which focus on the covariance of
stochastic thermodynamics [17, 18], but those works have nothing to do with relativity.

The random motion of heavy particles began to attract scientific interests in the late
nineteenth and early twentieth centuries, as it provides a simple example for the diffusion
phenomena. Einstein [19, 20] and Smoluchowski [21] showed that the random motion is
closely related to macroscopic environment, however, the microscopic description of the
random motion has not been established. Later, Langevin [22] wrote down the first equa-
tion of motion for a Brownian particle by his physical intuition, which inspired subsequent
explorations about the microscopic mechanisms of Brownian motion. In the 1960–1970s,
a series of models [23–25] were proposed in this direction, which made it clear why the
disturbance from the heat reservoir could be viewed as Gaussian noises, and hence a bridge
between microscopic mechanical laws and non-equilibrium macroscopic phenomena is pre-
liminarily established in the non-relativistic regime. Since the 1990s, the so-called stochastic
thermodynamics based on top of Langevin equation was established [26, 27].

To some extent, the challenge in constructing a covariant Langevin equation arises from the
underestimation about the role of the observer. Unlike general relativity which concentrates
mainly on the universal observer independent laws about the spacetime, statistical physics
concentrates more on the observational or phenomenological aspects, which are doomed to
be observer dependent. The lack of manifest covariance in some of the works on relativistic
Langevin equation, e.g. [6–10], stems from the choice of the coordinate time as evolution
parameter. As exceptional examples, Herrmann [14, 15] and Haba’s [16] work adopted the
proper time of the Brownian particle as evolution parameter and the corresponding versions
of Langevin equation are indeed manifestly covariant. Nevertheless, the role of the observer
is still not sufficiently stressed in those works, and it will be clear that, from the observer’s
point of view, the proper time of the Brownian particle should not be thought of as an appro-
priate evolution parameter. The present work aims to improve the situation by reformulating
the relativistic Langevin equation from the observer’s perspective and taking the observer’s
proper time as evolution parameter. In this way, we obtain the general relativistic Langevin
equation which is both manifestly general covariant and explicitly observer dependent.

This work is Part I of a series of two papers under the same main title “Relativistic
stochastic mechanics”. Part II will be concentrated on the construction of Fokker-Planck
equations associated with the Langevin equations presented here.

This paper is organized as follows. In Sect. 2, we first clarify certain conceptual aspects
of relativistic mechanics which are otherwise absent in the non-relativistic context. These
include the explanation on the role of observers, the choice of time and the conventions on
the space of micro states (SoMS). Sect. 3 is devoted to a first attempt for the construction of
general relativistic Langevin equation. To make the discussions self contained, we start from
a brief review about the non-relativistic Langevin equation, and then pay special attentions
toward the form of the damping and additional stochastic forces in the relativistic regime. As
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the outcome of these analysis, we write down a first candidate for the relativistic Langevin
equation [referred to as LEτ ], which is manifestly general covariant. It is checked that the
stochastic motion of the Brownian particle following this version of the Langevin equa-
tion does not break the mass shell condition. However, since this version of the relativistic
Langevin equation employs the proper time τ of the Brownian particle as evolution param-
eter, there are still some issues involved in it, because, from the observer’s point of view, τ
itself is a random variable, which is inappropriate to be taken as an evolution parameter. The
problem with LEτ is resolved in Sect. 4 by introducing a reparametrization scheme, which
yields another version of the relativistic Langevin equation [LEt ], which employs the proper
time t of the prescribed observer as evolution parameter. In Sect. 5, the stochastic motion of
Brownian particles in (1 + 1)-dimensional Minkowski spacetime driven by a single Wiener
process and subjects to an isotropic homogeneous damping force is analyzed by means of
Monte Carlo simulation. It is shown that, in spite of the issues mentioned above, LEτ still
permits for exploring the physical probability distributions, and the resulting distributions
are basically identical to those obtained from LEt . Finally, we present some brief concluding
remarks in Sect. 6.

2 Observers, Time, and the SoMS

As mentioned earlier, we are interested in describing the stochastic motion of Brownian
particles in a generic spacetime manifold M. To achieve this goal, a fully general covariant
description for the SoMS and equations of motion are essential.

Determining amicro state of a classical physical system requires the simultaneous determi-
nation of the concrete position and momentum of each individual particle at a given instance
of time. In Newtonian mechanics, there is an absolute time, therefore, there is no ambiguity
as to what constitutes a “given instance of time”. However, in relativistic regime, the concept
of simultaneity becomes relative, and in order to assign a proper meaning for a micro state,
one needs to introduce a concrete time slicing (or temporal foliation) of the spacetime at first.
There are two approaches to do so, i.e. (1) choosing some coordinate system and making
use of the coordinate time as the slicing parameter; (2) introducing some properly aligned
observer field and choosing the proper velocity Zμ (ZμZμ = −1) of the observer field
as normalized normal vector field of the spatial hypersurfaces consisting of “simultaneous
events”, which is also referred to as the configuration space. Let us recall that an observer
in a generic (d + 1)-dimensional spacetime manifold M is represented by a timelike curve
with normalized future-directed tangent vector Zμ which is identified as the proper veloc-
ity of the observer. An observer field is a densely populated collection of observers whose
worldlines span the full spacetime. The second slicing approach is always possible because
each observer naturally carries a Frenet frame with orthonormal basis eμ

ν̂ with eμ
0̂ := Zμ,

and, as one of the basis vector field, Zμ naturally satisfies the Frobenius theorem

Z[μ∇ν Zρ] = 0,

which in turn implies the existence of spacelike hypersurfaces which take Zμ as normal
vector field.

In practice, the two time slicing approaches can be made identical. One only needs to
choose the specific observers whose proper velocity covector field Zμ is proportional to
(dx0)μ. However, such an identification often obscures the role of the observer field andbrings
about the illusion that the corresponding description is necessarily coordinate dependent and
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lacks the spacetime covariance. Therefore, it will be preferable to take the choice of not
binding the coordinate system and the observer field together and focusing on explicit general
covariance.

While an observer field can be used to identify which events happens simultaneously, it
cannot uniquely specify the timing of the configuration spaces. To achieve this, we need to
pick a single observer, referred to as Alice, from the set of observers. The integral curve of
this particular observer can be denoted as xμ(t), where t represents the proper time of this
single observer. In principle, we can extend t into a smooth scalar field t(x) over the whole
spacetime manifold, such that we can label the configuration space at the proper time t of
Alice unambiguously as the hypersurface St := {x ∈ M|t(x) = t = const.}. The union
of St at all possible t covers M. Notice that, in general, t , x0 (the zeroth component of
the coordinate system) and τ (the proper time of the Brownian particle) can all be different
entities.

The momentum of a relativistic particle is a tangent vector of the spacetime manifold1

M. Accordingly, the momentum space of a particle should be a subset of the tangent bundle
TM of the spacetime, because the momentum must obey the mass shell condition

S(x, p) := pμ pμ + m2 = gμν(x)p
μ pν + m2 = 0. (1)

Moreover, the momentum of a massive particle must be a future-directed timelike vector, i.e.
pμZμ(x) < 0. Putting these requirements together, we conclude that the SoMS of a massive
relativistic particle must be a subspace of the future mass shell bundle �+

m ,

�+
m := {(x, p) ∈ TM| gμν(x)p

μ pν = −m2 and pμZμ(x) < 0}.
The geometry of future mass shell bundle is decided by the Sasaki metric[28], and its asso-
ciated volume element is

η�+
m

= det(g)

p0
dx0 ∧ dx1 ∧ ... ∧ dxd ∧ dp1 ∧ ... ∧ dpd . (2)

The momentum space at the event x ∈ M is simply the fiber of the future mass shell bundle
�+
m at the base point x ,

(�+
m )x := TxM ∩ �+

m .

Please be aware that the SoMS of amassive relativistic particle is not the full futuremass shell
bundle �+

m , because the configuration space is only the spacelike hypersurface St consisted
of simultaneous events regarding to the proper time t of Alice. Therefore, the actual SoMS
should be the proper subspace

�t :=
⋃

x∈St

(�+
m )x = {(x, p) ∈ �+

m |x ∈ St }

of the full future mass shell bundle �+
m .

Due to themass shell condition, the actualmomentum space (�+
m )x has one less dimension

than the tangent space TxM. It will be appropriate to think of (�+
m )x as a codimension one

hypersurface in TxM defined via Eq. (1), and its (unmormalized) normal covector can be
defined asNμ := ∂

∂ pμ S(x, p) = 2pμ. In view of this, any tangent vector field V ∈ T [(�+
m )x ]

1 Since the space time is assumed to be endowed with a non-degenerate metric gμν(x), we can identify the
cotangent vector at any event with its dual tangent vector. Therefore, we are free to take the tangent space
description instead of the cotangent space description in this work.
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must be normal to pμ, i.e., Vμ pμ = 0. Using this property, we can select a basis for the
tangent space of the momentum space, i.e.

∂

∂ p̆i
:= ∂

∂ pi
− pi

p0

∂

∂ p0
.

Therefore, the tangent vector field V ∈ T [(�+
m )x ] acquires two component-representations,

one in the basis
∂

∂ pμ
of T (TxM), and one in the basis

∂

∂ p̆i
of T [(�+

m )x ]. It is easy to check
that these two representations are equivalent,

V i ∂

∂ p̆i
= V i ∂

∂ pi
− V i pi

p0

∂

∂ p0
= V i ∂

∂ pi
+ V0 ∂

∂ p0
= Vμ ∂

∂ pμ
. (3)

Therefore, when describing a vector in T [(�+
m )x ], the two component-representations V i and

Vμ can be used interchangeably.

3 The Covariant Langevin Equation

3.1 A Short Review of Langevin Equation in Non-relativistic Setting

The main focus of this section is to construct a covariant Langevin equation in a generic
spacetime. Before dwelling into the detailed construction, it seems helpful to make a brief
review of Langevin equation in the non-relativistic setting.

The non-relativistic Langevin equation describes the motion of a Brownian particle in a
fixed heat reservoir. The initial intuitive construction of Langevin equation is simply based
on the second law of Newtonian mechanics, in which the motion of the Brownian particle
is driven by drift and damping forces Fdrift(x), Fdamp(p) together with a random force ξ(t).
The drift force Fdrift(x) is provided by a conservative potential and hence is dependent on
the coordinate position x of the Brownian particle. The damping force Fdamp(p), however,
is dependent on the momentum of the particle. In the absence of the drift force, the Langevin
equation describing one-dimensional Brownian motion can be intuitively written as

dp

dt
= Fdamp(p) + ξ(t). (4)

However, it was soon realized that this intuitive picture cannot be mathematically correct,
because, under the impact of the random force, the momentum of the Brownian particle
cannot be differentiable with respect to the time t , and hence the Langevin equation cannot
actually be regarded as a differential equation.

The modern understanding of Langevin equation is as follows. Consider a scenario in
which a large number of light particles exist in the heat reservoir, and they randomly collide
with the heavy Brownian particle, causing the momentum of the latter to alter with each col-
lision. If the mass ratio between the Brownian particle and the particle from the heat reservoir
is sufficiently large, there will be a timescale dt during which a sufficiently large number of
independent collisions happen. Since the Brownian particle is heavy, its state changes very
little within this timescale. According to the central limit theorem, the probability distribution
of the variations of the momentum during dt follows a Gaussian distribution. The average
value of this distribution yields the damping force Fdamp, while the remaining (rapid) portion
is viewed as a stochastic force. Thus, the classical Langevin equation in one-dimensional

123



193 Page 6 of 19 y. Cai et al.

space can be expressed as

dx̃n = p̃n
m

dt

d p̃n = Rdw̃n + Fdampdt, (5)

where the suffices n represents the n-th time step and dw̃n is a random variable obeying
Gaussian distribution

Pr[dw̃n = dwn] = 1√
2πdt

e− 1
2
dw2

n
dt .

The coefficient R appeared in Eq. (5) is called stochastic amplitude. Notice that the variance
of the above Gaussian distribution equals dt . In this paper, tilded variables such as x̃, p̃
represent random variables, and the corresponding un-tilded symbols (e.g. x, p) represent
their concrete realizations.

The Langevin equation as presented above is technically a system of discrete-time dif-
ference equations, as the time scale dt must be large enough to permit sufficient number of
collisions to happen during this time interval. However, if dt is far smaller than the relaxation
time, it can be effectively thought of as infinitesimal. In the limit of continuity, w̃n becomes
a Wiener process w̃t , and there is an ambiguity in the coupling rule between the stochastic
amplitude R and the Wiener process if R is dependent on the momentum. Unlike in normal
calculus, in the continuity limit,

R( p̃n + ad p̃n)dw̃n
dt→0−−−→ R( p̃t ) ◦a dw̃t (6)

depends on the value of a ∈ [0, 1] [29]. The continuum version of Langevin equation with
the above coupling rule reads

dx̃t = p̃t
m
dt

d p̃t = R( p̃t ) ◦a dw̃t + Fdampdt . (7)

In particular, the coupling rule with a = 0 is known as Ito’s rule and is denoted as R ◦I dw̃t ,
while the rule with a = 1/2 is known as Stratonovich’s rule and is denoted as R ◦S dw̃t .

Ito’s rule allows Langevin equation to be understood as an equation describing a Markov
process, making it easier to analyze. However, since dt is equal to the variance of the Wiener
process, dw̃t should be in the same order of magnitude with

√
dt . This fact leads to some

profound consequences. For instance, it can be easily verified that any coupling rule ◦a can
be related to Ito’s rule via

R( p̃t ) ◦a dw̃t = R( p̃t ) ◦I dw̃t + aR
∂

∂ p
R dt,

which is a straightforward consequence of Eq. (6). Moreover, it can also be checked that Ito’s
rule breaks the chain rule of calculus,

dh( p̃t ) = ∂h

∂ p
d p̃t + 1

2

∂2h

∂ p2
d p̃2t

=
(

∂h

∂ p
Fdamp + 1

2

∂2h

∂ p2
R2

)
dt + ∂h

∂ p
R( p̃t ) ◦I dw̃t 	= ∂h

∂ p
d p̃t .
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On the other hand, Stratonovich’s rule is the unique rule that preserves the chain rule,

dh( p̃t ) = ∂h

∂ p
d p̃t + 1

2

∂2h

∂ p2
d p̃2t

= ∂h

∂ p

(
R( p̃t ) ◦a dw̃t + Fdampdt

) + 1

2

∂2h

∂ p2
(
R( p̃t ) ◦a dw̃t + Fdampdt

)2

=
(

∂h

∂ p
Fdamp + a

∂h

∂ p
R

∂

∂ p
R + 1

2

∂2h

∂ p2
R2

)
dt + ∂h

∂ p
R( p̃t ) ◦I dw̃t

a=1/2===== ∂h

∂ p
Fdampdt + 1

2

∂h

∂ p
R

∂

∂h

(
∂h

∂ p
R

)
dt + ∂h

∂ p
R( p̃t ) ◦I dw̃t

= ∂h

∂ p
Fdampdt + ∂h

∂ p
R ◦S dw̃t = ∂h

∂ p
d p̃t ,

where, in the last step, we used the Langevin equation which adopts Stratonovich’s rule.
Since the tensor calculus on manifolds is strongly dependent on the chain rule, it is natural
to adopt Stratonovich’s rule while constructing the general covariant Langevin equation on a
generic spacetime manifold, as we will do in the subsequent analysis. Other elaborations on
the covariance of Stratonovich type stochastic differential equations can be found in Refs.
[30–32].

3.2 Nonlinear Damping Force and Additional Stochastic Force

Let us now consider the Langevin equation (7) with Ito’s rule andmake a comparisonwith the
intuitive form (4) of the equation. In essence, both the damping force Fdamp and “stochastic
force” ξ(t) = R◦I dw̃/dt arise from the collisions between theBrownian particle and the heat
reservoir particles, however, we have artificially separated them. It is possible to derive the
expressions of R and Fdamp directly frommicroscopic mechanics and the chaotic assumption
of the heat reservoir [24, 25]. Macroscopically, the stochastic force can be viewed as the
consequence of thermal fluctuations, and thus it vanishes in the low temperature limit. In such
surroundings, the damping force can be measured directly, allowing us to construct simple
phenomenological models. The simplest one assumes a linear damping force proportional
to the momentum of the Brownian particle in the reference frame comoving with the heat
reservoir:

Fdamp = −Kp,

where K is the damping coefficient. This simple model captures two important features of
the damping force: First, when the Brownian particle comoves with the heat reservoir, the
damping force vanishes. Second, the direction of the damping force should be opposite to
the relative velocity. In more general cases than the linear damping model, the damping
coefficient K could be dependent on the momentum p of the Brownian particle.

If K is independent of p, the stochastic amplitude R can be easily derived using the
thermal equilibrium between the Brownian particle and the heat reservoir, yielding

D := R2 = 2 T K ,

where T is the temperature of the reservoir. This relation is known as the Einstein relation.
However, for nonlinear damping forces, the situations become much more complicated.
Ref.[33] demonstrated that, provided R is momentum dependent, there exists a non-zero
force 1

2∂(R2)/∂ p acting on the Brownian particle even if its momentum vanishes. This extra
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force term is also a consequence of the thermal equilibrium between the Brownian particle
and the heat reservoir. There are two options for interpreting this extra force. The first option
is to consider it as a part of the damping force, so that the full damping force takes the form

Fdamp = R
∂

∂ p
R − Kp = −Keff p,

where the effective damping coefficient reads

Keff := K − R

p

∂

∂ p
R.

Consequently, there will be a modified Einstein relation

R2 = 2T

[
Keff + R

p

∂

∂ p
R

]
.

This option seems to have several issues. (1) It looks strange that the damping force still exists
when the momentum is zero; (2) More importantly, we cannot define an effective damping
coefficient in higher spatial dimensions using this approach. The second option is to split the
extra force term 1

2∂R
2/∂ p into two equal halves: one half is to be combined with the Ito’s

coupling to give rise to Stratonovich’s coupling with Gaussian noises, and the other half is
understood as an “additional stochastic force”

Fadd := 1

2
R

∂

∂ p
R.

Hence, the more general Langevin equation in d-dimensional flat space can be written as

dx̃ it = p̃it
m

dt

d p̃it =
[
Ri

a ◦S dw̃a
t + Fi

adddt
]

− K i
j p̃

j
t dt,

where the indices i, j label different spatial dimensions and a, b are used to distinguish
independent Gaussian noises. It should be remarked that the number d of Gaussian noises is
independent of the dimension d of the space. The additional stochastic force now reads

Fi
add = δab

2
Ri

a
∂

∂ p j
R j

b. (8)

The discussions made so far in this subsection have been restricted to the non-relativistic
situations. In the next subsection, it will be clear that themass shell condition in the relativistic
setting requires that the damping coefficients have to be momentum dependent. Therefore,
the additional stochastic force should also appear in the relativistic Langevin equation. To
derive the concrete expression for this additional stochastic force, we need to make use of the
Fokker-Planck equation and the relativistic Einstein relation. However, since the focus of the
present work is on the relativistic Langevin equation, we will provide the detailed derivation
in Part II of this series of works. At present, we simply provide the result,

Fμ
add = δab

2
Rμ

a∇(h)
i Ri

b, (9)

where h refers to the metric on the mass shell (�+
m )x . It is important to note that the stochastic

amplitudesRμ
a in the relativistic Langevin equation should be a set of vectors on the curved

Riemannian manifold (�+
m )x , i.e. Rμ

a ∈ T [(�+
m )x ]. As such, the derivative operator ∂/∂ pi
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that appeared inEq. (8) needs to be replaced by the covariant derivative∇(h)
i on themomentum

space (�+
m )x .

3.3 Relativistic Damping Force

Recall that the damping force arises from the interaction between the Brownian particle and
the heat reservoir, but only accounts for a portion of the total interaction, neglecting thermal
fluctuations.We can directly measure the damping force when the thermal fluctuations can be
ignored and establish a phenomenological model. It is reasonable to expect that the damping
force should vanish if the Brownian particle comoves with the heat reservoir. Hence, the
damping force can be regarded as an excitation of the relative velocity, with the damping
coefficients serving as response factors. This idea was also explored in previous works [6,
8] in the special relativistic context. Here we shall extend the construction to the general
relativistic case and point out some crucial subtleties which need to be taken care of.

In the relativistic context (be it special or general), the concept of velocity is replaced by
proper velocity. However, the relative velocity cannot be defined simply as the difference
between two proper velocities, because the temporal component of the difference should not
be considered as part of the relative velocity but rather as the energy difference. In order
to have an appropriate definition for the relative velocity, one must project one of the two
proper velocities onto the orthonormal direction of the other. Let Uμ be the velocity of the
heat reservoir and pμ be the proper momentum of the Brownian particle. One can associate
with the Brownian particle an orthonormal projection tensor

�μ
ν(p) := δμ

ν + pμ pν

m2

which obeys

�μ
ν(p)p

ν = 0.

Then the relative velocity between the Brownian particle and the heat reservoir can be defined
as�μ

ν(p)U ν . This definition has two important features, i.e. (1) when the Brownian particle
is comoving with the heat reservoir, the relative velocity vanishes; (2) the relative velocity is
always normal to pμ, so that it is a vector in T [(�+

m )x ].
The relativistic damping force needs to have the following properties. First, it must contain

the relative velocity as a factor, and a tensorial damping coefficient Kμν as another factor,
i.e.

Fμ
damp = Kμν�ν

ρ(p)Uρ.

Second, the damping force needs to be a tangent vector of the momentum space (�+
m )x , i.e.

Fμ ∈ T [(�+
m )x ]. This latter requirement implies that Kμν must satisfy the relation

Kμν(x, p) = �μ
α(p)Kαβ(x, p)�β

ν(p). (10)

In the light of Eq. (10) and the idempotent property of the projection tensor, the relativistic
damping force can be simply rewritten as

Fμ
damp = KμνUν . (11)

The constraint condition (10) over the tensorial damping coefficient has a very simple
special solution

Kμν = κ(x, p)�μν(p),
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where κ(x, p) is a scalar function on the SoMS�t and is referred to as the friction coefficient.
This particular choice of damping coefficient corresponds to isotropic damping force. If
κ(x, p) is constant, then damping force will become homogeneous. Therefore, the isotropic
homogeneous damping force can be written as

Fμ
damp = κ�μ

ν(p)U
ν .

Let eμ
î be the spatial comoving frame covectors associated with the Brownian particle

and Eî
ν be the dual vectors. Then the projection tensor �μ

ν(p) can be written as

�μ
ν(p) = eμ

î E
î
ν .

The isotropic homogeneous damping force can be re-expressed as

Fμ
damp = κeμ

î E
î
νU

ν = κUîeμ
î ,

or more concisely as

F î
damp = κUî ,

where F î
damp = Fμ

dampE
î
μ, which represents the spatial components of the damping force

under the comoving frame. This equation has the same form as the one given in [8, 9].
However, our expression (11) for the damping force is more general and does not rely on a
particular choice of frame basis.

3.4 Covariant Relativistic Langevin Equation: A First Attempt

Although the intuitive form (4) of Langevin equation is mathematically unsound, it is still
inspiring while considering the extension of Langevin equation to generic spacetime mani-
folds. One can imagine that the relativistic Langevin equation should arise as the free geodesic
motion of the Brownian particle perturbed by the extra damping and stochastic forces. Taking
the proper time τ of the Brownian particle as evolution parameter, the geodesic equation can
be rearranged in the form

dxμ
τ = pμ

τ

m
dτ,

dpμ
τ = − 1

m
�μ

αβ p
α
τ p

β
τ dτ,

where �μ
αβ is the usual Christoffel connection on the spacetime manifold M. Therefore,

with the supplementation of Stratonovich’s coupling with Gaussian noises, the additional
stochastic force (9) and the relativistic damping force (11), we can write down, as a first
attempt, the following set of equations as candidate of relativistic Langevin equation,

dx̃μ
τ = p̃μ

τ

m
dτ, (12)

d p̃μ
τ = [Rμ

a ◦S dw̃a
τ + Fμ

adddτ
] + KμνUνdτ − 1

m
�μ

αβ p̃
α
τ p̃

β
τ dτ. (13)

As previously mentioned, the Stratonovich’s rule is the unique coupling rule which preserves
the chain rule of calculus. Meanwhile, we have been very careful while introducing the
damping and stochastic forces so that each of the first three force terms appearing on the
right hand side of Eq. (13) are tangent vectors of the momentum space (�+

m )x . With all these
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considerations combined together, Eqs. (12)–(13) are guaranteed to be general covariant
and have taken the damping and stochastic impacts from the heat reservoir into account.
Moreover, sinceRμ

a, Fμ
add andKμν are all tensorial objects on the future mass shell (�+

m )x ,
one can easily check that, provided the initial state is on the mass shell (�+

m )x , all future
states evolving from Eqs. (12)–(13) will remain on (�+

m )x , because, for any (x̃τ , p̃τ ) obeying
the mass shell condition

S̃τ = S(x̃τ , p̃τ ) = gμν(x̃τ ) p̃
μ
τ p̃ν

τ + m2 = 0,

we have

dS̃τ = ∂S

∂xμ
dx̃μ

τ + ∂S

∂ pμ
d p̃μ

τ

= 1

m
∂μgαβ p̃μ

τ p̃α
τ p̃

β
τ dτ + 2gμρ p̃

ρ
τ

(
Rμ

a ◦S dw̃a
τ + Fμdτ − 1

m
�μ

αβ p̃
α
τ p̃

β
τ dτ

)

= 2( p̃μ)τ

(
Rμ

a ◦S dw̃a
τ + Fμdτ

)
= 0, (14)

where we have denotedFμ = Fμ
add+KμνUν for short. Equation(14) implies that the (d+1)

components of p̃μ are not all independent, and there is a redundancy contained in Eq. (13),
whichmakes no harm due to the reason explained by Eq. (3). In the end, it looks reasonable to
consider Eqs. (12)–(13) as a viable candidate for the relativistic Langevin equation in curved
spacetime, and we will henceforth refer to this system of equations as LEτ .

In the next section, we shall show that, from the phenomenological point of view, LEτ still
contains some issues which needs to be resolved. The crucial point lies in that, while consid-
ering the stochastic distribution of Brownian particles, one cannot rely on a comoving frame
or observer. If we change to the view point of a regularly moving observer, the proper time τ

of the Brownian particle itself will become a random variable and hence inappropriate to be
used for parametrizing the stochastic motion of the system. Thus we need a reparametrization
scheme to rewrite the relativistic Langevin equation in terms of the observer’s proper time t
instead of τ .

4 Reparametrization

Recall that the configuration space St is inherently connected with a concrete choice of
observer and is defined as the level set t(x) = t . Therefore, ∂μt must be proportional to the
unit normal covector Zμ (i.e. the proper velocity of the chosen observer). Let

λ := √−gμν∂μt∂ν t = |∇t |,
we can write

∂μt = −λZμ. (15)

Therefore, on the worldline of the Brownian particle, we have

dt = ∂μtdx̃
μ = −λZμdx̃

μ = −λZμ

dx̃μ

dτ
dτ = −λ

Zμ p̃μ

m
dτ. (16)

Since Zμ p̃μ < 0, the last equality explains the sign convention that appeared in Eq. (15).
Let

γ (x̃, p̃) := −λZμ p̃μ

m
, (17)
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the relation (16) can be rewritten as:

dt = γ (x̃, p̃)dτ. (18)

γ (x̃, p̃) plays the role of a local Lorentz factor. Since x̃μ, p̃μ are both random, the regularity
of the prescribed observer implies that the proper time τ of the Brownian particle becomes
essentially a random variable. This poses a serious challenge to understanding Eqs. (12)–(13)
as the relativistic Langevin equation, because Langevin equation requires a regular evolution
parameter.

In spite of the challenge just mentioned, we still wish to make some sense of Eqs. (12)–
(13) and try to find a resolution of the problem that we encountered. For this purpose, we
temporarily adopt a comoving description for the Brownian particle but nevertheless let
Alice be bound together with the coordinate system, so that the coordinate time x0 equals
the proper time t of Alice. Let us stress that binding the observer with the coordinate system
is not an absolutely necessary step, but it indeed simplifies the following discussions about
the probability distributions. In this description, τ appears to be a regular variable, but then
the spacetime position x̃μ (which contains the observer’s proper time as a component) and
momentum p̃i will become randomvariables depending on τ . Due to themass shell condition,
there is no need to include p̃0 in the set of micro state variables.

Unlike regular variables, random variables do not have a definite value, but rather a proba-
bility distribution. Thus LEτ provides insight into the evolution of the probability distribution
of the random variables involved. The reason that LEτ can provide a probability distribution
relies on the fact that Stratonovich’s coupling can be turned into Ito’s coupling and that a
stochastic differential equation with Ito’s coupling can be viewed as a Markov process. Writ-
ing X := (xμ, pi ), the Markov process described by LEτ provides the transition probability

Pr[X̃τ+dτ = Xτ+dτ |X̃τ = Xτ ] (19)

during an infinitesimal proper time interval [τ, τ + dτ ]. Over a finite period of time, this will
amount to the joint probability of the state of the Brownian particle and the observer’s proper
time at a given τ ,

�τ (t, x
i , pi ) := Pr[x̃0τ = t, x̃ iτ = xi , p̃iτ = pi ], (20)

which is normalized in the whole future mass shell �+
m under the measure provided by the

volume element (2). �τ (t, xi , pi ) is connected with the transition probability (19) via

�τ+dτ (X) =
∫

dY Pr[X̃τ+dτ = X |X̃τ = Y ]�τ (Y ).

Although there are clear logic and corresponding mathematical tools to deal with the
evolution equation of �τ from the comoving description of the Brownian particle, the prob-
ability function �τ is not a suitable object in statistical mechanics. Recall that the physically
viable distribution in statistical mechanics must be a probability distribution on the SoMS,
while the definition of the SoMS, especially the configuration space St , relies on the choice
of observer. The problem of the probability distribution (20) lies in that, for fixed τ , different
realizations xμ of x̃μ do not necessarily fall in the same configuration space St .

Nevertheless, as we shall show in the next section by Monte Carlo simulation in the
example case of (1+ 1)-dimensional Minkowski spacetime, we can still extract the physical
probability distribution out of the result of Eqs. (12)–(13). The point lies in that one should not
look at the distribution of the end points of each realization of the Brownian motion after the
fixed proper time period τ . Rather, one should look at the distribution of the intersection points
of the stochastic worldlines with the physical configuration space St (as will be shown in
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Fig. 1). The latter distribution is physical, but it looks challenging to obtain such a distribution
by means of analytical analysis.

A better way to obtain the physical probability distribution for the Brownian particle is to
introduce a reparametrization for the Langevin equation, replacing the randomparameter τ by
the regular proper time t of Alice, as will be discussed as follows. Let us mention that Dunkel
et al [13] has attempted to use reparametrization to make their special relativistic Langevin
equation covariant. However, a general discussion for the necessity of reparametrization has
not yet been persued.

At the first sight, the reparametrization could be accomplished simply by substituting Eq.
(18) into Eqs. (12)–(13). However, things are not that simple. In order to get a physically
viable Langevin equation, one need to ensure that the resulting equation should describe a
Markov process driven by a set of Wiener processes. To achieve this goal, we propose to first
use discrete time nodes tn to treat the stochastic process as a Markov process, and then take
the continuity limit. Here proper time t needs not be identified with the coordinate time x0.
By defining a sequence of random variables using the discrete time nodes tn , namely

τ̃n := τ̃tn , ỹμ
n := x̃μ

τ̃n
, k̃μ

n := p̃μ

τ̃n
, Ỹn := X̃ τ̃n , (21)

we can calculate their discrete time differences,

dτ̃n = γ −1(Ỹn)dtn, (22)

d ỹμ
n = x̃μ

τ̃n+1
− x̃μ

τ̃n
= k̃μ

n

m
γ −1(Ỹn)dtn, (23)

dk̃μ
n = p̃μ

τ̃n+1
− p̃μ

τ̃n
= Fμ(Ỹn)γ

−1(Ỹn)dtn + Rμ
a(Ỹn)dw̃

a
τ̃n

. (24)

In deriving Eq. (24), we have changed the Stratonovich’s rule in Eq. (13) into Ito’s rule before
introducing the discretization, so that the total force Fμ reads

Fμ = δab

2
Rν

a
∂

∂ pν
Rμ

b + Fμ
add + KμνUν − 1

m
�μ

αβ p
α pβ .

It is remarkable that, although Eqs. (22)–(24) appear to be complicated, they bear the
enlightening feature that, at each time step, the increment of (τ̃n, ỹ

μ
n , k̃μ

n ) depend only on
their values at the nearest preceding time step. Therefore, we can understand these equa-
tions as describing a Markov process. However, these equations are not yet the sought-for
reparametrized Langevin, because w̃a

τ̃n
is no longer aWiener process after the reparametriza-

tion.
Fortunately, we can define a stochastic process

W̃a
n :=

n∑

i=0

γ 1/2(Ỹi )dw̃
a
τ̃i
, (25)

whose increment at the n-th time step reads

dW̃a
n = γ 1/2(Ỹn)dw̃

a
τ̃n

.
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The conditional probability Pr[dW̃a
n = dWa

n |Ỹn = Yn] can be easily calculated as

Pr[dW̃a
n = dWa

n |Ỹn = Yn] = 1

γ d/2(Yn)

1

(2πdτn)d/2 exp

[
−1

2

δabdwa
τn
dwb

τn

dτn

]

= 1

(2πdtn)d/2 exp

[
−1

2

δabdWa
n dW

b
n

dtn

]
.

Since the above conditional probability is independent of the realization of Ỹn , we can drop
the condition,

Pr[dW̃a
n = dWa

n ] =
∫

dYn Pr[dW̃a
n = dWa

n |Ỹn = Yn]Pr[Ỹn = Yn]

= 1

(2πdtn)d/2 exp

[
−1

2

δabdWa
n dW

b
n

dtn

]∫
dYn Pr[Ỹn = Yn]

= 1

(2πdtn)d/2 exp

[
−1

2

δabdWa
n dW

b
n

dtn

]
.

Thus, in the continuum limit dtn → dt , W̃a
n becomes a standard Wiener process W̃t with

variance dt . In the end, we obtain the following stochastic differential equations as the
continuum limit of Eqs. (23) and (24),

d ỹμ
t = k̃μ

t

m
γ −1dt, (26)

dk̃μ
t =

[
R̂μ

a ◦S dW̃a
t + F̂μ

adddt
]

+ K̂μνUνdt − 1

m
�μ

αβ k̃
α
t k̃

β
t γ −1dt, (27)

in which we introduced the following notations,

R̂μ
a := γ −1/2Rμ

a, K̂μν := γ −1Kμν,

F̂μ
add := γ −1Fμ

add − δab

2
Rμ

aR j
b(γ −1/2∇(h)

j γ −1/2).

Notice that we have changed the coupling rule once again into the Stratonovich’s rule, with
guarantees that the resulting equations (26)-(27) are manifestly general covariant. Moreover,
after the reparametrization, Eqs. (26)–(27) still describe a stochastic process driven by some
Wiener noises, and are now parametrized by the regular evolution parameter t instead of the
random variable τ . Therefore, Eqs. (26)–(27) fulfill all of our anticipations, and we will refer
to this system of equations as LEt .

Please be reminded that, although the observer’s proper time t needs not to be identical
with the coordinate time y0, they can be made identical by introducing the artificial choice
for the observer which is at rest in the coordinate system. On such occasions, y0 and t should
be treated as equal, and we need to check that the zeroth component of Eq. (26) represents
an identity. According to Eq. (15), when y0 = t , we have

Zμ = −λ−1∂μt = −λ−1δμ
0.

Thus we have

γ −1 = − m

λZμk̃
μ
t

= m

k̃0t
.
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Inserting this result into Eq. (26), one sees that the zeroth component yields an identity
d ỹ0t = dt .

5 Monte Carlo Simulation in theMinkowski Case

As advocated in the last section, it is possible to extract reasonable information about the
physical distribution on the SoMS from LEτ , although the evolution parameter τ itself is
a random variable from the observer’s perspective. In this subsection, we shall exemplify
this possibility by studying the simple case of stochastic motion of Brownian particles in
(1 + 1)-dimensional Minkowski spacetime driven by a single Wiener process and subjects
to an isotropic homogeneous damping coefficients.

To bemore concrete, we use the orthonormal coordinates xμ = (t, x) and let E := p0 and
p := p1, so that the mass shell condition becomes E = √

p2 − m2. For isotropic thermal
perturbations, the stochastic amplitude should satisfy

RμRν = D�μν(p) = D

m2

[
p2 Ep
Ep E2

]
,

where D is the diffusion coefficient. It’s obvious that the stochastic amplitude should read

Rμ =
√
D

m

[
p
E

]
.

If we put the observer and the heat reservoir at rest, i.e. Z = U = ∂t , the coordinate time will
be automatically the proper time of the observer, and the isotropic damping force should be

Fμ
damp = κ�μν(p)Uν = − κ

m2

[
p2

Ep

]
.

The above choice of observer implies γ = E/m.
Since the projection tensor �μν(p) is simultaneously the metric of the momentum space

(�+
m )x with “determinant”

det�i j = �11 = m2

E2 ,

the additional stochastic force can be evaluated to be

Fμ
add = 1

2
Rμ∇(h)

i Ri = 1

2
Rμ 1√

�11

∂

∂ p

(
√

�11

√
D

m
E

)
= 0.

With the above preparation,we can nowwrite down the two systems of Langevin equations
with evolution parameters τ and t as

dx̃τ = p̃τ

m
dτ, d p̃τ =

√
D

m
E ◦I dw̃τ + D p̃τ

2m2 dτ − κE p̃τ

m2 dτ, (28)

and

d ỹt = k̃t
E
dt, dk̃t =

√
DE

m
◦I dW̃t + Dk̃t

2Em
dt − κ

m
k̃tdt . (29)

Since the observer is now bound together with the coordinate system, the temporal compo-
nents of the Langevin equations become either trivial or redundant. Therefore, in Eqs. (28)
and (29), only the spatial components are presented.
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Table 1 The (initial) values of the simulation parameters

Parameters D κ m x̃ |τ=0 p̃|τ=0 ỹ|t=0 k̃|t=0 dt dτ

(Initial) values 1.0 1.0 1.0 0 0 0 0 0.02 0.02

Fig. 1 Random worldlines generated by Eq. (28) (left) and Eq. (29) (right)

Fig. 2 The distributions of Brownian particles in configuration space S20 (left) and momentum space (right)
from the two systems of equations (28) and (29)

We are now ready to make the numeric simulation based on the above two systems of
equations. The (initial) values of the simulation parameters are listed in Tab.1.

The left picture in Fig. 1 depicts 50 random worldlines generated by Eq. (28) after a fixed
“evolution time” τ = 20. The end point of each random worldline is marked by a solid
triangle, and the horizontal line at t = 20 represents the configuration space S20. We can see
that all worldlines fall strictly in the future lightcone of the initial event (t, x) = (0, 0), and
the end points of different random worldlines do not fall in the same configuration space.
Nevertheless, we can extract the intersection point of each worldline with the configuration
space S20 (marked with round dots) and try to identify their distribution.

The right picture in Fig. 1 depicts 50 random worldlines generated by Eq. (29) after the
fixed evolution time t = 20. Since t is the regular evolution parameter, the end points of all
worldlines automatically fall in the same configuration space S20 and are marked with round
dots. This gives an intuitive illustration for the power of the reparametrization introduced in
the last section. One can feel how similarly the round points in both pictures in Fig. 1 are
distributed.

With a little more efforts, we have generated 106 random phase trajectories using both
Eqs. (28) and (29) and collected the data for the insection points of the random worldlines
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Fig. 3 Joint probability distributions in positions and momenta at t = 20: The left picture arises from Eq.
(28), and the right one arises from Eq. (29). The distributions presented in Fig. 2 correspond to vertical and
horizontal projections of these joint distributions

with the configuration space S20 in the case of Eq. (28). Using the data thus collected, we can
depict separately the configuration space andmomentum space distributions of the Brownian
particles and make comparisons between the results that follow from Eqs. (28) and (29). As
can be seen in Fig. 2, the results from Eqs. (28) and (29) are almost identical.

We also generated the joint distributions in positions and momenta from both Eqs. (28)
and (29) at t = 20. The results are presented in Fig. 3. We can hardly find any differences
between the two pictures.

As a more serious comparison between the distributions generated by Eqs. (28) and (29),
the Pearson χ2-test is utilized with the assistance ofWolframLanguage to determine whether
the distributions were indeed identical. The resulting P-values were found to be 0.774 for the
distributions presented in the left plots of Fig. 2, 0.967 for distributions presented in the right
plots of Fig. 2, and 0.972 for the two distributions presented in Fig. 3. These results provide
more solid evidence for the expectation that the distributions generated by the two systems
of equations (28) and (29) are identical.

6 Concluding Remarks

We have thus formulated two different versions of the relativistic Langevin equation, i.e.
LEτ and LEt in a generic curved spacetime background, which are both manifestly general
covariant. The two versions differ from each other in that LEτ takes the proper time τ of the
Brownian particle as evolution parameter, while LEt takes the proper time t of the prescribed
observer Alice as evolution parameter.

The importance of the prescribed regularly moving observer is stressed throughout the
analysis, especially while clarifying the SoMS of the Brownian particle and interpreting the
probability distributions of the Brownian particle. It is argued that, in order to get the physical
probability distribution, LEt is more preferable than LEτ . We also discussed the conditions
which the relativistic damping coefficients need to obey, and clarified the concept of relative
velocity in the relativistic context.

We also demonstrated, bymeans ofMonte Carlo simulation in the particular example case
ofBrownianmotion in (1+1)-dimensionalMinkowski spacetime, that althoughLEτ contains
some conceptual issues, it is indeed possible to extract physically reasonable probability
distributions from it. However, since the Brownian particles after a fixed proper time τ do
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not fall in the same configuration space, it would be more difficult to obtain the physical
probability distributions from LEτ .

This work is the first of our attempts for a systematic study of general relativistic stochastic
mechanics. In a forthcoming work, we will proceed to formulate the corresponding Fokker-
Planck equations and discuss the physical consequences. In particular, the general relativistic
variant of Einstein relation will be considered, and the relationship between different proba-
bility distributions will be clarified.

Before ending this paper, let us mention that there is another complementary approach,
i.e. the 2-jet bundle approach [31, 32] using Ito’s formalism, for describing the covariant
Brownian motion [34–38], see also [39] for a more recent review. Our formalism does not
need to make use of the jet bundle, and the resulting equations are more in line with the
original intuitive construction of Langevin. There is some other recent work [40] which
focuses on the heat distribution inMinkowski spacetime, which has some overlap in research
subjects with the present work.
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