
Journal of Statistical Physics (2023) 190:87
https://doi.org/10.1007/s10955-023-03103-9

Heat Flow in a Periodically Forced, Thermostatted Chain II

Tomasz Komorowski1,2 · Joel L. Lebowitz3 · Stefano Olla4,5,6

Received: 4 October 2022 / Accepted: 31 March 2023 / Published online: 14 April 2023
© The Author(s) 2023

Abstract
We derive a macroscopic heat equation for the temperature of a pinned harmonic chain
subject to a periodic force at its right side and in contact with a heat bath at its left side.
The microscopic dynamics in the bulk is given by the Hamiltonian equation of motion
plus a reversal of the velocity of a particle occurring independently for each particle at
exponential times, with rate γ . The latter produces a finite heat conductivity. Starting with
an initial probability distribution for a chain of n particles we compute the current and the
local temperature given by the expected value of the local energy. Scaling space and time
diffusively yields, in the n → +∞ limit, the heat equation for the macroscopic temperature
profile T (t, u), t > 0, u ∈ [0, 1]. It is to be solved for initial conditions T (0, u) and specified
T (t, 0) = T−, the temperature of the left heat reservoir and a fixed heat flux J , entering the
system at u = 1. |J | equals the work done by the periodic force which is computed explicitly
for each n.

Keywords Pinned harmonic chain · Periodic force · Heat equation for the macroscopic
temperature · Dirichlet-Neumann type boundary condition · Work into heat
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1 Introduction

The emergence of the heat equation from a microscopic dynamics after a diffusive rescal-
ing of space and time is a challenging mathematical problem in non-equilibrium statistical
mechanics [6]. Here we study this problem in the context of conversion of work into heat
in a simple model: a pinned harmonic chain. The system is in contact at its left end with
a thermal reservoir at temperature T− which acts on the leftmost particle via a Langevin
force (Ornstein–Uhlenbeck process). The rightmost particle is acted on by a deterministic
periodic force which does work on the system. The work pumps energy into the system with
the energy then flowing into the reservoir in the form of heat.

To describe this flow we need to know the heat conductivity of the system. As it is well
known, the harmonic crystal has an infinite heat conductivity [19]. Tomodel realistic systems
with finite heat conductivity we add to the harmonic dynamics a random velocity reversal. It
models in a simple way the various dissipative mechanisms in real systems and produces a
finite conductivity (cf. [1, 5]).

In paper [14], which is the first part of the present work, we studied this system in the limit
t → ∞, see Sect. 2.1 for rigorous statements of the main results obtained there. In this limit
the probability distribution of the phase space configurations is periodic with the period of
the external force, see Theorem 2.1 below. We also showed that with a proper scaling of the
force and period the averaged temperature profile satisfies the stationary heat equation with
an explicitly given heat current. In the present paper we study the time dependent evolution
of the system, on the diffusive time scale, starting with some specified initial distribution.
We derive a heat equation for the temperature profile of the system.

The periodic forcing generates a Neumann type boundary condition for the macroscopic
heat equation, so that the gradient of the temperature at the boundary must satisfy Fourier
law with the boundary energy current generated by the work of the periodic forcing (see
(2.35) below). On the left side the boundary condition is given by the assigned value T−, the
temperature of the heat bath. As t → ∞ the profile converges to the macroscopic profile
obtained in [14].

The energy diffusion in the harmonic chain on a finite lattice, with energy conserving noise
and Langevin heat bath at different temperatures at the boundaries, have been previously
considered [2–4, 13, 18]. But complete mathematical results, describing the time evolution
of the macroscopic temperature profile, have been obtained only for unpinned chains [4, 13].

This article gives the first proof of the heat equation for the pinned chain in a finite
interval, and the method can be applied with different boundary conditions (see Remark
2.12). Investigation about energy transport in anharmonic chain under periodic forcing can
be found in [10, 11], and very recently in [20]. In the review article [16] we considered various
extensions of the present results to unpinned, multidimensional and anharmonic dynamics.

1.1 Structure of the Article

We start Sect. 2 with the precise description of the dynamics of the oscillator chain. Then, as
already mentioned, in Sect. 2.1 we give an account of results obtained in [14]. In Sect. 2.2
we formulate our two main theorems: Theorem 2.5 about the limit current generated at the
boundary by a periodic force, and Theorem 2.10 about the convergence of the energy profile
to the solution of the heat equation with mixed boundary conditions.
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In Sect. 3 we obtain a uniform bound on the total energy at any macroscopic time by an
entropy argument. As a corollary (cf. Corollary 3.3) we obtain a uniform bound on the time
integrated energy current, with respect to the size of the system.

Section 4 contains the proof of the equipartition of energy: Proposition 4.1 shows that the
limit profiles of the kinetic and potential energy are equal. Furthermore, we show there the
fluctuation-dissipation relation ((4.5)). It gives an exact decomposition of the energy currents
into a dissipative term (given by a gradient of a local function) and a fluctuation term (given
by the generator of the dynamics applied to a local function).

The fluctuation-dissipation relation (4.5) and equipartition of energy (4.1) are two of
the ingredients for the proof of the main Theorem 2.10. The third component is a local
equilibrium result for the limit covariance of the positions integrated in time. It is formulated
in Proposition 5.1, for the covariances in the bulk, and in Proposition 5.2, for the boundaries.
The local equilibrium property allows to identify correctly the thermal diffusivity in the proof
of Theorem 2.10, see Sect. 5.

The technical part of the argument is presented in the appendices: the proof of the local
equilibrium is given in Appendix D, after the analysis of the time evolution of the matrix for
the time integrated covariances of positions and momenta, carried out in Appendix C. Both
in Appendix C and Appendix D we use results proven in [14], when possible. Appendix B
contains the proof of the current asymptotics (Theorem 2.5), that involves only the dynamics
of the averages of the configurations. Appendix E contains the proof of the uniqueness
of measured valued solutions of the Dirichlet-Neumann initial-boundary problem for the
heat equation, satisfied by the limiting energy profile. Finally, in Appendix F we present an
argument for the relative entropy inequality stated in Proposition 3.1.

2 Description of theModel

Weconsider a pinned chain of n+1-harmonic oscillators in contact on the left with a Langevin
heat bath at temperature T−, and with a periodic force acting on the last particle on the right.
The configuration of particle positions and momenta are specified by

(q,p) = (q0, . . . , qn, p0, . . . , pn) ∈ �n := R
n+1 × R

n+1. (2.1)

We should think of the positions qx as relative displacement from a point, say x in a finite
lattice {0, 1, . . . , n}. The total energy of the chain is given by the Hamiltonian:Hn(q,p) :=∑n

x=0 Ex (q,p), where the energy of particle x is defined by

Ex (q,p) := p2x
2

+ 1

2
(qx − qx−1)

2 + ω2
0q

2
x

2
, x = 0, . . . , n, (2.2)

where ω0 > 0 is the pinning strenght. We adopt the convention that q−1 := q0.

q0 q1 qnqx−1 qx qx+1

T−

Fn(t)
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The microscopic dynamics of the process {(q(t),p(t))}t�0 describing the total chain is
given in the bulk by

q̇x (t) = px (t), x ∈ {0, . . . , n},
dpx (t) = (�qx (t) − ω2

0qx (t)
)
dt − 2px (t−)dNx (γ t), x ∈ {1, . . . , n − 1} (2.3)

and at the boundaries by

dp0(t) =
(
q1(t) − q0(t) − ω2

0q0(t)
)
dt − 2γ p0(t)dt +√4γ T−dw̃−(t),

dpn(t) =
(
qn−1(t) − qn(t) − ω2

0qn(t)
)
dt + Fn(t)dt − 2pn(t−)dNn(γ t). (2.4)

Here � is the Neumann discrete laplacian, corresponding to the choice qn+1 := qn and
q−1 = q0, see (A.1) below. Processes {Nx (t), x = 1, . . . , n} are independent Poisson of
intensity 1, while w̃−(t) is a standard one dimensional Wiener process, independent of the
Poisson processes. Parameter γ > 0 regulates the intensity of the random perturbations and
the Langevin thermostat. We have choosen the same parameter in order to simplify notations,
it does not affect the results concerning the macroscopic properties of the dynamics.

We assume that the forcing Fn(t) is given by

Fn(t) = 1√
n
F
(
t

θ

)

. (2.5)

where F(t) is a 1-periodic function such that
∫ 1

0
F(t)dt = 0,

∫ 1

0
F(t)2dt > 0 and

∑

�∈Z
|F̂(�)| < +∞. (2.6)

Here

F̂(�) =
∫ 1

0
e−2π i�tF(t)dt, � ∈ Z, (2.7)

are the Fourier coefficients of the force. Note that by (2.6) we have F̂(0) = 0.
For a given function f : {0, . . . , n} → R define the Neumann laplacian

� fx := fx+1 + fx−1 − 2 fx , x = 0, . . . , n, (2.8)

with the convention f−1 := f0 and fn+1 := fn . The generator of the dynamics can be then
written as

Gt = At + γ Sflip + 2γ S−, (2.9)

where

At =
n∑

x=0

px∂qx +
n∑

x=0

(�qx − ω2
0qx )∂px + Fn(t)∂pn (2.10)

and

SflipF(q,p) =
n∑

x=1

(
F(q,px ) − F(q,p)

)
, (2.11)

Here F : R2(n+1) → R is a bounded andmeasurable function,px is the velocity configuration
with sign flipped at the x component, i.e. px = (px0 , . . . , p

x
n ), with pxy = py , y �= x and

pxx = −px . Furthermore,
S− = T−∂2p0 − p0∂p0 . (2.12)
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The microscopic energy currents are given by

GtEx (t) = jx−1,x (t) − jx,x+1(t), (2.13)

with Ex (t) := Ex
(
q(t),p(t)

)
and

jx,x+1(t) := −px (t)
(
qx+1(t) − qx (t)

)
, if x ∈ {0, . . . , n − 1}

and at the boundaries

j−1,0(t) := 2γ
(
T− − p20(t)

)
, jn,n+1(t) := −Fn(t)pn(t). (2.14)

2.1 Summary of Results Concerning Periodic Stationary State

The present section is devoted to presentation of the results of [14] (some additional facts
are contained in [15]). They concern the case when the chain is in its (periodic) stationary
state. More precisely, we say that the family of probability measures {μP

t , t ∈ [0,+∞)}
constitutes a periodic stationary state for the chain described by (2.3) and (2.4) if it is a
solution of the forward equation: for any function F in the domain of Gt :

∂t

∫

F(q,p)μP
t (dq, dp) =

∫

(Gt F(q,p))μP
t (dq, dp), (2.15)

such that μP
t+θ = μP

t .
Given a measurable function F : R2(n+1) → R we denote

〈〈F〉〉 := 1

θ

∫ θ

0
dt
∫

R2(n+1)
F(q,p)μP

t (dq, dp), (2.16)

provided that |F(q,p)| is integrable w.r.t. the respective product measure.
It has been shown, see [14, Theorem 1.1, Proposition A.1] and also [15, Theorem A.2],

that there exists a unique periodic, stationary state.

Theorem 2.1 For a fixed n � 1 there exists a unique periodic stationary state {μP
s , s ∈

[0,+∞)} for the system (2.3)–(2.4). ThemeasuresμP
s are absolutely continuous with respect

to the Lebesgue measure dqdp and the respective densities μP
s (dq, dp) = f Ps (q,p)dqdp

are strictly positive. The time averages of all the second moments 〈〈px py〉〉, 〈〈pxqy〉〉 and
〈〈qxqy〉〉 are finite andminx 〈〈p2x 〉〉 � T−. Furthermore, given an arbitrary initial probability
distribution μ on R

2(n+1) and (μt ) the solution of (2.15) such that μ0 = μ, we have

lim
t→+∞ ‖μt − μP

t ‖TV = 0. (2.17)

Here ‖ · ‖TV denotes the total variation norm.

In the periodic stationary state the time averaged energy current Jn = 〈〈 jx,x+1〉〉 is constant
for x = −1, . . . , n. In particular

Jn = − 1√
nθ

∫ θ

0
F
( s

θ

)
pn(s)ds, (2.18)

where px (s) := ∫
R2(n+1) pxμP

s (dq, dp). It turns out that the stationary current is of size
O(1/n) as can be seen from the following.
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Theorem 2.2 (see Theorem 3.1 of [14]) Suppose thatF(·) satisfies (2.6) and, in addition, we
also have

∑
�∈Z �2|F̂(�)|2 < +∞. Then,

lim
n→+∞ nJn = J := −

(
2π

θ

)2∑

�∈Z
�2Q(�), (2.19)

with Q(�) given by,

Q(�) = 4γ |F̂(�)|2
∫ 1

0
cos2

(π z

2

)
⎧
⎨

⎩

[

4 sin2
(π z

2

)
+ ω2

0 −
(
2π�

θ

)2
]2

+
(
4γπ�

θ

)2
⎫
⎬

⎭

−1

dz.

(2.20)
In the more general case when the forcing Fn(t) is θn-periodic, with the period θn = nbθ

and the amplitude na, i.e. Fn(t) = naF
(

t
θn

)
, and

b − a = 1

2
, a � 0 and b > 0 (2.21)

the convergence in (2.19) still holds. However, then

Q(�) = 4γ |F̂(�)|2
∫ 1

0
cos2

(π z

2

) [
4 sin2

(π z

2

)
+ ω2

0

]−2
dz, when b > 0. (2.22)

Concerning the convergence of the energy profile we have shown the following, see [14,
Theorem 3.4].

Theorem 2.3 Under the assumptions of Theorem 2.2 we have

lim
n→∞

1

n

n∑

x=0

ϕ

(
x

n + 1

)

〈〈p2x 〉〉= lim
n→∞

1

n

n∑

x=0

ϕ

(
x

n + 1

)

〈〈Ex 〉〉 =
∫ 1

0
ϕ(u)T (u)du,

(2.23)
with

T (u) = T− − 4γ Ju

D
, u ∈ [0, 1], (2.24)

for any ϕ ∈ C[0, 1]. Here J is given by (2.19) and

D = 1 − ω2
0

(
Gω0(0) + Gω0(1)

)
= 2

2 + ω2
0 + ω0

√
ω2
0 + 4

, (2.25)

where Gω0(�) is the Green function defined in (A.2).

Concerning the time variance of the average kinetic energy we have shown the following.

Theorem 2.4 (Theorem 9.1, [14]) Suppose that the forcing Fn(·) is given by (2.5), where
F(·) satisfies the hypotheses made in Theorem 2.2. Then, there exists a constant C > 0 such
that

n∑

x=0

1

θ

∫ θ

0

(
p2x (t) − 〈〈p2x 〉〉

)2
dt � C

n2
, n = 1, 2, . . . . (2.26)

Here p2x (t) := ∫
R2(n+1) p2xμ

P
t (dq, dp).
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2.2 Statements of theMain Results

2.2.1 Macroscopic Energy Current Due to Work

The first results concerns the work done by the forcing in a diffusive limit, i.e.

Jn(t, μ) = 1

n

∫ n2t

0
Eμ

(
jn,n+1(s,q(s),p(s))

)
ds = −1

n

∫ n2t

0
Fn(s)Eμ (pn(s)) ds,

(2.27)
where Eμ denotes the expectation of the process with the initial configuration (q,p) dis-
tributed according to a probability measureμ. We shall write Jn(t,q,p) if for a deterministic
initial configuration (q,p), i.e. μ = δq,p, the δ-measure that gives probability 1 to such con-
figuration.

Assume furthermore that (μn) is a sequence of initial distributions, with each μn proba-
bility measure on Rn+1 ×R

n+1. We suppose that there exist C > 0 and δ ∈ [0, 2) for which
for any integer n � 1

Hn(qn,pn) � Cnδ. (2.28)

Here (qn,pn) is the vector of the averages of the configuration with respect to μn . We are
interested essentially in the case δ = 1, but Theorem 2.5 is valid also for any δ < 2. In
Proposition B.1 we prove that, in the diffusive time scaling, the energy due to the averages
(2.28) becomes negligible at any time t > 0.

In Section B.2 of the Appendix we prove the following.

Theorem 2.5 Under the assumptions listed above, we have

lim
n→+∞ sup

t�0

∣
∣
∣Jn(t, μn) − J t

∣
∣
∣ = 0, (2.29)

where J is given by (2.19).

Remark 2.6 The asymptotic current J is the same as in the stationary state (cf. [14]) and it
does not depend on the initial configuration.

Remark 2.7 Analogously to the stationary case, rescaling the period θ with n and the strenght
of the force in such a way that

Fn(t) = naF
(

t

nbθ

)

, b − a = 1

2
, a � 0 and b > 0, (2.30)

Theorem 2.5 still holds, but with a different value of the current. Namely, J is given by
(2.19) with Q(�) defined by (2.22). Formula (2.22) corresponds to (2.20) with the value
θ = ∞. If b − a �= 1/2 the macrosopic current nJn is not of order O(1), which leads to
an anomalous behavior of the heat conductivity of the chain (it vanishes, if b − a > 1/2,
becomes unbounded, if b− a < 1/2. The assumption a � 0 guarantees that the force acting
on the system does not become infinite, as n → +∞.

Remark 2.8 Using contour integration it is possible to calculate the quantities appearing in
(2.20) and (2.22), see [15, Appendix D]. In the case of (2.20) we obtain

Q(�) = θ |F̂(�)|2
2π�

Im

({
2

λ(ω0, �)
√
1 + 4/λ(ω0, �)

+ 1

2

}
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{

1 + λ(ω0, �)

2

(
1 +

√

1 + 4

λ(ω0, �)

)
}−1⎞

⎠ ,

with

λ(ω0, �) := ω2
0 −

(
2π�

θ

)2
+ i

(
4γπ�

θ

)

.

Furthermore, in the case of (2.22) we have

Q(�) = 2γ |F̂(�)|2(4 + ω2
0)

(ω4
0 + 4ω2

0 + 8)3/2
.

2.2.2 Macroscopic Energy Profile

Let νT−(dq, dp) be defined as the product Gaussianmeasure on�n (see (2.1)) of zero average
and variance T− > 0 given by

νT−(dq, dp) := 1

Z

n∏

x=0

exp {−Ex (q,p)/T−} dqdp, (2.31)

where Z is the normalizing constant. Let f (q,p) be a probability density with respect to
νT− . We denote the relative entropy

Hn( f ) :=
∫

�n

f (q,p) log f (q,p)dνT−(q,p). (2.32)

We assume now that the initial distribution μn has density fn(0,q,p), with respect to νT− ,
such that there exists a constant C > 0 for which

Hn( fn(0)) � Cn, n = 1, 2, . . . . (2.33)

For example, it can be verified that local Gibbs measures of the form

fn(q,p)dνT−(q,p) =
n∏

x=0

exp

{

−Ex (q,p)

Tx,n

}

dqdp, (2.34)

with inf x,n Tx,n > 0 satisfy (2.33). At this point we only remark that, due to the entropy
inequality (see the proof of Corollary 3.2 below), assumption (2.33) implies

sup
n�1

Eμn

[
1

n + 1

n∑

x=0

Ex (0)
]

< +∞.

Furthermore, since the Hamiltonian H(·, ·) is a convex function, by the Jensen inequality

sup
n�1

1

n + 1
Hn(qn,pn) � sup

n�1
Eμn

[
1

n + 1

n∑

x=0

Hn(q,p)

]

< +∞,

so (2.28) is satisfied with δ = 1.
Denote by Mfin([0, 1]), resp M+([0, 1]) the space of bounded variation, Borel, resp.

positive, measures on the interval [0, 1] endowedwith the weak topology. Before formulating
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the main result we introduce the notion of a measured valued solution of the following initial-
boundary value problem

∂t T = D

4γ
∂2u T , u ∈ (0, 1),

T (t, 0) = T−, ∂uT (t, 1) = −4γ J

D
, T (0, du) = T0(du).

(2.35)

Here J and D are defined by (2.19) and (2.25), respectively and T0 ∈ Mfin([0, 1]).
Definition 2.9 We say that a function T : [0,+∞) → Mfin([0, 1]) is a weak (measured val-

ued) solution of (2.35) if: it belongs to C
(
[0,+∞);Mfin([0, 1])

)
and for any ϕ ∈ C2[0, 1]

such that ϕ(0) = ϕ′(1) = 0 we have
∫ 1

0
ϕ(u)T (t, du) −

∫ 1

0
ϕ(u)T0(du) = D

4γ

∫ t

0
ds
∫ 1

0
ϕ′′(u)T (s, du)

+ DT−t
4γ

ϕ′(0) − J tϕ(1).

(2.36)

The proof of the uniqueness of the solution of (2.36) is quite routine. For completeness
sake we present it in Appendix E.

Theorem 2.10 Suppose that the initial configurations (μn) satisfy (2.33). Assume further-
more that there exists T0 ∈ M+([0, 1]) such that

lim
n→∞Eμn

[
1

n + 1

n∑

x=0

ϕ

(
x

n + 1

)

Ex (0)
]

=
∫ 1

0
ϕ(u)T0(du), (2.37)

for any function ϕ ∈ C[0, 1] - the space of continuous functions on [0, 1]. Here Ex (t) =
Ex (q(t),p(t)). Then,

lim
n→∞

1

n + 1

n∑

x=0

ϕ

(
x

n + 1

)

Eμn

(Ex (n2t)
) =

∫ 1

0
ϕ(u)T (t, du). (2.38)

Here T (t, du) is the unique weak solution of (2.35), with the initial data given by measure
T0 in (2.37).

Remark 2.11 The initial energy Ex (0) can be represented as the sum E th
x +Emech

x of the thermal
energy

E th
x := 1

2

[
(p′

x )
2 + (q ′

x − q ′
x−1)

2 + ω2
0(q

′
x )

2]

and the mechanical energy

Emech
x := 1

2

[
p2x + (qx − qx−1)

2 + ω2
0q

2
x

]
.

Here q ′
x = qx − qx and p′

x = px − px , with px := ∫
�n

pxμn(dq, dp) and qx :=
∫
�n

qxμn(dq, dp).

If Emech
x �= 0 and satisfies (2.28), with δ = 1, then the initial measure T0(du) is the

macroscopic distribution of the total energy and not of the temperature, where the latter
is understood as the thermal energy. Nevertheless, as a consequence of Proposition B.1, at
any macroscopic positive time the entire mechanical energy is transformed immediately into

123
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the thermal energy, so that T (t, du) for t > 0 can be seen as the macroscopic temperature
distribution. The situation is different for the unpinned dynamics (ω0 = 0) where the transfer
of mechanical energy to thermal energy happens slowly at macroscopic times (see [13]).

Remark 2.12 Concerning Theorem 2.10, a similar proof will work in the case where two
Langevin heat baths at two temperatures, T− and T+ are placed at the boundaries, in the
absence of the periodic forcing. In this case the macroscopic equation will be the same but
with boundary conditions T (t, 0) = T− and T (t, 1) = T+.

Also, in the absence of any heat bath, we could apply two periodic forces F (0)
n (t) and

F (1)
n (t) respectively at the left and right boundary. They will generate two incoming energy

current, J (0) > 0 on the left and J (1) < 0 on the right, given by the corresponding formula

(2.19), andwewill have the same equation butwith boundary conditions ∂uT (t, 0) = − 4γ J (0)

D

and ∂uT (t, 1) = − 4γ J (1)

D . Of course in this case the total energy increases in time and periodic
stationary states do not exist.

In the case where both a heat bath and a periodic force are present on the same side, say
on the right endpoint, then the macroscopic boundary condition arising is T (t, 1) = T+,
i.e. the periodic forcing is ineffective on the macroscopic level, and all the energy generated
by its work will flow into the heat bath. It would be interesting to investigate what happens
when the amplitude of the forcing is larger than considered here (−1/2 < a � 0 in (2.30)).
However, it is not yet clear to us what occurs in this case.

Remark 2.13 If the initial data T0 is C1 smooth and satisfies the boundary condition in
(2.35), then the initial-boundary value problem (2.35) has a unique strong solution T (t, u)

that belongs to the intersection of the spacesC
([0,+∞)×[0, 1]) andC1,2

(
(0,+∞)×(0, 1)

)

- the space of functions continuously differentiable once in the first and twice in the second
variable, see e.g. [8, Corollary 5.3.2, p.147]. This solution coincides then with the unique
weak solution in the sense of Definition 2.9.

Remark 2.14 In the proof of Theorem 2.10 we need to show a result about the equipartition
of energy (cf. Proposition 4.1). As a consequence the limit profile of the energy equals the
limit profile of the temperature, i.e. we have

lim
n→∞

1

n + 1

n∑

x=0

∫ +∞

0
ϕ

(

t,
x

n + 1

)

Eμn

(
p2x (n

2t)
)
dt =

∫ +∞

0
dt
∫ 1

0
ϕ(t, u)T (t, du),

(2.39)
for any compactly supported test function.

3 Entropy, Energy and Currents Bounds

We first prove that the initial entropy bound (2.33) holds for all times.

Proposition 3.1 Suppose that the law of the initial configuration admits the density
fn(0,q,p) w.r.t. the Gibbs measure νT− that satisfies (2.33). Then, for any t > 0 there
exists fn(t,q,p) - the density of the law of the configuration

(
q(t),p(t)

)
. In addition, for

any t there exists a constant C independent of n such that

sup
s∈[0,t]

Hn( fn(n
2s)) � Cn, (3.1)
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Proof For simplicity sake, we present here a proof under an additional assumption that
fn(t,q,p) is a smooth function such that μt (dq, dp) = fn(t,q,p)dqdp is the solution of
the forward equation (2.15). The general case is treated in Appendix F. Using (2.9) for the
generator Gt we conclude that

Hn( fn(n
2t)) − Hn( fn(0)) =

∫ n2t

0
ds
∫

�n

fn(s)Gs log fn(s)dνT− = In + IIn,

with

In := γ

∫ n2t

0
ds
∫

�n

fn(s)
(Sflip + 2S−

)
log fn(s)dνT−,

IIn :=
∫ n2t

0
ds
∫

�n

fn(s)As log fn(s)dνT−.

We have that In � 0 because Sflip and S− are symmetric negative operators with respect to
the measure νT−.

The only positive contribution comes from the second term where the boundary work
defined by (2.27) appears:

IIn =
∫ n2t

0
dsFn(s)

∫

�n

pn
T−

fn(s)dνT− = − n

T−
Jn(t, μ0),

where dμ0 := fn(0)dνT−. Therefore

Hn( fn(n
2t)) � Hn( fn(0)) − n

T−
Jn(t, μ0).

The conclusion of the proposition then follows from a direct application of (2.33) and The-
orem 2.5. ��

To abbreviate the notation we shall omit the index by the expectation sign, indicating the
initial condition.

Corollary 3.2 (Energy bound) For any t∗ � 0 we have

sup
t∈[0,t∗]

sup
n�1

E

[
1

n + 1

n∑

x=0

Ex (n2t)
]

= E(t∗) < +∞. (3.2)

Proof It follows from the entropy inequality, see e.g. [9, p. 338], that for α > 0 small enough
we can find Cα > 0 such that

E

[
n∑

x=0

Ex (n2t)
]

� 1

α

(
Cαn + Hn(t)

)
, t � 0. (3.3)

��
From Theorem 2.5 and Corollary 3.2 we immediately conclude the following.

Corollary 3.3 (Current size) For any t∗ � 0 there exists C > 0 such that

sup
x=0,...,n+1, t∈[0,t∗]

∣
∣
∣
∣

∫ t

0
E
[
jx−1,x (n

2s)
]
ds

∣
∣
∣
∣ �

C

n
, n = 1, 2, . . . . (3.4)
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In particular, for any t > 0 there exists C > 0 such that

∣
∣
∣

∫ t

0

{
E
[
p20(n

2s)
]− T−

}
ds
∣
∣
∣ �

C

n
, (3.5)

Proof By the local conservation of energy

n−2 d

dt
E[Ex (n2t)] = E

[
jx−1,x (n

2t) − jx,x+1(n
2t)
]
. (3.6)

Therefore

∫ t

0
E jx−1,x (n

2s)ds =
∫ t

0
E jn,n+1(n

2s)ds + n−2
n∑

y=x

(
E[Ey(n2t)] − E[Ey(0)]

)
, (3.7)

and bound (3.4) follows directly from estimates (2.29) and (3.2). Estimate (3.5) is a conse-
quence of the definition of j−1,0 (see (2.14)) and (3.4). ��

4 Equipartition of Energy and Fluctuation-Dissipation Relations

4.1 Equipartition of the Energy

In the present section we show the equipartition property of the energy.

Proposition 4.1 Suppose that ϕ ∈ C1[0, 1] is such that suppϕ ⊂ (0, 1). Then,

lim
n→+∞

1

n + 1

n∑

x=0

ϕ

(
x

n + 1

)∫ t

0
E

[
p2x (n

2s)−(qx (n2s)−qx−1(n
2s)
)2−ω2

0q
2
x (n

2s)
]
ds = 0.

(4.1)

Proof After a simple calculation we obtain the following fluctuation-dissipation relation: for
x = 1, . . . , n − 1,

p2x − ω2
0q

2
x − (qx − qx−1)

2 = ∇�
[
qx (qx+1 − qx )

]+ Gt
(
qx px + γ q2x

)
, (4.2)

where the discrete gradient ∇ and its adjoint ∇� are defined in (A.1) below.
Therefore,

∫ t

0
E

[
p2x (n

2s) − ω2
0q

2
x (n

2s) − (qx (n
2s) − qx (n

2s))2
]
ds

= ∇
∫ t

0
E
[
qx (n

2s)(qx+1(n
2s) − qx (n

2s))
]
ds

+ n−2
E

[
qx (n

2t)px (n
2t) + 2γ q2x (n

2t)
]

− n−2
E

[
qx (0)px (0) + 2γ q2x (0)

]
. (4.3)

After summing up against the test function ϕ (that has compact support strictly contained in
(0, 1)) and using the energy bound (3.2) we conclude (4.1). ��
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4.2 Fluctuation-Dissipation Relation

In analogy to [14, Section 5.1] define

fx := 1

4γ
(qx+1 − qx ) (px + px+1) + 1

4
(qx+1 − qx )

2 , x = 0, . . . , n − 1,

Fx := p2x + (qx+1 − qx ) (qx − qx−1) − ω2
0q

2
x , x = 0, . . . , n,

(4.4)

with the convention that q−1 = q0, qn = qn+1. Then

jx,x+1 = − 1

4γ
∇Fx + Gt fx − δx,n−1

4γ
Fn(t) (qn − qn−1) , x = 0, . . . , n − 1. (4.5)

5 Local Equilibrium and the Proof of Theorem 2.10

The fundamental ingredients in the proof of Theorem 2.10 are the identification of the work
done at the boundary given by Theorem 2.5, the equipartition and the fluctuation-dissipation
relation contained in Theorem 4, and the following local equilibrium results. In the bulk we
have the following:

Proposition 5.1 Suppose that ϕ ∈ C[0, 1] is such that suppϕ ⊂ (0, 1). Then

lim
n→+∞

1

n + 1

n∑

x=0

ϕ

(
x

n + 1

)∫ t

0
E
[
qx (n

2s)qx+�(n
2s) − Gω0(�)p

2
x (n

2s)
]
ds = 0, (5.1)

for � = 0, 1, 2. Here Gω0(�) is the Green’s function of −�Z + ω2
0 , where �Z is the lattice

laplacian, see (A.2).

At the left boundary the situation is a bit different, due to the fact that q0 = q−1, and we
have

Proposition 5.2 We have

lim
n→+∞

∫ t

0
E
[
q20 (n

2s) − (Gω0(1) + Gω0(0)
)
p20(n

2s)
]
ds = 0. (5.2)

The proofs of Propositions 5.1 and 5.2 require the analysis of the evolution of the covari-
ance matrix of the position and momenta vector and will be done in Appendix D. As a
consequence, recalling definition (4.4), the bound (3.5) and the identity 2Gω0(1)−Gω0(0)−
Gω0(2) = −ω2

0Gω0(1) we have the following corollary

Corollary 5.3 For any t > 0 and ϕ ∈ C[0, 1] such that suppϕ ⊂ (0, 1) we have

lim
n→+∞

1

n + 1

n∑

x=0

ϕ

(
x

n + 1

)∫ t

0
E
[
Fx (n

2s) − Dp2x (n
2s)
]
ds = 0 (5.3)

and

lim
n→+∞

∫ t

0

{
E
[
F0(n

2s)
]− DT−

}
ds = 0. (5.4)

Here D is defined in (2.25).
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5.1 Proof of Theorem 2.10

Consider the subset M+,E∗([0, 1]) of M+([0, 1]) (the space of all positive, finite Borel
measures on [0, 1]) consisting of measures with total mass less than or equal to E∗. It is
compact in the topology of weak convergence of measures. In addition, the topology is
metrizable when restricted to this set.

For any t ∈ [0, t∗] and ϕ ∈ C[0, 1] define

ξn(t, ϕ) = 1

n + 1

n∑

x=0

ϕxE
[Ex (n2t)

]
, ϕx := ϕ

(
x

n + 1

)

(5.5)

for any ϕ ∈ C[0, 1]. Since flips of the momenta do not affect the energies Ex , we have
ξn ∈ C ([0, t∗],M+([0, 1])). Here C ([0, t∗],M+,E∗([0, 1])

)
is endowed with the topology

of the uniform convergence. As a consequence of Corollary 3.2 for any t∗ > 0 the total energy
is bounded by E∗ = E(t∗) (see (3.2)) and we have that ξn ∈ C

([0, t∗],M+,E∗([0, 1])
)
.

5.2 Compactness

Since M+,E∗([0, 1]) is compact, in order to show that (ξn) is compact, we only need to
control modulus of continuity in time of ξn(t, ϕ) for any ϕ ∈ C1[0, 1], see e.g. [12, p. 234].
This will be consequence of the following Proposition.

Proposition 5.4

lim
δ↓0 lim sup

n→∞
sup

0�s,t�t∗,|t−s|<δ

|ξn(t, ϕ) − ξn(s, ϕ)| = 0 (5.6)

The proof of Proposition 5.4 is postponed untill Sect. 5.4, we first use it to proceed with the
limit identification argument.

5.3 Limit Identification

Consider a smooth test function ϕ ∈ C2[0, 1] such that

ϕ(0) = ϕ′(1) = 0. (5.7)

In what follows we use the following notation. For a given function ϕ : [0, 1] → R and
n = 1, 2, . . . we define discrete approximations of the function itself and of its gradient,
respectively by

ϕx := ϕ( x
n+1 ), (∇nϕ)x := (n + 1)

(
ϕ( x+1

n+1 ) − ϕ( x
n+1 )

)
, for x ∈ {0, . . . , n}. (5.8)

We use the convention ϕ(− 1
n+1 ) = ϕ(0). Let 0 < t∗ < +∞ be fixed. In what follows we

show that, for any t ∈ [0, t∗]

ξn(t, ϕ) − ξn(0, ϕ) = ϕ′(0)DT−t
4γ

− J tϕ(1) + D

4γ

∫ t

0
ξn(s, ϕ

′′)ds + on . (5.9)

Here, and in what follows on denotes a quantity satisfying limn→+∞ on = 0. Thus any
limiting point of

(
ξn(t)

)
has to be the unique weak solution of (2.36) and this obviously

proves the conclusion of Theorem 2.10.

123



Heat Flow in a Periodically Forced, Thermostatted Chain II Page 15 of 33 87

Byanapproximation argumentwecan restrict ourselves to the casewhen supp ϕ′′ ⊂ (0, 1).
Then as in (5.14) we have

ξn(t, ϕ) − ξn(0, ϕ) = n2

n + 1

n−1∑

x=0

(ϕx+1 − ϕx )

∫ t

0
E
[
jx,x+1(n

2τ)
]
dτ

− n2

n + 1
ϕn

∫ t

0
E
[
jn,n+1(n

2τ)
]
dτ,

(5.10)

By Theorem 2.5 the last term converges to −ϕ(1)J t . On the other hand from (4.5) we have

n2

n + 1

n−1∑

x=0

(ϕx+1 − ϕx )

∫ t

0
E
[
jx,x+1(n

2τ)
]
dτ =

3∑

j=1

In, j , (5.11)

where

In,1 := − 1

4γ

(
n

n + 1

)2 n−1∑

x=0

∇nϕx

∫ t

0
E
[ ∇Fx (n

2s)
]
ds,

In,2 :=
(

1

n + 1

)2 n−1∑

x=0

∇nϕxE

[
fx (n

2t) − fx (0)
]
,

In,3 := − 1

4γ

(
n

n + 1

)2

∇nϕn−1

∫ t

0
Fn(n

2s)E
[
qn(n

2s) − qn−1(n
2s)
]
ds.

It is easy to see from Corollary 3.2 that In,2 = on(t). Here the symbol on(t) stands for a
quantity that satisfies

lim
n→+∞ sup

s∈[0,t∗]
|on(s)| = 0. (5.12)

Using the fact that ϕ′(1) = 0 and the estimate (B.15) respectively we conclude also that
In,3 = on(t). Thanks to Corollary 3.2 and (5.7) we have

In,1 =
3∑

j=1

I( j)n,1 + on(t), where

I(1)n,1 := 1

4γ (n + 1)

n∑

x=0

ϕ′′
(

x

n + 1

)∫ t

0
E
[
Fx (n

2s)
]
ds,

I(2)n,1 := − 1

4γ

(
n

n + 1

)2
ϕ′
(
n − 1

n + 1

)∫ t

0
E
[
Fn(n

2s)
]
ds = on(t),

I(3)n,1 := 1

4γ
ϕ′(0)

∫ t

0
E
[
F0(n

2s)
]
ds.

Since suppϕ′′ ⊂ (0, 1), by Corollary 5.3 and the equipartition property (Proposition 4.1)
for a fixed t ∈ [0, t∗] we have

I(1)n,1 = D

4γ (n + 1)

n∑

x=0

ϕ′′
(

x

n + 1

)∫ t

0
E

[
p2x (n

2s)
]
ds + on(t)

= D

4γ (n + 1)

n∑

x=0

ϕ′′
(

x

n + 1

)∫ t

0
E

[
Ex (n2s)

]
ds + on . (5.13)
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Concluding, we have obtained

lim
n→+∞ I(3)n,1 = ϕ′(0)DT−t

4γ
.

Thus (5.9) follows. ��

5.4 Proof of Proposition 5.4

From the calculation made in (5.10)–(5.13) we conclude that for any function ϕ ∈ C2[0, 1]
satisfying (5.7) we have

ξn(t, ϕ) − ξn(s, ϕ) = ϕ′(0)DT−
4γ

(t − s) − Jϕ(1)(t − s)

+ D

4γ (n + 1)

n∑

x=0

ϕ′′
(

x

n + 1

)∫ t

s
E

[
p2x (n

2τ)
]
dτ + on(t) + on(s)

(5.14)

for any 0 � s < t � t∗ and (5.6) follows immediately. A density argument completes the
proof.
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Appendix A: The Discrete Laplacian

A.1: Discrete Gradient and Laplacian

Recall that the lattice gradient, its adjoint and laplacian of any f : Z → R are defined as

∇ fx = fx+1 − fx , ∇� fx = fx−1 − fx (A.1)

and �Z fx = −∇�∇ fx = fx+1 + fx−1 − 2 fx , x ∈ Z, respectively.
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Suppose that ω0 > 0. Consider the Green’s function of −�Z + ω2
0, where �Z is the

laplacian on the integer lattice Z. It is given by, see e.g. [17, (27)],

Gω0(x) = (−�Z + ω2
0

)−1
(x) =

∫ 1

0

{
4 sin2(πu) + ω2

0

}−1
cos(2πux)du

= 1

ω0

√
ω2
0 + 4

⎧
⎨

⎩
1 + ω2

0

2
+ ω0

√

1 + ω2
0

4

⎫
⎬

⎭

−|x |

, x ∈ Z. (A.2)

A.2: Discrete Neumann Laplacian−1

Let λ j andψ j , j = 0, . . . , n be the respective eigenvalues and eigenfunctions for the discrete
Neumann laplacian −� defined in (2.8). They are given by

λ j = 4 sin2
(

π j

2(n + 1)

)

, ψ j (x) =
(
2 − δ0, j

n + 1

)1/2

cos

(
π j(2x + 1)

2(n + 1)

)

, x, j = 0, . . . , n.

(A.3)

The eigenvalues of ω2
0 − � are given by

μ j = ω2
0 + λ j = ω2

0 + 4 sin2
(

π j

2(n + 1)

)

, j = 0, . . . , n. (A.4)

Appendix B: The Dynamics of theMeans

Let μ be a Borel probability measure on R
2(n+1) and let (q,p) be the vector of the μ-

averages of initial data. In the following we denote by

(
q(t)
p(t)

)

the vector means of positions

and momenta by qx (t) = Eq,p(qx (t)) and px (t) = Eq,p(px (t)). Let e2(n+1) be the 2(n + 1)
vector defined by e2(n+1), j = δ2(n+1), j . Then, performing the averages in (2.3) and (2.4), we
conclude the evolution equation for the averages. Its solution is given by

(
q(t)
p(t)

)

= e−At
(
q
p

)

+
∫ t

0
Fn (s) e−A(t−s) e2(n+1)ds. (B.1)

Here A is a 2 × 2 block matrix made of (n + 1) × (n + 1) matrices of the form

A =
(

0 −Idn+1

−� + ω2
0Idn+1 2γ Idn+1

)

, (B.2)

where Idn+1 is the (n + 1) × (n + 1) identity matrix.
Using the expansion

F(t) =
∑

�∈Z
F̂(�)e2π i�t

and defining
(
y(t)
z(t)

)

:= e−Ate2(n+1), (B.3)
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we can write
(
q(t)
p(t)

)

=e−At
(
q
p

)

+
∑

�∈Z

F̂(�)√
n

∫ t

0
e2π i�s/θ

(
y(t − s)
z(t − s)

)

ds. (B.4)

To find the formulas for the components of vx (t), ux (t), x = 0, . . . , n of the vector(
u(t)
v(t)

)

:= e−At
(
q
p

)

it is convenient to use the Fourier coordinates in the base ψ j of the

eigenvectors for the Neumann laplacian �, see (A.3). Let ũ j (t) = ∑n
x=0 ux (t)ψ j (x) and

ṽ j (t) = ∑n
x=0 vx (t)ψ j (x) be the Fourier coordinates of the vector (u(t), v(t)). Likewise,

we let q̃ j = ∑n
x=0 qxψ j (x) and p̃ j = ∑n

x=0 pxψ j (x), with qx , px , x = 0, . . . , n the
components of (q,p).

Let
λ j,± := γ ±

√
γ 2 − μ j (B.5)

be the two solutions of the equation

λ2 − 2γ λ + μ j = 0. (B.6)

Note that λ j,+λ j,− = μ j . Then,

ũ j (t) = 1

2
√

γ 2 − μ j

[
− (λ j,−q̃ j + p̃ j ) exp

{−λ j,+t
}+ (λ j,+q̃ j + p̃ j ) exp

{−λ j,−t
} ]

.

(B.7)

and

ṽ j (t) = 1

2
√

γ 2 − μ j

[
(μ j q̃ j + λ j,+ p̃ j ) exp

{−λ j,+t
}− (μ j q̃ j + λ j,− p̃ j ) exp

{−λ j,−t
} ]

,

(B.8)

in the case when μ j �= γ 2. When γ 2 = μ j (then λ j,± = γ ) we have

ũ j (t) =
[
(1 + γ t )̃q j + p̃ j t

]
e−γ t , ṽ j (t) =

[
γ 2t q̃ j + (1 − γ t) p̃ j

]
e−γ t ,

Then, by (B.7) and (B.8), we conclude that the components of e−Ate2(n+1) equal

ỹ j (t) = ψ j (n)

2
√

γ 2 − μ j

(
− exp

{−λ j,+t
}+ exp

{−λ j,−t
} )

,

z̃ j (t) = ψ j (n)

2
√

γ 2 − μ j

(
λ j,+ exp

{−λ j,+t
}− λ j,− exp

{−λ j,−t
} )

.

(B.9)

in the case when μ j �= γ 2. In the case that γ 2 = μ j (then λ j,± = γ ) we have ỹ j (t) =
ψ j (n)te−γ t and z̃ j (t) = ψ j (n)(1 − γ t)e−γ t .

Elementary calculations lead to the following bounds

Reλ j,± � γ∗ := min

{

γ,
ω2
0

2γ

}

, |λ j,±| � γ +|γ 2−ω2
0 −4|1/2, j = 0, . . . , n. (B.10)

Hence, there exists C > 0 such that

|̃y j (t)| + |̃z j (t)| � C(t + 1)e−γ∗t |ψ j (n)| (B.11)
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for all t � 0, j = 0, . . . , n, n = 1, 2, . . .. By the Plancherel identity, (B.7) and (B.8) we
conclude also that there exist constants C,C ′ > 0 such that, for all t � 0 and n ∈ N,

n∑

x=0

[
u2x (t) + v2x (t)

]
=

n∑

j=0

[
ũ2j (t) + ṽ2j (t)

]

� C(t + 1)e−γ∗t
n∑

j=0

(
q̃2j + p̃2j

)
� C ′(t + 1)e−γ∗tHn

(
q,p

)
.

(B.12)

B.1: L2 Norms of theMeans

By (B.4), the triangle inequality and the Plancherel theorem

n∑

x=0

∫ t

0

[
q2x (s) + p2x (s)

]
ds � C

n∑

x=0

∫ t

0

[
u2x (s) + v2x (s)

]
ds

+ C

n

n∑

j=0

⎡

⎣

∣
∣
∣
∣
∣

∑

�∈Z
F̂(�)

∫ t

0
e2π i�s/θ ỹ j (t − s)ds

∣
∣
∣
∣
∣

2

+
∣
∣
∣
∣
∣

∑

�∈Z
F̂(�)

∫ t

0
e2π i�s/θ z̃ j (t − s)ds

∣
∣
∣
∣
∣

2
⎤

⎦ .

(B.13)
The constant appearing here below do not depend on t and n. Using (2.6), (B.11) and (B.12)
we conclude therefore that

n∑

x=0

∫ t

0

[
q2x (s) + p2x (s)

]
ds � CHn

(
q,p

)
+ C

n

(
∑

�∈Z
|F̂(�)|

)2

. (B.14)

From (B.14) we conclude therefore the following.

Proposition B.1 Assume that the hypotheses of Theorem 2.5 are in force. Then, there exists
C > 0 such that

n∑

x=0

∫ t

0

[
q2x (n

2s) + p2x (n
2s)
]
ds � C

nκ
, (B.15)

for all t � 0, n = 1, 2, . . .. Here κ = min{2 − δ, 1} and δ is as in (2.28). If the hypotheses
of Theorem 2.10 hold, then δ = 1 and (B.15) is satisfied with κ = 1.

B.2: The Proof of Theorem 2.5

We show (2.29) and (2.19). Recall that the initial configuration (q,p) is distributed according
to μn . For the work done we have

Wn(t) :=
∫ t

0
Fn(s)pn(s)ds

=
∑

j

ψ j (n)
∑

�∈Z

1√
n
F̂(�)�

∫ t

0
e−i2π�s/θ p̃ j (s)ds.

(B.16)

We have Jn(t;μ) = −Wn(n2t)/n, see (2.27).
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Using (B.1) the utmost right hand side can be rewritten in the form Wn,i (t) + Wn, f (t)
where

Wn,i (t) :=
n∑

j=0

ψ j (n)
∑

�∈Z

1√
n
F̂(�)∗

∫ t

0
e−i2π�s/θ ṽ j (s)ds,

Wn, f (t) := 1

n

n∑

j=0

ψ j (n)
∑

�,�′∈Z
F̂(�)∗F̂(�′)

∫ t

0
ds ei2π(�′−�)s/θ

∫ s

0
e−i2π�′s′/θ z̃ j (s

′)ds′,

(B.17)
with ṽ j (s) and z̃ j (s′) defined in (B.8) and (B.9).

Thanks to the last estimate of (2.6) and the Cauchy-Schwarz inequality we conclude from
(B.12)

|Wn,i (t)| � C√
n
H1/2

n

(
qn,pn

) ∫ t

0
(s + 1)1/2e−γ∗s/2ds.

Thanks to (2.28) limn→+∞ |Wn,i (n2t)|/n = 0. Using (B.9) we have
∫ s

0
e−i2π�′s′/θ z̃ j (s

′)ds′

= ψ j (n)

λ j,+ − λ j,−

⎡

⎣
λ j,−

[
e−s(λ j,−+2π i�′/θ) − 1

]

2π i�′/θ + λ j,−
−

λ j,+
[
e−s(λ j,++2π i�′/θ) − 1

]

2π i�′/θ + λ j,+

⎤

⎦ ,

so that we can decompose the work done in Wn, f (t) = W (1)
n, f (t) + W (2)

n, f (t), where

1

n
W (1)

n, f (n
2t) := − 1

n2

n∑

j=0

ψ2
j (n)

λ j,+ − λ j,−
∑

�,�′∈Z
F̂∗(�)F̂(�′)

( λ j,−
2π i�′/θ + λ j,−

− λ j,+
2π i�′/θ + λ j,+

)

×
∫ n2t

0
exp
{
2π is(�′ − �)/θ

}
ds

= −t
n∑

j=0

ψ2
j (n)

λ j,+ − λ j,−

∑

�∈Z
|F̂(�)|2

( λ j,−
2π i�/θ + λ j,−

− λ j,+
2π i�/θ + λ j,+

)

+ O

(
1

n2

)

and

1

n
W (2)

n, f (n
2t) := 1

n2

n∑

j=0

ψ2
j (n)

λ j,+ − λ j,−

∑

�,�′∈Z
F̂�(�)F̂(�′)

∫ n2t

0

(λ j,+ exp
{−(2π i�′/θ + λ j,+)s

}

2π i�′/θ + λ j,+

− λ j,− exp
{−(2π i�′/θ + λ j,−)s

}

2π i�′/θ + λ j,−

)
ds.
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Using (B.6) and integrating over the s variable we conclude that

1

n
W (2)

n, f (n
2t) = 1

n2

n∑

j=0

ψ2
j (n)

∑

�,�′∈Z
F̂∗(�)F̂(�′)

×
{1 − exp

{−(2π i�′/θ + λ j,+)n2t
}

(2π i�′/θ + λ j,+)
· 2π i�′/θ
μ j − (2π�′/θ)2 − 4γπ i�′/θ

+ λ j,−
(2π i�′/θ + λ j,−)

[
exp
{−(2π i�′/θ + λ j,−)n2t

} 1 − exp
{
−2
√

γ 2 − μ j n2t
}

2
√

γ 2 − μ j (2π i�′/θ + λ j,−)

+ exp
{−(2π i�′/θ + λ j,+)n2t

}

(2π i�′/θ + λ j,+)
− 1

μ j − (2π�′/θ)2 − 4γπ i�′/θ

]}
.

Here we have used the fact that

λ j,+ − λ j,− = 2
√

γ 2 − μ j . (B.18)

Recalling (B.10) we obtain that 1
n W

(2)
n, f (n

2t) = O
(

1
n2

)
for each t > 0.

Concerning W (1)
n, f (t), we use (B.6) and obtain

1

n
W (1)

n, f (n
2t) = −t

n∑

j=0

∑

�∈Z

(2π i�/θ)ψ2
j (n)|F̂(�)|2

μ j − (2π�/θ)2 − 2γ (2π i�/θ)
+ O

( 1

n2

)

After substituting for ψ j (n) and μ j from (A.3) and (A.4) correspondingly, we obtain

1

n
W (1)

n, f (n
2t) = 4γ t

n + 1

n∑

j=0

∑

�∈Z

cos2
(

π j
2(n+1)

)
(2π�/θ)2 |F̂(�)|2

[
ω2
0 + 4 sin2

(
jπ

2(n+1)

)
− (2π�/θ)2

]2 +
[
(4γπ�/θ)

]2

+ O
( 1

n2

)

= −J t + O
( 1

n2

)
,

so that

lim
n→∞ Jn(t) = − lim

n→∞ Wn(n
2t)/n = J t

and Theorem 2.5 follows. ��

Appendix C: The Evolution of the CovarianceMatrix

C.1: Dynamics of Fluctuations

Denote
q ′
x (t) := qx (n

2t) − qx (n
2t) and p′

x (t) := px (n
2t) − px (n

2t) (C.1)
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for x = 0, . . . , n. From (2.3) and (2.4) we get

q̇ ′
x (t) = n2 p′

x (t), x ∈ {0, . . . , n},
dp′

x (t) = n2
(
�q ′

x − ω2
0q

′
x

)
dt − 2γ n2 p′

x (t)dt − 2px (n
2t−)dÑx (γ n

2t), x ∈ {1, . . . , n}
(C.2)

and at the left boundary

dp′
0(t) = n2

(
�q ′

0 − ω2
0q

′
0

)
dt − 2γ n2 p′

0(t)dt +√4γ T−ndw̃−(t). (C.3)

Here Ñx (t) := Nx (t)− t . LetX′(t) = [q ′
0(t), . . . , q

′
n(t), p

′
0(t), . . . , p

′
n(t)]. Denote by Sn(t)

the the covariance matrix

Sn(t) = Eμn

[
X′(t) ⊗ X′(t)

]
=
[

S(q)
n (t) S(q,p)

n (t)

S(p,q)
n (t) S(p)

n (t)

]

, (C.4)

where

S(q)
n (t) =

[
Eμn [q ′

x (t)q
′
y(t)]

]

x,y=0,...,n
, S(q,p)

n (t) =
[
Eμn [q ′

x (t)p
′
y(t)]

]

x,y=0,...,n
,

S(p)
n (t) =

[
Eμn [p′

x (t)p
′
y(t)]

]

x,y=0,...,n
and S(p,q)

n (t) =
[
S(q,p)
n (t)

]T
. (C.5)

C.2: Structure of the Covariance Matrix

Given a vector y = (y0, y1, . . . , yn), define also the matrix valued function

D(y) = 4γ

⎡

⎢
⎢
⎢
⎢
⎢
⎣

T− 0 0 . . . 0
0 y1 0 . . . 0
0 0 y2 . . . 0
...

...
...

...
...

0 0 0 . . . yn

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (C.6)

Let �(y) be the 2 × 2 block matrix

�(y) =
[
0n+1 0n+1

0n+1 D(y)

]

. (C.7)

Here 0n+1 is (n + 1) × (n + 1) null matrix. From (C.2) and (C.3) we conclude

Sn(t) = Eμn

[
e−An2tX′(0) ⊗ X′(0)e−AT n2t

]
+ n2

∫ t

0
e−An2(t−s)�

(
p2(n2s)

)
e−AT n2(t−s)ds

where A is given by (B.2) and p2(s) = [Eμn p
2
1(s), . . . ,Eμn p

2
n(s)]. Consequently

1

n2
d

dt
Sn(t) = −ASn(t) − Sn(t)A

T + �
(
p2(n2t)

)
. (C.8)

Denoting

〈〈Sn〉〉t =
∫ t

0
Sn(s)ds, 〈〈p2〉〉t =

∫ t

0
p2(n2s)ds, (C.9)

we have, by integrating in (C.8),

A〈〈Sn〉〉t + 〈〈Sn〉〉t AT − �
(
〈〈p2〉〉t

)
= 1

n2
[
Sn(0) − Sn(t)

]
. (C.10)
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In the following {ψ j (x), μ j ′ }x, j, j ′=0,...,n are the eigenfunctions and eigenvalues ofω2
0−�,

given in (A.3) in Appendix A.
Given a matrix [Bx,x ′ ]x,x ′=0,...,n we define its Fourier transform

B̃ j, j ′ =
n∑

x,x ′=0

Bx,x ′ψ j (x)ψ j ′(x
′), j, j ′ = 0, . . . , n.

Then we have the inverse relations

Bx,x ′ =
n∑

j, j ′=0

B̃ j, j ′ψ j (x)ψ j ′(x
′). (C.11)

Following analogous algebraic calculation to those of [14, section 6.3], see also Section
C.4 below for a detailed calculation, we obtain

〈〈S̃(p)
j, j ′ 〉〉t = �(μ j , μ j ′)F̃j, j ′(t) + 1

n2
R̃(p)
j, j ′(t), (C.12)

where

F̃j, j ′(t) :=
n∑

y=0

ψ j (y)ψ j ′(y)〈〈p2y〉〉t +
(
T−t − 〈〈p20〉〉t

)
ψ j (0)ψ j ′(0) (C.13)

and

�(μ j , μ j ′) =
[

1 + (μ j − μ j ′)2

8γ 2(μ j + μ j ′)

]−1

. (C.14)

Concerning R̃(p)
j, j ′(t), it is of the form

R̃(p)
j, j ′(t) =

∑

ι∈Z
�(p)

ι (μ j , μ j ′)
[
S̃(ι)

j, j ′(t) − S̃(ι)

j, j ′(0)
]
, (C.15)

where Z is a 3 element set consisting of indices p, q and pq and �
(p)
ι are some C∞ smooth

functions defined on [ω2
0, 4 + ω2

0] × [ω2
0, 4 + ω2

0].
We also have

〈〈S̃(q)

j, j ′ 〉〉t = 2�(μ j , μ j ′)

μ j + μ j ′
F̃j, j ′(t) + 1

n2
R̃(q)

j, j ′(t), (C.16)

and

〈〈S̃(q,p)
j, j ′ 〉〉t = �(μ j , μ j ′)

2γ (μ j + μ j ′)
(μ j − μ j ′)F̃j, j ′(t) + 1

n2
R̃(q,p)
j, j ′ (t), (C.17)

where the matrices R̃(q)

j, j ′(t) and R̃(q,p)
j, j ′ (t) are given by analogues of (C.15).

C.3: Some Bounds on the Kinetic Energy

From (C.12) we have

〈〈S(p)
x,x 〉〉t =

n∑

y=0

Mx,y〈〈p2y〉〉t + (T−t − 〈〈p20〉〉t
)
Mx,0 + r (p)

n,x (t), (C.18)
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where 〈〈S(p)
x,x 〉〉t = ∫ t0 [p′

x (s)]2ds,

Mx,y :=
n∑

j, j ′=0

�(μ j , μ j ′)ψ j (x)ψ j ′(x)ψ j (y)ψ j ′(y), (C.19)

and

r (p)
n,x (t) := 1

n2

n∑

j, j ′=0

R̃(p)
j, j ′(t)ψ j (x)ψ j ′(x). (C.20)

The latter satisfy the following estimates: for each t > 0 there exists C > 0 such that

sup
s∈[0,t]

n∑

x=0

|r (p)
n,x (s)| � C

n + 1
, n = 1, 2, . . . . (C.21)

The proof of (C.21) can be found in Section C.4.1 below.
It has been shown in [14, Appendix A] that

n∑

y′=0

Mx,y′ =
n∑

y′=0

My′,x ≡ 1 and Mx,y > 0 for all x, y = 0, . . . , n. (C.22)

Recall that 〈〈p2x 〉〉t = 〈〈S(p)
x,x 〉〉t +

∫ t
0 p2x (n

2 s)ds. Under the assumptions of Theorem 2.10 we
may admit δ = 1 in the conclusion of Proposition B.1. Thanks to (B.15) we conclude that
for each t > 0 there exists C > 0 such that

n∑

x=0

∫ t

0
p2x (n

2s)ds � C

n
, n = 1, 2, . . . . (C.23)

From (C.23), (C.21), and (3.5) we infer therefore that

〈〈p2x 〉〉t =
n∑

y=0

Mx,y〈〈p2y〉〉t + ρx (t), (C.24)

where ρx (t) satisfies: for any t > 0 there exists C > 0 such that

sup
s∈[0,t]

n∑

x=0

|ρx (s)| � C

n + 1
, n = 1, 2, . . . . (C.25)

The following lower bound on the matrix [Mx,y] comes from [14, Proposition 7.1] (see also
[7]).

Proposition C.1 There exists c∗ > 0 such that

n∑

x,y=0

(δx,y − Mx,y) fy fx � c∗
n−1∑

x=0

(∇ fx )
2, for any ( fx ) ∈ R

n+1, n = 1, 2, . . . . (C.26)

Multiplying both sides of (C.24) by 〈〈p2x 〉〉t , summing over x and using Proposition C.1
together with estimate (C.24) we immediately conclude the following.

Corollary C.2 For any t > 0 there exists C > 0 such that

n−1∑

x=0

[〈〈p2x 〉〉t − 〈〈p2x+1〉〉t ]2 � C

n + 1

n∑

x=0

〈〈p2x 〉〉t , n = 1, 2, . . . . (C.27)
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Proposition C.3 For any t > 0 there exists C > 0 such that

n−1∑

x=0

[〈〈p2x 〉〉t − 〈〈p2x+1〉〉t ]2 � C

n + 1
, n = 1, 2, . . . ,

sup
x=0,...,n

〈〈p2x 〉〉t � C .

(C.28)

Proof As a direct consequence of (3.2) and Corollary C.2 we have: for any t > 0 there exists
C > 0 such that

n−1∑

x=0

[〈〈p2x 〉〉t − 〈〈p2x+1〉〉t ]2 � C (C.29)

and
sup

x=0,...,n
〈〈p2x 〉〉t � Cn1/2, n = 1, 2, . . . (C.30)

Indeed, estimate (C.29) is obvious in light of (C.27). To prove (C.30) note that by the Cauchy-
Schwarz inequality

〈〈p2x 〉〉t �
n∑

y=1

|〈〈p2y〉〉t − 〈〈p2y−1〉〉t | + 〈〈p20〉〉t

�
√
n

⎧
⎨

⎩

n∑

y=1

[〈〈p2y〉〉t − 〈〈p2y−1〉〉t ]2
⎫
⎬

⎭

1/2

+ 〈〈p20〉〉t � C
√
n + 〈〈p20〉〉t

and (C.30) follows, thanks to (3.5).
From (C.24) and (C.25) we conclude that for any t > 0 we can find C > 0 such that

n−1∑

x=0

(
〈〈p2x 〉〉t − 〈〈p2x+1〉〉t

)2
�

n∑

x=0

|ρx (t)|〈〈p2x 〉〉t

� sup
x

〈〈p2x 〉〉t
n∑

x=0

|ρx (t)| � C

n + 1
sup
x

〈〈p2x 〉〉t (C.31)

Using the Cauchy-Schwarz inequality we conclude

sup
x

〈〈p2x 〉〉t � 〈〈p20〉〉t +
n−1∑

x=0

∣
∣
∣〈〈p2x 〉〉t − 〈〈p2x+1〉〉t

∣
∣
∣

� 〈〈p20〉〉t + √
n

{
n−1∑

x=0

(
〈〈p2x 〉〉t − 〈〈p2x+1〉〉t

)2
}1/2

(C.32)

Denote Dn := ∑n−1
x=0

(
〈〈p2x 〉〉t − 〈〈p2x+1〉〉t

)2
. We can summarize the inequalities obtained

as follows: for any t > 0 there exists C > 0 such that

Dn � C

n + 1
sup
x

〈〈p2x 〉〉t ,

sup
x

〈〈p2x 〉〉t � 〈〈p20〉〉t + √
n + 1D1/2

n � 〈〈p20〉〉t + C + C sup
x

〈〈p2x 〉〉1/2t , (C.33)
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for all n = 1, 2, . . .. Thus the second estimate of (C.28) follows, which in turn implies the
first estimate of (C.28) as well. ��

C.4: Calculation of ˜R(p)(t), ˜R(q)(t) and ˜R(q,p)(t)

Equation (C.10) leads to the following equations (see (B.2) and (C.6)):

〈〈S̃(q,p)
j, j ′ 〉〉t + 〈〈S̃(p,q)

j, j ′ 〉〉t = 1

n2
[
S̃(q)

j, j ′(0) − S̃(q)

j, j ′(t)
]

and
(
〈〈S̃(p,q)〉〉t

)T = 〈〈S̃(q,p)〉〉t ,

〈〈S̃(q)

j, j ′ 〉〉tμ j ′ + 2γ 〈〈S̃(q,p)
j, j ′ 〉〉t − 〈〈S̃(p)

j, j ′ 〉〉t = 1

n2
[
S̃(q,p)
j, j ′ (0) − S̃(q,p)

j, j ′ (t)
]
,

μ j 〈〈S̃(q)

j, j ′ 〉〉t + 2γ 〈〈S̃(p,q)

j, j ′ 〉〉t − 〈〈S̃(p)
j, j ′ 〉〉t = 1

n2
[
S̃(p,q)

j, j ′ (0) − S̃(p,q)

j, j ′ (t)
]
,

μ j 〈〈S̃(q,p)
j, j ′ 〉〉t − 〈〈S̃(q,p)

j, j ′ 〉〉tμ j ′ = D̃ j, j ′(〈〈p2〉〉t ) − 4γ 〈〈S̃(p)
j, j ′ 〉〉t + 1

n2
[
S̃(p)
j, j ′(0) − S̃(p)

j, j ′(t)
]
.

(C.34)
Adding and subtracting the second and the third equations sideways we can rewrite (C.34)
as follows

〈〈S̃(q,p)
j, j ′ 〉〉t = −〈〈S̃(p,q)

j, j ′ 〉〉t + 1

n2
[
S̃(q)

j, j ′(0) − S̃(q)

j, j ′(t)
]
,

〈〈S̃(p)
j, j ′ 〉〉t = 1

2

(
μ j + μ j ′

)〈〈S̃(q)

j, j ′ 〉〉t + 1

n2
[
B̃(p)
j, j ′(0) − B̃(p)

j, j ′(t)
]
,

4γ 〈〈S̃(q,p)
j, j ′ 〉〉t = 〈〈S̃(q)

j, j ′ 〉〉t (μ j − μ j ′) + 1

n2
[
B̃(q,p)
j, j ′ (0) − B̃(q,p)

j, j ′ (t)
]
,

(μ j − μ j ′)〈〈S̃(q,p)
j, j ′ 〉〉t = 4γ F̃j, j ′(t) − 4γ 〈〈S̃(p)

j, j ′ 〉〉t + 1

n2
[
S̃(p)
j, j ′(t) − S̃(p)

j, j ′(0)
]
, (C.35)

where F̃j, j ′(t) is given by (C.13) and

B̃(p)
j, j ′(t) := 1

2

(
2γ S̃(q)

j, j ′(t) + S̃(q,p)
j, j ′ (t) + S̃(p,q)

j, j ′ (t)
)
,

B̃(q,p)
j, j ′ (t) := 2γ S̃(q)

j, j ′(t) + S̃(q,p)
j, j ′ (t) − S̃(p,q)

j, j ′ (t). (C.36)

Hence,

〈〈S̃(q)

j, j ′ 〉〉t = 2�(μ j , μ j ′)

μ j + μ j ′
F̃j, j ′(t) + 1

n2
[
L̃(q)

j, j ′(t) − L̃(q)

j, j ′(0)
]
,

〈〈S̃(p)
j, j ′ 〉〉t = �(μ j , μ j ′)F̃j, j ′(t) + 1

n2
[
L̃(p)
j, j ′(t) − L̃(p)

j, j ′(0)
]
,

〈〈S̃(q,p)
j, j ′ 〉〉t = �(μ j , μ j ′)

2γ (μ j + μ j ′)
(μ j − μ j ′)F̃j, j ′(t) + 1

n2
[
L̃(q,p)
j, j ′ (t) − L̃(q,p)

j, j ′ (0)
]
,

(C.37)

with �(·, ·) given by (C.14) and

L̃(q)

j, j ′(t) := 2�(μ j , μ j ′)

μ j + μ j ′

(
B̃(p)
j, j ′(t) + μ j − μ j ′

(4γ )2
B̃(q,p)
j, j ′ (t) + 1

4γ
S̃(p)
j, j ′(t)

)
,

L̃(p)
j, j ′(t) := 1

2

(
μ j + μ j ′

)
L̃(q)

j, j ′(t) − B̃(p)
j, j ′(t),

L̃(q,p)
j, j ′ (t) := − 1

4γ
B̃(q,p)
j, j ′ (t) + μ j − μ j ′

4γ
L̃(q)

j, j ′(t).
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C.4.1: Proof of (C.21)

Using (C.41) and (C.15) we can write

r (p)
n,x (t) :=

∑

ι∈Z

[
g(p)
x,ι (t) − g(p)

x,ι (0)
]
,

g(p)
x,ι (t) := 1

n2

n∑

j, j ′=0

�(p)
ι (μ j , μ j ′)ψ j (x)ψ j ′(x)ψ j (y)ψ j ′(y

′)S(ι)
n (t). (C.38)

Here Z is a set consisting of indices p, q and pq and �
(p)
ι are some C∞ smooth functions.

In what follows we show that for any t > 0 there exists C > 0 such that

sup
s∈[0,t]

n∑

x=0

|g(p)
x,ι (s)| � C

n + 1
, n = 1, 2, . . . . (C.39)

This, in light of (D.12), clearly implies (C.21).
Consider only the case ι = p, as the other cases can be argued in the same manner. Then,

g(p)
x,p(t) = 1

n2

n∑

j, j ′=0

n∑

y,y′=0

�
(p)
p (μ j , μ j ′)ψ j (x)ψ j ′(x)ψ j (y)ψ j ′(y

′)Eμn [p′
y(t)p

′
y′(t)].

Using (A.3) and elementary trigonometric identities we obtain

g(p)
x,p(t) = 1

n2

n∑

y,y′=0

Eμn [p′
y(t)p

′
y′(t)]Kn(x, y, y

′), where

Kn(x, y, y
′) := 1

(n + 1)2

n∑

j, j ′=−n

�
(p)
p (μ j , μ j ′)

×
[
cos
(π j(x − y)

n + 1

)
+ cos

(π j(x + y + 1)

n + 1

)]

[
cos
(π j ′(x − y′)

n + 1

)
+ cos

(π j ′(x + y′ + 1)

n + 1

)]
.

Using [14, Lemma B.1] we conclude that there exists C > 0 such that

|Kn(x, y, y
′)| � Ckn(x, y)kn(x, y

′), x, y = 0, . . . , n, , n = 1, 2, . . . ,where

kn(x, y) := 1

1 + (x − y)2
+ 1

1 + (x + y − 2n)2
. (C.40)

We conclude therefore that

n∑

x=0

|g(p)
x,p(t)| � C

n2

n∑

x=0

Eμn

⎡

⎢
⎣

⎛

⎝
n∑

y=0

p′
y(t)kn(x, y)

⎞

⎠

2
⎤

⎥
⎦

= C

n2
Eμn

⎡

⎣ sup
‖h‖

�2=1

n∑

x=0

hx

n∑

y=0

p′
y(t)kn(x, y)

⎤

⎦ . (C.41)

The supremum extends over all real valued sequences h = (h0, . . . , hn), with ‖h‖2
�2

=
∑n

x=0 h
2
x = 1. Using an elementary inequality hx p′

y(t) � h2x/2+[p′
y(t)]2/2we can estimate
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the right hand side of (C.41) by

C

2n2
sup

‖h‖
�2=1

n∑

x=0

h2x

n∑

y=0

kn(x, y) + C

2n2
Eμn

⎡

⎣
n∑

y=0

[p′
y(t)]2

n∑

x=0

kn(x, y)

⎤

⎦

� CK

2n2

⎛

⎝1 +
n∑

y=0

Eμn [p′
y(t)]2

⎞

⎠ ,

where K = supx,n
∑n

y=0

(
kn(x, y)+kn(y, x)

)
. Estimate (C.39) for ι = p is then a straight-

forward consequence of the energy bound (3.2).

Appendix D: Proof of Local Equilibrium

We prove here Propositions 5.1 and 5.2.

D.1: Proof of Proposition 5.1

Suppose that ρ ∈ (0, 1/2) is such that suppϕ ⊂ (ρ, 1 − ρ). Let

�
(
μ j , μ j ′

) = 2�(μ j , μ j ′)

μ j + μ j ′
. (D.1)

For a fixed integer � define

K
(n,�)

(x) := 1

4(n + 1)2

n∑

j, j ′=−n−1

�
(
μ j , μ j ′

)
cos

(
π j x

n + 1

)

cos

(
π j ′(x − �)

n + 1

)

. (D.2)

By [14, Lemma B.1], for a given � there exists C > 0 such that

|K (n,�)

1 (x)| � C

1 + x2
, x = 0, . . . , n (D.3)

for n = 1, 2, . . . . It has been shown in Section 8.1 of [14] that for any ρ ∈ (0, 1/2) there
exists C > 0 such that

∣
∣
∣
∣
∣
∣

n∑

y=0

K
(n,�)

(x − y) − Gω0(�)

∣
∣
∣
∣
∣
∣
� C

n2
, ρn � x � (1 − ρ)n. (D.4)

for n = 1, 2, . . ..
By virtue of (B.15) we have

lim
n→+∞

1

n + 1

n∑

x=0

ϕ

(
x

n + 1

)∫ t

0
E
[
qx (n

2s)
]
E
[
qx+�(n

2s)
]
ds = 0. (D.5)

It suffices therefore to prove that

lim
n→+∞

1

n + 1

n∑

x=0

ϕ

(
x

n + 1

){
〈〈S(q)

x,x+�〉〉t − Gω0(�)〈〈p2x 〉〉t
}

= 0. (D.6)
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We prove (D.6) for � = 0, the argument for other values of � are similar. By (C.16) we have

〈〈S(q)
x,x 〉〉t =

n∑

y=0

H (n)
x,y〈〈p2y〉〉t + Bn(t, x) + r (q)

n,x (t), (D.7)

with (cf (C.16))

H (n)
x,y :=

n∑

j, j ′=0

�
(
μ j , μ j ′

)
ψ j (y)ψ j ′(y)ψ j (x)ψ j ′(x),

Bn(t, x) :=
n∑

j, j ′=0

ψ j (x)ψ j ′(x)�
(
μ j , μ j ′

) (
T−t − 〈〈p20〉〉t

)
ψ j (0)ψ j ′(0)

r (q)
n,x (t) := 1

n2

n∑

j, j ′=0

ψ j (x)ψ j ′(x)R̃
(q)

j, j ′(t).

(D.8)

Using (3.2) and (3.5) we conclude that limn→+∞ supx

∣
∣
∣Bn(t, x)

∣
∣
∣ = 0. Likewise, by (C.16)

and (C.37), we conclude that limn→+∞ supx

∣
∣
∣r

(q)
n,x (t)

∣
∣
∣ = 0.

Furthermore, by (D.4), if ρn � x � (1 − ρ)n,

n∑

y=0

H (n)
x,y = Gω0(0) + on,x (t), (D.9)

where, for any fixed t > 0 we have limn→+∞ supρn�x�(1−ρ)n

∣
∣
∣on,x (t)

∣
∣
∣ = 0. Then we have

that
1

n + 1

n∑

x=0

ϕ

(
x

n + 1

){
〈〈S(q)

x,x 〉〉t − Gω0(0)〈〈p2x 〉〉t
}

= 1

n + 1

n∑

x=0

ϕ

(
x

n + 1

) n∑

y=0

H (n)
x,y

[
〈〈p2y〉〉t − 〈〈p2x 〉〉t

]
+ on(t).

(D.10)

Here and below limn→+∞ on(t) = 0 for each t > 0. We have
∣
∣
∣
∣
∣
∣

n∑

y=0

H (n)
x,y

[
〈〈p2y〉〉t − 〈〈p2x 〉〉t

]
∣
∣
∣
∣
∣
∣
�

n∑

y=0

|H (n)
x,y |

y−1∑

z=x

∣
∣〈〈p2z+1〉〉t − 〈〈p2z 〉〉t

∣
∣ . (D.11)

It follows from [14, Lemma B.1] that there exists C > 0 such that

|H (n)
x,y | � C

1 + (x − y)2
, ρn � x � (1 − ρ)n, y = 0, . . . , n, n = 1, 2, . . . .

Using Cauchy-Schwarz inequality and (C.28) we conclude that the right hand side of (D.11)
is estimated by

C

(n + 1)1/2

n∑

y=0

|H (n)
x,y ||y − x |1/2 � C ′

(n + 1)1/2
, n = 1, 2, . . . (D.12)

for some constant C ′ independent of x = 0, . . . , n and n = 1, 2, . . .. and Proposition 5.1
follows for � = 0. ��
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D.2: Proof of Proposition 5.2

From Proposition B.1 we have

lim
n→+∞

∫ t

0
q20(s)ds = 0.

It suffices therefore to calculate
∫ t
0 E
(
q ′
0(s)

2
)
ds = 〈〈S(q)

0,0〉〉t .
We have, see (C.16) and (D.1),

〈〈S(q)
0,0〉〉t =

n∑

y=0

n∑

j, j ′=0

�(μ j , μ j ′)ψ j (0)ψ j ′(0)ψ j (y)ψ j ′(y)〈〈p2y〉〉t

+
n∑

j, j ′=0

�(μ j , μ j ′)ψ j (0)
2ψ j ′(0)

2 (T−t − 〈〈p20〉〉t
)+ on(t)

=
n∑

y=0

H (n)
y 〈〈p2y〉〉t + on(t). (D.13)

and

H (n)
y :=

n∑

j, j ′=0

�(μ j , μ j ′)ψ j (0)ψ j ′(0)ψ j (y)ψ j ′(y). (D.14)

The coefficients H (n)
y have the property

n∑

y=0

H (n)
y =

n∑

j=0

�(μ j , μ j )ψ j (0)
2 =

n∑

j=0

1

μ j
ψ j (0)

2

= 1

n + 1

n∑

j=0

cos2
(

π j
2(n+1)

)

ω2
0 + 4 sin2

(
π j

2(n+1)

) −→
n→∞Gω0(0) + Gω0(1).

(D.15)

Using [14, Lemma B.1] we conclude that there exists C > 0 such that

|H (n)
y | � C

1 + y2
, y = 0, . . . , n, n = 1, 2, . . . . (D.16)

Then, proceeding as in (D.11)–(D.12), by using the Cauchy-Schwarz inequality, the first
estimate of (C.28) and (D.16), we conclude that

n∑

y=0

|H (n)
y |
∣
∣
∣〈〈p2y〉〉t − 〈〈p20〉〉t

∣
∣
∣ �

C√
n

.

Hence

〈〈S(q)
0,0〉〉t =

⎛

⎝
n∑

y=0

H (n)
y,0

⎞

⎠ 〈〈p20〉〉t + on(t) = Gω0(0) + Gω0(1) + on(t). (D.17)

��
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Appendix E: Uniqueness of Solutions to (2.35)

Theorem E.1 Suppose that T0 ∈ Mfin

(
[0, 1]

)
. Then, the initial-boundary value problem

(2.35) has a unique weak solution in the sense of Definition 2.9.

Proof Let T (s, du) be the signed measure given by the difference of two solutions with the
same initial and boundary data. It satisfies the equation

∫ 1

0
ϕ(u)T (t, du) = D

4γ

∫ t

0
ds
∫ 1

0
ϕ′′(u)T (s, du) (E.1)

for any ϕ ∈ C2[0, 1] such that ϕ(0) = ϕ′(1) = 0.
The above implies that also

∫ 1

0
ϕ(t, u)T (t, du) =

∫ t

0
ds
∫ 1

0

(
∂sϕ(s, u) + D

4γ
∂2uuϕ(s, u)

)
T (s, du) (E.2)

for any ϕ ∈ C1,2([0,+∞) × [0, 1]), such that ϕ(t, 0) = ∂uϕ(t, 1) = 0, t � 0. Suppose now
that ϕ0 ∈ C1[0, 1] satifies

ϕ0(0) = ϕ′
0(1) = 0 (E.3)

and ϕ(t, u) is the strong solution of

∂sϕ(s, u) + D

4γ
∂2uϕ(s, u) = 0, u ∈ (0, 1), s < t,

ϕ(s, 0) = ∂uϕ(s, 1) = 0, s < t,

ϕ(t, u) = ϕ0(u).

(E.4)

Such a solution exists and is unique, thanks to e.g. [8, Corollary 5.3.2, p.147]. It belongs to
C1,2((−∞, t] × [0, 1]). We conclude that

∫ 1

0
ϕ0(u)T (t, du) = 0 (E.5)

for any ϕ0 ∈ C1[0, 1] satifying (E.3).
Consider now an arbitrary ψ ∈ C[0, 1]. Let ϕ0(u) := −u

∫ 1
u ψ(u′)du′ − ∫ u0 ψ(u′)du′. It

satisfies (E.3) and ϕ′′
0 (u) = ψ(u), thus

∫ t

0
ds
∫ 1

0
ψ(u)T (s, du) = 0

which ends the proof of uniqueness. ��

Appendix F: Proof of Proposition 3.1

Proof of Proposition 3.1 in the General Case

Denote by Ps,t , s < t , the evolution family corresponding to the transition probabilities of
the Markov family generated by the dynamics (2.3) and (2.4). Let μPs,t be the probability
distribution obtained by transporting the distribution μ at time s by the random flow Ss,t .
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Using the calculation performed in [5, pp. 1232]we conclude that the relative entropy satisfies
the following inequality

Hn( fn(n
2t)) − Hn( fn(0)) � inf

ψ

∫ n2t

0
ds
∫

�n

(
Gs + G∗

s

)
ψ

ψ
d
(
μ0P0,s

)
, (F.1)

where dμ0 = fn(0)dνT− , G∗
t is the adjoint with respect to νT− and the infimum is taken

over all smooth densities ψ , w.r.t. the Gaussian measure νT− , that are bounded away from 0.
Arguing as in the proof of Proposition 3.1 in the smooth initial data case, we conclude that
for any ψ under the infimum the right hand side of (F.1) is less than, or equal to

1

T−

∫ n2t

0
dsFn(s)

∫

�n

pnd
(
μ0P0,s

)
= − n

T−
Jn(t, μ0).

From this point on the proof follows from an application of (2.33) and Theorem 2.5. ��
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