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Abstract
Finding a ground state of a given Hamiltonian of an Ising model on a graphG = (V , E) is an
important but hard problem. The standard approach for this kind of problem is the application
of algorithms that rely on single-spin-flip Markov chain Monte Carlo methods, such as the
simulated annealing based on Glauber or Metropolis dynamics. In this paper, we investigate
a particular kind of stochastic cellular automata, in which all spins are updated independently
and simultaneously. We prove that (i) if the temperature is fixed sufficiently high, then the
mixing time is at most of order log |V |, and that (ii) if the temperature drops in time n as
1/ log n, then the limiting measure is uniformly distributed over the ground states. We also
provide some simulations of the algorithms studied in this paper implemented on a GPU and
show their superior performance compared to the conventional simulated annealing.

Keywords Probabilistic cellular automata · stochastic cellular automata · simulated
annealing · stochastic optimization · parallel dynamics · Markov chain Monte Carlo ·
ground states of Ising model · Ising model

1 Introduction andMain Results

There are several occasions in real life when we have to choose one among extremely many
options quickly. In addition, wewant our choice to be optimal in a certain sense. The so-called
combinatorial optimization problems [19, 24] are ubiquitous and possibly quite hard to be
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solved in a fast way. In particular, polynomial-time algorithms for NP-hard problems are not
known to exist [11].

Apossible approach as an attempt to provide an optimal solution for a given problemwould
be to translate it into the problem of minimizing the Hamiltonian of an Ising model on a finite
graph such that each of its ground states corresponds to an optimal solution to the original
problem and vice versa. See, for instance, [21] for a broad list of examples of such mappings.
Let us consider a finite graph G = (V , E) with no multi- or self-edges. Given a collection
of spin-spin coupling constants {Jx,y}x,y∈V which is symmetric (that is, Jx,y = Jy,x for all
x, y) and satisfies Jx,y = 0 whenever {x, y} /∈ E , and a collection of external fields {hx }x∈V ,
the Hamiltonian of an Ising spin configuration σ = {σx }x∈V ∈ � ≡ {±1}V is defined by

H(σ ) = −
∑

{x,y}∈E
Jx,yσxσy −

∑

x∈V
hxσx ≡ −1

2

∑

x,y∈V
Jx,yσxσy −

∑

x∈V
hxσx . (1.1)

Let GS denote the set of its ground states, the configurations at which the Hamiltonian attains
its minimum value, i.e.,

GS = argmin
σ

H(σ ) ≡ {
σ ∈ � : H(σ ) = min

τ
H(τ )

}
. (1.2)

A method that can possibly be considered in the search for ground states consists of using
a Markov chain Monte Carlo (MCMC) to sample the Gibbs distribution πG

β ∝ e−βH at the
inverse temperature β ≥ 0 given by

πG
β (σ ) = wG

β(σ )
∑

τ wG
β(τ )

, where wG
β(σ ) = e−βH(σ ). (1.3)

It is straightforward to verify that theGibbs distribution reaches its highest peaks onGS.There
are several MCMCs that can be applied to generate the Gibbs distribution as the equilibrium
measure, one of them is the Glauber dynamics [12], whose transition matrix PG

β is defined
by

PG
β (σ , τ ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1

|V |
wG

β(σ x )

wG
β(σ ) + wG

β(σ x )
[τ = σ x ],

1 −
∑

x∈V
PG

β (σ , σ x ) [τ = σ ],

0 [otherwise],

where (σ x )y =
{

σy [y �= x],
−σy [y = x].

(1.4)

Notice that, by introducing the cavity fields

h̃x (σ ) =
∑

y∈V
Jx,yσy + hx , (1.5)

the transition probability PG
β (σ , σ x ) can also be written as

PG
β (σ , σ x ) = 1

|V |
e−β h̃x (σ )σx

2 cosh(β h̃x (σ ))
. (1.6)

The transition probability above can be interpreted as the probability of choosing the vertex
x uniformly at random from V and then flipping its spin value with probability proportional
towG

β(σ x ). Furthermore, since PG
β is aperiodic, irreducible, and reversible with respect to πG

β

(i.e., the identity πG
β (σ )PG

β (σ , τ ) = πG
β (τ )PG

β (τ , σ ) holds for all σ , τ ∈ �), it follows that
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the Glauber dynamics converges to its unique equilibrium distribution, namely, the Gibbs
distribution πG

β .
In practice, the method that actually has been widely employed in several real-world

applications is known as the simulated annealing algorithm [1, 6, 16, 18, 27, 28], which
motivated the main subject of this paper. The standard approach consists of applying a
discrete-time inhomogeneous Markov chain based on single-spin-flip dynamics (such as
Glauber dynamics or Metropolis dynamics [22]) where the temperature drops every time a
spin value is updated. If the temperature is set to decrease at an appropriate rate, then it is
guaranteed that such a procedure will asymptotically converge to one of the ground states,
see [1, 3, 13].

Note that, in the methods described above, the number of spin-flips per update is at most
one, so, in principle, we may take some benefit if we consider methods that allow a larger
number of spin-flips. In respect of ferromagnetic spin systems, the Swendsen-Wang algorithm
[26] is a cluster-flipMarkov chain, in whichmany spins can be flipped simultaneously, unlike
in the Glauber and other single-spin-flip dynamics. However, forming a cluster to be flipped
yields strong dependency among spin variables.

In recent studies such as in [23, 29], some algorithms that rely on parallel and independent
spin-flips have shown significantly higher performance in approximating ground states com-
pared to some of the well-established algorithms based on single-spin-flip dynamics. For that
reason, such algorithms of that nature deserve some attention and a rigorous treatment from
the mathematical point of view, in order to understand their mechanisms and limitations,
becomes necessary. Furthermore, due to their main feature, the possibility of employing
hardware accelerators such as annealing processors strongly relying on parallelization [2,
17, 29] to speed up simulations has a great appeal and may be advantageous for the com-
putation of solutions of real-time and time-constrained problems. So, in Sect. 4 we include
some analyses comparing the accuracy and the simulation times of Glauber dynamics and
the algorithms present in this paper when implemented on a CPU and a GPU.

In this paper, we investigate a particular class of probabilistic cellular automata, or PCA,
studied in [7, 25]. Since the acronym PCA has already been long used to stand for principal
component analysis in statistics, we would rather use the term stochastic cellular automata
(SCA). Let us start by considering the so-called pinning parameters q = {qx }x∈V and using
them to introduce an extended version of the Hamiltonian, whose expression is given by

H̃(σ , τ ) = −1

2

∑

x,y∈V
Jx,yσxτy − 1

2

∑

x∈V
hx (σx + τx ) − 1

2

∑

x∈V
qxσxτx

= −1

2

∑

x∈V

(
h̃x (σ ) + qxσx

)
τx − 1

2

∑

x∈V
hxσx . (1.7)

Note that the relationship between H and H̃ is given by

H̃(σ , σ ) = H(σ ) − 1

2

∑

x∈V
qx . (1.8)

Then, we introduce

wSCA
β,q (σ ) =

∑

τ

e−β H̃(σ ,τ ) (1.7)=
∏

x∈V
2e

β
2 hxσx cosh

(β
2 (h̃x (σ ) + qxσx )

)
, (1.9)
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and define the SCA transition matrix PSCA
β,q by letting

PSCA
β,q (σ , τ ) = e−β H̃(σ ,τ )

wSCA
β,q (σ )

(1.7)=
∏

x∈V

e
β
2 (h̃x (σ )+qxσx )τx

2 cosh( β
2 (h̃x (σ ) + qxσx ))

. (1.10)

Due to the rightmost expression from equation (1.10), we can interpret that all spins in the
system are updated independently and simultaneously according to certain local probability
rules. This implies that the SCA is allowed to move from any spin configuration to another
in just one step, which, in principle, may potentially result in a faster convergence to equi-
librium. Since H̃ is symmetric (due to the symmetry of the spin-spin coupling constants),
i.e., H̃(σ , τ ) = H̃(τ , σ ), then, the middle expression in equation (1.10) implies that PSCA

β,q
is reversible with respect to the equilibrium distribution π SCA

β,q given by

πSCA
β,q (σ ) = wSCA

β,q (σ )
∑

τ wSCA
β,q (τ )

. (1.11)

Although this does not necessarily coincide with the Gibbs distribution, and therefore we
cannot naively use it to search for the ground states, the total-variation distance (cf., [3,
Definition 4.1.1 and (4.1.5)])

‖πSCA
β,q − πG

β ‖TV ≡ 1

2

∑

σ

|πSCA
β,q (σ ) − πG

β (σ )| = 1 −
∑

σ

πSCA
β,q (σ ) ∧ πG

β (σ ) (1.12)

tends to zero as minx qx ↑ ∞. This is a positive aspect of the SCA with large q. On the
other hand, since the off-diagonal entries of the transition matrix PSCA

β,q tends to zero as
minx qx ↑ ∞, the SCA with large q may well be much slower than expected. This is why
we call q the pinning parameters.

Having inmind the development of a simulated annealing algorithm based on SCA aiming
at determining the ground states of H , in Sect. 3we investigate the SCAwith the set of pinning
parameters q satisfying

qx ≥

⎧
⎪⎪⎨

⎪⎪⎩

∑

y∈V
|Jx,y | − 1

2

∑

y∈C
|Jx,y | [x ∈ C],

λ

2
[x /∈ C],

(1.13)

where C is an arbitrary subset of V and λ is the largest eigenvalue of the matrix [−Jx,y]V×V .
This is a sufficient condition on H̃ that assures that its minimum value is attained on the
diagonal entries, that is,

min
σ ,τ∈�

H̃(σ , τ ) = min
σ∈�

H̃(σ , σ ). (1.14)

Condition (1.13) originated in [23], where on its supplemental material a rather more general
result is proved, establishing that, under this assumption, the inequality

H̃(σ , τ ) > min
σ ′∈�

H̃(σ ′, σ ′) (1.15)

holds whenever σ and τ are distinct, which, according to equation (1.8), implies that

argminσ ,τ∈� H̃(σ , τ ) = {(σ , σ ) : σ ∈ GS}. (1.16)

In this paper, we prove the following two statements:
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(i) If β is sufficiently small and fixed, then the time-homogeneous SCA has a mixing time
at most of order log |V | (Theorem 2.2).

(ii) Ifβn increases in time n as∝ log n, then the time-inhomogeneous SCAweakly converges
to πG∞, the uniform distribution over GS (Theorem 3.2).

The former result implies faster mixing than conventional single-spin-flip MCs, such as the
Glauber dynamics (see Remark 2.3(i)). The latter refers to the applicability of the standard
temperature-cooling schedule in the simulated annealing (see Remark 3.3(i)).

Although the two results above are provenmathematically rigorously, theymay be difficult
to be directly applied in practice. As mentioned earlier, the SCA is allowed to flip multiple
spins in a single update, therefore, in principle, it potentially can reduce the mixing time
compared to other single-spin-flip algorithms. However, to attain such a small mixing time
as in (i),wehave to keep the temperature very high (as comparable to the radius of convergence
of the high-temperature expansion, see (2.5) below). Also, if we want to find a ground state
by using an SCA-based simulated annealing algorithm, as stated in (ii), the temperature has
to drop so slowly as 1/ log n (with a large multiplicative constant �, see (3.7) below), and
therefore the number of steps required to come close to a ground state may well be extremely
large. The problem seems to be due to the introduction of the total-variation distance. In order
to make the distance ‖μ−ν‖TV small, the twomeasuresμ and ν have to be very close at every
spin configuration. Moreover, since ‖π SCA

β,q − πG
β ‖TV is not necessarily small for finite q, we

cannot tell anything about the excited states � \GS. In other words, we might be able to use
the SCA under the condition (1.13) to find the best options in combinatorial optimization, but
not the second- or third-best options. To overcome those difficulties, we will shortly discuss
a potential replacement for the total-variation distance at the end of Sect. 3.

In practice, to avoid applying logarithmic cooling schedules and having to wait for long
execution times, faster cooling is often considered. In Sect. 4, we introduce a variant of the
SCAcalled ε-SCAand show in a series of examples that simulated annealingwith exponential
cooling schedules can be successfully applied to the Glauber dynamics, SCA, and ε-SCA.
The results are consistent with the preliminary findings from [8, 9], which reveal that the
SCA outperforms Glauber dynamics in most of the scenarios, while ε-SCA outperforms
both algorithms in all tested models. Providing a mathematical foundation for the ε-SCA and
proving a generalization of (ii) for exponential schedules comprise a future direction of our
research.

2 Mixing Time for the SCA

In this section, we show that the mixing in the SCA is faster than in the Glauber dynamics
when the temperature is sufficiently high. To do so, we first introduce some notions and
notation.

For σ , τ ∈ �, we let Dσ ,τ be the set of vertices at which σ and τ disagree:

Dσ ,τ = {x ∈ V : σx �= τx }. (2.1)

For a time-homogeneous Markov chain, whose t-step distribution Pt converges to its equi-
librium π , we define the mixing time as follows: given an ε ∈ [0, 1],

tmix(ε) = inf
{
t ≥ 0 : max

σ
‖Pt (σ , ·) − π‖TV ≤ ε

}
.
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In particular, we denote it by tSCAmix (ε) when P = PSCA
β,q and π = πSCA

β,q . Then we define the
transportation metric ρTM between two probability measures on � as

ρTM(μ, ν) = inf
{
Eμ,ν[|DX ,Y |] : (X , Y )is a coupling ofμ and ν

}
, (2.2)

where Eμ,ν is the expectation against the coupling measure Pμ,ν whose marginals are μ

for X and ν for Y , respectively. By [20, Lemma 14.3], ρTM indeed satisfies the axioms of
metrics, in particular the triangle inequality: ρTM(μ, ν) ≤ ρTM(μ, λ) + ρTM(λ, ν) holds for
all probability measures μ, ν, λ on �.

The following is a summary of [20, Theorem 14.6 and Corollary 14.7], but stated in our
context.

Proposition 2.1 If there is an r ∈ (0, 1) such that ρTM(P(σ , ·), P(τ , ·)) ≤ r |Dσ ,τ | for any
σ , τ ∈ �, then

max
σ∈�

‖Pt (σ , ·) − π‖TV ≤ r t max
σ ,τ∈�

|Dσ ,τ |. (2.3)

Consequently,

tmix(ε) ≤
⌈
log |V | − log ε

log(1/r)

⌉
. (2.4)

It is crucial to find a coupling (X , Y ) in which the size of DX ,Y is decreasing in average,
as stated in the hypothesis of the above proposition. Here is the main statement on the mixing
time for the SCA.

Theorem 2.2 For any non-negative q, if β is sufficiently small such that, independently of
{hx }x∈V ,

r ≡ max
x∈V

(
tanh

βqx
2

+
∑

y∈V
tanh

β|Jx,y |
2

)
< 1, (2.5)

then ρTM(PSCA
β,q (σ , ·), PSCA

β,q (τ , ·)) ≤ r |Dσ ,τ | for all σ , τ ∈ �, and therefore tSCAmix (ε) obeys
(2.4).

Proof It suffices to show ρTM(PSCA
β,q (σ , ·), PSCA

β,q (τ , ·)) ≤ r for all σ , τ ∈ � with |Dσ ,τ | = 1.
If |Dσ ,τ | ≥ 2, then, by the triangle inequality along any sequence (η0, η1, . . . , η|Dσ ,τ |) of spin
configurarions that satisfy η0 = σ , η|Dσ ,τ | = τ and |Dη j−1,η j | = 1 for all j = 1, . . . , |Dσ ,τ |,
we have

ρTM

(
PSCA

β,q (σ , ·), PSCA
β,q (τ , ·)

)
≤

|Dσ ,τ |∑

j=1

ρTM

(
PSCA

β,q (η j−1, ·), PSCA
β,q (η j , ·)

)
≤ r |Dσ ,τ |. (2.6)

Suppose that Dσ ,τ = {x}, i.e., τ = σ x . For any σ ∈ � and y ∈ V , we let p(σ , y) be the
conditional SCA probability of σy → 1 given that the others are fixed (cf., (1.10)):

p(σ , y) = e
β
2 (h̃ y(σ )+qyσy)

2 cosh( β
2 (h̃ y(σ ) + qyσy))

= 1 + tanh( β
2 (h̃ y(σ ) + qyσy))

2
. (2.7)

Notice that p(σ , y) �= p(σ x , y) only when y = x or y ∈ Nx ≡ {v ∈ V : Jx,v �= 0}. Using
this as a threshold function for i.i.d. uniform random variables {Uy}y∈V on [0, 1], we define
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the coupling (X , Y ) of PSCA
β,q (σ , ·) and PSCA

β,q (σ x , ·) as

Xy =
{

+1 [Uy ≤ p(σ , y)],
−1 [Uy > p(σ , y)], Yy =

{
+1 [Uy ≤ p(σ x , y)],
−1 [Uy > p(σ x , y)]. (2.8)

Denote the measure of this coupling by Pσ ,σ x and its expectation by Eσ ,σ x . Then we obtain

Eσ ,σ x [|DX ,Y |] = Eσ ,σ x

[ ∑

y∈V
1{Xy �=Yy }

]

=
∑

y∈V
Pσ ,σ x (Xy �= Yy) =

∑

y∈V
|p(σ , y) − p(σ x , y)|

= |p(σ , x) − p(σ x , x)| +
∑

y∈Nx

|p(σ , y) − p(σ x , y)|, (2.9)

where, by using the rightmost expression in (2.7),

|p(σ , x) − p(σ x , x)| ≤ 1

2

∣∣∣∣ tanh
(

β h̃x (σ )

2
+ βqx

2

)
− tanh

(
β h̃x (σ )

2
− βqx

2

)∣∣∣∣, (2.10)

and for y ∈ Nx ,

|p(σ , y) − p(σ x , y)| ≤ 1

2

∣∣∣∣ tanh
(

β(
∑

v �=x Jv,yσv + hy + qyσy)

2
+ β Jx,y

2

)

− tanh

(
β(

∑
v �=x Jv,yσv + hy + qyσy)

2
− β Jx,y

2

)∣∣∣∣. (2.11)

Since | tanh(a + b) − tanh(a − b)| ≤ 2 tanh |b| for any a, b, we can conclude

ρTM

(
PSCA

β,q (σ , ·), PSCA
β,q (σ x , ·)

)
≤ Eσ ,σ x [|DX ,Y |] ≤ tanh

βqx
2

+
∑

y∈Nx

tanh
β|Jx,y |

2
≤ r ,

(2.12)

as required. ��

Remark 2.3 (i) It is known that, in a very general setting, the mixing time for the Glauber
dynamics (1.4) is at least of order |V | log |V |, see [15]. Therefore, Theorem 2.2 implies
that the SCA reaches equilibrium way faster than the Glauber dynamics, as long as
the temperature is high enough. Even though the result above does not play a role in
practical applications and the SCA cannot be used to sample the Gibbs distribution, it
does give us a hint that we may extract some benefit by considering multiple spin-flip
algorithms to speed up simulations.

(ii) It is of some interest to investigate the average number of spin-flips per update, although
it does not necessarily represent the speed of convergence to equilibrium. In [7], where
qx is set to be a common q for all x , the average number of spin-flips per update is
conceptually explained to be O(|V |e−βq). Here, we show an exact computation of the
SCA transition probability and approximate it by a binomial expansion, from which
we claim that the actual average number of spin-flips per update is much smaller than
O(|V |e−βq).
First, we recall equation (1.10). Notice that

123
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e
β
2 (h̃x (σ )+qxσx )τx

2 cosh( β
2 (h̃x (σ ) + qxσx ))

= e− β
2 (h̃x (σ )σx+qx )1{x∈Dσ ,τ }

2 cosh( β
2 (h̃x (σ ) + qxσx ))

(2.13)

+ e
β
2 (h̃x (σ )σx+qx )1{x∈V \Dσ ,τ }

2 cosh( β
2 (h̃x (σ ) + qxσx ))

.

Isolating the q-dependence, we can rewrite the first term on the right-hand side as

e− β
2 (h̃x (σ )σx+qx )1{x∈Dσ ,τ }

2 cosh( β
2 (h̃x (σ ) + qxσx ))

= e− β
2 qx cosh( β

2 h̃x (σ ))

cosh( β
2 (h̃x (σ ) + qxσx ))︸ ︷︷ ︸

≡ εx (σ )

e− β
2 h̃x (σ )σx

2 cosh( β
2 h̃x (σ ))

︸ ︷︷ ︸
≡ px (σ )

1{x∈Dσ ,τ },

(2.14)

and the second term as (1 − εx (σ )px (σ ))1{x∈V \Dσ ,τ }. As a result, we obtain

PSCA
β,q (σ , τ ) =

∏

x∈Dσ ,τ

(
εx (σ )px (σ )

) ∏

y∈V \Dσ ,τ

(
1 − εy(σ )py(σ )

)
. (2.15)

Suppose that εx (σ ) is independent of x and σ , which is of course untrue, and simply
denote it by ε = O(e−βq). Then we can rewrite PSCA

β,q (σ , τ ) as

PSCA
β,q (σ , τ ) �

∏

x∈Dσ ,τ

(
εpx (σ )

) ∏

y∈V \Dσ ,τ

(
(1 − ε) + ε

(
1 − py(σ )

))

=
∏

x∈Dσ ,τ

(
εpx (σ )

) ∑

S:Dσ ,τ ⊂S⊂V

(1 − ε)|V \S| ∏

y∈S\Dσ ,τ

(
ε
(
1 − py(σ )

))

=
∑

S:Dσ ,τ ⊂S⊂V

ε|S|(1 − ε)|V \S| ∏

x∈Dσ ,τ

px (σ )
∏

y∈S\Dσ ,τ

(
1 − py(σ )

)
.

(2.16)

This implies that the transition from σ to τ can be seen as determining the binomial
subset Dσ ,τ ⊂ S ⊂ V with parameter ε and then changing each spin at x ∈ Dσ ,τ with
probability px (σ ). Therefore, |V |ε is much larger than the actual average number of
spin-flips per update.
Currently, the authors are investigating anMCMC inspired by (2.16)with a constant ε ∈
(0, 1]. Some numerical results have shown better performance than Glauber dynamics
and SCA in finding ground states for several problems. For more details, see Sect. 4.

(iii) In fact, we can compute the average number E∗[|Dσ ,X |] ≡ ∑
τ |Dσ ,τ |P∗(σ , τ ) of

spin-flips per update, where X is an �-valued random variable whose law is P∗(σ , ·).
For Glauber, we have

EG
β [|Dσ ,X |] =

∑

x∈V
PG

β (σ , σ x ) = 1

|V |
∑

x∈V

e−β h̃x (σ )σx

2 cosh(β h̃x (σ ))

= 1

|V |
∑

x∈V

1

e2β h̃x (σ )σx + 1
. (2.17)

For the SCA, on the other hand, since |Dσ ,τ | = ∑
x∈V 1{σx �=τx }, we have

123
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ESCA
β,q [|Dσ ,X |] =

∑

x∈V

∑

τ :τx �=σx

PSCA
β,q (σ , τ ) =

∑

x∈V

e− β
2 (h̃x (σ )σx+qx )

2 cosh( β
2 (h̃x (σ )σx + qx ))

=
∑

x∈V

1

eβ(h̃x (σ )σx+qx ) + 1
. (2.18)

Therefore, the SCA has more spin-flips per update than Glauber, if |V |e2β h̃x (σ )σx ≥
eβ(h̃x (σ )σx+qx ) for any x ∈ V and σ ∈ �, which is true when the temperature is
sufficiently high such that

max
x∈V

β

2

(
qx + |hx | +

∑

y∈V
|Jx,y |

)
≤ log

√|V |. (2.19)

Compare this with the condition (2.5), which is independent of {hx }x∈V , hence better
than (2.19) in this respect. On the other hand, the bound in (2.19) can be made large as
|V | increases, while it is always 1 in (2.5).

3 Simulated Annealing for the SCA

In this section, we show that, under a logarithmic cooling schedule βt ∝ log t , the simulated
annealing for the SCA weakly converges to the uniform distribution over GS. To do so, we
introduce the Dobrushin’s ergodic coefficient δ(P) of the transition matrix [P(σ , τ )]�×� as

δ(P) = max
σ ,τ∈�

‖P(σ , ·) − P(τ , ·)‖TV ≡ 1 − min
σ ,η

∑

τ

P(σ , τ ) ∧ P(η, τ ). (3.1)

The following proposition is a summary of [3, Theorems 6.8.2 & 6.8.3], but stated in our
context.

Proposition 3.1 Let {Xn}∞n=0 be a time-inhomogenous Markov chain on � generated by the
transition probabilities {Pn}n∈N, i.e., Pn(σ , τ ) = P(Xn = τ |Xn−1 = σ ). Let {πn}n∈N be
their respective equilibrium distributions, i.e., πn = πn Pn for each n ∈ N. If

∞∑

n=1

‖πn+1 − πn‖TV < ∞, (3.2)

and if there is a strictly increasing sequence {n j } j∈N ⊂ N such that

∞∑

j=1

(
1 − δ(Pn j Pn j+1 · · · Pn j+1−1)

)
= ∞, (3.3)

then there is a probability distribution π on � such that, for any j ∈ N,

lim
n↑∞ sup

μ
‖μPj · · · Pn − π‖TV = 0, (3.4)

where the supremum is taken over the initial distribution on �.

The second assumption (3.3) is a necessary and sufficient condition for the Markov chain
to be weakly ergodic [3, Definition 6.8.1]: for any j ∈ N,

lim
n↑∞ sup

μ,ν
‖μPj · · · Pn − νPj · · · Pn‖TV = 0. (3.5)
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79 Page 10 of 20 B. Fukushima-Kimura et al.

On the other hand, if (3.4) holds, then the Markov chain is called strongly ergodic [3, Defini-
tion 6.8.2]. The first assumption (3.2) is to guarantee strong ergodicity from weak ergodicity,
as well as the existence of the limiting measure π .

To apply this proposition to the SCA, it is crucial to find a cooling schedule {βt }t∈N under
which the two assumptions (3.2)–(3.3) hold, and to show that the limiting measure is the
uniform distribution πG∞ over GS. Here is the main statement on the simulated annealing for
the SCA.

Theorem 3.2 Suppose that the pinning parameters q satisfy the condition (1.13). For any
non-decreasing sequence {βt }t∈N satisfying limt↑∞ βt = ∞, we have

∞∑

t=1

‖πSCA
βt+1,q − πSCA

βt ,q‖TV < ∞, lim
t↑∞ ‖πSCA

βt ,q − πG∞‖TV = 0. (3.6)

In particular, if we choose {βt }t∈N as

βt = log t

�
, � =

∑

x∈V
�x , �x = qx + |hx | +

∑

y∈V
|Jx,y |, (3.7)

then we obtain

∞∑

t=1

(
1 − δ(PSCA

βt ,q)
) = ∞. (3.8)

As a result, for any initial j ∈ N,

lim
t→∞ sup

μ

∥∥μPSCA
β j ,q P

SCA
β j+1,q · · · PSCA

βt ,q − πG∞
∥∥
TV

= 0. (3.9)

Proof Since (3.9) is an immediate consequence of Proposition 3.1, (3.6) and (3.8), it remains
to show (3.6) and (3.8).

To show (3.6), we first define

μβ(σ , τ ) = e−β H̃(σ ,τ )

∑
ξ ,η e

−β H̃(ξ ,η)
≡ e−β(H̃(σ ,τ )−m)

∑
ξ ,η e

−β(H̃(ξ ,η)−m)
, (3.10)

where m = minσ ,η H̃(σ , η). Since q is chosen to satisfy (1.15), we can conclude that

μβ(σ , τ ) = e−β(H̃(σ ,τ )−m)

|GS| + ∑
ξ ,η:H̃(ξ ,η)>m e−β(H̃(ξ ,η)−m)

−−−→
β↑∞

1{σ∈GS}
|GS|︸ ︷︷ ︸
πG∞(σ )

δσ ,τ . (3.11)

Summing this over τ ∈ � ≡ {±1}V yields the second relation in (3.6). To show the first
relation in (3.6), we note that

∂μβ(σ , τ )

∂β
=

(
Eμβ [H̃ ] − H̃(σ , τ )

)
μβ(σ , τ ), (3.12)

and that Eμβ [H̃ ] ≡ ∑
σ ,τ H̃(σ , τ ) μβ(σ , τ ) tends to m as β ↑ ∞, due to (3.11). Therefore,

∂
∂β

μβ(σ , τ ) > 0 for all β if H̃(σ , τ ) = m, while it is negative for sufficiently large β if
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H̃(σ , τ ) > m. Let n ∈ N be such that, as long as β ≥ βn , (3.12) is negative for all pairs
(σ , τ ) satisfying H̃(σ , τ ) > m. As a result,

N∑

t=n

‖πSCA
βt+1,q − πSCA

βt ,q‖TV

= 1

2

∑

σ∈GS

N∑

t=n

|πSCA
βt+1,q(σ ) − πSCA

βt ,q(σ )| + 1

2

∑

σ /∈GS

N∑

t=n

|πSCA
βt+1,q(σ ) − πSCA

βt ,q(σ )|

≤ 1

2

∑

σ∈GS

N∑

t=n

(
μβt+1(σ , σ ) − μβt (σ , σ )

) + 1

2

∑

σ∈GS

∑

τ �=σ

N∑

t=n

(
μβt (σ , τ ) − μβt+1(σ , τ )

)

+ 1

2

∑

σ /∈GS

N∑

t=n

(
πSCA

βt ,q(σ ) − πSCA
βt+1,q(σ )

)

= 1

2

∑

σ∈GS

(
μβN+1(σ , σ ) − μβn (σ , σ )

) + 1

2

∑

σ∈GS

∑

τ �=σ

(
μβn (σ , τ ) − μβN+1(σ , τ )

)

+ 1

2

∑

σ /∈GS

(
πSCA

βn ,q(σ ) − πSCA
βN+1,q(σ )

)

≤ 3

2
(3.13)

holds uniformly for N ≥ n. This completes the proof of (3.6).
To show (3.8), we use the following bound on PSCA

β,q , which holds uniformly in (σ , τ ):

PSCA
β,q (σ , τ )

(1.10)=
∏

x∈V

e
β
2 (h̃x (σ )+qxσx )τx

2 cosh( β
2 (h̃x (σ ) + qxσx ))

≥
∏

x∈V

1

1 + eβ|h̃x (σ )+qxσx |

(3.7)≥
∏

x∈V

e−β�x

2
= e−β�

2|V | . (3.14)

Then, by (3.1), we obtain

∞∑

t=1

(
1 − δ(PSCA

βt ,q)
) =

∞∑

t=1

min
σ ,η

∑

τ

PSCA
βt ,q(σ , τ ) ∧ PSCA

βt ,q(η, τ ) ≥
∞∑

t=1

e−βt�, (3.15)

which diverges, as required, under the cooling schedule (3.7). This completes the proof of
the theorem. ��
Remark 3.3 (i) The main message contained in the above theorem is that, in order to

achieve weak convergence to the uniform distribution over the ground states, it is
enough for the temperature to drop no faster than 1/ log t with a large multiplicative
constant �. For logarithmic schedules, due to our approach, it is not trivial to ensure
whether the value of� as in (3.7) is optimal for the SCA, contrastingwith theMetropolis
dynamics, whose optimal value can be theoretically determined, see [13].

(ii) Simulated annealing with a logarithmic cooling schedule may not be so practical in
finding a ground state within a feasible amount of time. Instead, an exponential cool-
ing schedule is often used in engineering. In [17, 29], we have developed annealing
processors called Amorphica and STATICA, that rely on the SCA with an exponential
schedule. Experimental results have shown faster in searching for a ground state than
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conventional simulated annealing (based on the Glauber dynamics with an exponential
schedule) and better performance in finding solutions to a max-cut problem.
The authors are investigating the use of exponential schedules. We do not expect weak
convergence to the uniform distribution over the ground states. Instead, we want to
evaluate the probability that the SCA with an exponential schedule reaches a spin
configuration σ such that H(σ ) − min H is within a given error margin. A similar
problemwas considered by Catoni [5] for theMetropolis dynamics with an exponential
schedule.

(iii) However, this may imply that we have not yet been able to make the most of the
SCA’s independent multi-spin flip rule for better cooling schedules. The use of the
total-variation distance may be one of the reasons why we have to impose such tight
conditions on the temperature; if twomeasuresμ and ν on� are close in total variation,
then |μ(σ ) − ν(σ )| must be small at every σ ∈ �. We should keep in mind that the
most important thing in combinatorial optmization is to know the ordering among spin
configurations, and not to perfectly fit πG

β by πSCA
β,q . For example, πSCA

β,q does not have to
be close to πG

β in total variation, as long as we can say instead that H(σ ) ≤ H(τ ) (or
equivalently πG

β (σ ) ≥ πG
β (τ )) whenever πSCA

β,q (σ ) ≥ πSCA
β,q (τ ) (see Fig. 1).

In [14], we introduced a slightly relaxed version of this notion of closeness, which
is also used in the stability analysis [10]. Given an error ratio ε ∈ (0, 1), the SCA
equilibrium measure πSCA

β,q is said to be ε-close to the target Gibbs πG
β in the sense of

order-preservation if

πSCA
β,q (σ ) ≥ πSCA

β,q (τ ) ⇒ H(σ ) ≤ H(τ ) + εRH

(
⇔ πG

β (σ ) ≥ πG
β (τ )e−βεRH

)
,

(3.16)

where RH ≡ maxσ ,τ |H(σ ) − H(τ )| is the range of the Hamiltonian. By simple
arithmetic [14] (with a little care needed due to the difference in the definition of H̃ ),
we can show that πSCA

β,q is ε-close to πG
β if, for all x ∈ V ,

qx ≥ |hx | +
∑

y

|Jx,y | + 1

β
log

2|V |(|hx | + ∑
y |Jx,y |)

εRH
. (3.17)

Unfortunately, this is not better than (1.13), which we recall is a sufficient condition
for πSCA

β,q to attain the highest peaks over GS, and not anywhere else. Since |V |(|hx | +∑
y |Jx,y |)/RH in the logarithmic term in (3.17) is presumably of order 1, we can say

that, if the assumption (1.13) is slightly tightened to qx ≥ |hx |+∑
y |Jx,y |+Oε(β

−1),
then the SCAcan be used to find not only the best options in combinatorial optimization,
but also the second- and third-best options, etc. In an ongoing project, we are also aiming
to improve the cooling schedule under the new notion of closeness.

4 Comparisons and Simulations

Based on the discussion from Remark 2.3(ii), let us propose a new algorithm derived from
the SCA studied in this paper and make a quick comparison regarding their effectiveness in
obtaining the ground states. Given a fixed inverse temperature β ≥ 0 and a number ε ∈ [0, 1],
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Fig. 1 On the left, ‖πSCA
β,q − πG

β ‖TV is small, but the ordering among spin configurations is not preserved. On

the right, ‖πSCA
β,q − πG

β ‖TV is not small, but the ordering among spin configurations is preserved

let the transition matrix of the ε-SCA be defined by

Pβ,ε(σ , τ ) =
∏

x∈Dσ ,τ

(
εpx (σ )

) ∏

y∈V \Dσ ,τ

(
1 − εpy(σ )

)
, (4.1)

where we recall that

px (σ ) = e− β
2 h̃x (σ )σx

2 cosh( β
2 h̃x (σ ))

(4.2)

is the probability of flipping the spin σx from the configuration σ disregarding a pinning
parameter at x . Note that 1− εpx (σ ) = (1− ε)+ ε(1− px (σ )). Therefore, we can visualize
this new algorithm by decomposing it into two steps: in the first step, the spins which are
eligible to be flipped are selected independently at random, where each spin is selected with
probability ε, while it remains unchanged with probability 1− ε; in the second step all spins
which were selected in the previous step are updated simultaneously and independently,
where the probability of flipping the spin at x is equal to px (σ ).

Note that, in the particular case where ε = 1, the update rule we have just introduced
coincideswith the SCA transition probabilitywithout the pinning parameters. Our experience
[8, 9, 17] has shown that, for a fixed Hamiltonian, exponential cooling schedule and number
ofMarkov chain steps, the simulated annealing algorithm based on ε-SCAwith appropriately
chosen parameter ε surpasses the performance of the algorithms based on SCA and Glauber
dynamics with respect to the success probability in obtaining an approximation for a ground
state. Later in this section, we will return to the question of how the performance of this
algorithm is affected by the value of the parameter ε.

Now, let us make a comparison between the performances of the simulated annealing
algorithms based on Glauber dynamics, SCA (with pinning parameters uniformly taken
as qx = λ

2 ) and ε-SCA applied to the particular problems of determining the maximum
cut of a given graph and to the minimization of a spin-glass Hamiltonian. Even though
we only have rigorous results that justify the application of logarithmic cooling schedules
to the Glauber dynamics [1, 3] and to the SCA, our practice has shown that exponential
cooling schedules may also work for all these three algorithms, but we still do not have a
solid theoretical justification for that. Let us restrict ourselves to the case where we have
N = 128 spin variables. The plots from Fig. 2 illustrate the histograms of the minimal
energies achieved by running M = 1024 independent trials starting from randomly chosen
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Fig. 2 The histograms comparing the success rates of obtaining a low-energy configuration for the three
algorithms

Table 1 The hitting rate ρmin to a
configuration with the smallest
energy among all those obtained
by the three algorithms

Model ρmin
Glauber (%) SCA (%) ε-SCA (%)

Max-cut 4.69 0 83.50

Spin-glass 3.32 38.67 61.33

initial spin configurations, where for each trial, we applied L = 20000 Markov chain steps
and considered the exponential cooling schedule with initial temperature Tinit = 1000 and
final temperature Tfin = 0.05, explicitly, we considered

1

βt
= Tinit

(
Tfin
Tinit

) t−1
L−1

(4.3)

for t = 1, 2, . . . , L .
First, we fixed a randomly generated Erdös-Rényi random graph G(N , p) with N = 128

vertices and edge probability p = 0.25, and considered the Hamiltonian corresponding to
the max-cut problem on G(N , p), where hx = 0 for every vertex x , and Jx,y = −1 if {x, y}
is an edge of the graph, and Jx,y = 0 otherwise. The smallest energy obtained by the Glauber
dynamics and the ε-SCA with parameter ε = 0.3 was equal −476, reached with success
rates of 4.69% and 83.50%, respectively, while the smallest energy obtained by the SCA
was −474, reached with a success rate of 0.19%. Later, we fixed a spin-glass Hamiltonian
on the complete graph KN , where N = 128, whose spin-spin coupling constants were taken
as the realizations of mutually independent standard normal random variables. In this case,
the three algorithms obtained the same lowest energy, equal to −1052.57, with a success
rate of 3.32% for the Glauber dynamics, 38.67% for the SCA, while the obtained for the
ε-SCA with parameter ε = 0.8 was of 61.33%. All such results are summarized in Table 1.
These examples are consistent with our observations in [8, 9, 17], where it was possible to
conclude that the SCA outperforms the Glauber dynamics in certain scenarios where anti-
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Fig. 3 Success rate of the ε-SCA algorithm in obtaining a ground state as a function of the parameter ε

ferromagnetic interactions are not prevalent, and the ε-SCA outperforms both algorithms in
all the studied scenarios.

The role played by the parameter ε in the ε-SCA is analogous to the one played by the
pinning parameters q = {qx }x∈V in the SCA. However, the difference is that the pinning
effect for the SCA gets stronger as we decrease the temperature, so, the system will tend to
flip less and less spins and might get stuck in an energetic local minimum. Regarding the
ε-SCA, due to the absence of the pinning parameters in the local transition probabilities and
due to the effect of ε not being influenced by the temperature, the probability of flipping a
certain spin will be larger compared to the SCA. Thus, this new algorithm allows the system
to visit more configurations, especially at low temperatures, while preventing it from getting
stuck in a local minimum. Nevertheless, a rigorous explanation that indicates what leads the
system to converge to a ground state is still under investigation.

In order to get some intuition about the dependence on ε of the success rate of reaching
a ground state, we considered the same max-cut problem and spin-glass Hamiltonian again
and performed M = 1024 ε-SCA annealing trials for different values of ε with the same
cooling schedule and number of Markov chain steps as before. Typically, for Hamiltonians
containing predominantly anti-ferromagnetic pairwise interactions (such as the Hamiltonian
corresponding to the max-cut problem), such parameter ε has to be taken relatively small
since the system tends to show an oscillatory behavior and does not converge to a ground state
as we allow a larger number of spins to be flipped at a time, see Fig. 3a. On the other hand, for
the spin-glass Hamiltonian, there is a tendency of growth of the success rate as the parameter
ε increases. However, when ε gets sufficiently close to 1, the algorithm behaves similarly to
the SCA with pinning parameters qx = 0, so the success rate decreases since the system will
not necessarily converge to a ground state of the Hamiltonian, see Fig. 3b. Differently from
the SCA, in which we have a sufficient condition on the values for the pinning parameters
that guarantee the convergence of the algorithm, it is still necessary to derive an analogous
condition on ε.

As we mentioned previously in this paper, the parallel spin update, which is the most
notorious feature shared by the SCA and the ε-SCA, leads us to consider hardware accel-
erators that can fully take advantage of such parallel nature and be very decisive in solving
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large-scale combinatorial optimization problems within a shorter amount of time as com-
pared to these algorithms implemented on an average consumer-level device. STATICA [29]
and Amorphica [17] are cutting-edge annealing processors developed to accommodate SCA
and ε-SCA annealing algorithms and have achieved results with higher precision, energy
efficiency, and shorter execution times, compared to other state-of-art devices. In order to
test the efficiency of our algorithms implemented in consumer-level processors, we evaluated
the annealing time of Glauber dynamics, SCA, and ε-SCA, by executing each algorithm in
C++ (for running on a CPU) and C++/CUDA (for running on a GPU). In this evaluation, we
ran the C++ code on an Intel Core i7-9700 Processor and the GPU kernel on an NVIDIA
GeForce RTX 2080 Ti. Let N be the number of spin variables involved and M the number
of annealing trials/replicas. The execution time on a CPU is approximately proportional to
N 2×M . In contrast, thanks to the parallel computing capability, the execution efficiency can
be improved on a GPU by increasing both N and M . Due to the relevance of fully connected
spin systems in real applications, we have considered in this evaluation spin-glass Hamiltoni-
ans on complete graphs with N = 2n (7 ≤ n ≤ 12), and we performed simulated annealing
once (M = 1) or 128 times (M = 128), where each annealing trial consisted of executing
L = 20000 Markov chain steps. In the results summarized in Table 2, each value represents
the total annealing time per replica (i.e., the total annealing time tA divided by M) measured
in milliseconds. Let us note that the algorithms implemented on a GPU have significantly
shorter execution times compared to their CPU implementation counterparts. Although the
annealing time per trial for the Glauber dynamics, SCA, and ε-SCA are approximately the
same when implemented on a GPU, such an observation can be compensated by the fact
that, as we will see in the following discussion, the ε-SCA and the SCA outperform Glauber
dynamics in terms of the success rate of finding a ground state.

In order to understand the dependence of the performance of the algorithms with respect
to certain variables, such as the system size N and the number of Markov Chain steps L , we
performed simulations on a GPU specifically for the problem of minimization of a spin-glass
Hamiltonian on a complete graph considering a fixed number of replicas M = 1024 and a
cooling schedule such as in equation (4.3) with initial temperature Tinit = 1000 and final
temperature Tfin = 0.05. In Table 3, corresponding to each algorithm, we analyze its success
rate ρmin of hitting the smallest energy reached among all algorithms, the average minimum
energy H (min)

mean obtained, and total annealing time per replica tA/M . As expected, we observe
that for all algorithms, the success rates increase and the average minimum energy decrease
as the number of Markov chain steps assume larger values. In that respect, the values of
ρmin and H (min)

mean for SCA and ε-SCA (with ε = 0.8) are consistently better compared to the
Glauber dynamics. Furthermore, the performances associated with the Glauber dynamics
and SCA rapidly decrease as we consider problems with a larger number of vertices, while
the ε-SCA keeps the highest performance among the three algorithms.

The greater effectiveness of the ε-SCA in reaching lower energy configurations in several
observations is very intriguing due to the lack of any rigorous mathematical justification (at
the moment) for that. Therefore, it raises several questions to be answered that bring us a
new direction to be explored for the development of efficient algorithms for obtaining ground
states of Ising Hamiltonians. Moreover, in future investigations, hardware-related questions
should be addressed, such as memory bandwidth problems and efficient implementation of
parallel spin-flip algorithms on a GPU, similar to those explored in [4].
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