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Abstract
We consider bootstrap percolation and diffusion in sparse random graphs with fixed degrees,
constructed by configuration model. Every vertex has two states: it is either active or inactive.
We assume that to each vertex is assigned a nonnegative (integer) threshold. The diffusion
process is initiated by a subset of vertices with threshold zero which consists of initially
activated vertices, whereas every other vertex is inactive. Subsequently, in each round, if an
inactive vertex with threshold θ has at least θ of its neighbours activated, then it also becomes
active and remains so forever. This is repeated until no more vertices become activated. The
main result of this paper provides a central limit theorem for the final size of activated vertices.
Namely, under suitable assumptions on the degree and threshold distributions, we show that
the final size of activated vertices has asymptotically Gaussian fluctuations.

Keywords Contagion · Bootstrap percolation · Central limit theorem · Sparse random
graphs

1 Introduction

Threshold models of contagion have been used to describe many complex phenomena in
diverse areas including epidemiology [7, 33, 35, 36, 41], neuronal activity [3, 39], viral
marketing [24, 25, 27] and spread of defaults in economic networks [4, 8].
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Consider a connected graph G = (V , E) with n vertices V = [n] := {1, 2, . . . , n}. Given
two vertices i, j ∈ [n], we write i ∼ j if {i, j} ∈ E . Every vertex has two states: it is either
active or inactive (sometimes also referred to as infected or uninfected). We assume that to
each vertex is assigned a nonnegative (integer) threshold. Let θi be the threshold of vertex
i . The diffusion is then initiated by the (deterministic) subset of vertices with threshold zero
which consists of initially activated vertices A0 := {i ∈ V : θi = 0}. Subsequently, in each
round, if an inactive vertex with threshold θ has at least θ of its neighbours activated, then
it also becomes active and remains so forever. Namely, at time t ∈ N, the (deterministic) set
of active vertices is given by

At = {i ∈ V :
∑

j : j∼i

11{ j ∈ At−1} ≥ θi }, (1)

where 11{E} denotes the indicator of an event E , i.e., this is 1 if E holds and 0 otherwise.
We study above threshold driven contagion model in sparse random graphs with fixed

degrees, constructed by configuration model. The interest in this random graph model stems
from its ability to mimic some of the empirical properties of real networks, while allowing
for tractability (see e.g., [16, 32, 40]). We describe this random graph model next.

1.1 ConfigurationModel

For each integer n ∈ N, we consider a system of n vertices [n] := {1, 2, . . . , n} endowed
with a sequence of initial non-negative integer thresholds (θn,i )

n
i=1. We are also given a

sequence dn = (dn,i )
n
i=1 of nonnegative integers dn,1, . . . , dn,n such that

∑n
i=1 dn,i is even.

By means of the configuration model we define a random multigraph with given degree
sequence, denoted by G(n,dn). It starts with n vertices and dn,i half-edges corresponding
to the i-th vertex. Then at each step two half-edges are selected uniformly at random, and a
full edge is completed by joining them. The multigraph is constructed when there is no more
half edges left. Although self-loops and multiple edges may occur, these become rare (under
our regularity conditions below) as n → ∞. It is easy to see conditional on the multigraph
being simple graph, we obtain a uniformly distributed random graph with these given degree
sequences; see e.g. [40].

Let un(d, θ) be the numer of vertices with degree d and threshold θ :

un(d, θ) := #{i ∈ [n] : dn,i = d, θn,i = θ}.
We assume the following regularity conditions on the degree sequence and thresholds.

Condition 1.1 For each n ∈ N, dn = (dn,i )
n
i=1 and (θn,i )

n
i=1 are sequence of non-negative

integers such that
∑n

i=1 dn,i is even and, for some probability distribution p : N2 → [0, 1]
independent of n, with un(d, θ) as defined above:

(C1) as n → ∞,

un(d, θ)

n
:= #{i ∈ [n] : dn,i = d, θn,i = θ}

n
−→ p(d, θ)

for every non-negative integers d and θ . We further assume
∑∞

θ=0 p(0, θ) < 1.
(C2) for every A > 1, we have

∞∑

d=0

∞∑

θ=0

un(d, θ)Ad =
n∑

i=1

Adn,i = O(n).
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Remark 1.2 Let (Dn,�n) be random variables with joint distribution P(Dn = d,�n = θ) =
un(d, θ)/n, which is the distribution of dergee and threshold of a random vertex in G(n,dn).
Moreover, let (D,�) be random variables (over nonnegative integers) with joint distribution
P(D = d,� = θ) = p(d, θ). Let

λ := E[D] =
∞∑

d=0

∞∑

θ=0

dp(d, θ).

Then Condition 1.1 can be rewritten as (Dn,�n)
d−→ (D,�) as n → ∞ and E[ADn ] =

O(1) for each A > 1, which in particular implies the uniform integrability of Dn , so (as
n → ∞) ∑n

i=1 dn,i

n
= E[Dn] −→ E[D] = λ ∈ (0,∞).

Similarly, all higher moments converge.

1.2 Diffusion Process inG(n, dn)

The aimof this section is towrite the activation process described above as a diffusion process.
We start with the graph G(n,dn), and then remove (here the removal of a vertex is the same
as activation described above) the initially activated vertex with threshold zero, sayA0. Now
the degree of each vertices in the graph induced by [n] \A0 is less than or equal to the degree
of that vertex in G(n,dn). We denote the degree of vertex i at time t in the evolving graph
by dB

i (t) (here the time t is non-negative integer valued, later we will introduce a continuous
time). In this process, we remove the vertex i at time t if dB

i (t) ≤ di − θi (if there are more
than one such i , then we we select one arbitrarily). Note that at the end of this procedure
all the vertices that are removed will be the set of active vertices, and the rest will remain
inactive.

Let us describe the process by assigning a type A (active) or B (inactive) to each of these
vertices. To begin with (at time t = 0), the initially activated vertices (with threshold zero)
are said to be of type A, and all vertices not in the initially activated vertices are of type B.
At time t > 0, a vertex is said to be of type A if dB

i (t) ≤ di − θi , otherwise, we call it of type
B. In particular at the beginning of the diffusion process, all vertices in initially activated
vertices are of type A, and all vertices not in the initially activated vertices are by definition of
type B. As we proceed with the algorithm, dB

i (t) might decrease and a type B vertices may
become of type A. In terms of edges, a half-edge is of type A or B when its endpoint is. As
long as there is any half-edge of type A, we choose one such half-edge uniformly at random
and remove the edge it belongs to. Note that it may result in changing the other endpoint
from B to A (by decreasing dB

i (t)) and thus create new half-edges of type A. When there are
no half-edges of type A left, we stop the process and the final set of activated vertices is the
set of vertices of type A (which are all isolated).

The next step is to turn this process into a balls and bins problem. In this step we simul-
taneously run the activation process described above and construct the configuration model.
We call a type A (or B) vertex as type A (or B) bins and similarly consider the half-edges
as balls of type A (or B) if its end point is type A (or B). At each step, we remove first one
random ball from the set of balls in A-bins and then another ball without restriction. We
stop when there are no non-empty A-bins. Therefore we alternately remove an A-ball and a
random ball. We may just as well say that we first remove a random A-ball. We then remove
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balls in pairs, first a ball without restriction, and then a random A-ball, and stop with the ball,
leaving no A-ball to remove.

The next step is to run the above deletion process in continuous time. Each ball has an
exponentially distributed random lifetime with mean 1, independent of the other balls. In
other words balls die and are removed at rate 1, independent of each other. Also when a ball
dies we remove a random A ball (in terms of configuration model these two half-edges form
an edge). We stop when we should remove an A ball but there is no such a ball. Let HA(t)
and HB(t) denote the number of A balls and B balls respectively, at time t . Note that these
parameters depend on n, but we will omit the subscript as it is clear from the context. We
also let An(t) and Bn(t) be the number of A bins and B bins at time t .

Let τn be the stopping time of the above diffusion process. Note that there are no A balls
left at τn . However we pretend that we delete a (nonexistent) A ball at τn-th step and denote
HA(τ ) = −1. Therefore the stopping time τn may be characterized by HA(τ ) = −1, and
HA(t) ≥ 0 for all 0 ≤ t < τn . Denoting by A∗

n the final set of activated vertices, we observe
that |A∗

n | = n − Bn(τn). Next we consider the balls only. The total number of balls at time t
is HA(t) + HB(t). In the evolution of this process each ball dies with rate 1 and another ball
is removed upon its death. Therefore, HA(t) + HB(t) is a death process with rate 2.

1.3 Main Theorems

The main result of this paper provides a central limit theorem for the final size of activated
vertices. Namely, when the degree and threshold sequences satisfy Condition 1.1, we show
that the final size of activated vertices |A∗

n | has asymptotically Gaussian fluctuations.
Let

b(d, z, �) :=P(Bin(d, z) = �) =
(
d

�

)
z�(1 − z)d−�,

β(d, z, �) :=P(Bin(d, z) ≥ �) =
d∑

r=�

(
d

r

)
zr (1 − z)d−r ,

and Bin(d, z) denotes the binomial distribution with parameters d and z.
For the following theorems, we will use the notation

ân(t) := 1 − 1

n

∞∑

d=0

d∑

θ=1

un(d, θ)β(d, e−t , d − θ + 1),

where un(d, θ) is the number of vertices with degree d and threshold θ , and

â(t) := 1 −
∞∑

d=0

d∑

θ=1

p(d, θ)β(d, e−t , d − θ + 1).

Theorem 1.3 Assume that Condition 1.1 holds. Let τ ′
n ≤ τn be a stopping time such that

τ ′
n

p−→ t0 for some t0 ≥ 0. Then in D[0,∞), as n → ∞,

n−1/2(An(t ∧ τ ′
n) − nân(t ∧ τ ′

n)
) d−→ ZA(t ∧ t0),
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for all t ≤ t0, where ZA is a continuous Gaussian process on [0, t0]with mean 0 and variance

σ 2
A(t) :=

∞∑

d=1

d∑

θ=1

e−(d−θ+1)t

×
(

	d,θ,d−θ+1(t) +
∞∑

�=d−θ+2

(d − θ + 1)

(
� − 1

d − θ + 1

)

∫ t

0
(e−s − e−t )�−(d−θ+2)e−s	d,θ,�(s) ds

)
,

where

	d,θ,�(t) = p(d, θ)

(
1 − e2�tβ(d, e−t , �) + 2�

∫ t

0
e2�sβ(d, e−s, �) ds

)
.

The proof of above theorem is provided in Sect. 3.1.
Let us define

hB(z) :=
∞∑

d=1

d∑

θ=1

p(d, θ)

d∑

�=d−θ+1

�b(d, z, �) and hA(z) := λz2 − hB(z),

which also gives us the plausible candidate for the limit of our stopping time

ẑ := sup{z ∈ [0, 1] : hA(z) = 0}.
Note that the solution ẑ always exists since hA(0) = 0. Also, hA(z) is continuous in z.Wewill
further assume that if ẑ �= 0, then it is not a local minimum of hA(z), i.e., α := h′

A (̂z) > 0.

Lemma 1.4 Let τn be the stopping time of the diffusion process such that HA(τn) = −1

for the first time. Then τn
p−→ − ln ẑ as n → ∞, where

p−→ denotes the convergence in
probability.

The proof of lemma is provided in Sect. 3.3.
We are now interested in the final number of activated vertices (bins) which is given by

limt→∞ An(t∧τn). Note that from Theorem 1.3 with the stopping time τn (as in Lemma 1.4),
we have for t ≥ − ln ẑ,

n−1/2 (An(t ∧ τn) − nân(t ∧ τn)) → ZA(t ∧ − ln ẑ).

Therefore for t ≥ ln ẑ,

n−1/2 (An(t ∧ τn) − nân(t ∧ τn))
d−→ ZA(− ln ẑ).

The following theorem provides a central limit theorem for the final size of activated
vertices. Let us denote by

hnA(z) :=
∑n

i=1 dn,i

n
z2 − 1

n

∞∑

d=1

∞∑

θ=1

d∑

�=d−θ+1

�un(d, θ)b(d, z, �),

and let ẑn be the largest z ∈ [0, 1] such that hnA(z) = 0.

Theorem 1.5 Assume Condition 1.1. Let τ̂ = − ln ẑ and τ̂n = − ln ẑn . We have:

• If ẑ = 0 then asymptotically almost all nodes become active and |A∗
n | = n − op(n).
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• If ẑ �= 0 and ẑ is a stable solution, i.e. α := h′
A (̂z) > 0, then

n−1/2 (|A∗
n | − nân (̂τn)

) d−→ ZAct,

where ZAct = â′ (̂τ )
α

ZH A (̂τ )+ ZA (̂τ ), where (ZH A (̂τ ), ZA (̂τ )) jointly follow a Gaussian
distribution that is described in Proposition 3.3.

The proof of above theorem is given in Sect. 3.4, where we first derive a joint functional
central limit theorem for the processes (An(t), HA(t)), from which we derive the theorem.

1.4 Relation to Bootstrap Percolation and k-Core

We now discuss our results with respect to related literature.
The diffusion model we consider in this paper can be seen as a generalization of bootstrap

percolation and k-core in any graph G = (V , E).
In the case of equal thresholds (θi = θ over all vertices), our model is equivalent to

bootstrap percolation (with deterministic initial activation). This process was introduced by
Chalupa, Leath and Reich [13] in 1979 as a simplified model of some magnetic disordered
systems. A short survey regarding applications of bootstrap percolation processes can be
found in [1]. Recently, bootstrap percolation has been studied on varieties of random graphs
models, see e.g., [22] for random graph Gn,p, [5, 6, 18] for inhomogeneous random graphs
and [2, 9, 26] for the configuration model; see also [12, 15, 28, 29, 34].

The k-core of a graphG is the largest induced subgraph ofG with minimum vertex degree
at least k. The k-core of an arbitrary finite graph can be found by removing vertices of degree
less than k, in an arbitrary order, until no such vertices exist. By setting the threshold of vertex
i as θi = (di − k + 1)+ = max{di − k + 1, 0}, we find that Bn(τn) will be the size of k-core
in the random graph G(n,dn).

The questions concerning the existence, size and structure of the k-core in random graphs,
have attracted a lot of attention over the last few decades, see e.g., [30, 37] for random graph
Gn,p, [10, 38] for inhomogeneous randomgraphs and [14, 17, 20, 21, 31] for the configuration
model.

In particular,more closely related to our paper, [21] analyze the asymptotic normality of the
k-core for sparse random graph Gn,p and for configuration model. We continue on the same
line as [21] and generalize partly their results by allowing different threshold levels to each
of vertices. Our proof technique is also inspired by [21]. In particular, we look at the spread
of activation (or infection) and constructing the configuration model simultaneously. Then
we express the number of inactive vertices at a particular time point in terms of a martingale.
After thatwe appeal to amartingale limit theorem from [19] to derive the limiting distribution.
Notation We let N be the set of nonnegative integers. Let {Xn}n∈N be a sequence of real-
valued random variables on a probability space (�,P). If c ∈ R is a constant, we write

Xn
p−→ c to denote that Xn converges in probability to c. That is, for any ε > 0, we have

P(|Xn − c| > ε) → 0 as n → ∞. We write Xn = op(an), if |Xn |/an converges to 0

in probability. We use
d−→ for convergence in distribution. If En is a measurable subset of

�, for any n ∈ N, we say that the sequence {En}n∈U occurs with high probability (w.h.p.)
if P(En) = 1 − o(1), as n → ∞. Also, we denote by Bin(k, p) a binomial distribution
corresponding to the number of successes of a sequence of k independent Bernoulli trials
each having probability of success p. We will suppress the dependence of parameters on the
size of the network n, if it is clear from the context. We use the notation 11{E} for the indicator
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of an event E which is 1 if E holds and 0 otherwise. We let D[0,∞) be the standard space of
right-continuous functions with left limits on [0,∞) equipped with the Skorohod topology
(see e.g. [19, 23])

2 Preliminaries

In this section we provide some preliminary lemmas that will be used in our proofs.

2.1 Some Death Process Lemmas

Consider a pure death process with rate 1. This process starts with some number of balls
whose lifetimes are i.i.d. rate 1 exponentials.

Lemma 2.1 (Death Process Lemma) Let Nn(t) be the number of balls alive at time t in a
rate 1 death process with Nn(0) = n. Then

sup
t≥0

|Nn(t)/n − e−t | p−→ 0 as n → ∞.

Proof 1 − Nn(t)/n is the empirical distribution function of the n lifetimes, which are i.i.d.
random variables with the distribution function 1 − e−t . Therefore the result follows using
Glivenko-Cantelli theorem (see e.g. [23, Proposition 4.24]). �

Lemma 2.2 (Number of Balls Centrality Lemma) The number of balls HA(t)+HB(t) follow
a pure death process, and

sup
0≤t≤τn

|HA(t) + HB(t) − nλe−2t | = op(n).

Proof In the evolution of this process each ball dies with rate 1 and another ball is removed
upon its death. Therefore A(t) + B(t) is a death process with rate 2. Therefore the lemma
follows using Lemma 2.1. �


2.2 Martingale Limit Theorems

We recall some martingale theory that are going to be useful in proving Theorem 1.3. Let X
be a martingale defined on [0,∞), we denote its quadratic variation of X by [X , X ]t , and the
bilinear extension of quadratic variation to two martingales X and Y by [X , Y ]t . If X and Y
be two martingales with path-wise finite variation, then

[X , Y ]t :=
∑

0<s≤t

	X(s)	Y (s), (2)

where 	X(s) := X(s) − X(s−) is the jump of X at s. Similarly, 	Y (s) := Y (s) − Y (s−).
In our context there will only be countable number of jumps for the martingales under
consideration, and the sum in Eq. (2) will be finite. We will assume [X , Y ]0 = 0. For vector-
valued martingales X = (Xi )

m
i=1 and Y = (Yi )ni=1, we define the square bracket [X , Y ] to

be the matrix ([Xi , Y j ])i, j . A real-valued martingale X(s) on [0, t] is an L2 if and only if
E[X , X ]t < ∞ and E|X(0)|2 < ∞, and then E|X(t)|2 = E[X , X ]t + E|X(0)|2. We will
use the following martingale limit theorem from [19], see also [21, Proposition 4.1].
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Proposition 2.3 For each n ≥ 1, let Mn(t) = (Mni (t))
q
i=0 be a q-dimensional martingale

on [0,∞) and Mn(0) = 0. Also 
(t) be a continuous positive semi-definite function such
that for every fixed t ≥ 0

[Mn, Mn]t p−→ 
(t) as n → ∞,

sup
n

E[Mni , Mni ]t < ∞, i = 1, . . . , q.

Then Mn
d−→ M, in D[0,∞) where M is continuous q-dimensional Gaussian martingale

with EM(t) = 0 and covariances Cov(M(t)) = 
(t).

In the next section, we will apply Proposition 2.3 to stopped processes.

3 Proofs

In this section we present the proofs of Theorem 1.3, Lemma 1.4 and Theorem 3.4.

Remark 3.1 In the proof of Theorem1.3,we always consider the processes up to time τ ′
n ≤ τn .

Although, sometimes it will be possible to extend the process (for example by removing non-
existent balls), that will not be relevant for us, and thus we will always stop the process at
τ ′
n .

3.1 Proof of Theorem 1.3

We denote the number of (alive) balls at time t by Wn(t). Clearly Wn(t) = HA(t) + HB(t).
Let mn := 1

2

∑n
i=1 dn,i denotes the total number of edges in G(n,dn). In our construction

Wn(0) = 2mn − 1, andWn decreases by 2 each time a ball dies. The death happens with rate
1, and therefore Wn(t) + ∫ t

0 2Wn(s) ds is a martingale on [0, τ ′
n]. In differential form

dWn(t) = −2Wn(t) dt + dM(t), (3)

where M is a martingale. Now by Ito’s lemma and (3),

d(e2tWn(t)) = e2t dWn(t) + 2e2tWn(t) dt = e2t dM(t),

which implies that Ŵn(t) := e2tWn(t) is another martingale. Note that distinct balls die at
distinct time with probability one, also all jumps inWn(t) equals−2. The quadratic variation
of Ŵn(t) is given by

[Ŵn, Ŵn]t =
∑

0<s≤t

|	Ŵn(s)|2 =
∑

0<s≤t

(
e2s |	Wn(s)|

)2

=
∑

0<s≤t

e4s(Wn(s−) − Wn(s))(Wn(s−) − Wn(s))

=
∑

0<s≤t

2e4s(Wn(s−) − Wn(s)) =
∫ t

0
2e4s d(−Wn(s))

= −2e4tWn(t) + 2Wn(0) +
∫ t

0
8e4sWn(s) ds. (4)
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Using the fact that Wn(t) is a decreasing function in t and Wn(0) = 2mn − 1 we get

[Ŵn, Ŵn]t ≤ 2e4t
∫ t

0
d(−Wn(s)) ≤ 4mne

4t .

Let the stopped martingale on [0,∞) be W ∗
n (t) := 1

n Ŵ (t ∧ τ ′
n). Then W ∗

n is a martingale
on [0,∞) and, for every T < ∞, the quadratic variation of this martingale is

[W ∗
n ,W ∗

n ]T = 1

n2
[Wn,Wn]T∧τ ′

n
≤ 4e4Tmn

n2
−→ 0, (5)

as n goes to infinity. Also 0 ≤ W ∗
n (t) ≤ 2mn/n = O(1). Therefore by Proposition 2.3 on

D[0,∞), W ∗
n (t) − W ∗

n (0)
p−→ 0 uniformly on [0, T ], and as n → ∞,

n−1 sup
0≤t≤T∧τ ′

n

|Wn(t) − Wn(0)e
−2t | p−→0. (6)

Now using (4), (5) and (6) we get for every t ∈ [0, T ∧ τ ′
n],

[Ŵn, Ŵn]t = −2e4tWn(0)e
−2t + 2Wn(0) +

∫ t

0
8e4sWn(0)e

−2s ds + op(n)

= 2Wn(0)(e
2t − 1) + op(n) = 2(2mn − 1)(e2t − 1) + op(n)

= 2λn(e2t − 1) + op(n). (7)

Note that in the last display, (6) ensures that we can use the approximation Wn(t) =
Wn(0)e−2t + op(n) on [0, T ∧ τ ′

n]. Let Wi (t) be the number of balls for vertex (bin) i and
denote by (for d, θ, � ∈ N)

Bd,θ,�(t) = {i ∈ [n] : di = d, θi = θ,Wi (t) = �},
the set of vertices (bins) with degree d , threshold θ and � balls at time t . Let Bd,θ,�(t) =
|Bd,θ,�(t)|. Therefore, the total number of (inactive) B bins at time t is given by

Bn(t) =
∞∑

d=0

∞∑

θ=1

d∑

�=d−θ+1

Bd,θ,�(t) =
∞∑

d=0

∞∑

θ=1

B̃d,θ,d−θ+1(t),

where B̃d,θ,� = ∑d
r=� Bd,θ,r (t) denotes the number of (inactive) B bins at time t with initial

degree d and threshold θ with at least � balls. In the rest of the proof we will derive a central
limit theorem for the quantity Bn(t), which is the number of inactive vertices at time t . This
will immediately give us our desired result since An(t) + Bn(t) = n.

Note that B̃d,θ,� decreases by one only when a ball dies in an uninfected (inactive) bin
with initially d balls and threshold θ that has exactly � balls, and there are precisely �Bd,θ,�

many such balls, therefore

d B̃d,θ,�(t) = −�Bd,θ,�(t) dt + dM(t), (8)

where M is a martingale.
Let us now define the following quantity

B̂d,θ,�(t) := e�t B̃d,θ,�(t), (9)

which gives

d B̂d,θ,�(t) = �e�t B̃d,θ,�(t) dt + e�t d B̃d,θ,�(t).
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Plugging in (8) we get

d B̂d,θ,�(t) = �e�t B̃d,θ,�(t) dt − �e�t Bd,θ,�(t) dt + e�t dM(t)

= �e�t B̃d,θ,�+1(t) dt + e�t dM(t)

= �e−t B̂d,θ,�+1(t) dt + dM′(t),

where dM′(t) = e�t dM(t). Since this is yet another martingale differential, we can define
the following martingale for every fixed d ≥ � ≥ 0

Md,θ,�(t) := B̂d,θ,�(t) − �

∫ t

0
e−s B̂d,θ,�+1(s) ds. (10)

The quadratic variation will be same as that of B̂d,θ,�(t), i.e.,

[Md,θ,�, Md,θ,�]t =
∑

0<s≤t

|	Md,θ,�(s)|2 =
∑

0<s≤t

|	B̂d,θ,�(s)|2

=
∑

0<s≤t

e2�s |	B̃d,θ,�(s)|2

=
∫ t

0
e2�s d(−B̃d,θ,�(s)). (11)

Let us now define the centered version of Md,θ,� as follows

M̃d,θ,�(t) := n−1/2(Md,θ,�(t) − Md,θ,�(0)). (12)

This is of course the centered martingale where for � ≤ d ,

Md,θ,�(0) = B̃d,θ,�(0) =
∞∑

r=�

n∑

i=1

11{i ∈ Bd,θ,r (0)} =
n∑

i=1

11{i ∈ Bd,θ,d(0)}.

The quadratic variation of M̃d,θ,�(t) can be calculated using integration by parts as follows

[M̃d,θ,�, M̃d,θ,�]t = 1

n
[Md,θ,�, Md,θ,�]t

= 1

n

(
B̃d,θ,�(0) − e2�t B̃d,θ,�(t) + 2�

∫ t

0
e2�s B̃d,θ,�(s) ds

)
.

Recall from (9) that B̂d,θ,�(t) := e�t B̃d,θ,�(t), where B̃d,θ,�(t) is the number of (unin-
fected) B bins with at least � balls at time t with initial number of balls (degree) d and
threshold θ . Also, recall that balls die independently with rate 1. Let us denote

Un(d, θ) = {i ∈ [n] : dn,i = d, θn,i = θ},
so that un(d, θ) = |Un(d, θ)|. This gives also un(d, θ) = ∑

� Bd,θ,�(0).
Recall that Bd,θ,�(t) = |Bd,θ,�(t)| where Bd,θ,�(t) = {i ∈ [n] : di = d, θi = θ,Wi (t) =

�}. Since each ball dies with rate one independent of each other and survival probability of
a ball after time t is equal to e−t . A bin from Un(d, θ) has at least � balls at time t with
probability

β(d, e−t , �) =
d∑

r=�

(
d

r

)
(e−t )r (1 − e−t )d−r .
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Hence we get

E[B̂d,θ,�(t)] = e�t
E[B̃d,θ,�(t)] = e�t

∑

v∈Un(d,θ)

P(out of d at least � balls survive),

which gives
b̂d,θ,�(t) = E[B̂d,θ,�(t)] = e�t un(d, θ)β(d, e−t , �).

Now note that (for θ ≥ 1)

B̃d,θ,�(0) = un(d, θ) and E
[
B̃d,θ,�(t)

] = un(d, θ)β(d, e−t , �).

Hence, by using Condition 1.1 and Glivenko-Cantelli’s lemma (since each bins are inde-
pendent), we get

sup
0≤t≤τ ′

n

∣∣∣∣
1

n
B̃d,θ,�(t) − p(d, θ)β(d, e−t , �)

∣∣∣∣
p−→ 0, (13)

as n → ∞. Therefore, the quadratic variation of M̃d,θ,�(t) satisfies (for θ ≥ 1 and � ≤ d)
(see also Eq.31)

[M̃d,θ,�, M̃d,θ,�]t :=p(d, θ)

(
1 − e2�tβ(d, e−t , �) + 2�

∫ t

0
e2�sβ(d, e−s, �) ds

)
+ op(1)

=	d,θ,�(t) + op(1).

We will also use the following crude estimate. Using (11) we get that

[M̃d,θ,�, M̃d,θ,�]t = 1

n
[Md,θ,�, Md,θ,�]t ≤ 1

n
e2�t B̃d,θ,�(0) = un(d, θ)

n
e2�t . (14)

Therefore we can apply Proposition 2.3 to the stopped process at τ ′
n

M̃d,θ,�(t ∧ τ ′
n)

d−→ Zd,θ,�(t ∧ t0) in D[0,∞), (15)

where Zd,θ,� is a Gaussian process with EZd,θ,�(t) = 0 and covariance 	d,θ,�(t).
Also note that B̃d,θ,�(t) and B̃d ′,θ ′,�′(t) can not change together almost surely for

(d, θ, �) �= (d ′, θ ′, �′), therefore [M̃d,θ,�, M̃d ′,θ ′,�′ ] = 0. Thus for a finite set S,(
M̃d,θ,�

)
(d,θ,�)∈S converges to (Zd,θ,�)(d,θ,�)∈S in distribution, and (Zd,θ,�) are independent.

Let us now express B̂d,θ,� in terms of Md,θ,� so that we can apply the limit theorems for
M̃d,θ,�’s to get limit theorems for B̂d,θ,�.

Using (10) one can write

B̂d,θ,�(t) = Md,θ,�(t) +
d∑

r=�+1

�

(
r − 1

�

) ∫ t

0
(e−s − e−t )r−�−1e−sMd,θ,r (s) ds. (16)

To see how to get (16) from (10), note that

B̂d,θ,�(t) := Md,θ,�(t) + �

∫ t

0
e−s B̂d,θ,�+1(s) ds

= Md,θ,�(t) + �

∫ t

0
e−sMd,θ,�+1(s) ds

+ (� + 1)�
∫ t

0<s1<s<t
e−se−s1 B̂d,θ,�+2(s1) ds1 ds.
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Proceeding like this by repeatedly using (10), we can obtain (16). SinceMd,θ,� is amartingale
E[Md,θ,�(t)] = Md,θ,�(0), and using (16) we get E[B̂d,θ,�(t)] = b̂d,θ,�(t), where we define
for t ≥ 0,

b̂d,θ,�(t) = Md,θ,�(0) +
d∑

r=�+1

�

(
r − 1

�

) ∫ t

0
(e−s − e−t )r−�−1e−sMd,θ,�(0) ds. (17)

Using (16), (17) and (12), it turns out that the centered version of B̂d,θ,�(t) satisfies

1√
n

(
B̂d,θ,�(t) − b̂d,θ,�(t)

)

= 1√
n

(
Md,θ,�(t) − Md,θ,�(0)

+
∞∑

r=�+1

�

(
r − 1

�

) ∫ t

0

(
e−s − e−t )r−�−1

e−s(Md,θ,�(s) − Md,θ,�(0)
)
ds

)

= M̃d,θ,�(t) +
∞∑

r=�+1

�

(
r − 1

�

) ∫ t

0
(e−s − e−t )r−�−1e−s M̃d,θ,�(s) ds. (18)

Now using (14) we get (for � ≤ d and for any T ≥ 0):

E
[
M̃d,θ,�, M̃d,θ,�

]
T ≤ e2�T

un(d, θ)

n
≤ 1

n
e2�T

∑

d≥�

∑

θ

un(d, θ).

Then using Condition 1.1 and the simple fact that for A > 1,

A�
∑

d≥�

∑

θ

un(d, θ) ≤
∑

d≥�

∑

θ

un(d, θ)Ad ≤
∑

d

∑

θ

un(d, θ)Ad ,

we get for any T ≥ 0, by setting A = e4T , there is a constant CA such that

E
[
M̃d,θ,�, M̃d,θ,�

]
T ≤ e2�T CAA

−� = CAe
−2�T .

Now using Doob’s L2−inequality we get

E

(
sup

0≤t≤T
M̃2

d,θ,�(t)

)
≤ 4E

[
M̃d,θ,�, M̃d,θ,�

]
T ≤ 4CAe

−2�T .

Therefore using Cauchy–Schwarz inequality,

E

(
sup

0≤t≤T
|M̃d,θ,�(t)|

)
≤ C ′e−�T . (19)

Therefore by (15) and Fatou’s lemma we get

E

(
sup

0≤t≤t0

∣∣Zd,θ,�(t)
∣∣
)

≤ C ′e−�T . (20)

Let us define

Rd,θ,�(t) :=
∞∑

r=�+1

�

(
r − 1

�

) ∫ t

0
(e−s − e−t )r−�−1e−s M̃d,θ,r (s) ds.
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Then we have (since (e−s − e−t )r−�−1 ≤ (1 − e−t )r−�−1 for s ∈ [0, t])

E

[
sup

0≤t≤T

∣∣Rd,θ,�(t)
∣∣
]

≤
∞∑

r=�+1

�

(
r − 1

�

) ∫ T

0
(1−e−T )r−�−1e−s

E

[
sup

0≤t≤T

∣∣M̃d,θ,r (t)
∣∣
]
ds.

Therefore (19) yields

E

(
sup

0≤t≤T

∣∣Rd,θ,�(t)
∣∣
)

≤ C ′
∞∑

r=�+1

�e−rT
(
r − 1

�

)
(1 − e−T )r−�. (21)

For fixed T , using the sum formula for negative binomial distribution with parameters
� + 1 and probability of success 1 − e−T (1 − e−T ),

∞∑

r=�+1

(
r − 1

�

)
e−T (r−�−1)(1 − e−T )r−�−1 = (

1 − e−T (1 − e−T )
)−(�+1)

,

which implies that (from (21))

E

(
sup

0≤t≤T

∣∣Rd,θ,�(t)
∣∣
)

≤ C ′′�
( e−T

1 − e−T (1 − e−T )

)�+1
.

Since 1−e−T (1−e−T ) > e−T (from (1−e−T )2 > 0 for T > 0), RHS of (21) converges
to zero uniformly in n, as � → ∞. Now using (16), (17), (21) and applying [11, Theorem
4.2] we get

1√
n

(
B̂d,θ,�(t ∧ τ ′

n) − b̂d,θ,�(t ∧ τ ′
n)

) d−→ Z̃d,θ,�(t ∧ t0),

in D[0,∞) for each �, where

Z̃d,θ,�(t) := Zd,θ,�(t) +
∞∑

r=�+1

�

(
r − 1

�

) ∫ t

0
(e−s − e−t )r−�−1e−s Zd,θ,r (s) ds. (22)

Again using (20) we obtain that the sum in (22) almost surely uniformly converges for
t ≤ t0, and this gives Z̃d,θ,� is continuous for each (d, θ, �). Using (9), we can write

e−�t

√
n

(
B̂d,θ,�(t) − b̂d,θ,�(t)

) := 1√
n

(
B̃d,θ,�(t) − e−�t b̂d,θ,�(t)

)
.
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Now recall that we are interested in the case � = d − θ + 1. More particularly, we will
derive a central limit theorem of the following quantity

1√
n

∞∑

d=1

d∑

θ=1

(
B̃d,θ,d−θ+1(t) − e−(d−θ+1)t b̂d,θ,d−θ+1(t)

)

= 1√
n

∞∑

d=1

d∑

θ=1

e−(d−θ+1)t (B̂d,θ,d−θ+1(t) − b̂d,θ,d−θ+1(t)
)

=
∞∑

d=1

d∑

θ=1

e−(d−θ+1)t M̃d,θ,d−θ+1(t)

+
∞∑

d=1

d∑

θ=1

e−(d−θ+1)t
∞∑

r=d−θ+2

(d − θ + 1)

(
r − 1

d − θ + 1

)

∫ t

0
(e−s − e−t )r−(d−θ+1)−1e−s M̃d,θ,r (s) ds. (23)

Note that from (15) we know the limiting distribution of M̃d,θ,d−θ (t), and therefore, it will be
sufficient to show that the contribution from the tail of (23) is negligible. To be precise, let us
define two terms (we ignore the contribution from e−(d−θ)t , which will always be bounded
above by 1)

R̃�(t) :=
∞∑

d=�

d∑

θ=1

M̃d,θ,d−θ+1(t),

and

R̂�(t) :=
∞∑

d=�

d∑

θ=1

d∑

r=d−θ+2
(d−θ+1)

(
r − 1

d − θ + 1

)∫ t

0
(e−s − e−t )r−(d−θ+1)−1e−s M̃d,θ,r (s) ds.

In the following lemma we show that E
[
sup0≤t≤T

∣∣R̃�(t)
∣∣], and E

[
sup0≤t≤T

∣∣R̂�(t)
∣∣] con-

verges to zero as � → ∞ uniformly in n.

Lemma 3.2 We have E
[
sup0≤t≤T

∣∣R̃�(t)
∣∣] → 0 and E

[
sup0≤t≤T

∣∣R̂�(t)
∣∣] → 0, as � → ∞,

uniformly in n.

Proof From Condition 1.1 and the fact that for all A > 1, Adun(d, θ) ≤ ∑
d≥� un(d, θ)Ad

we find that for any A > 1 there is a constant CA such that

E
[
M̃d,θ,�, M̃d,θ,�

]
T ≤ e2�T

un(d, θ)

n
.

Using Doob’s L2−inequality we get

E

[
sup

0≤t≤T
M̃2

d,θ,�(t)

]
≤ 4E

[
M̃d,θ,�, M̃d,θ,�

]
T ≤ 4e2rT

un(d, θ)

n
. (24)

Therefore,

E

[
sup

0≤t≤T

∣∣R̃�(t)
∣∣
]

≤
∞∑

d=�

d∑

θ=1

E

(
sup

0≤t≤T

∣∣M̃d,θ,d−θ (t)
∣∣
)

.
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Using Cauchy–Schwarz inequality, and (24)

E

[
sup

0≤t≤T

∣∣R̃N ,n(t)
∣∣
]

≤ 2
∞∑

d=�

d∑

θ=1

e(d−θ)T

√
un(d, θ)

n
≤ 2√

n

∑

d≥�

edT
d∑

θ=1

√
un(d, θ).

Using Condition 1.1, for all A > 1, Adun(d, θ) = O(n). Therefore for any A > 1 there
is a constant CA such that

E

[
sup

0≤t≤T

∣∣R̃�(t)
∣∣
]

≤ CA

∑

d≥�

dedT A−d/2.

In particular, choosing A = e4T , we see that E
[
sup0≤t≤T

∣∣R̃�(t)
∣∣] converges to zero as

� → ∞ uniformly in n.
Now let us define

R̂�(t) :=
∞∑

d=�

d∑

θ=1

d∑

r=d−θ+1

(d − θ)

(
r − 1

d − θ

) ∫ t

0
(e−s − e−t )r−(d−θ)−1e−s M̃d,θ,r (s) ds.

Observe that the index r is at most d , and therefore using Cauchy–Schwarz inequality, and
(24)

E

[
sup

0≤t≤T

∣∣M̃d,θ,r (t)
∣∣
]

≤ 2edT
√
un(d, θ)

n
. (25)

We can now compute the following tail bound

E

(
sup

0≤t≤T

∣∣R̂�(t)
∣∣
)

≤
∞∑

d=�

d∑

θ=1

d∑

r=d−θ+1

(d − θ)

(
r − 1

d − θ

)
(1 − e−t )r−(d−θ)2esT

√
un(d, θ)

n

Again we have un(d, θ) ≤ CAA−dn for some constant CA > 0. Plugging in A = e8T we
get

E

[
sup

0≤t≤T

∣∣R̂�(t)
∣∣
]

≤ CA

∞∑

d=�

e−3dT
d∑

θ=1

∞∑

r=d−θ+1

(d − θ)

(
r − 1

d − θ

)
(1 − e−T )r−(d−θ). (26)

We can write

∞∑

r=d−θ+1

(d − θ)

(
r − 1

d − θ

)
(1 − e−t )r−(d−θ) =

∞∑

r=0

r

(
r + d − θ − 1

r

)
(1 − e−T )r

= (d − θ)e(d−θ+1)T (1 − e−T ), (27)

where in the second equality we used the expectation of negative binomial distribution. Now
plugging this in (26) we have

E

[
sup

0≤t≤T

∣∣R̂�(t)
∣∣
]

≤ CA

∑

d≥�

d2e−2dT ,

which again goes to zero uniformly in n as � → ∞. This completes the proof of Lemma 3.2.
�
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By using Lemma 3.2, (23) and [11, Theorem 4.2] we get

1√
n

∞∑

d=1

d∑

θ=1

(
B̃d,θ,d−θ+1(t ∧ τ ′

n) − e−(d−θ+1)(t∧τ ′
n)b̂d,θ,d−θ+1(t ∧ τ ′

n)
)

d−→
∞∑

d=1

d∑

θ=1

e−(d−θ+1)(t∧τ ′
n) Z̃d,θ,d−θ+1(t ∧ t0),

(28)

as n → ∞, that is

1√
n

(
Bn(t ∧ τ ′

n) −
∞∑

d=1

d∑

θ=1

un(d, θ)β(d, e−t , d − θ + 1)

)

d−→
∞∑

d=1

d∑

θ=1

e−(d−θ+1)(t∧τ ′
n) Z̃d,θ,d−θ+1(t ∧ t0) =: ZA(t ∧ t0).

(29)

We are now done except for showing that ZA(t) is continuous. Using (18) and (25) we get

E

[
sup

0≤t≤T

1√
n

∣∣B̂d,θ,�(t) − b̂d,θ,�(t)
∣∣
]

≤ 2edT
√
un(d, θ)

n
+ 2

∞∑

r=�+1

�

(
r − 1

�

)
(1 − e−t )r−�edT

√
un(d, θ)

n
.

Again using un(d, θ) ≤ CAA−dn and writing the second term in terms of negative
binomial distribution we get

E

(
sup

0≤t≤T

1√
n

∣∣B̂d,θ,�(t) − b̂d,θ,�(t)
∣∣
)

≤ CAe
dT A−d/2 + CAe

dT A−d/2e�T+T (1 − e−T )�.

Since � ≤ d , by choosing A = e4T+2, we get

E

[
sup

0≤t≤T

1√
n

∣∣B̂d,θ,�(t) − b̂d,θ,�(t)
∣∣
]

≤ CAde
−d . (30)

Using (30) and Fatou’s lemma we get

E

[
sup

0≤t≤t0

∣∣Z̃d,θ,d−θ (t)
∣∣
]

≤ CAde
−d .

This in turn implies that
∑∞

d=1
∑d

θ=1 e
−(d−θ)t Z̃d,θ,d−θ (t), almost surely converges uni-

formly in t ≤ t0 and therefore
∑∞

d=1
∑d

θ=1 e
−(d−θ)t Z̃d,θ,d−θ (t) is continuous almost surely.

This completes the proof of Theorem 1.3.

3.2 The Stopping Time

Note that we can write

HB(t) =
∞∑

d=1

d∑

θ=1

d∑

�=d−θ+1

�Bd,θ,�(t) =
∞∑

d=1

d∑

θ=1

d∑

�=d−θ+1

�
∑

v∈[n]
11{v ∈ Bd,θ,�(t)}.
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It is precisely the number of balls that were not initially infected (active), and remain non-
infected at time t . First let us consider the term

∑d
�=d−θ+1 �

∑
v∈[n] 11{v ∈ Bd,θ,�(t)}.

Consider those un(d, θ) bins with degree d and threshold θ ≥ 1 (not initially infected).
For k = 1, 2 . . . , un(d, θ), let Tk be the time �-th ball is removed from the k-the such bin.
Then

|{k : Tk ≤ t}| =
d−�∑

r=0

∑

v∈[n]
11{v ∈ Bd,θ,r (t)}.

For the k-th bin we get

P (Tk ≤ t) =
d−�∑

r=0

(
d

r

) (
e−t )r (

1 − e−t )d−r :=
d−�∑

r=0

b(d, e−t , r),

out of the un(d, θ) bins. Since all bins are independent of each other, using Glivenko-Cantelli
lemma we get that

sup
t≥0

∣∣∣∣∣∣
1

n

d−�∑

r=0

∑

v∈[n]
11{v ∈ Bd,θ,r (t)} − un(d, θ)

n

d−�∑

r=0

b(d, e−t , r)

∣∣∣∣∣∣
−→ 0,

in probability as n → ∞. By Condition 1.1, un(d, θ) = p(d, θ)n + o(n), therefore we get

sup
t≥0

∣∣∣∣∣∣
1

n

d−�∑

r=0

∑

v∈[n]
11{v ∈ Bd,θ,r (t)} − p(d, θ)

d−�∑

r=0

b(d, e−t , r)

∣∣∣∣∣∣
−→ 0, (31)

in probability as n → ∞. Since (31) is true for all 0 ≤ � ≤ d , taking difference of two
consecutive terms we get for each 0 ≤ r ≤ d ,

sup
t≥0

∣∣∣∣∣∣
1

n

∑

v∈[n]
11{v ∈ Bd,θ,r (t)} − p(d, θ)b(d, e−t , r)

∣∣∣∣∣∣
−→ 0,

and therefore taking a sum over r , and using Condition 1.1,

sup
t≥0

∣∣∣∣
1

n
B̃d,θ,�(t) − p(d, θ)β(d, e−t , �)

∣∣∣∣
p−→ 0.

Also combining Condition 1.1 and (31) we get

sup
t≥0

∣∣∣∣∣
HB(t)

n
−

∞∑

d=1

d∑

θ=1

d∑

�=d−θ+1

�p(d, θ)b(d, e−t , �)

∣∣∣∣∣
p−→ 0, (32)

in probability as n → ∞. Recall that the stopping time τ was defined as HA(τ ) = −1. Also
note that from (32) and (6) we get that

sup
t≥0

∣∣∣∣∣
HA(t)

n
− λe−2t +

∞∑

d=1

d∑

θ=1

d∑

�=d−θ+1

�p(d, θ)b(d, e−t , �)

∣∣∣∣∣
p−→ 0, (33)

in probability as n → ∞. We can then write hB(z) = ∑∞
d=1

∑d
θ=1

∑d
�=d−θ+1 �p(d, θ)

b(d, z, �) and hA(z) = λz2 − hB(z), as the limit of HB (t)
n and HA(t)

n , by setting z = e−t .
Also (33), gives us the plausible candidate for the limit of our stopping time ẑ := sup{z ∈
[0, 1] : hA(z) = 0}. We further assume that if ẑ is a non-zero then it is not a local minimum
of hA(z).
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3.3 Proof of Lemma 1.4

To show this let us take a constant t1 > 0 such that t1 < − ln ẑ. This means ẑ < 1, and hence
λ > hB(1). Therefore using the fact that λz2 − hB(z) is continuous we get hB(z) < λz2 for
z ∈ (̂z, 1]. This again gives hB(e−t ) < λe−2t for all t ≤ t1. Since [0, t1] is compact again
using the continuity of hB(z) we get hB(e−t ) − λe−2t < −c for some c > 0. Therefore on
the set τ < t1 we will have hB(e−τ ) − λe−2τ < −c. On the other hand, since HA(τ ) = −1,
as n → ∞ in (33) HA(τ )/n → 0, which gives a contradiction, and thus P(τ ≤ t1) → 0
as n → ∞. Now let us choose t2 < τ where t2 ∈ (− ln ẑ,− ln (̂z − ε)). By our assumption
ẑ is not a local minimum of hA(z) = λz2 − hB(z), therefore there is an ε > 0 such that
λe−2t2 − hB(e−t2) = −c for some c > 0. Now by definition if τ > t2, then HB(t2) ≥ 0.
Plugging these in (33) we get HB (t2)

n − λe−2t2 + hB(t2) ≥ c. This gives P(τ ≥ t2) → 0 as
n → ∞. Since t1 and t2 can be arbitrary close to − ln ẑ, the proof of the claim is complete.

3.4 Proof of Theorem 1.5

We first derive a joint functional central limit theorem for the processes (An(t), HA(t)), from
which we prove the theorem.

Proposition 3.3 Let τ ′
n ≤ τn be a stopping time such that τ ′

n
p−→ t0 for some t0 ≥ 0. Then

in D[0,∞), as n → ∞,

n−1/2 (
An(t ∧ τ ′

n) − nân(t), HA(t ∧ τ ′
n) − nhnA(e−t )

) d−→ (ZA(t∧t0), ZH A(t∧t0)), (34)

with ZA as in Theorem 1.3, and ZH A(t) is a Gaussian process that is described in the proof
of this proposition. (The covariance could be calculated from (29) and (47).)

For the sake of readability, we postpone the proof of the proposition to the end of this
section. We continue with the proof of Theorem 1.5. Part (i) follows form [2]. Consider now
the case when ẑ �= 0 and ẑ is a stable solution, i.e. α := h′

A (̂z) > 0. Using similar arguments
as in the proof of [21, Lemma 2.3], one can show that ân converges to â and hnA converges to
hA, together with their derivatives, i.e., â′

n converges to â
′ and hnA

′ converges to h′
A, uniformly

on [0, 1].
Hence, since for small enough δ > 0, hA (̂z + δ) > 0, and hA (̂z − δ) < 0, hnA has a zero

at ẑn in (̂z − δ, ẑ + δ) for sufficiently large n. Further, since hnA → hA uniformly, we have
hnA > 0 in the interval [̂z + δ, 1]. Since δ > 0 is arbitrary, we have ẑn → ẑ as n → ∞. Let
us write τ̂n = − ln ẑn , and τ̂ = − ln ẑ, therefore τ̂n → τ̂ as n → ∞.

We now use the Skorohod coupling theorem so that we can consider all the random
variables in (34) to be defined on the same probability space and the limit holds almost surely.
Now we apply Proposition 3.3 with τn , and Lemma 1.4 gives us that τn → τ̂ = − ln ẑ. Also,
since the limits are continuous almost surely, we can say (34) holds uniformly on [0, τ̂ + 1].
Therefore taking t = τn (this is less than τ̂ + 1 for large n almost surely), we get

HA(τn) = nhnA(e−τn ) + n1/2ZH A (̂τ ∧ τn) + o(n1/2)

= nhnA(e−τn ) + n1/2ZH A (̂τ ) + o(n1/2),
(35)

where using continuity of ZH A, we absorb the error term in o(n1/2). Since HA(τn) = −1,
therefore

hnA(e−τn ) = n−1/2ZH A (̂τ ) + o(n−1/2). (36)
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Using the Mean-Value theorem, we can write for some ξn ∈ [̂zn, zn] or [zn, ẑn],
hnA(e−τn ) = hnA(e−τn ) − hnA(e−τ̂n ) = hnA(zn) − hnA (̂zn) = hnA

′
(ξn)(zn − ẑn). (37)

We have zn → ẑ and ẑn → ẑ, and therefore ξn → ẑ. Now, from hnA
′ → hA

′ uniformly, we
get hnA

′(ξn) → hA
′(̂z) = α. Therefore (36), and (37) we get

zn − ẑn = n−1/2 1

α
(ZH A (̂τ ) + o(1)) . (38)

Now, we use the Mean value theorem on An for some ξn → ẑ, and (38) to obtain

n−1/2An(τn) = n1/2ân(τn) + ZA (̂τ ) + o(1)

= n1/2ân (̂τ )) + n1/2â′
n(e

−ξn )(zn − ẑn) + ZA (̂τ ) + o(1)

= n1/2ân (̂τ ) + â′(̂τ )

α
ZH A (̂τ ) + ZA (̂τ ) + o(1).

(39)

In the third equality we have used the fact that â′
n → â′ uniformly in t . The proof is thus

complete since |A∗
n | = An(τn).We end this section by presenting the proof of Proposition 3.3.

Proof of Proposition 3.3 First note that we can write the number of (uninfected) B balls at
time t as

HB(t) =
∞∑

d=0

∞∑

θ=1

d∑

�=d−θ+1

�Bd,θ,�(t) =
∞∑

d=0

∞∑

θ=1

(d−θ+1)B̃d,θ,d−θ+1+
∞∑

d=0

∞∑

θ=1

d∑

�=d−θ+2

B̃d,θ,�.

This gives

HA(t) = Wn(t)−HB(t) = Wn(t)−
∞∑

d=0

∞∑

θ=1

(d−θ+1)B̃d,θ,d−θ+1−
∞∑

d=0

∞∑

θ=1

d∑

�=d−θ+2

B̃d,θ,�(t).

(40)
We wish to prove a joint central limit theorem for (An(t), HA(t)). Let us first outline the
procedure. We have already expressed B̂d,θ,�(t) (which is the centered and scaled version
of B̃d,θ,�(t)) in terms of M̃d,θ,�(t)’s in (16), and therefore HA(t) is also implicitly a linear
combination of Wn(t), and M̃d,θ,�(t)’s (since B̃d,θ,�(t)’s are also linear combinations of
M̃d,θ,�(t)). Therefore once we can prove that the joint distribution (Wn, M̃d,θ,�) is Gaussian,
we can derive the joint distribution of (An(t), HA(t)) (since both An(t), HA(t) are linear
combination of independent random variables which are jointly Gaussian). To do that, let
us define ˜̂Wn(t) = n−1/2

(
Ŵn(t) − Ŵn(0)

)
, and note that using (7) we get for every t ∈

[0, T ∧ τn],
[ ˜̂Wn,

˜̂Wn]t = 2λ(e2t − 1) + op(1). (41)

Therefore using Proposition 2.3 on the stopped process

˜̂Wn(t ∧ τ ′
n)

d−→ ẐW (t ∧ t0),

as n → ∞, where ẐW is a continuous Gaussian process with mean zero, and variance
2λ(e2t − 1). Now since Ŵn(t) := e2tWn(t), we get that

n−1/2 (
Wn(t ∧ τ ′

n) − e−2tWn(0)
) d−→ ZW (t ∧ t0), (42)
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as n → ∞, where ZW is a continuous Gaussian process with mean zero, and variance
2λ(e−2t − e−4t ). Moreover, for t ∈ [0, T ∧ τn], � ≥ d − θ + 1, and θ ≥ 1

[˜̂Wn, M̃d,θ,�

]

t
= 1

n

∑

0<s≤t

	Ŵn(s)	Md,θ,�(s) = 1

n

∑

0<s≤t

	Ŵn(s)	B̂d,θ,�(s)

= 1

n

∑

0<s≤t

e(2+�)s	Wn(s)	B̃d,θ,�(s).
(43)

Now when B̃d,θ,� jumps by 1 for some � ≥ d − θ + 1, the Wn jumps by −2, therefore using
(13), (43) yields

[˜̂Wn, M̃d,θ,�

]

t
= 1

n

∫ t

0
2e(2+�)s d(−B̃d,θ,�(s)) =

∫ t

0
2e(2+�)s d(−β(d, e−s, �)) + op(1).

(44)
Therefore using Proposition 2.3 we get the joint convergence of (M̃d,θ,�(t ∧τ ′

n),
˜̂Wn(t ∧τ ′

n))

for � ≥ d−θ +1. Thus combining (42), the joint convergence of (M̃d,θ,�(t∧τ ′
n),

˜̂Wn(t∧τ ′
n))

for � ≥ d − θ + 1, and (28) we get

n−1/2 (
An(t ∧ τ ′

n) − nân(t), HA(t ∧ τ ′
n) − nhnA(e−t )

) d−→ (ZA(t ∧ τ ′
n), ZH A(t ∧ τ ′

n)),

(45)
as n → ∞, where ân(t) = 1 − 1

n

∑∞
d=1

∑d
θ=1 un(d, θ)β(d, e−t , d − θ + 1),

hnA(e−t ) = e−2t 2mn

n
− 1

n

∞∑

d=0

∞∑

θ=1

(d − θ + 1)un(d, θ)β(d, e−t , d − θ + 1)

−
∞∑

d=0

∞∑

θ=1

d∑

�=d−θ+2

un(d, θ)β(d, e−t , �),

(46)

and then

ZH A(t) := ZW (t) −
∞∑

d=0

∞∑

θ=1

(d − θ + 1)Z̃d,θ,d−θ+1 −
∞∑

d=0

∞∑

θ=1

d∑

�=d−θ+2

Z̃d,θ,�(t). (47)

We can ignore the contribution of the tail in the centered and scaled version of (40) using
an almost identical argument as Lemma 3.2. Similarly, we can also ensure that the limit
ZH A(t) is continuous. This completes the proof of Proposition 3.3. �
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