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Abstract
Westudy randomperturbations of quasi-periodic uniformly discrete sets in thed-dimensional
euclidean space. By means of Diffraction Theory, we find conditions under which a quasi-
periodic set X can be almost surely recovered from its random perturbations. This extends
the recent periodic case result of Yakir (Int Math Res Notices 1–19, 2020).

Keywords Uniformly discrete set · Quasi-crystals · Mathematical diffraction · Stationary
process · Mixing

Introduction

Random perturbations of discrete structures have been studied by many authors from dif-
ferent viewpoints. For instance, a problem of interest in statistical physics is to study what
happens with the statistical properties (e.g, two-point correlation, structure factor) of the
perturbed discrete sets; we refer to [10, 16] and the references therein. Another problem of
interest in Diffraction theory is to compare the diffraction measure of a random perturba-
tion with the diffraction measure of the deterministic discrete set which is perturbed; see for
instance [2, Chapter 11] and [13] for more details. Very recently, in [24] Yakir deals with
random perturbations of a lattice where it is shown that, under some assumptions on the
random displacements, the lattice can be recovered almost surely from the perturbations. In
this work we focus on random perturbations and reconstructibility in quasi-periodic struc-
tures, including quasicrystals, and on weakening the independence conditions on the random
perturbations. We stress that quasicrystals exist not only as mathematical objects, but also
as naturally ocurring [6] physical materials, which although rare, have been argued to be
ubiquitous throughout the universe [5]. Since the discovery of quasicrystalline structures
in materials by Shechtman and his collaborators [21] many efforts have been dedicated to
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understanding their underlying order and their stability under perturbations (see for instance
[13, 14, 19] just to mention a few).

In more precise terms, if X ⊂ R
d is a quasi-periodic set, we let (ξp)p∈X be a sequence of

identically distributed randomvectors defined in a probability space (�,F, P), with common
distribution ξ . A random perturbation of X is a realization of the random set

Xξ := {p + ξp(ω) : p ∈ X}.
For two random processes X , Y ⊂ R

d that take values into locally finite configurations,
we say that X is almost surely recovered from Y if there exists a measurable function F
defined over the essential range of the process Y such that almost surely F(Y ) = X ; this
notion extends naturally to random measures. If X is a fixed (deterministic) subset of R

d , we
identify X with the point process which takes constant value equal to X .

In this work we focus on finding conditions under which the Fourier transform of Xξ

determines the Fourier transform of a quasi-periodic set X almost surely, based on an explicit
formula that links these two Fourier transforms. It follows that X can then be almost surely
recovered from Xξ , but we can say even more. In fact, some mathematical and physical point
configurations can be classified in terms of their hidden order (e.g, repetitivity of separated
nets [17], quasi-periodicity [2, 15],Hyperuniformity [19, 23]). In this context, ourmain results
(Theorems A,B and C below) provide another way to distinguish the large class of point sets
that have diffraction measure singular with respect to Lebesgue measure (see hypotheses
(H1), (H2) in Sect. 1) in terms of the robustness of their Fourier Transform. This allows to
recognize these configurations under random perturbations, by taking a Fourier Transform.
Note that as a special case our setting includes quasicrystals (defined by asking that their
diffraction measure is purely atomic), which in turn include the classical case of lattices, for
which the diffraction measure is supported on their dual lattice. In [1] the authors show that
SCD patterns have singular diffraction measure (in particular they satisfy our hypotheses),
but are not quasicrystals.
NotationsWe include here some basic definitions and notationswhichwewill use throughout
this work. We use the notation | · | indistinguishably for the euclidean norm in R

d and for the
module (resp. absolute value) of a complex number (resp. real number), which will be clear
in each context. As usual we denote by B(x, R) := {y ∈ R

d : |x − y| < R} the euclidean
open ball centered at x ∈ R

d with radius r > 0 and we use the notation BR := B(0, R).
We denote by V ol the Lebesgue measure in R

d and we denote the cardinality of a finite
set A ⊂ R

d by #A. Observe that a locally integrable function f ∈ L1
loc(R

d) can be identified
with f · V ol; see Sect. 3 for more details. Furthermore, for an atomic measure μ we write
μ(p) instead of μ({p}). Finally, for strictly positive real-valued functions f , g we use the
standard Landau asymptotic notations O( f (R)) and o(g(R)).

1 Hypotheses on the Deterministic Set X

Throughout this work we assume that X is an uniformly discrete set, which means that there
exists r > 0 such that ||x − y|| ≥ r for every x, y ∈ X . The set X is assumed to satisfy the
following two conditions:

(H.1) There exists a positive constant dens(X), called the asymptotic density of X , such that
for every R > 0 we have

|#(X ∩ BR) − dens(X) · V ol(BR)| = o(Rd).
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(H.2) The diffraction measure γ̂X of δX := ∑

p∈X δp , given by

∀ f ∈ C∞
c (Rd), 〈γ̂X , f 〉 := lim

R→∞
1

V ol(BR)

∫

Rd
f (λ)

∣

∣

∣

∣

∣

∣

∑

p∈X∩BR

e−2π i〈p,λ〉
∣

∣

∣

∣

∣

∣

2

dλ

(1.1)

exists and is singular with respect to Lebesgue measure, where δp denotes the Dirac
mass at the point p ∈ X .

There are plenty of uniformly discrete sets X satisfying the hypothesis (H.1) (where
trivially all lattices are included). Non-trivial examples are cut-and-project sets constructed
with an appropriate choice of the window; see Sect. 4.4.2 for precise definitions. A particular
case are the cut-and-project sets which are bounded displacement equivalent to a lattice; these
sets include, for instance, the set of vertices of the Penrose tilling. It is worth mentioning that
a generic cut-and-project set inR

d is, up to bounded displacement, equivalent to a lattice (for
more details see [12]). Another interesting example of a set X satisfying (H.1) is the X = Vd ,
known as the set of visible points ofZ

d , and defined as Vd := {x ∈ Z
d : gcd(x) = 1}, where

gcd(x) denotes the greatest common divisor of the coordinates of x ∈ Z
d ; it is known that

dens(Vd) = 1/ζ(d), where ζ denotes the Riemann’s zeta function. We refer to [4] for the
proof of (H.1) in this case. Observe that Vd is not relatively dense, which roughly speaking
amounts to saying that Vd has arbitrarily large holes.

All the abovementioned examples satisfy (H.2). See for instance Corollary 9.3 and Propo-
sition 9.9 in [2] and [2, Section 9.4] for several examples of cut-and-project sets and the
precise computations of their diffraction measures; see also [4] for a proof that γ̂Vd is purely
atomic in the case of visible points of a lattice. In particular a set X satisfies (H.2) if its weak
dual X∗ is discrete, where X∗ is the support of the Fourier transform of δX := ∑

p∈X δp ,

given bŷδX = ∑

λ∈X∗ A(λ)δλ. More explicitly, there exist {A(λ)}λ∈X∗ such that

lim
R→∞

1

V ol(BR)

∑

p∈X∩BR

e−2π i〈p,λ〉 =
{

A(λ) for λ ∈ X∗,
0 else.

Note that X∗ coincides with the usual dual for lattices and cut-and-project sets.
We consider the general setting given by (H.2) since there are uniformly discrete point con-

figurations in R
d for which only the absolutely continuous part of their diffraction spectrum

vanishes; see for instance [1].

2 Statements of the Results

Recall that Xξ is the realization random set {p + ξp : p ∈ X}. For every λ ∈ R
d , ω ∈ �

and R > 0, we define MR,ξ,ω(λ) by

MR,ξ,ω(λ) := 1

V ol(BR)

∑

p∈Xξ ∩BR

e−2π i〈p,λ〉.

The aim of this work is to show that under our hypotheses (H.1) and (H.2) the Fourier
transform of X is preserved under random perturbations. As a byproduct, this allows us to
recover almost surely the quasi-periodic set X from Xξ .
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Theorem A Suppose X ⊂ R
d satisfies hypotheses (H.1) and (H.2) from Sect. 1. Assume that

the ξp’s are i.i.d and there exists a positive number ε such that E(|ξ |d+ε) < ∞. Then, almost
surely the following holds for every λ ∈ R

d ,in the sense of vague convergence of measures:

lim
R→∞ MR,ξ,ω(λ) = E

[

e−2π i〈ξ,λ〉]
̂δX (λ), (2.1)

wherêδX is the (weak-)Fourier transform of X given by limR→∞
δ̂X∩BR

V ol(BR)
.

A key step in the proof of Theorem A is the strong law of large numbers. Since the hypothesis
of this well-known result can be weakened, we can adapt our proof to show that the con-
clusions of Theorem A still hold for non-independent identically distributed random vectors
under mild assumptions on the correlations (see Sect. 4.2 for the precise definitions).

Theorem B Assume that X satisfies (H.1) and (H.2), that the ξ(p), p ∈ X are identically
distributed, and that there is ε > 0 such that E(|ξ |d+ε) < ∞. If (ξp)p∈X is a compactly-
mixing random process such that for Yp := |ξp|1|ξp |≤|p| there holds

∑

N≥1

1

N 2

∑

p,q∈BN
p =q

|Cov(Yp, Yq)| < ∞, (2.2)

then almost surely the limit (2.1) still holds for every λ ∈ R
d .

We note that a stronger version of Theorems A, B is achievable if we assume that X is an
asymptotically affine perturbation of a lattice. In this case we only need the ξp to be weakly
mixing. See Theorem D and Sect. 4.3 for details.

Though the conclusion of Theorem B holds for every uniformly discrete set X satisfying
hypotheses (H.1) and (H.2), we require strong assumptions on the correlations. However, if
the random process (ξp)p∈X is such that the random perturbation Xξ is stationary, we have
the same conclusion of Theorem B but under more classical conditions on the correlations,
namely weak-mixing.

Theorem C Assume that X satisfy the hypotheses (H.1) and (H.2) and that (ξp)p∈X is a
process of random vectors for which there is a positive number ε such that E[|ξ |d+ε] < ∞.
If the random perturbation Xξ is stationary under the action of R

d on itself by translations
and weakly-mixing, then almost surely, the limit 2.1 holds for every λ ∈ R

d .
As we mentioned before, if the limit (2.1) holds and E(e−2π i〈ξ,λ〉) = 0, this allow us

to recover the Fourier transform ̂δX from ̂δXξ without requiring specific conditions on X.
The above condition on ξ holds in several cases of interest, for example for ξ a mixture of
Gaussians.

Corollary 2.1 Suppose that either the hypotheses of Theorem A, B or C hold. If for all λ ∈ R
d

there holds E(e−2π i〈ξ,λ〉) = 0, then̂δX is almost surely recoverable from̂δXξ . More precisely,
almost surely, for all λ ∈ R

d there holds

̂δX (λ) = E

(

e−2π i〈ξ,λ〉)−1
̂δXξ (λ).

A class of results closely related to our work concern the recovery of the structure factor
SX from the one random perturbations SXξ . In fact, [10, 16] obtain a formula for SXξ in
terms of the structure factor SX of the unperturbed data X (here X itself is assumed to be a
stationary random process). This yields a formula related to (2.1) but in expectation form.
This relation is discussed in Sect. 5.2.

123



Almost Sure Recovery... Page 5 of 26 39

3 Basics onMathematical Diffraction Theory

In this section we introduce some terminology and basic concepts which we use along this
work. Let S(Rd) be the Schwartz space of rapidly decreasing C∞ (complex-valued) test
functions. The Fourier transform of f ∈ S(Rd) is defined by

̂f (y) :=
∫

f (x)e−2π i〈x,y〉dx .

By a (complex) measure we mean a linear functional on the set of compactly supported
functions Cc(R

d) such that for every compact set K ⊂ R
d there is a positive constant MK

satisfying that

|μ( f )| ≤ MK || f ||∞,

for every f ∈ Cc(R
d) supported on K , and where || · ||∞ denotes the supremum norm

on Cc(R
d). By the Riesz Representation Theorem, there is an equivalence between this

definition of measure and the classical measure-theoretic concept of regular Radon measure.
When ameasureμ determines a tempered distribution Tμ( f ) = μ( f ) (i.e a continuous linear
functional defined on S(Rd)) via the formula

∀ f ∈ S(Rd), Tμ( f ) :=
∫

f (x)dμ(x),

then its Fourier transform is defined by μ̂( f ) := μ(̂f ).
The total variation |μ| of a measure μ is the smallest positive measure for which |μ( f )| ≤
|μ|( f ) holds for every non-negative f ∈ Cc(R

d). A measure μ is said to be translation
bounded if for every compact K ⊂ R

d there is a positive number aK such that |μ|(x + K ) ≤
aK , for every x ∈ R

d .
Let Pμ := {x ∈ R

d : μ({x}) = 0} be the set of atoms of μ. We say that μ is purely
atomic (or pure point) if it has atoms only, i.e, μ(A) = ∑

x∈A∩Pμ
μ({x}) for every Borel set

A; moreover μ is called continuous if μ({x}) = 0 for every x ∈ R
d . A measure μ is said to

be absolutely continuous with respect to a measure ν, if there exists g ∈ L1
loc(ν) such that

μ = gν. Furthermore μ and ν are called mutually singular (which is denoted by μ ⊥ ν) if
there exists a relatively compact Borel set S ⊂ R

d such that |μ|(S) = 0 and |ν|(Rd \ S) = 0
(with obvious interpretation for the value of |μ|(A)).

For f ∈ S(Rd), define ˜f (x) := f (−x), and for a measure μ we consider μ̃( f ) := μ(˜f ).
We say that μ is positive definite if μ( f ∗ ˜f ) ≥ 0 for every f ∈ Cc(R

d). By Proposition 8.6
in [2], every positive definite measure is Fourier transformable, and its Fourier transform is
a positive translation bounded measure.
Recall that the convolution μ ∗ ν between two measures μ and ν is defined by

μ ∗ ν( f ) :=
∫

f (x + y)dμ(x)dν(y);

Ifμ is translation bounded and ν is finite, then the convolutionμ∗ν is well-defined and is
also a translation bounded measure. Moreover, whenever μ̂ is a measure, one has the identity
μ̂ ∗ ν = μ̂̂ν (see Theorem 8.5 in [2]).
We say that a net of measures (μR)R>0 (resp. positive definite measures) converges vaguely
to a measure μ if for every test function f ∈ Cc(R

d) (resp. for f ∈ S(Rd))

lim
R→∞〈μR, f 〉 = 〈μ, f 〉,
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where we use the notation 〈μ, f 〉 := μ( f ).
We denote by μR the restriction of μ over the ball BR . The autocorrelation measure of μ is
defined by

γμ := lim
R→∞

μR ∗ μ̃R

V ol(BR)
,

whenever this limit exists. In this case, γμ is the limit of positive definite measures, thus
is positive definite, and then it is Fourier transformable and its Fourier transform is positive
definite and translation bounded. We also call γ̂μ the diffraction measure of μ.
If μ := ∑

p∈X μ(p)δp , where δp is the Dirac measure at p ∈ X , to deal with the diffraction
measure of μ we need to prove that, in the sense of vague convergence of measures,

lim
R→∞

1

V ol(BR)

∣

∣

∣

∣

∣

∣

∑

p∈X∩BR

μ(p)e−2π i〈p,y〉
∣

∣

∣

∣

∣

∣

2

dy = γ̂μ

In more abstract terms, we are required to prove the following:

lim
R→∞F

(

1

V ol(BR)
μR ∗ μ̃R

)

= F
(

lim
R→∞

1

V ol(BR)
μR ∗ μ̃R

)

, (3.1)

where F denotes the Fourier transform. This follows from Lemma 4.11.10 in [3], which
states that a net of positive definite measures converging weakly in the sense of measures
then their Fourier transforms converge weakly as well.

4 Proofs

The proofs of Theorems A,B and C rely on Lemma 4.1 and Proposition 4.2 below. Lemma
4.1 is a slightly variation of Lemma 2 in [24], with the very same proof. It claims that the
cardinality of points in X ∩ BR which escape from BR under random perturbations converges
in mean to 0 almost surely (the same happens for the cardinality of points in X \ BR with
perturbations lying inside to BR).

Lemma 4.1 Assume that X satisfies hypothesis (H.1) and that there is ε > 0 such that
supp∈X E(|ξp|d+ε) < ∞. Then almost surely

lim
R→∞

#{p ∈ X : |p| ≤ R, |p + ξp(ω)| > R}
V ol(BR)

= 0,

and

lim
R→∞

#{p ∈ X : |p| > R, |p + ξp(ω)| ≤ R}
V ol(BR)

= 0

Proposition 4.2 below roughly speaking says that, under the hypotheses of Theorems A,
B or C, the limit defining (2.1) holds when the indices in the sum from MR,ξ,ω are taken over
X ∩ BR instead of Xξ ∩ BR .

Proposition 4.2 Suppose that either the hypotheses of Theorem A, B or C hold. Then almost
surely for every λ ∈ R

d we have that

lim
R→∞

1

V ol(BR)

∑

p∈X∩BR

e−2π i〈p,λ〉 (e−2π i〈ξp,λ〉 − E

[

e−2π i〈ξ,λ〉]) = 0. (4.1)
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As in [24], the conclusions of Theorems A, B and C follow from Lemma 4.1 and Propo-
sition 4.2 since

sup
λ∈Rd

∣

∣

∣

∣

∣

∣

MR,ξ,ω(λ) − 1

V ol(BR)

∑

p∈X∩BR

e−2π i〈p+ξp,λ〉
∣

∣

∣

∣

∣

∣

≤ #{p ∈ X : |p| ≤ R, |p + ξp| > R}
V ol(BR)

+ #{p ∈ X : |p| > R, |p + ξp| ≤ R}
V ol(BR)

−→ 0,

where the last convergence holds almost surely by Lemma 4.1. Hence by the above limit
and by Proposition 4.2 there holds (2.1).

We now direct our attention to proving Proposition 4.2 for X satisfying the hypotheses
(H.1) and (H.2). To do this in the context of mathematical diffraction theory, we define

μλ
X :=

∑

p∈X

e−2π i〈p,λ〉δp (4.2)

and

μλ
ξ :=

∑

p∈X

(

e−2π i〈ξp,λ〉 − E[e−2π i〈ξ,λ〉]
)

δp. (4.3)

By extending the strategy of [24], we will aim to show that the diffraction measures of
μλ

X and μλ
ξ , denoted bŷγ λ

ξ := γ̂μλ
ξ
and̂γ λ

X := γ̂μλ
X
respectively, exist and are almost surely

mutually singular. In fact, we will prove in Lemma 4.3 that ̂γ λ
X is singular with respect to

Lebesgue measure and in Propositions 4.4, 4.7 and 4.16 below that̂γ λ
ξ is almost surely abso-

lutely continuous with respect to the Lebesgue measure, under the hypotheses of Theorems
A,B andC respectively. Thus the fact that̂γ λ

X ⊥ ̂γ λ
ξ is then used in combinationwith Theorem

A.4 in order to show (4.1).

Lemma 4.3 Let μλ
X be as in (4.2). Then the diffraction measure ̂γ λ

X = τλ(γ̂X ), where τλ is

the action of the translation by λ; in particular, under (H.2) ̂γ λ
X is singular with respect to

Lebesgue measure.

We just sketch the proof, since the methods are standard.

Proof Note that fλ(x) = e−2π i〈x,λ〉 is bounded and μX is translation-bounded, therefore the
measure μλ

X = fλμX is translation-bounded as well, thus an autocorrelation measure γ λ
X

exists (cf. [2, Proposition 9.1]). Now definition (1.1) can be applied for μ = μλ
X , and by a

change of variable in the formula (1.1) for γ̂μ, the first claim follows. Finally, if γ̂X is singular

with respect to the Lebesgue measure, the second claim follows directly since ̂γ λ
X is just a

translation of γ̂X by the vector λ ∈ R
d . ��

4.1 Independent Random Perturbations and Proof of Theorem A

Proposition 4.4 Let X and (ξp)p∈X be as in Theorem A and let μλ
ξ be as in (4.3). Then almost

surely, for all λ ∈ R
d there holds

γ λ
ξ = Var

[

e−2π i〈ξ,λ〉] dens(X)δ0. (4.4)

123
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Proof Observe that γ λ
ξ is defined in duality with Cc(R

d) only, as follows:

∀ f ∈ Cc(R
d)

∫

f (x) dγ λ
ξ (x) = lim

R→∞
1

V ol(BR)

∑

p,q∈X∩BR

f (p − q)μλ
ξ (p)μλ

ξ (q).

We first prove the almost-sure convergence at fixed λ. For this we write
∑

p,q∈X∩BR

f (p − q)μλ
ξ (p)μλ

ξ (q) = f (0)
∑

p∈X∩BR

|μλ
ξ (p)|2 +

∑

p,q∈X∩BR
p =q

f (p − q)μλ
ξ (p)μλ

ξ (q).

Recall that in (H.1) we assumed that dens(X) := limR→∞ #(X∩BR)
V ol(BR)

exists. Therefore, to
prove (4.4) it is sufficient to prove that almost surely for p0 in X (whose precise choice do
not matter, since the random variables ξp are assumed to be i.i.d.) and for every compact set
K ⊂ R

d :

lim
R→∞

1

#(X ∩ BR)

∑

p∈X∩BR

|μλ
ξ (p)|2 = E[|μλ

ξ (p0)|2], (4.5)

lim
R→∞

1

V ol(BR)

∑

p∈X∩BR

μλ
ξ (p)

∑

q∈X∩(K+p)
q =p

μλ
ξ (q) = 0. (4.6)

By applying (4.6) for K a sub-level set for Re( f )−, Re( f )+, Im( f )+, Im( f )− and by the
Cavalieri principle, it will imply that the sum against f (p − q), p = q as well would tend
to zero.

Proof of (4.5). The random variablesμλ
ξ (p), μλ

ξ (q) are deterministic (bounded) functions
of ξ , thus are also independent and identically distributed for p = q . We find (4.5) by a direct
application of the classical strong law of large numbers.
Proof of (4.6). For p0, p1 ∈ X to be distinct fixed points, consider the P-preserving maps
Tp,q : (�, P) → (�, P) induced by the interchange of p with p0 and of q with p1, for
p = q ∈ X and

˜ARφ(ω) := 1

V ol(BR)

∑

p∈X∩BR
q∈X∩(K+p)\{p}

φ(Tp,q(ω)). (4.7)

Our strategy of proof is to prove convergence of the ARφ as R → ∞, after which we can

take φ(ω) := μλ
ξ (p0)μλ

ξ (p1) to conclude the first equality in (4.6).

Now, we partition the averages from (4.7) over a collection of periodic subsets covering R
d ,

as follows. For each positive integer N , for r being the separation constant of X we set

C :=
[

− r

2
√

d
,

r

2
√

d

)d

,

and for i ∈ {1 . . . , N − 1}d we define the set Ai
N by

Ai
N :=

⋃

k∈ Nr√
d

Zd

(

C + i
r√
d

+ k

)

.

Note that the sets {Ai
N : i ∈ {0, . . . , N − 1}d} form a partition of R

d , and due to the fact
that r is the separation radius of X , for any p = q ∈ Ai

N ∩ X we have p−q > (N −1)r/
√

d.
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Assuming N is such that diam(K ) < (N −1)r/
√

d it follows q /∈ (K + p) \ {p}. Therefore,
for such N the random variables

⎛

⎝

∑

q∈X∩(K+p)\{p}
μλ

ξ (p)μλ
ξ (q)

⎞

⎠

p∈X∩Ai
N

are independent. Furthermore, we claim that under the above hypotheses on K , N , if φ is
bounded and E[φ] = 0 then the following holds: if we define

Ai
R,N φ(ω) := 1

V ol(BR)

∑

p∈X∩BR∩Ai
N

q∈X∩(K+p)\{p}

φ(Tp,q(ω)),

then Ai
R,N φ(ω) almost surely converges to 0, i.e

P

{

ω : lim
R→∞ Ai

R,N φ(ω) = 0

}

= 1. (4.8)

Indeed, we can take φ j to be independent copies of φ and write equivalently

Ai
R,N φ = ni

R,N

V ol(BR)
· 1

ni
R,N

ni
R,N
∑

j=1

φ j , ni
R,N := #

{

(p, q) ∈ X2 : p ∈ BR ∩ Ai
N

q − p ∈ K \ {0}
}

.

First note that since X is uniformly discrete and K is bounded, we have that

sup
R>0

ni
R,N

V ol(BR)
< ∞. (4.9)

Then for each subsequence Rk → ∞ such that ni
Rk ,N /V ol(BRk ) converges there are two

possibilities:

1. The sequence ni
Rk ,N /V ol(BRk ) → 0, in which case by triangle inequality and using the

fact that φ is bounded, we find (4.8).
2. We have 0 < limk→∞ ni

Rk ,N /V ol(BRk ), in particular ni
Rk ,N → ∞. By boundedness of

the sequence (φ j ) j and by the strong law of large numbers for non-necessarily identically

distributed randomvariables (see for instance [8,Corollary 1]),weget 1
ni

Rk ,N

∑ni
Rk ,N

j=1 φ j →
0. Using (4.9), we obtain (4.8) also in this case.

We note that μλ
ξ is bounded and that

E[μλ
ξ (p0)μλ

ξ (p1)] = E[μλ
ξ (p0)]E[μλ

ξ (p1)] = 0 for p0 = p1 ∈ X ,

using the fact that the random variables μλ
ξ (p0), μλ

ξ (q0) are i.i.d. and of zero mean. We thus
have (4.8) and by summing over i we obtain the desired limit (4.6).
In order to show that the almost sure convergence holds also contemporarily for all λ ∈ R

d ,
we proceed like in [24]: Firstly, we have that almost-sure convergence can be obtained at for
a countable dense subset of λ ∈ R

d . To extend the almost sure convergence to all λ, we prove
the almost-sure (uniform in λ) control of the λ-gradients

lim sup
R>0

sup
λ∈Rd

∣

∣

∣

∣

∣

∣

1

V ol(BR)

∑

p∈X∩BR

∑

q∈X∩(K+p)

∇
(

μλ
ξ (p)μλ

ξ (q)
)

∣

∣

∣

∣

∣

∣

. (4.10)
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For this we just apply triangular inequality, via the rough bounds
∣

∣∇μλ
ξ (p)

∣

∣ ≤ ∣

∣ξp
∣

∣+ E[|ξ |], ∣

∣μλ
ξ (p)

∣

∣ ≤ 2.

We thus find for φ := μλ
ξ (p0)μλ

ξ (q0):

lim sup
R→∞

sup
λ∈Rd

∣

∣∇˜ARφ(ω)
∣

∣ ≤ lim sup
R→∞

2

V ol(BR)

∑

p∈X∩BR
q∈X∩(K+p)\{p}

(|ξp(ω)| + |ξq(ω)| + 2E[|ξ |]).

By partitioning K if it is necessary, we can consider K of small diameter (which does not
change the conclusion of (4.6)), and then X ∩ (K + p) has cardinality at most 1 for all p.
Thus

∑

p∈X∩BR∩Ai
N

q∈X∩(K+p)\{p}

(|ξp(ω)| + |ξq(ω)| + 2E[|ξ |]) ≤ 2
∑

p∈X∩(BR+K )

(|ξp| + E[|ξ |]), (4.11)

and now we can label points {pn}n∈N = X ∩ Ai
N so that |pn | is increasing, and apply the

classical strong law of large numbers to the random variables |ξpn | to show that the right
hand side in (4.11) is almost surely bounded by CX E[|ξ |]V ol(BR). This gives that almost
surely (4.10) is bounded by CX E[|ξ |] in which CX is a packing constant, CX ≤ Cd

rd in which
Cd depends only on the dimension and r > 0 is the uniform separation radius of X .
Note that, if we fix a countable dense � ⊂ R

d , almost surely (4.5) and (4.6) hold for
every λ ∈ �. Thus, to get the almost sure convergence in (4.6) contemporarily also for all
λ ∈ R

d \ �, observe that if (λn)n∈N ⊂ � is a sequence such that λn −→ λ , then for

φλ = μλ
ξ (p0)μλ

ξ (q0) there holds
∣

∣˜ARφλω
∣

∣ ≤ ∣

∣˜ARφλω − ˜ARφλn ω
∣

∣+ ∣

∣˜ARφλn ω
∣

∣

≤ MK |λ − λn | + ∣

∣˜ARφλn ω
∣

∣ ,

where MK is the value of (4.10). By taking the limsup as R → ∞ and then n → ∞ in the
last inequality, we obtain that on the same event on which convergence holds for the λn we
also have ˜ARφλ −→ 0. Thus this convergence holds almost surely for every λ ∈ R

d . Finally,
an analogous argument together an application of the λ-continuity of μλ

ξ and the dominated
convergence theorem, we get the convergence in (4.5) almost surely for all λ. This concludes
the proof of Proposition 4.4. ��
Proof of Proposition 4.2 From Theorem A.4, Lemma 4.3 and Proposition 4.4 (resp. Proposi-
tions 4.7 and 4.16 below in the case of Theorems B and C), we have that for every positive
test function f ∈ S(Rd)

lim
R→∞

1

V ol(BR)

∣

∣

∣

∣

∣

∣

∣

∣

∑

p∈X∩BR

μλ
ξ (p)μλ

X (p)̂f (0) +
∑

p,q∈X∩BR
q =p

μλ
ξ (p)μλ

X (q)̂f (p − q)

∣

∣

∣

∣

∣

∣

∣

∣

= 0.

(4.12)

In particular, we can choose f = fε ∈ S(Rd) such that 1 < ̂fε(0) (in effect, what we use
below is that 0 < ̂fε(0) and ε/̂fε(0) → 0, for ε → 0) and

∀p ∈ X
∑

q∈X\{p}
|̂fε(p − q)| < ε.
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This is possible by the uniform discreteness of X , by taking f̂ε radially decreasing
and concentrated on B(0, r/2) where r is the separation constant of X in the sense that
∫

Rd\B(0,r/2) | f̂ε | < rdε
C . For example, this holds for f̂ε a Gaussian centered at 0 with small

enough variance. For such fε we can estimate
∑

q∈X\{p} | f̂ε(p −q)| by the abovementioned

integral, using the separation of X and the fact that f̂ε is radially decreasing.
Nowfix R0 such that the quantity in (4.12), is smaller than ε and that #(X∩BR)

V ol(BR)
< dens(X)+

1 for all R ≥ R0. By triangle inequality applied to (4.12), for such R we get

f̂ε(0)

V ol(BR)

∣

∣

∣

∣

∣

∣

∑

p∈X∩BR

μλ
ξ (p)μλ

X (p)

∣

∣

∣

∣

∣

∣

≤ ε + 2

V ol(BR)

∑

p,q∈X∩BR
q =p

|̂fε(p − q)| ≤ (2 dens(X) + 3) ε,

which follows by noting that supp =q∈X |μλ
ξ (p)μλ

X (q)| ≤ 2. By dividing by f̂ε(0), we
then take ε → 0 in the above inequality, and this completes the proof of Proposition 4.2 in
the case of i.i.d random perturbations.

4.2 Non-independent Random Perturbations and Proof of Theorem B

For extending Proposition 4.4 to the case of non-independent identically distributed ξp, p ∈
X , we need a mixing hypothesis. Several notions of mixing are available (see the survey [7]);
we perform our proofs based on the following ad-hoc strong mixing condition. For p ∈ X
and K ⊂ R

d compact, define the sub-σ -algebras

Fp := σ(ξp), Fp,K := σ(ξq : q ∈ (K + p) ∩ X \ {p}).
we say that the randomprocess (ξp)p∈X is compactly-mixing if for anyfixed compact K ⊂ R

d

there holds

lim
R→∞

1

V ol(BR)

∑

p∈X∩BR

sup |E[ f g] − E[ f ]E[g]| = 0. (4.13)

where for each p ∈ X the supremum is taken over the set of all functions f ∈ L∞(Fp, P),
g ∈ L∞(Fp,K , P) such that || f ||L∞ ≤ 1, ||g||L∞ ≤ 1. Observe that (4.13) is equivalent to

lim
R→∞

1

V ol(BR)

∑

p∈X∩BR

sup |P[A ∩ B] − P[A]P[B]| = 0,

where for each p ∈ X , the supremum is taken over the events A ∈ Fp and B ∈ Fp,K .
We first prove the following:

Lemma 4.5 For μλ
ξ as before and for λ ∈ R

d fixed, we have that almost surely

1

V ol(BR)

∑

p∈X∩BR

∑

q∈X∩(K+p)
q =p

[

μλ
ξ (p)μλ

ξ (q) − E[μλ
ξ (p)μλ

ξ (q)]
]

−→ 0. (4.14)

Proof To prove this, we apply Proposition A.1 to the real and imaginary parts of the variables

μλ
ξ (p)μλ

ξ (q) corresponding to elements p, q ∈ X such that p − q ∈ K . Firstly, by (H.1)
we may replace the factor 1/V ol(BR) by 1/#(X ∩ BR) in (4.14). Note that the sets of index
pairs figuring in the double sums in (4.14) form a sequence increasing in R, thus we can

find a labelling of Xi := μλ
ξ (p)μλ

ξ (q) so that the convergence in (4.14) follows from the
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convergence of a subsequence of the 1
n

∑n
n=1(Xk − E[Xk]). We apply Proposition A.1 to

obtain convergence of the full sequence. We verify the hypotheses of Proposition A.1 next,
for this case:

• The bounds Ck and the control of part 1 of the hypotheses of Proposition A.1 follow
because |μλ

ξ (p)| ≤ 2 almost surely.
• For the summability of variances along geometric series of hypothesis 2 of Proposi-

tion A.1, it suffices to prove Var(Skn )

kn
≤ C , which follows from the boundedness of

Var(μλ
ξ (p)μλ

ξ (q)) and Cov(μλ
ξ (p), μλ

ξ (q)). In fact, for Xi = μλ
ξ (p)μλ

ξ (q) as before, we
get:

Var(Skn ) =
kn
∑

i=1

Var(Xi ) + 2
kn
∑

i, j=1
i = j

Cov(Xi , X j ),

and by the definition of μλ
ξ (p) we have

Var(Xi ) ≤ E

[

∣

∣

∣μ
λ
ξ (p)μλ

ξ (q)

∣

∣

∣

2
]

≤ 16

|Cov(Xi , X j )| =
∣

∣

∣E

(

μλ
ξ (p)μλ

ξ (q)μλ
ξ (p′)μλ

ξ (q
′)
)

− E

[

μλ
ξ (p)μλ

ξ (q)
]

E

[

μλ
ξ (p′)μλ

ξ (q
′)
]∣

∣

∣

≤ 32.

Therefore, the limit (4.14) follows as a consequence of Proposition A.1 as claimed. ��
Lemma 4.6 If the random process (ξp)p∈X is compactly-mixing, then there holds

∑

p∈X∩BR

∑

q∈X∩(K+p)
q =p

E[μλ
ξ (p)μλ

ξ (q)] = o(Rd). (4.15)

Proof Indeed, this a direct consequence of the definition (4.13), observing that μλ
ξ (p) is

almost surely bounded for all λ. ��
Now (4.14) and (4.15) give the following:

Proposition 4.7 Assume that the (ξp)p∈X are identically distributed and compactly-mixing,
and let μλ

ξ be as in (4.3). Then almost surely, for all λ ∈ R
d there holds

γ λ
ξ = Var

[

e−2π i〈ξ,λ〉] dens(X)δ0.

To obtain Proposition 4.2 under the above hypotheses, we now note that the upper bound of
(4.10) can also be extended under our assumed bound on the covariances of the ξp . Indeed all
the proof up to (4.11) can be repeated verbatim, and for the bound of the last term in (4.11),
we may now apply Proposition A.2 to the |ξp| after to enumerate the points in X ∩ BR and
by using (H.1), which gives a law of strong numbers under our assumed condition (2.2) on
the covariances of the |ξp|. This concludes the proof of Theorem B.

Example 4.8 [A recipe to produce compactly-mixing random processes in X ] Let (Rk)k≥1

be a sequence of positive real numbers such that Rk, Rk/Rk−1 −→ ∞, and denote �k :=
BRk \ BRk−1 for k ≥ 2. Consider a process of identically distributed random vectors (ξp)p∈X

such that the following hypotheses on correlations hold.
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1. For every p ∈ X ∩ BR1 , the random vector ξp has no correlation with the ξp′ , p′ ∈ X \{p}.
2. For every even k > 1, the ξp, p ∈ X ∩ �k are not correlated to the remaining ξp′ , p′ ∈

X \ �k .
3. For every odd k > 1 and for for p = p′ ∈ X ∩ �k , ξp and ξp′ are uncorrelated, and for

every p ∈ X ∩ �k , there exists at least one q ∈ X ∩ �k−1 such that ξp has nontrivial
correlation to the value of ξq .

It is not hard to check that this procedure produces a random process satisfying (4.13), since
correlations at distance closer than diam(K ) do not occur.

As a further remark, which allows to understand the role of the hypothesis that the ξp are
compactly-mixing, which is used here in order to obtain (4.15). The following result makes it
explicit, that the outcome of this is to obtain a version of (4.4), but in expectation rather than
almost-surely. As a consequence, we could also require as a hypothesis the control stated
(4.16) below, rather than the compact-mixing hypothesis.

Lemma 4.9 If ξp are identically distributed and if X verifies (H1) then the fact that (4.15)
holds for all λ ∈ R

d is equivalent to the following:

∀λ ∈ R
d , E(γ λ

ξ ) = Var
[

e−2π i〈ξ,λ〉] dens(X)δ0. (4.16)

Proof Indeed, we have

lim
R→∞

1

V ol(BR)

∑

p∈X∩BR

E
[|μλ

ξ (p)|2] = dens(X) Var(μλ
ξ ),

thus (4.15) is equivalent to

∑

p∈X∩BR

∑

q∈X∩(K+p)

E

[

μλ
ξ (p)μλ

ξ (q)
]

= dens(X) V ol(BR)Var(μλ
ξ ) + o(Rd). (4.17)

The fact that (4.17) is valid for all compact K is equivalent to the convergence of the corre-
sponding (V ol(BR))−1-rescaled sum tested against all test functions f , which is the weak
formulation of (4.16). ��

4.3 Extension of Theorems A, B for X Being the Asymptotically Affine Deformation
of a Lattice

In this section we extend Theorems A, B by weakening the independence requirements on
the random perturbations ξp . To achieve this we limit ourselves to a smaller class of sets X .
A useful tool to replace the independence of the ξp , p ∈ X , is the notion of ergodicity of
the process (ξp)p∈X , labelled by the set X . To make sense of this notion, commonly X is
required to have more structure, e.g a transitive group action on X is required, and classically
X itself is assumed to be a lattice. Therefore, firstly we study the case of X being a lattice:
in this case we recover the main results in [24]. Secondly, we consider the case when X is
almost-affine, meaning that though X lacks a group structure (the sum of elements of X is
not generally in X ), it is a small perturbation of a subgroup of R

d . In this case the results still
depend strongly on a group structure. For a discussion of further weakenings on the structure
of X , see Sect. 5.1.
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4.3.1 Lattice Case

As was pointed out by Yakir in [24], in the case of X being a lattice, the condition that the
process (ξp)p∈X is ergodic is sufficient for (5.1) to converge as R → ∞.

Lemma 4.10 (Lattice case) If X is a lattice and (ξp)p∈X is stationary and ergodicwith respect
to lattice shifts, then almost surely

γ λ
ξ =

∑

k∈X

E

[

μλ
ξ (0)μ

λ
ξ (k)

]

dens(X)δk . (4.18)

Proof By stationarity and using Birkhoff’s theorem for the natural shifts on X , we ensure the
existence of the limit defining γ λ

ξ (k) as in (5.1). Ergodicity of the process (ξp)p∈X yields that

the above limit is almost surely constant and thus almost surely converges toE[μλ
ξ (0)μ

λ
ξ (k)].

��
In general a measure like γ λ

ξ as given in (4.18) may have Fourier transform̂γ λ
ξ with nonzero

atomic part (i.e. the initial
∑

p∈X μλ
ξ (p)δp may have pure-point spectrum). If however we

strengthen the ergodicity condition on the map (ξp)p∈X to a weak mixing condition, this is
precluded. We require the following weak mixing condition. Let τk : X → X be the transla-
tion by k ∈ X . Associated to each τk we define a measurable P-preserving transformation Tk ,
which is induced by interchanging the X -coordinates (ξp)p∈X according to τk . The process
(ξp)p∈X is weakly mixing if for all f , g ∈ L2(P) there holds

lim
R→∞

1

V ol(BR)

∑

k∈X∩BR

∣

∣

∣E[ f ◦ Tk g] − E[ f ]E[g]
∣

∣

∣ = 0. (4.19)

Note that the compactly-mixing condition introduced earlier in (4.13) is not directly com-
parable to (4.19), and we do not pursue an in-depth comparison in this work.
We have the following

Lemma 4.11 (Basic lattice case) If X is a lattice and (ξp)p∈X is stationary and weakly mixing

then almost surely for every λ ∈ R
d the random diffraction measure ̂γ λ

ξ has no atoms.

Proof Recall Strungaru’s criterion [22, Proposition 4.1] (here formulated in the setting of
formula (4.18) which we know to hold for γ λ

ξ ):

lim
R→∞

1

V ol(BR)

∑

k∈X∩BR

∣

∣

∣E[μλ
ξ (0)μ

λ
ξ (k)]

∣

∣

∣ = 0 ⇔ ̂γ λ
ξ has no atoms. (4.20)

We note that (4.20) follows from (4.19), if we apply it for f (ω) = g(ω) = e2π i〈λ,ξ0(ω)〉,
since by stationarity ξk = ξ0 ◦ Tk and

E

[

μλ
ξ (0)μ

λ
ξ (k)

]

= E

[

e−2π i〈ξ0−ξk ,λ〉]− E

[

e−2π i〈ξ0,λ〉]
E
[

e−2π i〈ξk ,λ〉].

��

4.3.2 Asymptotically Affine Perturbations of a Lattice

Now assume that X = ψ(L) where L is a lattice, and that ξp are identically distributed and
satisfy E(|ξp|d+ε) < ∞ as before. Denote μ′(x) := μλ

ξ (ψ(x)) for x ∈ L , and assume that
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μ′(x) are stationary and ergodic under the natural shifts of x ∈ L . We have the following
asymptotic equalities, valid in the limit as R → ∞, with error estimates as in Lemma 4.1:

1

V ol(BR)

∑

p,q∈X∩BR

g(p − q)μλ
ξ (p)μλ

ξ (q)

� 1

V ol(BR)

∑

x,y∈L∩BR

g(ψ(x) − ψ(y))μ′(x)μ′(y)

�
∑

k∈L∩supp(g)

1

V ol(BR)

∑

x∈L∩BR

g(ψ(x) − ψ(x + k))μ′(x)μ′(x + k) (4.21)

We find it natural based on (4.21) to introduce the following notion. We say that ψ has
asymptotically affine if one of the following equivalent conditions holds:

1. There exists F : L → R such that for any continuous compactly supported g and for any
k ∈ L

lim
R→∞

1

V ol(BR)

∑

x∈L∩BR

g(ψ(x) − ψ(x + k)) = g(F(k)). (4.22)

2. For all k ∈ L there holds

lim
x∈L|x |→∞

(ψ(x) − ψ(x + k)) = F(k). (4.23)

3. The limit (4.23) holds for a linear function F .

To see that 1 ⇒ 2 above, it suffices to test (4.22) over a sequence of gn that approximate
a Dirac mass at F(k). Then 2 ⇒ 3 follows by observing that if the limit in (4.23) exists for
k ∈ {k1, k2} then

F(k1) + F(k2) = lim
x∈L|x |→∞

(ψ(x) − ψ(x + k1)) + lim
x∈L|x |→∞

(ψ(x + k1) − ψ(x + k1 + k2))

= F(k1 + k2),

and finally, 3 ⇒ 1 is a direct verification.
Now if we assume that ψ satisfies (4.22) and we insert this limit into (4.21), using the fact
that μ′(x) are bounded and that supp(g) ∩ L is finite, we directly find

(4.21) �
∑

k∈L∩supp(g)

1

V ol(BR)

∑

x∈L∩BR

g(F(k))μ′(x)μ′(x + k)

�
∑

k∈L∩supp(g)

E[μλ
ξ (0)μ

λ
ξ (k)]dens(L)g(F(k)), (4.24)

where in the second step we applied Lemma 4.10. We thus have from (4.21) directly the
following result, which extends Lemmas 4.10 and 4.11:

Proposition 4.12 (asymptotically affine perturbations of a lattice) Assume that X = ψ(L)

where L is a lattice and ψ is asymptotically affine with limit linear part F. Assume that the
random process ξψ(x), x ∈ L is stationary and ergodic under shifts of L, and that the ξψ(x)

are identically distributed. Then the limit defining γ λ
ξ as in (5.1) exists and we have

γ λ
ξ =

∑

k∈L

E

[

μλ
ξ (0)μ

λ
ξ (k)

]

dens(L)δF(k). (4.25)
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Furthermore, if ξψ(x), x ∈ L is weakly-mixing under shifts of L, then ̂γ λ
ξ has no atoms.

The above result directly allows to obtain Proposition 4.2, which as before, together with
Lemma 4.1 gives the following result:

Theorem D For X = ψ(L) ⊂ R
d as in Proposition 4.12, assume that the random process

ξψ(x), x ∈ L is stationary and weakly mixing under shifts of L, that the ξp’s are identically
distributed and that there exists a positive number ε such that E(|ξ |d+ε) < ∞. Then, almost
surely for every λ ∈ R

d , in the sense of vague convergence of measures, the same limit (2.1)
as in Theorem A holds.

4.4 Stationary Random Perturbations and Proof of Theorem C

4.4.1 Stationary RandomMeasures

The proof of Theorem C combines the recovery problem setting in which Xξ = {p + ξ(p) :
p ∈ X} as before, with the study of [11] who established a diffraction theory for stationary
point processes. The setting of point processes is not sufficient for our setting, therefore we
first generalize Gouéré’s work to locally finite random measures.
We start with a series of definitions and properties that are classical for point processes, see
e.g. [18]. The case of point processes is the special case in which the random measures μ

below are the empirical measures of random sets X ∈ R
d , i.e. μ = ∑

x∈X δx . Proofs valid
for this special case directly generalize to our setting and are well-known, therefore we only
sketch the proofs.
For any f ∈ Cc(R

d) define the functions N f : M∞ → C by N f (μ) := μ( f ) = 〈μ, f 〉.
Let A be the σ -algebra on M∞ generated by the N f ’s. A random measure is a measurable
function μ : � → M∞ defined on a probability space (�,F, P) with values in (M∞,A).
We say that a random measure is integrable if the functions N f are integrable. The random
measure is called stationary if for every x1, . . . , xk ∈ R

d and every F1, . . . , Fk ∈ A,

P{ω ∈ � : μ ∗ δx1+t ∈ F1, . . . , μ ∗ δxk+t ∈ Fk}
= P{ω ∈ � : μ ∗ δx1 ∈ F1, . . . , μ ∗ δxk ∈ Fk}

holds for every t ∈ R
d .

Let μ be a stationary and integrable random measure. The Palm measure of μ is the measure
˜P on (M∞,A) defined by

˜P(F) := 1

V ol(B1)
· E

⎛

⎝

∑

x∈supp(μ)∩B1

1F (μ ∗ δ−x )

⎞

⎠ , F ∈ A.

The intensity I (˜P) of the Palm measure ˜P is the functional on Cc(R
d) defined by

I (˜P)( f ) :=
∫

M∞
μ( f )d˜P(μ).

Lemma 4.13 (Cf. [18, Prop. 2.24]) Let μ be a stationary and integrable random measure.
The intensity I (˜P) of its Palm measure is a translation-bounded (and therefore tempered)
measure.
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Let ψ ∈ Cc(R
d) be a non-negative function such that supp(ψ) = BM ,

∫

ψ(x)dx = 1,
and which will be kept fixed from now on. Let M∞

X be the set of measures μ ∈ M∞ for
which there is t ∈ R

d such that supp(μ) = X + t . For every f ∈ Cc(R
d), define the function

H f : M∞
X → C by

H f (ν) :=
∑

x,y∈supp(ν)

ψ(x)ν(x)ν(−y) f (x − y).

The next lemma expresses the autocorrelation of a deterministic measure ν ∈ M∞
X as a

limit of orbit averages defined on M∞
X . This result extends [11, Lem. 2.13] to general locally

finite atomic measures.

Lemma 4.14 Let γ be a locally finite measure on R
d . Then γ is the autocorrelation γν of a

(deterministic) measure ν ∈ M∞
X if and only if for all f ∈ Cc(R

d),

lim
R→∞

1

V ol(BR)

∫

BR

H f (ν ∗ δ−t )dt = γ ( f ).

Proof As γ is translation bounded, it is sufficient to show that for all f ∈ Cc(R
d) (see

Lemma 1.2 in [20])

1

V ol(BR)

∣

∣

∣

∣

∣

∣

∣

∣

∫

BR

H f (ν ∗ δ−x )dt −
∑

x∈supp(ν)∩BR
y∈supp(ν)

ν(x)ν(−y) f (x − y)

∣

∣

∣

∣

∣

∣

∣

∣

−→ 0. (4.26)

A simple computation shows that

H f (ν ∗ δ−t ) =
∑

x,y∈supp(ν)

ψ(x − t)ν(x)ν(−y) f (x − y).

On the other hand, for all R ≥ M we have the following properties, since suppψ ⊂ BM

• If x /∈ BR+M , then
∫

BR
ψ(x − t)dt = 0, and

• if x ∈ BR−M , then
∫

BR
ψ(x − t)dt = 1.

Hence, the left-hand side of (4.26) is equal to

1

V ol(BR)

∣

∣

∣

∣

∣

∣

∣

∣

∑

x∈supp(ν)∩BR+M \BR−M
y∈supp(ν)

f (x − y)ν(x)ν(−y)

∫

BR

ψ(x − t)dt

−
∑

x∈supp(ν)∩BR\BR−M
y∈supp(ν)

ν(x)ν(−y) f (x − y)

∣

∣

∣

∣

∣

∣

∣

∣

.

By triangle inequality, this last expression is bounded by

|| f ||∞Cν

V ol(BR)

⎛

⎝

∑

x∈supp(ν)∩BR+M \BR−M

#(supp(ν) ∩ (supp( f ) + x))

+
∑

x∈supp(ν)∩BR\BR−M

#(supp(ν) ∩ (supp( f ) + x))

⎞

⎠ ,

(4.27)
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where |ν(x)ν(−y)| ≤ Cν is a positive constant only depending on ν. Moreover since ν ∈
M∞

X , f ∈ Cc(R
d) and by the discreteness of X , it follows that #(supp(ν)∩ (supp( f )+ x))

can be bounded by a positive packing constant C f only depending on diam(supp( f )) and
on the separation constant of X . Thus, by writting D f = C f || f ||∞, we have that (4.27) can
be bounded from above by

D f Cν

V ol(BR)
(#(supp(ν) ∩ BR+M \ BR−M ) + #(supp(ν) ∩ BR \ BR−M )). (4.28)

Note that (H.1) implies that for each M > 0 and for each p ∈ R
d there holds

lim
R→∞

# (X ∩ BR(p) \ BR−M (p))

V ol(BR)
= 0. (4.29)

The proof of (4.29) is standard: we compare #(X ∩ BR(p))with the values #(X ∩ BR±|p|)
and compare the latter with dens(X)V ol(BR±|p|) via (H.1); then we do the same with R
replaced by R − M . Due to the precise power law growth V ol(BR) = C Rd and to (H.1), all
the error terms are o(Rd) or O(Rd−1), which implies (4.29).
Since ν ∈ M∞

X , from property (4.29) of X we have that (4.28) converges to zero when R
goes to infinity. Therefore the limit in (4.26) holds, as desired. ��

The following result was also proved in [11] for point processes, andwe note that it extends
to random measures, using Lemma 2.13 therein, and it directly extends via Lemma 4.14.

Proposition 4.15 (Cf. [11, Theorem 4.3]) Let μ be a stationary and integrable random mea-
sure with values in M∞

X . Then μ has almost surely a (random) autocorrelation γμ such
that

E(γμ) = I (˜P) and E(γ̂μ) = ̂I (˜P).

Moreover, if μ is ergodic, γμ = I (˜P) almost surely. In particular, I (˜P) is positive definite.

We now proceed with the same strategy as in Sect. 4.3.1 to apply Strungaru’s criterion,
and then conclude as in the beginning of Sect. 4.

Proposition 4.16 Assume the random perturbation Xξ is stationary and weakly-mixing. Then

almost surely, for every λ ∈ R
d the diffraction measure ̂γ λ

ξ has no atoms.

Proof This follows directly from Proposition 4.15 since the stationarity and the weak-mixing
condition of Xξ implies thatμλ

ξ is a stationary and weakly-mixing randommeasure for every

λ ∈ R
d . The weak-mixing condition of μλ

ξ and Proposition 4.15 implies by expanding the
definition like in Lemma 4.11 that almost surely

lim
R→∞

1

V ol(BR)
|γ λ

ξ (BR)| = 0,

and therefore by Strungaru’s criterion (see [22, Proposition 4.1]), we get that̂γ λ
ξ is almost

surely continuous. Finally, the proof that this property holds for every λ ∈ R
d follows along

the same lines as the proof of Proposition 4.4, since for bounded f we have a control of the
λ-gradients of

1

V ol(BR)

∫

BR

H f (μ
λ
ξ ∗ δ−t )dt

as in (4.10). This finishes the proof of Proposition 4.16 and of Theorem C. ��
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4.4.2 Some Examples of Stationary Random Perturbations

In this section we provide a class of examples of random perturbations of irreducible cut-
and-project sets verifying the hypotheses of Theorem C.
Let L ⊂ R

n be a lattice and denote by DL its fundamental domain. Write R
n = Vphys ⊕ Vint,

where Vphys
∼= R

d and Vint ∼= R
k . We denote by πphys and πint the corresponding projections

over R
d and R

k respectively. Fix W ⊂ Vint (called in the literature the window). The cut-
and-project set X(L, W ) ⊂ Vphys is defined by

X = X(L, W ) := πphys(L ∩ π−1
int (W )). (4.30)

We say that X is irreducible if the following conditions hold:

(CP1) πint(L) is dense in Vint.
(CP2) πphys|L is injective.
(CP3) W is a bounded Borel measurable set with non-empty interior and such that its bound-

ary has zero Lebesgue measure in Vint.

It is known (see for instance [2, Theorem 9.4]) that under the conditions (CP1)-(CP3) the
cut-and-project set (4.30) is a quasi-periodic set where (H.1) and (H.2) are satisfied automat-
ically. Consider an L-stationary random process (ξ ′

q)q∈L of identically distributed random
vectors defined on (�,F, P) with ξ ′

q ∈ Vphys, and let η be a random vector independent of
(ξ ′

q)q∈L , which is distributed uniformly over DL . Then Lstat
ξ := {q + ξ ′

q + η : q ∈ L} is
R

n-stationary.
Set Xξ := πphys(Lstat

ξ ∩ (Vphys × W )). Note that identifying Vphys = R
d , automatically Xξ

is R
d -stationary, since so is Lstat

ξ ∩ (Vphys × W ), as is direct to check. Also note that

Lstat
ξ ∩ (Vphys × W ) = {q + ξ ′

q + η : q ∈ L ∩ (Vphys × W − η)}.
Therefore, in order to have Xξ = {p + ξp : p ∈ X} as required for Theorem C, we may set

ξp := ξ ′
ψη◦π−1

phys(p)
+ πphys(η),

in which for each η ∈ DL the map ψη : L ∩ (Vphys × W ) → L ∩ (Vphys × W − η)

is a fixed bijection of bounded distortion. This is possible by assuming that X is up to
bounded displacement (BD) equivalent to a lattice, which means that there is a bijection
φ : X → L ⊂ R

d such that

sup
x∈X

|φ(x) − x | < ∞.

In fact, if φ : X → L is a BD-equivalence from X to a lattice L ⊂ R
d , the conditions

(CP1) and (CP3) imply that for every x ∈ R
n , there is a BD-equivalence φx : πphys(L ∩

(Vphys × W − x)) → L (see [12, Proposition 2.6]). Hence by using (CP2) we can establish
the desired bounded distortion bijection ψη := π−1

phys ◦φ−1
η ◦φ ◦πphys : L ∩ (Vphys × W ) →

L ∩ (Vphys × W − η).
Ifwe assume thatE(|ξ ′|d+ε) < ∞ for somepositive number ε, thenE|ξ |d+ε < ∞.Moreover,
if (ξ ′

q)q∈L is weakly-mixing (with respect to the natural shift in the lattice L), then the random

perturbation Xξ is weakly-mixing with respect to the R
d -translations. Thus Xξ fulfils the

hypotheses of Theorem C and therefore the irreducible cut-and-project set X is almost surely
recoverable from Xξ .

123



39 Page 20 of 26 M. Petrache, R. Viera

5 Discussion and Open Problems

In this section we discuss the relations of our results with other notions, and we highlight
two possible directions of future research.

5.1 “Quasi-stationarity” for the Recovery of General Meyer Sets

As already described in Sect. 4.3, recovery Theorems A, B hold also under weaker notions
than the independence of the ξp , and a good weakening is the hypothesis of stationarity and
ergodicity. The drawback of this direction is that X needs to have a group structure, at least
asymptotically, in order to define stationarity.
It seems natural to look for a definition of stationarity of the (ξp)p∈X that together with an
associated notion of ergodicity, allows to obtain recovery Theorems A, B for more general
quasi-periodic X , beyond asymptotically affine deformations of lattices. More precisely, if
X is quasi-periodic then we may look for notions of invariance of the (ξp)p∈X in terms of
the geometry of the almost-periods of X , which we could refer to as "quasi-stationarity"
(however it seems to us that this term is already in use with a different meaning). Perhaps
this can allow a more explicit recovery result for "quasi-stationary" (ξp)p∈X , as opposed to
Theorem C, in which stationarity under the R

d -action is imposed on the perturbed Xξ , and
the relation between the geometry of X and that of the (ξp)p∈X is not explicitly quantified.
A natural setup where to start is that X satisfies the hypotheses (H.1) and (H.2), and that X
is a Meyer set, which means that X is relatively dense and X − X := {p − q : p, q ∈ X} is
uniformly discrete.

If X − X is uniformly discrete then a first simplification occurs, since the limit defining
γ λ
ξ (k) is trivially zero for k /∈ X − X . The difficulty is that, in general, for k ∈ X − X one

can not ensure the existence and good control of the limits

γ λ
ξ (k) = lim

R→∞
1

V ol(BR)

∑

p∈X∩BR
p−k∈X

μλ
ξ (p)μλ

ξ (p − k). (5.1)

In this case, the main open question is to find explicit further conditions that we need to
impose on X and on the ξp in order to achieve the result of Proposition 4.4.

5.2 Recovering the Structure Factor and Almost-Sure Recovery of the Diffraction
Measure

In the setting of Theorem A, if the characteristic function ϕ(λ) := E[e−2π i〈ξ,λ〉] vanishes
at some points of the support of ̂δX , this means that this part of the spectrum of X is not
recoverable, a phenomenon called cloaking of X by the random perturbations ξp .
In [16] the authors present a result analogous to our theorems, but in expectation form,
formulated in terms of structure factors. In our notation, the structure factor of a random
discrete set Xξ = {p + ξp : p ∈ X} is the function SXξ : R

d → [0,+∞] formally given by

SXξ (λ) := lim
R→∞ E

⎡

⎢

⎣

1

#(X ∩ BR)

∣

∣

∣

∣

∣

∣

∑

p∈X∩BR

e−2π i〈p+ξp,λ〉
∣

∣

∣

∣

∣

∣

2
⎤

⎥

⎦ = E[γ̂Xξ (λ)]
dens(X)

, (5.2)
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where γXξ (λ) is the autocorrelation of Xξ . Note that the above limit may not exist, or may
be defined only in a weak (distributional) sense, if Xξ is not regular enough.
The above quantity ismost commonly studied for the case that X is not deterministic, but has a
well-defined density, and dens(X) = dens(Xξ ) = γ̂Xξ (0) almost surely. Often X is assumed
to be a stationary spatial point process, the simplest example being a "stationarized lattice",
i.e. X is lattice translated by a random vector τ uniformly distributed over its fundamental
domain. In this case, if the ξp are assumed to be i.i.d. and independent of (the random
process) X , then as done in [16, App. A] one can rewrite the square modulus from (5.2) as
a double sum, and then split the expectation as a product of expectations expressed in terms
of X , ξp, p ∈ X . Thus we get directly (where the −1 terms come from the diagonal term in
the double sums obtained expanding the square in (5.2))

SXξ (λ) − 1 =
∣

∣

∣E

[

e−2π i〈ξ,λ〉]
∣

∣

∣

2
(SX (λ) − 1) . (5.3)

Our Theorems A, B, C give conditions for the almost-sure recovery of ̂δX , the Fourier
transform of the empirical measure of the set X . The same strategy does not directly give
the almost-sure recovery of the diffraction measure of X , which would be a strengthening
of (5.3), and it would be interesting to continue our study in that direction. More precisely,
this requires to establish conditions on X , (ξp)p∈X such that a limit like the below is ensured
almost surely for all λ ∈ R

d :

lim
R→∞

1

|BR |
∑

p,q∈X∩BR

e−2π i〈p−q,λ〉
(

e−2π i〈ξp−ξq ,λ〉 −
∣

∣

∣E[e−2π i〈ξ,λ〉]
∣

∣

∣

2
)

= 0.

If we prove the above, then this would substitute Proposition 4.2, and would imply by the
same reasoning as in Sect. 4 that almost surely for all λ

γ̂Xξ (λ) − dens(X) =
∣

∣

∣E

[

e−2π i〈ξ,λ〉]
∣

∣

∣

2
(γ̂X (λ) − dens(X)) , (5.4)

which is the almost-sure version of (5.3) and which already appears in [13] under different
hypotheses over the set X . In fact, in [13] it is assumed that X is an uniformly discrete set
with asymptotic density and satisfying an ergodicity condition. Hof’s ergodicity hypotheses
are not directly comparable to our (H1), (H2). We leave to future work the elucidation of
implications between hypotheses of ergodicity of δX like those in [13] and hypotheses on γ̂X

such as (H2).

Acknowledgements M. P. was sponsored by the Chilean Fondecyt Regular grant number 1210462 entitled
“Rigidity, stability and uniformity for large point configurations”, and R. V. was sponsored by the Chilean
Fondecyt Postdoctoral grant number 3210109 entitled “Geometric and Analytical aspects of Discrete Struc-
tures”.

A Auxiliary Results

A.1 Strong Law of Large Numbers

Proposition A.1 Let (Xn)n∈N be a sequence of real-valued random variables such that almost
surely Xn ≥ Cn for suitable constants Cn ∈ R. Let Sn := ∑n

k=1(Xk − Ck) and assume that
the following hold.

1. supn∈N

1
n E(Sn) < ∞.
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2. For any α > 1 if kn := [αn], where the brackets [·] denote the integer part of a real
number, there holds

∞
∑

n=1

Var(Skn )

k2n
< ∞.

Then almost surely

1

n

n
∑

k=1

(Xk − E[Xk]) → 0. (A.1)

Proof Without loss of generality assume that Cn = 0 for every n ∈ N. For any positive
number ε, Chebyshev’s inequality yields

∑

n≥1

P

(∣

∣

∣

∣

Skn − E(Skn )

kn

∣

∣

∣

∣

> ε

)

≤ 1

ε2

∑

n≥1

Var(Skn )

k2n
< ∞.

The rest of the proof follows the same steps of [8, Thm. 1] or [9]. ��
Proposition A.2 Let (Xn)n≥1 be a sequence of identically distributed positive random vari-
ables, and denote Sn = ∑n

i=1 Xi . Moreover assume that E[X1] < ∞ and for Yi :=
Xi1{Xi ≤i} suppose that

∑

n≥1

1

n2

n
∑

i, j=1
i = j

|Cov(Yi , Y j )| < ∞.

Then Sn/n converges almost surely to E[X1].
Proof Define S∗

n := ∑n
i=1 Yi . For kn as in Proposition A.1 we have that

∑

n≥1

P

(∣

∣

∣

∣

S∗
kn

− E(S∗
kn

)

kn

∣

∣

∣

∣

> ε

)

≤ 1

ε2

∑

n≥1

Var(S∗
kn

)

k2n

= 1

ε2

∑

n≥1

1

k2n

⎛

⎜

⎜

⎝

kn
∑

i=1

Var(Yi ) +
kn
∑

i, j=1
i = j

Cov(Yi , Y j )

⎞

⎟

⎟

⎠

.

By the hypotheses on (Xn)n≥1, we have that

∑

n≥1

1

k2n

kn
∑

i, j=1
i = j

|Cov(Yi , Y j )| < ∞, (A.2)

which implies the convergence of the second sum in (A.2). The rest of the proof follows the
very same lines than Theorem 1 in [9]. ��
Remark A.3 The hypotheses of Proposition A.2 are satisfied if (Xn)n≥1 are positive, iden-
tically distributed with correlation |Cov(Yi , Y j )| ≤ β |i− j | for some 0 < β < 1, and if
E[X1] < ∞.
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A.2 Hellinger Density of DiffractionMeasures Bounds

Let γ, γ ′ be locally finitemeasures.We define the localizedHellinger density ρ(γ, γ ′), which
is a locally finite positive measure, by requiring, for any locally finite measure σ over R

d

such that γ � σ and γ ′ � σ ,

∀ f ∈ S(Rd), 〈ρ(γ, γ ′), f 〉 :=
〈

(

dγ

dσ

)1/2 (dγ ′

dσ

)1/2

dσ, f

〉

. (A.3)

Note that if γ, γ ′ are mutually singular, then directly from the definition it follows that
ρ(γ, γ ′) = 0.
We claim that the following holds

Theorem A.4 If μ, ν are translation-bounded, Fourier-transformable measures over R
d and

γ̂μ, γ̂ν are their diffraction measures, then

∀ f ∈ Cc(R
d), f ≥ 0 lim sup

R→∞

∣

∣

∣

∣

1

V ol(BR)

∫∫

BR×BR

̂f (p − q) dμ(p) dν(q)

∣

∣

∣

∣

≤ 〈ρ(γ̂μ, γ̂ν), f 〉. (A.4)

For μ, ν � ∑

p∈X δp (i.e. μ, ν atomic with atoms ⊂ X):

∀ f ∈ S(Rd) lim sup
R→∞

∣

∣

∣

∣

∣

∣

1

V ol(BR)

∑

p,q∈X∩BR

μ(p)ν(p)̂f (p − q)

∣

∣

∣

∣

∣

∣

≤ 〈ρ(γ̂μ, γ̂ν), | f |〉.(A.5)

As we prove before, Proposition 4.2 follows directly from theorem A.4, applied to μλ
X , μλ

ξ ,

once we know that thêγ λ
X is purely atomic and that̂γ λ

ξ is absolutely continuous with respect
to Lebesgue measure.
We use the below lemma which follows like Theorem B from Yakir:

Lemma A.5 Let γR, γ ′
R be two families of positive measures over R

d such that γR → γ and
γ ′

R → γ ′ vaguely as R → ∞. Then

∀ f ∈ S(Rd), f ≥ 0, lim sup
R→∞

〈ρ(γR, γ ′
R), f 〉 ≤ 〈ρ(γ, γ ′), f 〉.

Proof Consider the locally finite measure σR := γR + γ ′
R . It is direct that γR and γ ′

R are
absolutely continuous with respect to σR . Thus, from the Cauchy-Schwartz inequality we
get

〈ρ(γR, γ ′
R), f 〉 =

∫

f (x)

(

dγR

dσR

)1/2 (dγ ′
R

dσR

)1/2

dσR

≤
(∫

f (x)

(

dγR

dσR

)

dσR

)1/2 (∫

f (x)

(

dγ ′
R

dσR

)

dσR

)1/2

=
(∫

f (x)dγR

)1/2 (∫

f (x)dγ ′
R

)1/2

(A.6)

On the other hand, define:

A :=
{

x ∈ R
d : dγ

dσ
(x) = 0

}

, B :=
{

x ∈ R
d : dγ ′

dσ
(x) = 0

}

\ A,
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and for ε > 0 we consider

Vj (ε) :=
{

x ∈ R
d : (1 + ε) j−1 dγ

dσ
(x) ≤ dγ ′

dσ
(x) ≤ (1 + ε) j dγ

dσ
(x)

}

\ (A ∪ B).

and f j := f 1Vj . Note that the family

{A, B, {Vj (ε)} j∈Z}
determines a partition of R

d . From (A.6) and the definition of vague convergence we have
that for each f j

lim sup
R→∞

〈ρ(γR , γ ′
R), f j 〉 ≤

(∫

f j (x)dγ

)1/2 (∫

f j (x)dγ ′
)1/2

=
(

∫

Vj

f (x)
dγ

dσ
dσ

)1/2 (∫

Vj

f (x)
dγ ′

dσ
dσ

)1/2

≤
(

∫

Vj

(1 + ε)−( j−1)/2 f (x)

(

dγ

dσ

)1/2 ( dγ ′

dσ

)1/2

dσ

)1/2 (∫

Vj

(1 + ε)
j
2 f (x)

(

dγ ′

dσ

)1/2 ( dγ

dσ

)1/2

dσ

)1/2

= (1 + ε)1/4
∫

f j (x)

(

dγ

dσ

)1/2 ( dγ ′

dσ

)1/2

dσ

= (1 + ε)1/4〈ρ(γ, γ ′), f j 〉.

Furthermore, for f A := f 1A and fB := f 1B we obtain

〈ρ(γR, γ ′
R), f A〉 = 〈ρ(γR, γ ′

R), fB〉 = 0.

Therefore, by summing over j and using the fact that the sum of the limsup’s is larger or
equal than the limsup of the sum, and then taking ε ↓ 0, the thesis follows. ��
Proof of Theorem A.4 from Lemma A.5: As in [24], it suffices to consider a sequence of mea-
sures γ R

μ and γ R
ν absolutely continuous with respect the Lebesgue measure whose Fourier

transform converge vaguely to the diffraction measures γ̂μ, γ̂ν , respectively.
The key point here is the fact that the Fourier transform of a finite pure point measure is
proportional to the Lebesgue measure. This, together the identity (3.1) yield

〈ρ(̂γ R
μ , ̂γ R

μ ), f 〉 ≥
∣

∣

∣

∣

∣

∣

1

V ol(BR)

∑

p,q∈X∩BR

μ(p)ν(q)̂f (p − q)

∣

∣

∣

∣

∣

∣

.

In fact, let μ, ν be two atomic measures with atoms in X . Write

μR =
∑

p∈X∩BR

μ(p)δp, νR =
∑

p∈X∩BR

ν(p)δp.

Thus, from (3.1), we have that the diffraction measures γ̂μ and γ̂ν are vague limits as
follows

γ̂μ = lim
R→∞

1

V ol(BR)

∣

∣

∣

∣

∣

∣

∑

p∈X∩BR

μ(p)e−2π i〈p,x〉
∣

∣

∣

∣

∣

∣

2

dx, γ̂ν

= lim
R→∞

1

V ol(BR)

∣

∣

∣

∣

∣

∣

∑

p∈X∩BR

ν(p)e−2π i〈p,x〉
∣

∣

∣

∣

∣

∣

2

dx .
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Then, for every f ∈ S(Rd), f ≥ 0

〈ρ(̂γ R
μ , ̂γ R

ν ), f 〉 = 1

V ol(BR)

∫

f (x)

∣

∣

∣

∣

∣

∣

∑

p∈X∩BR

μ(p)e−2π i〈p,x〉
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

q∈X∩BR

ν(q)e−2π i〈q,x〉
∣

∣

∣

∣

∣

∣

dx

≥
∣

∣

∣

∣

∣

∣

1

V ol(BR)

∑

p,q∈X∩BR

μ(p)ν(q)

∫

f (x)e−2π i〈x,p−q〉dx

∣

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

∣

∣

1

V ol(BR)

∑

p,q∈X∩BR

μ(p)ν(q)̂f (p − q)

∣

∣

∣

∣

∣

∣

.

Hence by taking lim sup over R and by Lemma A.5 we get (A.5) as claimed.
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