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Abstract
In this paper, we study phase transitions of a class of time-inhomogeneous diffusion processes
associated with the ϕ4 model. We prove that when γ < 0, the system has no phase transition
and when γ > 0, the system has a phase transition and we study the phase transition of the
system through qualitative and quantitative methods. We further show that, as the strength
of the mean field tends to 0, the solution and stationary distribution of such system converge
locally uniformly in L2 and Wasserstein distance respectively to those of corresponding
system without mean field.

Keywords Phase transitions · Invariant probability measures · ϕ4 model · Mean field
stochastic differential equations

1 Introduction

In this paper, we study a class of time-inhomogeneous diffusion processes associated with
the ϕ4 model. These processes are solutions of the following stochastic differential equations
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defined on a complete filtered probability space (�,F , {Ft }t≥0,P):
{
dXt = √

2dWt + (
γEXt − u′(Xt )

)
dt,

X0 = ξ,
(1)

where γ �= 0, ξ is a F0-measurable random variable, and {Wt }t≥0 is a Brownian motion
defined on (�,F , {Ft }t≥0,P), u(x) = x4 −βx2, and β ≥ 0 is the inverse temperature. Due
to the double-well potential u(x), there is a phase transition in this model. As shown in Fig.
1, it is difficult for u(x) to get out of a pit at low temperatures.

Phase transition is a central topic in statistical physics.Manymethods have been developed
to study phase transitions, including the coupling method [2, 4, 15, 22], the dual method [15,
22], the graph representation and seepage theory [7, 14], the Peirels method and Pirogov–
Sinai theory [19], the cluster expansions method [16, 17] and the gap estimation method [3,
13, 15] etc.

In statistical physics, one often studies themean fieldmodels as simplified approximations
of the original ones. It is usually a common phenomenon that with the mean field models it
is easier to exhibit phase transitions, from which our paper origins. Consider the following
operator on R:

L = a(x)
d2

dx2
+ b(x)

d

dx
+ EXt

d

dx
.

The first two terms represent the drift and diffusion terms as given in diffusion process. The
new additional drift termEXt , the mean of the process, represents the exchange of the energy
from the outside: a source of energy is provided from the outside according to the mean of
the process. Intuitively, this model can be interpreted as follows. Fix a vessel u ∈ Z

d in
which the reaction is kept. Regard all v ∈ Z

d\{u} as outside and the diffusions between
u and v ∈ Z

d\{u} are now described simply by the new drift term EXt . In this sense, the
process represents a non-equilibriummodel. Clearly, the new termmakes the process be time-
inhomogeneous. For more information about mean field models, see Dawson and Zheng [8],
Feng [9–11], Feng and Zheng [12].

Fig. 1 The image of u(x) = x4 − βx2 with β = 100
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In this paper, we restrict ourselves to the time-inhomogeneous ϕ4 model (1), whose
operator is

Lt = d2

dx2
+ (

γEXt − u′(x)
) d

dx
.

Here, γ represents the strength coefficient of the mean field and we are also ready to study its
effect on the phase transition. Because EXt is a function of the distribution of Xt , thus Eq.
(1) is a particular type of distribution dependent stochastic differential equation or McKean-
Vlasov stochastic differential equation. And the existence and non-uniqueness of invariant
probability measures for McKean-Vlasov SDEs was investigated in [23].

The main purpose of this paper is to show that there is a phase transition for the number
of invariant probability measures of Eq. (1). In Sect. 2, we give some preliminaries. In Sect.
3, we study the number of invariant probability measures. In the case of γ < 0, the system
has no phase transition and in the case of γ > 0, we study the phase transition of the system
through qualitative and quantitative methods. More specifically, we prove that there exists a
critical value βc such that the system admits three invariant probability measures for β > βc,
while the system has a unique invariant probability measure for β ≤ βc. We also obtain
an expression for βc by quantitative analysis and this result is completely new. In the last
section, we show that when γ → 0 the solution and invariant probability measure of the
system converge to the solution and invariant probability measure in the case of γ = 0.

2 Preliminaries

Consider the following distribution dependent SDE or Mckean–Vlasov SDE on R

dXt = b(t, Xt ,LXt )dt + σ(t, Xt ,LXt )dWt , (2)

where b : [0,∞) × R × P(R) → R, σ : [0,∞) × R × P(R) → R × R are measurable,
and LXt is the distribution of Xt .

Let P(R) be the family of all probability measures on R. For θ ∈ [1,∞), we define the
following subspace of P(R):

Pθ :=
{
μ ∈ P(R) :

∫
R

|x |θμ(dx) < ∞
}

,

which is a Polish space under the Wasserstein distance

Wθ (μ1, μ2) := inf
π∈C (μ1,μ2)

(∫
R×R

|x − y|θπ(dx, dy)

) 1
θ

, μ1, μ2 ∈ Pθ ,

where C (μ1, μ2) is the set of all couplings for μ1 and μ2 (see [2] or [21]).
When Eq. (2) has a unique strong solution (see [21]) in Pθ , the solution (Xt )t≥0 is

a Markov process in the sense that for any s ≥ 0, (Xt )t≥s is determined by solving the
equation from time s with initial state Xs . More precisely, letting {Xs,t (ξ)}t≥s denote the
solution of the equation from time s with initial state Xs,s = ξ , the existence and uniqueness
imply

Xs,t (ξ) = Xr ,t (Xs,r (ξ)), t ≥ r ≥ s ≥ 0, (3)

where ξ is Fs-measurable with E|ξ |θ < ∞.
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42 Page 4 of 16 Y. Liu et al.

When Eq. (2) has Pθ -weak uniqueness, we may define a semigroup (P∗
s,t )t≥s on Pθ by

letting P∗
s,tμ := LXs,t for LXs,s = μ ∈ Pθ . Indeed, by (3) we have

P∗
s,t = P∗

r ,t P
∗
s,r , t ≥ r ≥ s ≥ 0.

We can investigate the ergodicity in the time homogeneous case when σ and b do not depend
on t . In this case we have P∗

s,t = P∗
t−s , for t ≥ s ≥ 0.

We call μ ∈ Pθ an invariant probability measure of P∗
t if P∗

t μ = μ for all t ≥ 0, and we
call the solution ergodic if there exists μ ∈ Pθ such that limt→∞ P∗

t ν = μ weakly for any
ν ∈ Pθ .

Now, we consider the following one-dimensional SDE{
dXt = b(Xt )dt + σ(Xt )dWt ,

X0 = ξ,
(4)

where σ(x) �= 0 for all x ∈ R, σ and b satisfy the Lipschitz and growth conditions. Thus
SDE (4) has a unique strong and non-explosive solution (Xt )t≥0. The generator of process
(Xt )t≥0 is

L = a(x)
d2

dx2
+ b(x)

d

dx
,

where a(x) = 1
2σ(x)2.

Suppose that the function x �→ 1
a(x) exp

[ ∫ x
0

b(y)
a(y)dy

]
is Lebesgue integrable for all x ∈ R.

We can verify that L is symmetric with respect to the following measure

μ(dx) = 1

a(x)
exp

[ ∫ x

0

b(y)

a(y)
dy

]
dx . (5)

That is, ∫
R

f Lgdμ =
∫
R

gL f dμ, ∀ f , g ∈ C2
c (R). (6)

Let π = μ(R)−1μ. Then, (6) implies that π is an invariant probability measure of the
process (Xt )t≥0. The detailed proof is provided in Remark 1 at the end of this paper. This
assertion also can be seen around Eq. (7.29) on page 172 in [5]. On the other hand, since a(x)
is continuous on R and a(x) > 0 for all x ∈ R, it is well known that the process (Xt )t≥0 is
Lebesgue irreducible and has the strong Feller property. Hence, we can get the uniqueness
of the invariant measure (see [6]; Theorem 4.2.1). Combining with both conclusions above,
we find that the process (Xt )t≥0 has the unique invariant probability measure π .

Indeed, due to the Girsanov transform of diffusion process (see [18]), one can see that the
transition probability kernel Pt (x, dy) of the SDE (4) is absolutely continuous with respect
to each other, which in turn yields the unique invariant probability measure is absolutely
continuous with respect to the Lebesgue measure.

3 The Existence of Phase Transitions

In this section, we prove that there exists a phase transition for the number of invariant
probability measures of Eq. (1). Equation (1) can be regarded as aMckean–Vlasov stochastic
differential equation, and the existence and uniqueness of the solution can be proved by [21]
(for specific verification one can see Remark 2).
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In the following, we can refer to [1], which investigated the issue on the phase transition
concerning a class of McKean–Vlasov SDEs. Once more, by the algebraic equation, which
is based on the fact that the first moment of the solution process coincides with that of the
invariant probability measure, the question on phase transition goes back to seek the number
of roots.

Assume (Xt )t≥0 is the unique solution of Eq. (1) and μ(t) = μ(t, dx) is a measure on
R with finite first moment λ(t) := ∫

R
xμ(t, dx). Recall that a probability measure π ∈

P(R) is stationary if π(B) = P∗
t π(B) = ∫

B P∗
t (x, dy)π(dx) is not dependent on t , where

B ∈ B(R). If π = π(dx) is a stationary distribution of (Xt )t≥0 with finite first moment
m := ∫

R
xπ(dx), then we get EXt = m. Hence, Eq. (1) becomes

{
dXt = √

2dWt + (
γm − 4X3

t + 2βXt
)
dt,

X0 = ξ.
(7)

In fact, the stationary distribution π can be given by (5):

π(dx) = μ(dx)/Z , (8)

where

μ(dx) = exp[−x4 + βx2 + γmx]dx, Z =
∫
R

exp[−x4 + βx2 + γmx]dx .

Note that Z is well-defined, since it is defined by the integral on the whole real line and the
exponent tends to −∞ as x tends to ∞ . Then, the finiteness of the first moment gives us a
condition∫

R

x exp[−x4 + βx2 + γmx]dx = mZ = m
∫
R

exp[−x4 + βx2 + γmx]dx < ∞.

We have

f (m) :=
∫
R

(x − m)e−x4+βx2+γmxdx = 0. (9)

Qualitative Analysis

Lemma 1

|I | :=�{π : π is a stationary distribution}
=�{m ∈ [0,∞) : m is a root of f (m)},

where � represents the number of elements of the set.

Theorem 2 For Eq. (7), we suppose β ≥ 0 and γ �= 0.

(1) In the case of γ > 0, there exists a critical value βc > 0 such that

|I |

⎧⎪⎨
⎪⎩

≥ 1 in any case,

= 1 f or all 0 < β ≤ βc,

= 3 f or all β > βc > 0.

(10)

This means that there exists phase transition for the solution of Eq. (7)when β > βc > 0.
(2) In the case of γ < 0, there is no phase transition.

123
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Proof The proof adopts the idea of [20, Theorem 2.1]. Obviously, f (m) = 0. Using the
series expansion of eγmx , we have

f (m) = 2
∞∑
n=0

Iβ(2n)

(2n)! γ 2nm2n+1
[

γ Iβ(2n + 2)

(2n + 1)Iβ(2n)
− 1

]
, (11)

where

Iβ(z) :=
∫
R+

xze−x4+βx2dx .

In the case of γ < 0, we have γ Iβ (2n+2)
(2n+1)Iβ (2n)

− 1 < 0. From (11) we get that when m < 0,
we have f (m) > 0; when m > 0, we have f (m) < 0. Then f (m) has a unique zero point
m = 0, so there is no phase transition and the result of part (2) is proved.

Now we consider the case of γ > 0. Note that when β = 0, u(x) is not a double-well
potential and there is no phase transition.

(a) We will prove that there exists an integer n0 = n0(γ, β) such that for all n ≥ n0,
f (2n+1)(0) ≤ 0 and for all n < n0, f (2n+1)(0) > 0. We introduce the quantity

Rn(γ, β) := γ Iβ(2n + 2)

(2n + 1)Iβ(2n)
− 1, n ∈ N.

Integration by parts gives

(2n + 1)Iβ(2n) =(2n + 1)
∫
R+

x2ne−x4+βx2dx

=4Iβ(2n + 4) − 2β Iβ(2n + 2),

so

Rn(γ, β) = γ

[
4Iβ(2n + 4)

Iβ(2n + 2)
− 2β

]−1

− 1.

First, we will prove that for all β > 0 and γ > 0 the sequence {Rn(γ, β)}n∈N is nonin-
creasing. It is sufficient to prove that sequence {Iβ(2n+4)/Iβ(2n+2)}n∈N is nondecreasing.
For this, we put T (x) = (Iβ(x + 2))/(Iβ(x)), x > 0, then

T ′(x) = T (x)

(
I ′
β(x + 2)

Iβ(x + 2)
− I ′

β(x)

Iβ(x)

)
.

For proving T (x) is nondecreasing, we only need to prove that ζ(x) := I ′
β(x)/Iβ(x) is

nondecreasing since T (x) ≥ 0 for all x ∈ R+. By Cauchy–Schwarz inequality, we have

ζ ′(y) =
∫
R+ x y(ln x)2e−x4+βx2dx

∫
R+ x ye−x4+βx2dx( ∫

R+ x ye−x4+βx2dx
)2

−
( ∫

R+ x y(ln x)e−x4+βx2dx
)2

( ∫
R+ x ye−x4+βx2dx

)2 ≥ 0, ∀ y > 0.

This means that
(
Rn(γ, β)

)
n∈N is nonincreasing for all β > 0 and γ > 0.
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Now we prove that Rn(γ, β) ≤ 0 for n large enough. To do this, it is sufficient to find a

real a such that f (a) ≤ 0. Put V (x) := x4 − (β + γ
2 )x2, take a =

√
β + γ

2 , y := x − a, it

is easy to get that V (y + a) ≥ V (y − a) for all y ≥ 0. So we have

f (a) =e
γ a2

2

∫
R

(x − a)e−x4+(β+ γ
2 )x2− γ

2 (x−a)2dx

=e
γ a2

2

∫ ∞

0
ye− γ y2

2
[
e−(y+a)4+(β+ γ

2 )(y+a)2 − e−(y−a)4+(β+ γ
2 )(y−a)2

]
dy ≤ 0.

In conclusion, there exists n ∈ N such that Rn(γ, β) ≤ 0.
Finally, put n0 := min

{
n : Rn(γ, β) ≤ 0

}
. Since Rn(γ, β) and f (2n+1)(0) have the same

sign, we deduce that f (2n+1)(0) ≤ 0 for all n ≥ n0 and f (2n+1)(0) > 0 for all n < n0.
(b) By the last step, we can write

f (m) =
n0−1∑
n=0

f (2n+1)(0)

(2n + 1)! m
2n+1 −

∞∑
n=n0

| f (2n+1)(0)|
(2n + 1)! m2n+1. (12)

Taking out a common factor m2n0+1, we get

f (m) = m2n0+1

{
n0−1∑
n=0

f (2n+1)(0)

(2n + 1)! m
2(n−n0) −

∞∑
n=n0

| f (2n+1)(0)|
(2n + 1)! m2(n−n0)

}
.

Since the function m → m2(n−n0) (resp. m → −m2(n−n0)) is decreasing for all n ≤ n0 −
1 (resp. n ≥ n0), we deduce that f (m) admits at most one positive zero point. The function
f (m) is odd so it admits one or three zero points on R. This means that Eq. (7) admits one
or three invariant probability measures.

(c) Here we prove that the uniqueness of the invariant probability measure is directly
related to the sign of f ′(0). Taking derivative in Eq. (12) and taking out a common factor
m2n0 , we get

f ′(m) = m2n0

{
n0−1∑
n=0

f (2n+1)(0)

(2n)! m2(n−n0) −
∞∑

n=n0

| f (2n+1)(0)|
(2n)! m2(n−n0)

}
.

By an argument similar to that in the paragraph above, we deduce that f ′(m) vanishes at
most one point on R+. Because f ′(m) tends to −∞ when m goes to infinity, this means that
f ′(m) is either always nonpositive or positive then nonpositive. This means that the behavior
of f (m) is related to the sign of f ′(0), as is shown in Figs. 2and 3.

Fig. 2 One zero
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Fig. 3 Three zeros

• For f ′(0) ≤ 0, f (m) is nonincreasing on R+. Since f (0) = 0, f (m) does not van-
ish on R+, so Eq. (7) admits a unique invariant probability measure π(dx) such that∫
R
xπ(dx) = 0.

• For f ′(0) > 0, f (m) is first increasing then nonincreasing on R+, which admits
three zeros 0, m0 > 0 and −m0. Thus, we have three invariant probability measures
π0(dx), π+(dx), and π−(dx) such that

∫
R
xπ(dx) = 0,

∫
R
xπ+(dx) = m0 > 0, and∫

R
xπ−(dx) = −m0 < 0.

(d) Now we study the sign of f ′(0). For all β > 0 and γ > 0, we put

f ′(0) =
∫
R

(γ x2 − 1)e−x4+βx2dx = 0. (13)

It is easy to see that γ is a function of β,

γ (β) =
∫
R
e−x4+βx2dx∫

R
x2e−x4+βx2dx

.

By the Cauchy–Schwarz inequality, we get

γ ′(β) =
( ∫

R
x2e−x4+βx2dx

)2
( ∫

R
x2e−x4+βx2dx

)2 −
( ∫

R
e−x4+βx2dx

)( ∫
R
x4e−x4+βx2dx

)
( ∫

R
x2e−x4+βx2dx

)2 ≤ 0.

Therefore, γ (β) is decreasing for all β > 0. Thus, for any fixed γc > 0, there exists a unique
βc > 0 such that f ′(0) = 0.

For all 0 < β ≤ βc, we have γ ≥ γc. This yields

f ′(0) =
∫
R

(γcx
2 − 1)e−x4+βx2dx ≤

∫
R

(γ x2 − 1)e−x4+βx2dx = 0,

we obtain that the solution of Eq. (7) has a unique invariant probability measure.
For all β > βc, we have γ < γc then

f ′(0) =
∫
R

(γcx
2 − 1)e−x4+βx2dx >

∫
R

(γ x2 − 1)e−x4+βx2dx = 0,

so there are three invariant probability measures. The proof is complete. �
Quantitative Analysis
Theorem 2 implies that when γ < 0, there is no phase transition. So we only consider the

case of γ > 0.
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Fig. 4 The image of phase transition areas

Theorem 3 For Eq. (7), we assume β > 0 and γ > 0. Then there exists a critical value

βc = 12−γ 2

2γ > 0 such that

(i) For 0 < γ < 2
√
3 and β > βc, or γ ≥ 2

√
3 and β > 0, there exist three invariant

probability measures {πs : s = 0,±}. In this case, there exists phase transition for the
solution of Eq. (7).

(ii) For 0 < γ < 2
√
3 and 0 < β ≤ βc, there exists unique invariant probability measure:

π0. Here,

m0 = 0, m± = ±1

2

√
(γ 2 + 2βγ − 12)/γ ,

μs(dx) = exp[−x4 + βx2 + γmsx]dx,
πs(dx) = μs(dx)/μs(R), s = 0, ± .

As shown in Fig. 4, the shaded areas are phase transition areas and others are ergodic ones.

Proof Since

Xt = X0 − 4
∫ t

0
X3
s ds + 2β

∫ t

0
Xsds + γ

∫ t

0
EXsds + √

2Wt , (14)

by Eq. (9) we have ∫
R

xe−x4+βx2+γmxdx =
∫
R

me−x4+βx2+γmxdx . (15)

Taking the derivative of both sides of the above equation with respect to m, we have

γ

∫
R

x2e−x4+βx2+γmxdx

123
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=
∫
R

e−x4+βx2+γmxdx + γm
∫
R

xe−x4+βx2+γmxdx,

This and Eq. (15) imply

γ

∫
R

x2e−x4+βx2+γmxdx = (γm2 + 1)
∫
R

e−x4+βx2+γmxdx .

Taking the derivative again, we get

γ 2
∫
R

x3e−x4+βx2+γmxdx

=2γm
∫
R

e−x4+βx2+γmxdx + γ (γm2 + 1)
∫
R

xe−x4+βx2+γmxdx,

and from Eq. (15) we obtain

γ 2
∫
R

x3e−x4+βx2+γmxdx = (γ 2m3 + 3γm)

∫
R

e−x4+βx2+γmxdx .

Thus, we have ∫
R
x3e−x4+βx2+γmxdx∫
R
e−x4+βx2+γmxdx

= γm3 + 3m

γ
,

that is

EX3
t = γm3 + 3m

γ
.

Taking the expectation of both sides of Eq. (14), we get

EXt = EX0 − 4
∫ t

0
EX3

s ds + 2β
∫ t

0
EXsds + γ

∫ t

0
EXsds.

EXt = m and EX3
t = γm3+3m

γ
imply

m[4γm2 + 12 − 2βγ − γ 2] = 0. (16)

By Eq. (16), we have

m = 0 or m2 = γ 2 + 2βγ − 12

4γ
.

Put

g(γ, β) := γ 2 + 2βγ − 12

4γ
.

Let g(γ, β) = 0, we have a critical value of β

βc = βc(γ ) := 12 − γ 2

2γ
.

For g(γ, β) > 0, Eq. (16) has three real solutions:

m0 = 0 m± = ±1

2

√
(γ 2 + 2βγ − 12)/γ .

Otherwise Eq. (16) has a unique real solution: m0 = 0. The specific analysis is as follows.
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• For 0 < γ < 2
√
3 and β > βc, or γ ≥ 2

√
3 and β > 0, we have g(γ, β) > 0.

• For 0 < γ < 2
√
3 and 0 < β ≤ βc, we have g(γ, β) ≤ 0.

If g(γ, β) > 0, then there exist three invariant probability measures:

π0(dx) = exp[−x4 + βx2]dx∫
R
exp[−y4 + β y2]dy , π±(dx) = exp[−x4 + βx2 + γm±x]dx∫

R
exp[−y4 + β y2 + γm±y]dx .

Thus, there exists phase transition for the solution of Eq. (7).
If g(γ, β) ≤ 0, then there exists unique invariant probability measure:

π0(dx) = exp[−x4 + βx2]dx∫
R
exp[−y4 + β y2]dy .

The proof is complete. �

4 Asymptotic Behavior

When γ = 0, Eq. (7) degenerates into the following stochastic differential equation:{
dYt = √

2dWt + (2βYt − 4Y 3
t )dt,

Y0 = ξ.
(17)

The existence and uniqueness of the solution Yt are obvious, and we have the unique invariant
probability measure

π0(dx) = exp[−x4 + βx2]dx∫
R
exp[−y4 + β y2]dy .

For Eq. (7) in order to emphasize γ , we write X(t) = Xγ (t). Let πγ denote the invariant
probability measure of Xγ (t). We shall use the following lemma to study the convergence
of πγ in Wasserstein distance (see [2]; Theorem 5.6).

Lemma 4 πγ
Wθ−→ π0 as γ → 0 iff the following two conditions

1. πγ
w−→ π0 as γ → 0,

2.
∫
R

|x − x0|θπγ (dx) → ∫
R

|x − x0|θπ0(dx) for some (or any) x0 ∈ R as γ → 0

hold.

Given ξ ∈ L2(�,F0,P;R), as γ → 0, we have the following theorem.

Theorem 5 We claim that

1. limγ→0 E supt≤T |Xγ (t) − Y (t)|2 = 0, ∀ T > 0.

2. πγ
Wθ−→ π0 as γ → 0.

Proof (1) By Itô’s formula, we obtain

|Xγ (t) − Y (t)|2 = 2
∫ t

0
〈Xγ (s) − Y (s),−4(X3

γ (s) − Y 3(s))

+2β(Xγ (s) − Y (s)) + γEXγ (s)〉dt
≤ 4β

∫ t

0
|Xγ (s) − Y (s)|2ds + 2γ

∫ t

0
|EXγ (s)||Xγ (s) − Y (s)|ds
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≤ (4β + γ )

∫ t

0
|Xγ (s) − Y (s)|2ds + γ

∫ t

0
|EXγ (s)|2ds.

For any T > 0, we have

E sup
t≤T

|Xγ (t) − Y (t)|2 ≤(4β + γ )

∫ T

0
E sup

s≤t
|Xγ (s) − Y (s)|2dt + γ

∫ T

0
sup
s≤t

E|Xγ (s)|2dt .

Gronwall’s inequality yields

E sup
t≤T

|Xγ (t) − Y (t)|2 ≤e(4β+γ )T γ

∫ T

0
sup
s≤t

E|Xγ (s)|2dt

≤e(4β+γ )T γ TE sup
t≤T

|Xγ (t)|2. (18)

Using the fact |x − y|2 ≤ 2(|x |2 + |y|2) and putting x = Xγ − Y , y = −Y , we obtain

E sup
t≤T

|Xγ (t)|2 ≤2

(
E sup

t≤T
|Xγ (t) − Y (t)|2 + E sup

t≤T
|Y (t)|2

)

≤2

(
e(4β+γ )T γ TE sup

t≤T
|Xγ (t)|2 + E sup

t≤T
|Y (t)|2

)
.

It follows that there exists γ0 > 0 such that we have

E sup
t≤T

|Xγ (t)|2 ≤ 2(1 − 2e(4β+γ )T γ T )−1
E sup

t≤T
|Y (t)|2 < ∞, γ ≤ γ0.

Here we used the fact that, due to ξ ∈ L2(�,F0,P;R) there exists α ≥ 0 such that
E|Y (t)|2 ≤ α(1 + E|ξ |2) < ∞ for any t ∈ [0, T ]. Thus,

sup
0<γ≤γ0

E sup
t≤T

|Xγ (t)|2 < ∞.

Finally, by (18) we obtain

lim
γ→0

E sup
t≤T

|Xγ (t) − Y (t)|2 = 0.

(2) (a) For any f ∈ Cb(R), assume | f (x)| ≤ M for all x ∈ R, then by dominated
convergence theorem and

lim
γ→0

πγ (x) = lim
γ→0

exp[−x4 + βx2 + γmx]
[∫

R

exp[−y4 + β y2 + γmy]dy
]−1

=exp[−x4 + βx2]
[∫

R

exp[−y4 + β y2]dy
]−1

= π0(x),

we have

lim
γ→0

∣∣∣∣
∫
R

f (x)πγ (dx) −
∫
R

f (x)π0(dx)

∣∣∣∣≤ M lim
γ→0

∫
R

|πγ (x) − π0(x)|dx

= M
∫
R

lim
γ→0

|πγ (x) − π0(x)|dx = 0.

Thus, we have πγ
w−→ π0.
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(b) We still need to prove that
∫
R

|x − x0|θπγ (dx) → ∫
R

|x − x0|θπ0(dx) as γ → 0.
Choosing x0 = 0 and put

gγ (x) = |x |θ exp[−x4 + βx2 + γmx]∫
R
exp[−y4 + β y2 + γmy]dy ,

g0(x) = |x |θ exp[−x4 + βx2]∫
R
exp[−y4 + β y2]dy .

The dominated convergence theorem yields that

lim
γ→0

∫
R

gγ (x)dx =
∫
R

g0(x)dx .

By Lemma 4.1, we have πγ
Wθ−→ π0 as γ → 0. The proof is complete. �

Remark 1 In the Eq. (6), for any f , g ∈ C2
c (R),

∫
R

gL f dμ

=
∫
R

[
b(x) f ′(x)g(x) + a(x) f ′′(x)g(x)

] 1

a(x)
exp

(∫ x

0

b(y)

b(x)
dy

)
dx

=
∫
R

b(x)

a(x)
f ′(x)g(x) exp

(∫ x

0

b(y)

a(y)
dy

)
dx +

∫
R

f ′′(x)g(x) exp
(∫ x

0

b(y)

a(y)
dy

)
dx

=:I + II.

Using integration by parts, we get

I=
∫
R

b(x)

a(x)
g(x) exp

(∫ x

0

b(y)

a(y)
dy

)
d f (x)

= −
∫
R

f (x)

[
b′(x)a(x) − a′(x)b(x) + b2(x)

a2(x)
g(x) + b(x)

a(x)
g′(x)

]
exp

(∫ x

0

b(y)

a(y)
dy

)
dx,

and

II=
∫
R

g(x) exp

(∫ x

0

b(y)

a(y)
dy

)
d f ′(x)

= −
∫
R

f ′(x)
[
g′(x) + b(x)

a(x)

]
exp

(∫ x

0

b(y)

a(y)
dy

)
dx .

Therefore,
∫
R

gL f dμ=−
∫
R

[
ab′ − a′b + b2

a2
f g + b

a
f g′ + b

a
f ′g + f ′g′

]
(x) exp

(∫ x

0

b(y)

a(y)
dy

)
dx .

In the same way, we obtain that the left hand of Eq. (6) is equal to the same formula and Eq.
(6) is verified.

Let (Pt )t≥0 denote the family of transition probability of the process (Xt )t≥0. Since
(Xt )t≥0 is unique, Eq. (6) is equivalent to∫

R

f (x)Pt g(x)μ(dx) =
∫
R

g(x)Pt f (x)μ(x), ∀ f , g ∈ C2
c (R).
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Taking g(x) = IR(x), one can get Pt g(x) = 1, and then

∫
R

f (x)μ(dx) =
∫
R

Pt f (x)μ(x), ∀ f ∈ C2
c (R),

which means that μ is an invariant measure. Thus, we get an invariant probability measure
π = μ(R)−1μ.

Remark 2 At first, for the existence and uniqueness of Eq. (1), we need prove that the
coefficients satisfy conditions (H1) − (H3) of Theorem 2.1 in [21]. Note that assumption
(H1) holds obviously, thus it is sufficient to prove assumptions (H1) and (H3) hold.

Denote b(x, μ) = −4x3 + 2βx + γμ(| · |), then for any x, y ∈ R, μ, ν ∈ P1, we have
(H2) (Monotonicity)

2〈b(x, μ) − b(y, ν), x − y〉
=2〈−4x3 + 2βx + γμ(| · |) + 4y3 − 2β y − γ ν(| · |), x − y〉
≤−8|x − y|2 · |x2 + xy + y2| + 4β|x − y|2

+2|γ | ·
∣∣∣∣
∫
R

|x |μ(dx) −
∫
R

|y|ν(dy)

∣∣∣∣ · |x − y|.

Note that for any coupling π of μ and ν, it is easy to see that

∣∣∣∣
∫
R

|x |μ(dx) −
∫
R

|y|ν(dy)

∣∣∣∣ =
∣∣∣∣
∫
R×R

|x |π(dx, dy) −
∫
R×R

|y|π(dx, dy)

∣∣∣∣
≤

∫
R×R

|x − y|π(dx, dy).

Since the π is arbitrary, taking the infimum over all coupling π , we obtain that

2〈b(x, μ) − b(y, ν), x − y〉 ≤ 4β|x − y|2 + 2|γ |W1(μ, ν) · |x − y|.
(H3) (Growth)

|b(0, μ)| = |γ |μ(| · |) ≤ |γ |[1 + μ(| · |)].
Next, when we say the strong solution, it needs a jointly continuous the spatial and time

like Theorem 2.2 in [21]. Thus it is enough to prove that, for any x, y ∈ R, μ, ν ∈ P3, the
following condition holds:

|b(x, μ)| ≤4|x |3 + 2β|x | + |γ |
∫
R

|x |μ(dx)

≤4|x |3 + 2β

( |x |3
3

+ 2

3

)
+ |γ |

∫
R

( |x |3
3

+ 2

3

)
μ(dx)

≤4β + 2|γ |
3

+
(
4 + 2β

3

)
|x |3 + |γ |

3

∫
R

|x |3μ(dx)

≤K
[
1 + |x |3 + μ(| · |3)] ,

where K = max{ 4β+2|γ |
3 , 4 + 2β

3 ,
|γ |
3 }, and here we have used the Young-inequality.
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