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Abstract
We study a stochastic process which describes the dynamics of a particle performing a finite-
velocity random motion whose velocities alternate cyclically. We consider two cases, in
which the state-space of the process is (i)R×{�v1, �v2}, with velocities v1 > v2, and (ii)R2 ×
{�v1, �v2, �v3}, where the particle moves along three different directions with possibly unequal
velocities. Assuming that the random intertimes between consecutive changes of directions
are governed by geometric counting processes, we first construct the stochastic models of the
particle motion. Then, we investigate various features of the considered processes and obtain
the formal expression of their probability laws. In the case (ii) we study a planar random
motion with three specific directions and determine the exact transition probability density
functions of the process when the initial velocity is fixed. In both cases we also investigate the
behavior of the probability distributions of the motion when the intensities of the underlying
geometric counting processes tend to infinity. The asymptotic probability law of the particle
is found to be a uniform distribution in case (i) and a three-peaked distribution in case (ii).
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1 Introduction

Stochastic processes for the description of finite-velocity random motions have been widely
studied during the last decades. Typically, they refer to the motion of a particle moving with
finite speed on the real line, or on more general domains, and alternating between various
possible velocities or directions at random times. The basic model is pertaining the so-
called (integrated) telegraph process, in which the changes of directions of the two possible
velocities are governed by the Poisson process (see, for instance, Orsingher [29] and Beghin
et al. [2]). Various generalizations of the basic model have been proposed in the past. See,
for instance, the one-dimensional random evolution where the new velocity is determined
by the outcome of a random trial, cf. Crimaldi et al. [6]. Recent developments in this area
are devoted to determining the exact distributions of the maximum of the telegraph process
(see Cinque and Orsingher [4]), to analyze telegraph random evolutions on a circle (cf. De
Gregorio and Iafrate [8]), to investigate the telegraph process driven by gamma components
(cf. Martinucci et al. [28]), and to study the squared telegraph process (see Ratanov et al.
[38] and Martinucci and Meoli [27]). Further investigations have been oriented to study
generalized telegraph equations and random flights in higher dimensions (cf. Pogorui and
Rodríguez-Dagnino [33–35] and De Gregorio [7]), telegraph-type reinforced random-walk
models leading to superdiffusion (cf. Fedotov et al. [14]), and theOrnstein-Uhlenbeck process
of bounded variation with underlying an integrated telegraph process (cf. Ratanov [37]).

Several studies on the telegraph and related processes have been developed in the physics
community, since from the very first contributions in the area of finite-velocity random
motions due to Goldstein [16] and Kac [19]. Recently, there has been a resurgence of the
study of the telegraph process in the physics literature in the context of active matter, where
the process is also known as the run-and-tumble particle motion. As a recent contribution in
this area we recall the paper by Malakar et al. [26], that is devoted to the determination of
the exact probability distribution of a run-and-tumble particle perturbed by Gaussian white
noise in one dimension. Here, the authors focus also on the analysis of the relaxation to the
steady-state and on certain first-passage-time problems. Moreover, similar problems have
been faced in Dhar et al. [9] for a run-and-tumble particle subjected to confining potentials of
the type V (x) = α|x |p , with p > 0. An extension of the analysis performed in the previous
articles can be found in Santra et al. [40], where a run-and-tumble particle running in two
spatial dimensions is considered.

A fruitful research line related to finite-velocity random evolution has been stimulated
by applications to insurance and mathematical finance (cf. the books by Rolsky et al. [39],
Kolesnik and Ratanov [20], and Swishchuk et al. [42]), since the alternating random behavior
of the relevant stochastic processes are especially suitable to describe the floating behaviour
of the prices of risky assets observed in financial markets. See, for instance, the model
based on the geometric telegraph process by Di Crescenzo and Pellerey [12], the refinement
characterized by alternating velocities and jumps introduced in Lopez and Ratanov [25],
and the transformed telegraph process for the pricing of European call and put options (cf.
Pogorui et al. [36]).

Several real-world applications involve inter-arrival time statistics analogous to those of
the counting processes governing the finite-velocity randommotions of interest. An example
related to the nonhomogeneous Poisson process for the earthquakes occurrences is given in
Shcherbakov et al. [41]. Another application in geoscience is related to the Brownian motion
process driven by a generalized telegraph process for the description of the vertical motions
in the Campi Flegrei volcanic region (see Travaglino et al. [43]).
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Moreover, stochastic processes for finite-velocity motions are largely used in biomath-
ematics, motivated by the need of describing a variety of random movements performed
by cells, micro-organisms and animals. For instance, Garcia et al. [15] investigate random
motions of Daphnia where the animal, while foraging for food, performs a correlated ran-
dom walk in two dimensions formed by a sequence of straight line hops, each followed by
a pause, and a change of direction through a turning angle. See also Hu et al. [17] for a
Brownian motion governed by a telegraph process adopted as a moving-resting model for
the movements of predators with long inactive periods.

In this area, finite-velocity planar random motions are suitable to model the alternation of
particle movements and changes of direction at random times. Then, large efforts have been
employed to developmathematical tools for the determination of the related exact probability
laws. For instance, we recall the study of cyclic motions in R2 (cf. Orsingher [30, 31] for the
case of exponential times between changes of direction, and Di Crescenzo et al. [10] for the
case of Erlang times). Moreover, symmetry properties related to the particle’s motion in R

2

are investigated in Kolesnik and Turbin [21]. The probability law of the motion of a particle
performing a cyclic random motion in R

n is determined in Lachal [22], while a minimal
cyclic random motion is studied in Lachal et al. [23]. The evaluation of the conditional
probabilities in terms of order statistics has been successfully applied in the case of planar
cyclic random motions with orthogonal directions by Orsingher et al. [32]. A particular case
involving orthogonal directions switching at times regulated by a Poisson process is assessed
by Leorato et al. [24], whereas a similar model governed by a non-homogeneous Poisson
process is treated in Cinque et al. [5].

Several attempts finalized to extend the basic variants of the telegraph process have been
performed in the recent years along the generalization or modification of the underlying
Poissonprocess.However, only few instances allow to construct solvable and tractablemodels
of randommotions. For instance, see Iacus [18]where the number of velocity switches follows
a suitable non-homogeneous Poisson process whose time-varying intensity is the hyperbolic
tangent function.

Stimulated by the previous results and motivated by possible applications, in this paper
we propose a new paradigm for the underlying point process in suitable instances of the
telegraph process. Specifically, we refer to finite-velocity random motions in R and R2, with
2 and 3 velocities alternating cyclically, respectively, where the number of displacements of
the motion along each possible direction follows a Geometric Counting Process (GCP) (see,
for instance, Cha and Finkelstein [3]).

This new scheme is motivated by the fact that the memoryless property of the times
separating successive events in real phenomena represents an exceptional situation, while
in many concrete cases their distributions are characterized by heavy tails. Accordingly,
the proposed study is finalized to extend the analysis of the classical telegraph process to
cases in which the intertimes between velocity changes –instead of the typical exponential
distribution– possess an heavy-tailed distribution, such as the modified Pareto distribution
concerning theGCP.Moreover, the proposed stochastic processes provide newmodels for the
description of phenomena that are no more governed by hyperbolic PDE’s as the classical
telegraph equation. Another point of strength of the present study is the construction of
new solvable models of random motion, whose probability laws are obtained in closed and
tractable form.

Differently from the classical telegraph process, whose probability density under the
Kac’s limiting conditions tends to the Gaussian transition function of Brownian motion,
the processes under investigations exhibit a different behaviour. In particular, a noteworthy
result of this paper shows that when the parameters of underlying GCP tend to infinity, the
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probability density of the process tend to (i) a uniform distribution in the one-dimensional
case, and (ii) a three-peaked distribution in two-dimensional case.

In detail, we firstly study the process {(X(t), V (t)) t ∈ R
+
0 }, with state spaceR×{�v1, �v2},

which represents the motion of a particle on the real line, with alternating velocities v1 > v2.
As customary, such process has two components: a singular component, corresponding to the
case inwhich there are no velocity switches, and an absolutely continuous component, related
to themotion of the particle when the velocity changes at least once. Secondly, we analyze the
process {(X(t), Y (t), V (t)), t ∈ R

+
0 )}, with state-space R2 × {�v1, �v2, �v3}, which describes

a particle performing a planar motion with three specific directions. Once defined the region
R(t) representing all the possible positions of the particle at a given time, the probability law
shows that the distribution of this process is a mixture of two discrete components, describing
the situations in which the particle is found on the boundary of the region, and an absolutely
continuous part, related to the motion of the particle in the interior of R(t). This type of
two-dimensional process well describes the motion of the particle in a turbulent medium, for
example, in the presence of a vortex.

This is the plan of the paper. In Sect. 2, we formally describe the process X(t) illustrating
somepreliminary results on the transitiondensities in amore general case. InSect. 3, assuming
that the random intertimes between consecutive changes of directions are governed by a
geometric counting process (GCP), after the construction of the stochastic model we obtain
the formal expression of the probability laws and the moments of the process conditional on
the initial velocity �v1. In particular, we determine the probability distribution of X(t) and
study some limit results when the initial velocity is random. We also show that, when the
parameters of the intertimes between velocity changes tend to infinity, the distribution of X(t)
tends to be uniform over the relevant diffusion interval. Finally, in Sect. 4, we study a planar
random motion determining the exact transition probability density functions of the process
when the initial velocity is �v1. We investigate the stochastic process and the probability laws
of the process with underlying geometric counting process (GCP). As example, we analyze
a special case with three fixed cyclic directions. Also in this case we discuss the limiting
distribution of the process when the parameters of the intertimes tend to infinity. Differently
from the one-dimensional case, the distribution of the planar process tends to a non-uniform
distribution characterized by three peaks.

Throughout the paper we assume that
∑0

i=1 ai = 0 and
∏0

i=1 ai = 1, as customary.

2 A Finite Two-Velocities RandomMotion

We consider a particle that starts at the origin of the real line and that proceeds alternately
with two velocities �v1 and �v2. The magnitude of the vector �v j is denoted as |�v j | = v j , with
j = 1, 2 and v1 > v2. The direction of the particle motion is determined at each instant by
the sign of the velocity, so that it is forward, stationary or backward if v j > 0, v j = 0 or
v j < 0, respectively.

Let Dj,k , with j = 1, 2, be the duration of the k-th time intervals during which the motion
proceeds with velocity �v j . LetN = {1, 2, . . .}. We assume that {Dj,k, k ∈ N} j=1,2 are mutu-
ally independent sequences of nonnegative and possibly dependent absolutely continuous
random variables. With reference to the intertimes Dj,k , for all x ∈ Rwe denote the distribu-
tion function by FDj,k (x) = P(Dj,k ≤ x), the survival function by FDj,k (x) = 1− FDj,k (x)
and the p.d.f. by fD j,k (x). Let us set
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D(0)
j = 0, D(k)

j =
k∑

i=1

Dj,i , k ∈ N, (1)

where, for fixed j ∈ {1, 2}, the r.v.’s Dj,k are possibly dependent.
We denote by Tn , n ∈ N, the n-th random instant in which the motion changes velocity.

Let {N (t), t ∈ R
+
0 } be the alternating counting process, with two independent subprocesses,

having inter-renewal times T1, T2, . . ., so that N (t) counts the number of velocity reversals
of the particle in [0, t], i.e.

N (0) = 0, N (t) =
∞∑

n=1

1{Tn≤t}, t ∈ R
+. (2)

Now we introduce the stochastic process {(X(t), V (t)), t ∈ R
+
0 }, having state-space

R × {v1, v2}, that describes the motion of the particle, with initial conditions

X(0) = 0, V (0) ∈ {v1, v2}.
The position X(t) and the velocity V (t) of the particle at time t are expressed respectively
as follows:

X(t) =
∫ t

0
V (s)ds, V (t) = v1 + v2

2
+ �

v1 − v2

2
(−1)N (t), t ∈ R

+, (3)

with � defined as

� =
{

1, if V (0) = v1,

−1, if V (0) = v2.
(4)

Hence, recalling Eq. (1), the n-th velocity change satisfies

T0 = 0, Tn =
{
D(k)

j + D(k−1)
j+� , if n = 2k − 1,

D(k)
j + D(k)

j+�, if n = 2k,
n ∈ N. (5)

From Eq. (3) we have that the particle at every instant t ∈ R
+ is confined in [v2t, v1t].

Indeed, if the particle does not change velocity in [0, t], then it occupies one of the extremes
of [v2t, v1t] according to the initial velocity V (0). Otherwise, if the particle changes velocity
at least once in [0, t], then it occupies a state belonging to (v2t, v1t). Therefore, the conditional
lawof {(X(t), V (t)); t ≥ 0} is characterized by two components, for t ∈ R

+ and v ∈ {v1, v2}:
(i) a discrete component

P{X(t) = vt, V (t) = v | X(0) = 0, V (0) = v}, (6)

(ii) an absolutely continuous component

p(x, t | v) = P{X(t) ∈ dx | X(0) = 0, V (0) = v}/dx
= p1(x, t | v) + p2(x, t | v),

(7)

where, for j = 1, 2 and v2t < x < v1t ,

p j (x, t | v) dx = P{X(t) ∈ dx, V (t) = v j | X(0) = 0, V (0) = v}. (8)

We remark that the case v2 < 0 < v1 has been often treated as a typical instance of the
(integrated) telegraph process (see [2], for instance), that goes along forward and backward
directions alternately. In this case, the functions p1 and p2 are respectively the forward and
backward p.d.f.’s of the motion given the initial velocity V (0) = v ∈ {v1, v2}.
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3 Intertimes Distributed as a Geometric Counting Process

The general assumptions considered in Sect. 2 can be specialized to the case in which the
alternating counting process defined in Eq. (2) arises from the alternation of two independent
geometric counting processes.

3.1 Background on the Geometric Counting Process

Let us now recall some key results concerning the geometric counting process. We consider
a mixed Poisson process {Ñλ(t), t ∈ R

+
0 }, whose marginal distribution is expressed as the

following mixture:

P[Ñλ(t) = k] =
∫ ∞

0
P[N (α)(t) = k] dUλ(α), t ∈ R

+
0 , k ∈ N0, (9)

where N (α)(t) is a Poisson process with intensity α and where Uλ is an exponential distri-
bution with mean λ ∈ R

+. According to the terminology adopted in [3], the process Ñλ(t)
is said a GCP with intensity λ, since its probability distribution is

P{Ñλ(t + s) − Ñλ(t) = k} = 1

1 + λ s

(
λ s

1 + λ s

)k

, ∀s, t ∈ R
+
0 , k ∈ N0. (10)

See, for instance, Di Crescenzo and Pellerey [13] for some results and applications of the
GCP.We denote by T̃n,λ, n ∈ N, the random times denoting the arrival instants of the process
Ñλ(t), with T̃0,λ = 0. Recalling [13], T̃n,λ has a modified Pareto (Type I) distribution, with
p.d.f.

fT̃n,λ
(t) = n

(
λ t

1 + λ t

)n−1
λ

(1 + λ t)2
, t ∈ R

+
0 . (11)

The process Ñλ(t) has dependent increments D̃n,λ = T̃n,λ − T̃n−1,λ, n ∈ N. Moreover, the
conditional survival function of D̃n,λ conditional on T̃n−1,λ = t , for n ∈ N, can be written
as (see, e.g. [1])

F D̃n,λ|T̃n−1,λ
(s | t) = P(D̃n,λ > s | T̃n−1,λ = t) =

(
1 + λ t

1 + λ (t + s)

)n

, s, t ∈ R
+
0 . (12)

The corresponding p.d.f. of D̃n,λ conditional on T̃n−1,λ = t is:

f D̃n,λ|T̃n−1,λ
(s | t) = nλ(1 + λ t)n

[1 + λ (t + s)]n+1 , s, t ∈ R
+
0 . (13)

Moreover, the instantaneous jump rate of Ñ (t) depends on time and on the number of
occurred jumps, being

P[Ñλ(t + h) − Ñλ(t) = 1 | Ñλ(t) = n]
h

→ λ (n + 1)

1 + λ t
(14)

as h → 0+. With reference to the stochastic process {(X(t), V (t)), t ∈ R
+
0 } defined in Sect.

2, hereafter we study the random motion in the special case when the alternating phases of
the motion are governed by two independent GCP’s with possibly different intensities.
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3.2 The Stochastic Process and Its Probability Laws

In this section, we investigate the probability law of the process {(X(t), V (t)), t ∈ R
+
0 }

when the subprocesses of the alternating counting process (2) are two independent GCP’s.
Specifically, we assume that for j = 1, 2 the sequences of intertimes Dj,k , k ∈ N, during
which the motion has velocity v j , are distributed as the intertimes of a GCP with intensity
λ j .

In the remainder of this section, Pi will denote the probability conditional on {X(0) =
0, V (0) = vi }, for i = 1, 2.

Let us now introduce the following conditional sub-densities of the process
{(X(t), V (t)), t ∈ R

+
0 } for t > 0, v2t < x < v1t , n ∈ N and j = 1, 2:

p j,n(x, t | v1) dx = P1{X(t) ∈ dx, V (t) = v j , N (t) = 2n − j + 1}
p j,n(x, t | v2) dx = P2{X(t) ∈ dx, V (t) = v j , N (t) = 2(n − 1) + j}, (15)

recalling that N (t) gives the number of velocity changes in [0, t]. Hence, from Eqs. (8) and
(15) we have, for v ∈ {v1, v2},

p j (x, t | v) =
+∞∑

n=1

p j,n(x, t | v). (16)

For the analysis of finite-velocity random motions one is often led to constructing the PDE’s
for the related sub-densities (see, for instance, Di Crescenzo et al. [11] for a finite-velocity
damped motion on the real line). In our case, for the p.d.f.’s introduced in (15) a system of
hyperbolic PDE’s can be obtained. Details are omitted for brevity. Unfortunately, solving
such a system is a very hard task. Thus, in order to obtain the conditional probability law
of {(X(t), V (t)), t ∈ R

+
0 } we develop an approach based on the analysis of the intertimes

between consecutive velocity changes. We first consider the case V (0) = v1.

Theorem 1 Let {(X(t), V (t)), t ∈ R
+
0 } be the process defined in (3), where N (t) is the

alternating counting process determined by two independent GCP’s with intensities λ1 and
λ2. Then, for all t > 0 we have

P1
{
X(t) = v1t, V (t) = v1

} = 1

1 + λ1t
. (17)

Moreover, for v2t < x < v1t one has

p1(x, t | v1) = λ1λ2τ

(v1 − v2)[1 + λ1τ + λ2(t − τ)]2 , (18)

p2(x, t | v1) = λ1[1 + λ2(t − τ)]
(v1 − v2)[1 + λ1τ + λ2(t − τ)]2 , (19)

where

τ ≡ τ(x, t) = x − v2t

v1 − v2
. (20)

Proof Eq. (17) follows from the p.d.f. of D1,1, given in (11) for n = 1. To obtain Eq. (18),
we first analyze the conditional sub-density p1,n(x, t | v1). Recalling the first of (15), and
conditioning on the last instant s preceding t in which the particle changes velocity from �v2
to �v1, we have
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p1,n(x, t | v1) dx = P1{X(t) ∈ dx, V (t) = v1, N (t) = 2n}
=
∫ t

0
P

{
T2n ∈ ds, X(s) + v1(t − s) ∈ dx, D1,n+1 > t − s

}
, (21)

for t > 0, v2t < x < v1t and n ∈ N. Since V (0) = v1, one has T2n = D(n)
1 + D(n)

2 = s and

X(s) = v1D
(n)
1 + v2D

(n)
2 , so that

p1,n(x, t | v1) dx =
∫ t

0
P

{
D(n)
1 + D(n)

2 ∈ ds, v1D
(n)
1 + v2D

(n)
2 + v1(t − s) ∈ dx,

D1,n+1 > t − s
}
. (22)

Furthermore, the relation v2s < X(s) = x − v1(t − s) yields s > t − τ , due to (20). Hence,
denoting by h(·, ·) the joint p.d.f. of

H ≡
(
D(n)
1 + D(n)

2 , v1D
(n)
1 + v2D

(n)
2

)
(23)

we obtain

p1,n(x, t | v1) =
∫ t

t−τ

h(s, x − v1(t − s))P
{
D1,n+1 > t − s |H = (s, x − v1(t − s))

}
ds.

(24)

Since the sequences {D1,n} and {D2,n} are mutually independent by assumption, making
use of Eq. (13) we get

h
(
s, x − v1(t − s)

) = 1

v1 − v2
f (n)
D1

(
s − (t − τ)

)
f (n)
D2

(
t − τ

)

= n2λ1λ2
v1 − v2

{
λ1
[
s − (t − τ

)]
λ2
(
t − τ

)}n−1

{[
1 + λ1

(
s − (t − τ)

)][
1 + λ2(t − τ)

]}n+1 . (25)

Moreover, from the conditional survival function given in Eq. (12) it follows that

P
{
D1,n+1 > t − s |H = (s, x − v1(t − s))

}

= P{D1,n+1 > t − s | D(n)
1 = s − (t − τ)} =

[
1 + λ1 [s − (t − τ)]

1 + λ1τ

]n+1

. (26)

Therefore, from the latter three equations, after some calculations we obtain:

p1,n(x, t | v1) = 1

v1 − v2

n (λ1λ2)
n(t − τ)n−1 τ n

[(1 + λ1 τ) (1 + λ2(t − τ))]n+1 , n ∈ N. (27)

Similarly, the first sub-density introduced in (15) for j = 2 is given by

p2,n(x, t | v1) = 1

v1 − v2

n λn1λ
n−1
2 [τ(t − τ)]n−1

(1 + λ1 τ)n+1 [1 + λ2(t − τ)]n , n ∈ N. (28)

Finally, by making use of Eq. (16) and

∞∑

m=0

(m + 1)rm = 1

(1 − r)2
, with r = λ1λ2τ(t − τ)

(1 + λ1τ)[1 + λ2(t − τ)] ∈ (0, 1), (29)

we obtain the p.d.f.’s (18) and (19). 
�
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Fig. 1 A sample path of X(t) with V (0) = v1, where S2n = X(s) ≡ v1D
(n)
1 + v2D

(n)
2

As example, a sample path for the particle motion when V (0) = v1 is shown in Fig. 1.

Remark 1 It is worth mentioning that the term v1 − v2 in the right-hand-side of Eqs. (18)
and (19) can be viewed as the measure of the diffusion interval at time t = 1.

Remark 2 Due to symmetry, if V (0) = v2, the probability law of the process
{(X(t), V (t), t ∈ R

+
0 } can be obtained from Theorem 1 by interchanging p1 with p2,

λ1 with λ2, and x with (v1 + v2)t − x . Therefore, we have

p j (x, t | v2)|λ1,λ2 = p3− j ((v1 + v2)t − x, t |v1)|λ2,λ1 , j = 1, 2.

Moreover, the corresponding p.d.f.’s for t > 0 and v2t < x < v1t are given by

p1(x, t |v2) = λ2(1 + λ1τ)

(v1 − v2)[1 + λ1τ + λ2(t − τ)]2 , (30)

p2(x, t |v2) = λ1λ2(t − τ)

(v1 − v2)[1 + λ1τ + λ2(t − τ)]2 , (31)

and analogously to (17) we have

P2
{
X(t) = v2t, V (t) = v2

} = 1

1 + λ2t
. (32)

Remark 3 Under the assumptions of Theorem 1, it is not hard to see that, for t ∈ R
+ and

j = 1, 2,

lim
x→v j t

p j (x, t | v j ) = λ1λ2t

(v1 − v2)(1 + λ j t)2
,

lim
x→v j t

p j (x, t | v3− j ) = λ j

(v1 − v2)(1 + λ3− j t)
,

lim
x→v j t

p3− j (x, t | v j ) = λ j

(v1 − v2)(1 + λ j t)2
,

lim
x→v j t

p3− j (x, t | v3− j ) = 0. (33)

Let us now focus on the marginal distribution of {X(t), t ∈ R
+
0 } conditional on {X(0) =

0, V (0) = v j }, j = 1, 2. In this case, the absolutely continuous components for t ∈ R
+ and

x ∈ (v2t, v1t) are described by

p(x, t |v j ) dx = P j
{
X(t) ∈ dx

}
, j = 1, 2. (34)
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Since p(x, t |v j ) = p1(x, t |v j ) + p2(x, t |v j ), making use of (18)–(19) and (30)–(31) it is
not hard to obtain the following result.

Corollary 1 Under the assumptions of Theorem 1, the probability distribution of {X(t), t ∈
R

+
0 } conditional on {X(0) = 0, V (0) = v j }, j = 1, 2, is given by a discrete component

identical to (17) and (32), respectively, and by

p(x, t |v j ) = λ j (1 + λ3− j t)

(v1 − v2)[1 + λ1τ + λ2( t − τ)]2 , (35)

for all t ∈ R
+ and v2t < x < v1t , with τ = τ(x, t) given in (20).

3.3 Moments

In this section, letEi andVari denote respectively the expectation and the variance conditional
on {X(0) = 0, V (0) = vi }, i = 1, 2.

Making use of Eqs. (17) and (35) for j = 1, we can now obtain the first and second
conditional moments of X(t).

Theorem 2 Under the assumptions of Theorem 1, for all t ∈ R
+
0 , we have that, for λ1 �= λ2,

E1[X(t)] = (v2λ1 − v1λ2)t

λ1 − λ2
+ (v1 − v2)λ1(1 + λ2t)

(λ1 − λ2)2
log

1 + λ1t

1 + λ2t
, (36)

and

E1[X2(t)] = v21 t
2

1 + λ1t
+ λ1t

(1 + λ1t)(λ1 − λ2)2

×
{[

(1 + λ2t)v1 − (v1 − v2)
2v2(1 + λ1t)

]2 − (1 + λ1t)(1 + λ2t)
}

(37)

+ 2(v1 − v2)λ1(1 + λ2t)

(λ1 − λ2)3
(v2 − v1 + t(λ1v2 − λ2v1)) log

1 + λ1t

1 + λ2t
. (38)

Moreover, for λ1 = λ2 ≡ λ we get

E1[X(t)] = v1t

1 + λt
+ λ(v1 + v2)t2

2(1 + λt)
, (39)

E1[X2(t)] = v21 t
2

1 + λt
+ λ(v21 + v1v2 + v22)t

3

3(1 + λt)
. (40)

Remark 4 The results from Eqs. (39) and (40) can be generalized in order to obtain the
corresponding k-th moment of X(t). Indeed, in the case λ1 = λ2 ≡ λ, for t ∈ R

+
0 , one has

E1[Xk(t)] = 1

1 + λt

[

vk1 t
k + λ (vk+1

1 − vk+1
2 )tk+1

(k + 1)(v1 − v2)

]

. (41)

In the case λ1 �= λ2, similarly we have

E1[Xk(t)] = vk tk

1 + λ1t
− kλ1 (1 + λ2 t)(v1 − v2)tk−1

λ1 − λ2

×
{

vk−1
1

k − 1
2F1

[

1, 1 − k; 2 − k;−v1(1 + λ2 t) − v2(1 + λ1 t)

tv1(λ1 − λ2)

]
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+ vk−1
2

�(2 − k)
2F1

[

1, 1 − k, 2 − k,−v1(1 + λ2 t) − v2(1 + λ1 t)

tv1(λ1 − λ2)

]}

− λ1tk

1 + λ1t

[
(vk1 − vk2) + (λ2v

k
1 − λ1v

k
2)t], (42)

where � and 2F1 denote respectively the well-known gamma and Gaussian hypergeometric
functions.

Remark 5 Using Eqs. (36)–(38), we can obtain the expression of the variance of X(t)
conditional on {X(0) = 0, V (0) = v1}. When λ1 = λ2, from Eqs. (39)–(40) one has

Var1[X(t)] = λ(v1 − v2)
2(4 + λt)t3

12 (1 + λt)2
. (43)

In both cases λ1 �= λ2 and λ1 = λ2, we can state that the mean and the variance of X(t) are
both linear when t tends to infinity, as shown hereafter.

Corollary 2 Under the assumptions of Theorem 1, the following limits hold:

lim
t→∞

E1[X(t)]
t

=

⎧
⎪⎨

⎪⎩

v2λ1 − v1λ2

λ1 − λ2
+ λ1λ2(v1 − v2)

(λ1 − λ2)2
log

λ1

λ2
, λ1 �= λ2,

v1 + v2

2
, λ1 = λ2;

(44)

lim
t→∞

Var1[X(t)]
t2

=

=

⎧
⎪⎪⎨

⎪⎪⎩

λ1λ2(v1 − v2)
2

(λ1 − λ2)2

{

1 − 2

(
λ1λ2

λ1 − λ2

)2

[log (λ1λ2) − log(λ1) log(λ2)]
}

, λ1 �= λ2,

(v1 − v2)
2

12
, λ1 = λ2.

(45)

Remark 6 The results obtained in Corollary 2 can be compared with those for the telegraph
processes in which the random times between consecutive velocity changes have exponential
distribution (i) with constant rates, and (ii) with linearly increasing rates (cf. Di Crescenzo
and Martinucci [11]). Indeed, for the process under investigation and for the two above
mentioned processes the conditional mean is asymptotically linear as t → ∞, so that the
following limit holds for all such cases when λ1 = λ2:

lim
t→∞

E1[X(t)]
t

= v1 + v2

2
. (46)

This analogy refers to the means of the mentioned processes, and is not extended to other
moments. Indeed, for instance, we recall (cf. Section 1 of [13]) that the underling Poisson
and geometric processes have the same mean but different variance. Moreover, the Poisson
process over time tends to a constant as time tends to ∞, whereas in the same limit the
geometric process over time converges in distribution to an exponential random variable.

Remark 7 Under the assumptions of Theorem 1, due to symmetry, for t ∈ R
+
0 one has:

E1[X(t)] + E2[X(t)] =

=
⎧
⎨

⎩

2(λ1v2 − λ2v1)t

λ1 − λ2
+ (v1 − v2)(λ1 + λ2 + 2λ1λ2t)

(λ1 − λ2)2
log

1 + λ1t

1 + λ2t
, λ1 �= λ2,

(v1 + v2) t, λ1 = λ2.

(47)
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3.4 Random Initial Velocity

Hereafter we analyze the probability distribution of X(t)when the initial velocity is random,
according to the following rule, for 0 ≤ q ≤ 1,

P{V (0) = v1} = q, P{V (0) = v2} = 1 − q. (48)

To this aim, denoting by P0 the probability conditional on X(0) = 0 and initial velocity
specified as in (48), similarly to Eq. (8) we define

p j (x, t) dx = P0{X(t) ∈ dx, V (t) = v j }, j = 1, 2 (49)

for v2t < x < v1t , t ∈ R
+
0 . In analogy with (17), in this case we have

P0
{
X(t) = v j t, V (t) = v j

} =

⎧
⎪⎨

⎪⎩

q

1 + λ1t
, j = 1

1 − q

1 + λ2t
, j = 2.

(50)

For v2t < x < v1t , t ∈ R
+
0 , we now focus on the p.d.f.

p(x, t) = P0
{
X(t) ∈ dx

}
/dx = p1(x, t) + p2(x, t), (51)

and on the so-called flow function

w(x, t) = p1(x, t) − p2(x, t). (52)

We remark thatw(x, t)measures, at each time t , the excess of particles moving with velocity
v1 with respect to the ones moving with velocity v2 near x in a large ensemble of particles
moving according to the stated rules of X(t) (see, e.g. Orsingher [29]). Making use of Eqs.
(18), (19), (29), (30) andCorollary 1, nowwe can state the following results on the distribution
and the flow function of X(t) when the initial velocity is random.

Proposition 1 Let the initial velocity of the process {(X(t), V (t)), t ∈ R
+
0 } be distributed

as in Eq. (48). Then, for t ∈ R
+ and v2t < x < v1t we have

p1(x, t) = λ2(1 + λ1τ) − qλ2

(v1 − v2)[1 + λ1τ + λ2(t − τ)]2 ,

p2(x, t) = qλ1 + λ1λ2(t − τ)

(v1 − v2)[1 + λ1τ + λ2(t − τ)]2 .

(53)

and therefore, due to Eqs. (51) and (52),

p(x, t) = λ2(1 + λ1t) + q(λ1 − λ2)

(v1 − v2)[1 + λ1τ + λ2(t − τ)]2 , (54)

w(x, t) = λ2[1 + λ1(2τ − t)] − q(λ1 + λ2)

(v1 − v2)[1 + λ1τ + λ2(t − τ)]2 , (55)

where τ = τ(x, t) is defined in (20).

Remark 8 Under the assumptions of Proposition 1, from Remark 2 one has the following
symmetry relations:

p(x, t)|λ1,λ2,q = p((v1 + v2)t − x, t)|λ2,λ1,1−q , (56)

w(x, t)|λ1,λ2,q = −w((v1 + v2)t − x, t)|λ2,λ1,1−q , (57)
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Fig. 2 Plots of p(x, t) and w(x, t) for t = 1, v1 = 2, v2 = −2, q = 0.5, and (λ1, λ2) =
(1, 30), (5, 20), (10, 10), (20, 5), (30, 1) from top to bottom near x = 2

valid for v2t < x < v1t , t ∈ R
+. These properties are confirmed by the plots of the functions

(54) and (55) shown in Fig. 2.

Remark 9 Making use of Eq. (55) we are now able to discuss the sign of the flow function
of X(t). Under the assumptions of Proposition 1, recalling (20) we have that

w(x, t) ≥ 0 for x ≥ mt (v) + β(q, v,λ), (58)

where

mt (v) := (v1 + v2)t

2
, β(q, v,λ) := v1 − v2

2λ1

(

q
λ1 + λ2

λ2
− 1

)

. (59)

Clearly, mt (v) is the middle point of the diffusion interval (v2t, v1t). Moreover, one has

β(q, v,λ) ≥ 0 when q ≥ λ2

λ1 + λ2
.

Remark 10 (i) Under the assumptions of Proposition 1, recalling that τ(x, t) is increasing in
x , from (54) we immediately have that p(x, t) is strictly increasing (decreasing) in x when
λ1 < λ2 (λ1 > λ2), for fixed t .
(ii) Moreover, if λ1 = λ2 ≡ λ then the probability law does not depend on q , and for t ∈ R

+
it is expressed by

P0
{
X(t) ∈ {v1t, v2t}

} = 1

1 + λt
, (60)

p(x, t) = λ

(v1 − v2)(1 + λt)
, v2t < x < v1t . (61)

In this case, due to (55) the flow function of X(t), t ∈ R
+, is given by

w(x, t) = λ[1 + λ(2τ − t) − 2q]
(v1 − v2) (1 + λt)2

, v2t < x < v1t . (62)

Let us now analyze the functions (51) and (52) when x tends to the border of the diffusion
interval at a fixed time.

Corollary 3 Let the assumptions of Proposition 1 hold. For fixed t ∈ R
+ we have

lim
x→v j t

p(x, t) = λ2(1 + λ1t) + q(λ1 − λ2)

(v1 − v2)(1 + λ j t)2
, j = 1, 2 (63)
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and

lim
x→v j t

w(x, t) = λ2(1 − (−1) jλ1t) + q(λ1 + λ2)

(v1 − v2)(1 + λ j t)2
, j = 1, 2. (64)

Making use of Theorem 2 and Remark 7 we can now obtain the mean of X(t) when the
initial velocity is random, henceforth denoted by E0[X(t)].
Corollary 4 Let the initial velocity of the process {(X(t), V (t)), t ∈ R

+
0 } be distributed as

in (48). If λ1 �= λ2 then for t ∈ R
+ one has

E0[X(t)] = t(v2λ1 − v1λ2)

λ1 − λ2
+ [qλ1 + (1 − q)λ2 + λ1λ2t

] (v1 − v2)

(λ1 − λ2)2
log

1 + λ1t

1 + λ2t
,

(65)

whereas, if λ1 = λ2 ≡ λ then for t ∈ R
+

E0[X(t)] =
[
qv1 + (1 − q)v2

]
t

1 + λt
+ λt2(v1 + v2)

2(1 + λt)
. (66)

Similarly to the classical telegraph process driven by the Poisson process, it is not hard
to see that the process X(t) does not admit a stationary state. Indeed, due to Eq. (54), for all
x ∈ R one has

lim
t→+∞ p(x, t) = 0. (67)

Moreover, for the classical telegraph process driven by the Poisson process it is well known
that an asymptotic limit holds under the Kac’s conditions, which involve both intensity and
velocity, leading to the Gaussian transition function of Brownian motion (see, e.g., Lemma 2
of Orsingher [29]). We conclude this section with a different result for the stochastic process
under investigation. This can be seen in the next corollary, where we let the intensities tend
to +∞ in Eqs. (53) and (54). In this case the limit condition is meaningful even if it does not
involve the velocities vi .

Corollary 5 Let the assumptions of Proposition 1 hold. For t ∈ R
+ and v2t < x < v1t one

has, with τ defined in (20),

lim
λ1,λ2→+∞
λ1/λ2→1

p1(x, t) = τ

(v1 − v2) t2
, lim

λ1,λ2→+∞
λ1/λ2→1

p2(x, t) = t − τ

(v1 − v2) t2
, (68)

and

lim
λ1,λ2→+∞
λ1/λ2→1

p(x, t) = 1

(v1 − v2) t
. (69)

The right-hand side of (69) shows that the distribution of the process X(t) tends to be
uniform over the diffusion interval (v2t, v1t) when the intensities λ1 and λ2 tend to infinity,
with λ1/λ2 → 1, whereas the p.d.f.’s p j (x, t) are not asymptotically uniformly distributed.

In the following section we extend the analysis of the finite-velocity motion governed by
the GCP to the case when the motion evolves in R

2 along three different directions attained
cyclically.
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4 Planar RandomMotion with Underlying Geometric Counting Process

We consider a planar random motion of a particle that moves along three directions. The
motion is oriented toward the cyclically alternating directions described by the vector

�v j = cos θ j �h + sin θ j �k, j = 1, 2, 3, (70)

where �h and �k are the unit vectors along the Cartesian coordinate axes. Moreover, the angles
θ j satisfy the conditions

0 ≤ θ1 < θ2 < θ1 + π < θ3 < min{θ2 + π, 2π}. (71)

The particle moves from the origin at time t = 0, running with constant velocity c > 0.
Initially, it moves along the direction �v1. Then, after a random duration denoted D1,1, the
particle changes instantaneously the direction, moving along �v2 for a random duration D2,1.
Subsequently, it moves along �v3 for a random duration D3,1, and so on by attaining cycli-
cally the directions �v1, �v2, �v3 for the random periods D1,2, D2,2, D3,2, D1,3, D2,3, D3,3, . . ..
Hence, during the n-th cycle the particle moves along directions �v1, �v2, �v3 in sequence for the
random lengths D1,n, D2,n, D3,n , for n ∈ N, respectively. Denoting by Tk the k-th random
instant in which the motion changes its direction, for n ∈ N0 we have

T3n+i+ j+1 = D(n+1)
1 + D(n+i)

2 + D(n+ j)
3 , i, j = 0, 1, i ≥ j, (72)

where

D(n)
j = Dj,1 + Dj,2 + . . . + Dj,n, j = 1, 2, 3, n ∈ N, (73)

is the total duration of the motion along direction �v j until the n-th cycle, with

D(0)
1 = D(0)

2 = D(0)
3 = 0. (74)

In agreement with (72) we set T0 = 0. In the following, we assume that the sequences
{Dj,k; k ∈ N} j=1,2,3 are mutually independent. Moreover, for j = 1, 2, 3 the durations
Dj,1, Dj,2, . . . are nonnegative absolutely continuous possibly dependent random variables.

It is worth mentioning that the conditions (71) ensure that the moving particle can reach
any state in R

2 in a sufficiently large time t . Moreover, the considered motion provides
a simple scheme with the minimal number of possible directions for the description of a
vorticity motion with intertimes characterized by heavy tailed distributions.

Hereafter we introduce the stochastic process that describes the planar random motion
considered so far.

4.1 The Stochastic Process and Its Probability Laws

Let {(X(t), Y (t), V (t)), t ∈ R
+
0 } be a stochastic process with state-space R2 × {�v1, �v2, �v3},

where (X(t), Y (t)) gives the location of the particle and V (t) the direction of the motion
at time t ∈ R

+
0 , conditional on X(0) = 0, Y (0) = 0, V (0) = �v1. In order to specify the

diffusion region of the particle at time t ∈ R
+, let us now define a time-dependent triangle

R(t) whose edges are denoted by Ei j (t), with i, j = 1, 2, 3 and i < j , whereas the vertices
are given by

A j (t) = (ct cos θ j , ct sin θ j ), j = 1, 2, 3 (75)
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for fixed c ∈ R
+. Hence, the angle θ j describes the direction of the vertex corresponding

to �v j , for j = 1, 2, 3. Therefore, under conditions (71), the equations linking two adjacent
vertices are expressed as

ai j x + bi j y + ctqi j = 0, i, j = 1, 2, 3, i < j, (76)

where

ai j = sin θi − sin θ j , bi j = cos θ j − cos θi , qi j = sin(θ j − θi ). (77)

Since the particle moves with velocity c ∈ R
+, and the motion is oriented alternately along

the directions determined by vectors (70), the particle at time t ∈ R
+ is located inside the

region delimited by the triangle

R(t) =

⎧
⎪⎨

⎪⎩
(x, y) ∈ R

2 :

⎧
⎪⎨

⎪⎩

a12x − b12y + ctq12 ≥ 0

a23x − b23y + ctq23 ≥ 0

a13x − b13y + ctq13 ≤ 0

⎫
⎪⎬

⎪⎭
, (78)

where the defining conditions arise from Eqs. (76). In particular, the particle motion involves
three different, mutually exclusive cases based on the assumption that X(0) = 0, Y (0) =
0, V (0) = �v1:
(i) if the direction of the motion does not change in (0, t), then at time t ∈ R

+ the particle
is placed in the vertex A1(t);

(ii) if the direction of the motion changes once in (0, t), then at time t ∈ R
+ the particle is

situated somewhere on the edge E12(t);
(iii) if more than one direction change occurs in (0, t), then at time t ∈ R

+ the particle is
located in the interior of the region R(t), that will be denoted R̊(t).

Let us now denote B1 := {X(0) = 0, Y (0) = 0, V0 = �v1}. To determine the probability
laws of the process {(X(t), Y (t), V (t)), t ∈ R

+
0 } conditional on B1, hereafter we express the

discrete components concerning events (i) and (ii) considered above. As usual, we denote FD

and FD for the distribution function and the survival function of a generic random variable
D.

Theorem 3 (Discrete components) Let {(X(t), Y (t), V (t)), t ∈ R
+
0 } be the stochastic

process defined in Sect. 4.1. For all t ∈ R
+ we have

P{X(t) = ct cos θ1, Y (t) = ct sin θ1, V (t) = �v1 | B1} = FD1,1(t) (79)

and

P{(X(t), Y (t)) ∈ E12(t), V (t) = �v2 | B1} = FD1,1+D2,1(t) − FD1,1(t). (80)

Proof Equations (79) and (80) are a consequence of the conditions (i) and (ii) when the initial
velocity is V (0) = �v1. 
�
Using condition (iii), for t ∈ R

+ and j = 1, 2, 3 the absolutely continuous component of
the probability law can be expressed by

p1 j (x, y, t)dxdy = P{X(t) ∈ dx, Y (t) ∈ dy, V (t) = �v j | B1}. (81)

Clearly, the right-hand-side of Eq. (81) represents the probability that the particle at time
t ∈ R

+ is located in a neighborhood of (x, y) and moves along direction �v j , given the initial
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condition expressed by B1. Moreover, we can introduce the p.d.f. of the particle location at
time t ∈ R

+, i.e.

p1(x, y, t) = P{X(t) ∈ dx, Y (t) ∈ dy | B1}
dxdy

. (82)

Due to Eqs. (81) and (82), one immediately has

p1(x, y, t) =
3∑

j=1

p1 j (x, y, t). (83)

In order to determine p1 j (x, y, t), we first introduce the function ψ : R3 → R
3, which is

defined as follows:

ψ(t1, t2, t3) =
⎛

⎝c
3∑

j=1

x�v j t j , c
3∑

j=1

y�v j t j ,
3∑

j=1

t j

⎞

⎠ . (84)

Here x�v j and y�v j , for j = 1, 2, 3, denote respectively the components of each vector �v j

along the x and y axes. For a cycle of the motion with durations t1, t2 and t3, the function
introduced in (84) gives a vector containing the displacements performed along x and y axes
during the cycle, as well as its whole duration. We also consider the transformation matrix
A of function ψ(t1, t2, t3), that is

A =
⎛

⎝
c cos θ1 c cos θ2 c cos θ3
c sin θ1 c sin θ2 c sin θ3

1 1 1

⎞

⎠ . (85)

Remark 11 Recalling the vertices (75), it is easy to see that det(t A) represents the area of
the region R(t) defined in (78).

For a given sample path of the process {(X(t), Y (t), V (t)), t ∈ R
+
0 } we denote by ξ j =

ξ j (x, y, t) the value attained by the residence times of the motion in each direction �v j during
[0, t] such that (X(t), Y (t)) = (x, y), given by

∫ t

0
1{V (s)=�v j }ds, j = 1, 2, 3, (86)

where 1{V (s)=�v j } is the indicator function

1{V (s)=�v j } =
{
1 if V (s) = �v j

0 otherwise,
j = 1, 2, 3, (87)

so that
∑3

j=1 ξ j = t . It is not hard to see that ξ = (ξ1, ξ2, ξ3)
T is solution of the system

A ξ = (x, y, t)T . Therefore, recalling (85) and (75), we can express ξ j in terms of θ =
(θ1, θ2, θ3) as follows, for j = 1, 2, 3,

ξ j = 1

�(θ)

[ x

c
(sin θ j+̂1 − sin θ j+̂2) − y

c
(cos θ j+̂1 − cos θ j+̂2) + t sin(θ j+̂2 − θ j+̂1)

]
,

(88)

where a+̂b denotes (a + b) mod 3, and

�(θ) = det(A)

c2
= sin(θ3 − θ2) + sin(θ2 − θ1) + sin(θ1 − θ3). (89)

123



44 Page 18 of 26 A. Di Crescenzo et al.

We are now able to formulate the following result about the absolutely continuous compo-
nent of the process (X(t), Y (t), V (t)), which is concerning the case (iii) considered above.
To this aim, we denote by f

D(n)
j

the p.d.f. of D(n)
j , cf. (73). Hence, due to (74), f (0)

Dj
are delta-

Dirac functions, for j = 1, 2, 3. Moreover, we indicate with F
Dj,k+1|D(k)

j
the conditional

survival function of Dj,k+1.

Theorem 4 (Absolutely continuous components) For the stochastic process
{(X(t), Y (t), V (t)), t ∈ R

+
0 } defined in Sect. 4.1, under the initial condition B1, the

absolutely continuous components of the probability law are expressed as follows, for all
(x, y) ∈ R̊(t) and t ∈ R

+:

p1 j (x, y, t) = 1

det(A)

∞∑

k=0

{ j−1∏

i=1

f
D(k+1)
i

(ξi )

3∏

i= j+1

f
D(k)
i

(ξi )

×
∫ t

t−ξ j

f
D(k)

j

(
s − (t − ξ j )

)
F
Dj,k+1|D(k)

j

(
t − s | s − (t − ξ j )

)
ds

}

,

(90)

where ξ j = ξ j (x, y, t), for j = 1, 2, 3, is defined as in Eq. (88), and where det(A) can be
recovered from (89).

Proof By conditioning on the number of direction switches in (0, t), say k, and on the last
instant s previous to t in which the particle changes its direction to restart a cycle, we can
rewrite Eq. (81) as follows (with j = 1, 2, 3)

p1 j (x, y, t)dxdy =
∞∑

k=0

∫ t

0
P
{
T3k+ j−1 ∈ ds, X(s) + c(t − s) cos θ j ∈ dx,

Y (s) + c(t − s) sin θ j ∈ dy, Dj,k+1 > t − s
}
,

(91)

where T3k+ j−1 is a switching instant occurring at time s such that the particle’s direction
becomes �v j . Thus, (X(s), Y (s)) is the position of the particle when such direction’s change
occurs. Therefore, due to Eq. (72), one has

T3k+ j−1 =
j−1∑

i=1

D(k+1)
i +

3∑

i= j+1

D(k)
i + D(k)

j . (92)

Hence, for s = T3k+ j−1 it follows that (X(s), Y (s)) canbe expressed as suitable combinations
of the sums (73) as

X(s) = c

[ j−1∑

i=1

D(k+1)
i cos θi +

3∑

i= j+1

D(k)
i cos θi + D(k)

j cos θ j

]

,

Y (s) = c

[ j−1∑

i=1

D(k+1)
i sin θi +

3∑

i= j+1

D(k)
i sin θi + D(k)

j sin θ j

]

.

(93)
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Recalling Eq. (78), the condition (X(s), Y (s)) ∈ R(s) implies that s > t − ξ j . Furthermore,
using (85) and substituting Eqs. (92) and (93) in Eq. (91), we have

p1 j (x, y, t) = 1

det(A)

∞∑

k=0

{∫ t

t−ξ j

φ j,k

[
s, x − c(t − s) cos θ j , y − c(t − s) sin θ j

]

× P

[
Dj,k+1 > t − s

∣
∣
∣ T3k+ j−1 = s, X(T3k+ j−1) = x − x�v j (t − s),

Y (T3k+ j−1) = y − y�v j (t − s)
]
ds

}

,

(94)

where φ j,k is the joint p.d.f. of (T3k+ j−1, X(T3k+ j−1), Y (T3k+ j−1)), with

T3k+ j−1 =
j−1∑

i=1

D(k+1)
i +

3∑

i= j+1

D(k)
i + D(k)

j , (95)

X(T3k+ j−1) =
j−1∑

i=1

x�vi D
(k+1)
i +

3∑

i= j+1

x�vi D
(k)
i + x�v j D

(k)
j , (96)

Y (T3k+ j−1) =
j−1∑

i=1

y�vi D
(k+1)
i +

3∑

i= j+1

y�vi D
(k)
i + y�v j D

(k)
j . (97)

According to (84), we have

x�vi = vi cos θi , y�vi = vi sin θi , i = 1, 2, 3. (98)

Due to the mutual independence of the variables {Dj,k; k ∈ N} j=1,2,3, we get

φ j,k

[
s, x − c(t − s) cos θ j , y − c(t − s) sin θ j

]
=

=
j−1∏

i=1

f
D(k+1)
i

(ξi )

3∏

i= j+1

f
D(k)
i

(t − ξi ) f
D(k)

j
[s − (t − ξ j )],

(99)

due to Eq. (88). Therefore, Eq. (90) is directly obtained replacing (99) in Eq. (94). 
�

Remark 12 In analogy with the one-dimensional case, cf. Remark 1, we note that the term
det(A) in the right-hand-side of Eq. (90) can be viewed as the measure of the state-space at
time t = 1, i.e. R(1) (cf. Remark 11).

Wepoint out that the cyclic update condition is regulated by the switching times considered
in Eq. (92) and by the particle position expressed in Eq. (93). Since the sequence of directions
of themotion is fixed by a non-random rule this allows to express those equations in a tractable
way. On the contrary, more complex dynamics concerning the random choices of directions
would provide for the inclusion of an additional element of randomness in those equations,
leading to less tractable expressions. For instance, some results concerning the case when
the directions are picked randomly with constant intensities are given in Santra et al. [40].

Clearly, the results given in Theorems 3 and 4 for the discrete and absolutely continuous
component of the process can be obtained in a similar way also when the initial velocity is
V (0) = �v2 and V (0) = �v3.
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4.2 An Analysis of a Special Case

In this section we analyze an instance of the process considered above, under the initial
condition B1.

Assumptions 1 We consider the following conditions:

(i) The motion is characterized by the three directions led by the following angles:

θ1 = π

3
, θ2 = π, θ3 = 5

3
π. (100)

(ii) The durations Dj,1, Dj,2, . . . constitute the intertimes of a GCP with intensity λ j ∈ R
+,

where Dj,n is the j-th duration of the motion within the n-th cycle, for j = 1, 2, 3 and
n ∈ N.

In Fig. 3 we show an example of projections onto the state-space of suitable paths of the
process {(X(t), Y (t)), t ∈ R

+
0 } under the Assumptions 1.

The given assumptions differ from those of similar two-dimensional finite-velocity pro-
cesses studied in the recent literature. Indeed, apart from the cyclicmotions inR2 described in
Sect. 1 (see e.g. [10, 30, 31]), Santra et al. [40] considered run-and-tumble particle dynamics
regulated by constant switching rates among possible orientations of the particle which can
assume a set of discrete values or are governed by a continuous random variable.

According to (78), condition (i) of Assumptions 1 implies that the particle at every instant
t ∈ R

+ is confined in the triangle

R(t) =
{

(x, y) ∈ R
2 : x ≤ 1

2
ct, |y| ≤

√
3

3
(x + ct)

}

, (101)

whose vertices are

A1(t) =
(
1

2
,

√
3

2

)

ct, A2(t) =
(

− 1, 0

)

ct, A3(t) =
(
1

2
,−

√
3

2

)

ct . (102)

Figure 4 shows a sample of the set R(t) defined in (101), with directions �v1, �v2 and �v3 led
by the angles given in (100). Since the angles (100) satisfy conditions (71), it is ensured that
the particle can reach any state, i.e. R(t) → R

2 as t → ∞.
We recall that the sequences {Dj,k; k ∈ N} j=1,2,3 are mutually independent. Moreover,

under condition (ii) of Assumptions 1, for j = 1, 2, 3 the durations Dj,n , n ∈ N, are
dependent random variables having marginal p.d.f. (cf. Eq. (11) of [13])

fD j,n (t) = λ j

(1 + λ j t)2
, t ∈ R

+. (103)

Hereafter we determine the explicit probability laws of the process under the assumptions
considered so far, i.e. when the random intertimes of the motion along the possible directions
follow three independent GCPs with intensities λ1, λ2 and λ3.

Theorem 5 Let {(X(t), Y (t), V (t)), t ∈ R
+
0 } be the stochastic process defined in Sect. 4.1,

under initial condition B1. If the Assumptions 1 hold, then for all t ∈ R
+ we have

P

{

X(t) = 1

2
ct, Y (t) =

√
3

2
ct, V (t) = �v1

∣
∣
∣ B1

}

= 1

1 + λ1 t
, (104)
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Fig. 3 Two possible paths depicting the first 10 segments of the planar cyclic motion defined in Sect. 4.1. The
initial velocity is �v1, and angles are fixed as in (100)

and

P{[X(t), Y (t)] ∈ E12(t), V (t) = �v1 | B1}

= λ1λ2t[λ21(1 + λ2 t) + λ22(1 + λ1 t)]
(λ1 + λ2 + λ1λ2 t)2(1 + λ1 t)(1 + λ2 t)

+ 2λ21 λ22 log[(1 + λ1 t)(1 + λ2 t)]
(λ1 + λ2 + λ1λ2 t)3

− λ1

1 + λ1 t
.

(105)

Moreover, for all (x, y) ∈ R̊(t), with reference to the region R(t) in (101), we have

p11(x, y, t) = λ1λ2λ3ξ1
1 + A(ξ) + B(ξ) + 2C(ξ)

det(A)
[
1 + A(ξ) + B(ξ)

]3 ,

p12(x, y, t) = 2λ21λ2λ3ξ1ξ2
(1 + λ2ξ2)(1 + λ3ξ3)

det(A)
[
1 + A(ξ) + B(ξ)

]3 ,

p13(x, y, t) = λ1λ2(1 + λ3ξ3)
1 + A(ξ) + B(ξ) + 2C(ξ)

det(A)
[
1 + A(ξ) + B(ξ)

]3 ,

(106)
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Fig. 4 A sample of the set R(t) with velocities �v1, �v2, �v3 and fixed angles as in (100)

with

det(A) = 3
√
3

2
c2, A(ξ) =

3∑

i=1

λiξi , B(ξ) =
3∑

i, j=1
i< j

λiλ jξiξ j , C(ξ) =
3∏

i=1

λiξi

(107)

and where the terms ξ j = ξ j (x, y, t), j = 1, 2, 3, are given by

ξ1 = ct + x + √
3y

3c
, ξ2 = ct − 2x

3c
, ξ3 = ct + x − √

3y

3c
. (108)

Proof Recalling Theorem 3, the discrete components of the process are obtained from Eqs.
(79) and (80). The absolutely continuous components in Eq. (106) are obtained in closed form
as an immediate consequence of Theorem 4 after straightforward but tedious calculations.
The right-hand-side of Eq. (90) is made explicit by using the finite sum of the resulting series
as seen in Eq. (29) of Theorem 1. 
�
We remark that the values of ξ j in (108) are obtained directly from Eq. (88) given the angles
in (100). Moreover, due to (83), under the assumptions of Theorem 5 the p.d.f. p1(x, y, t)
can be immediately obtained from Eq. (106). Similarly to the one-dimensional case treated
in Corollary 5, we are now able to study the asymptotic behaviour of the p.d.f. of the particle
location defined in (82) when the intensities λ j tend to infinity.
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Fig. 5 Plot of η(x, y, t) for ct = 1

Corollary 6 Under the assumptions of Theorem 5, for t ∈ R
+ and (x, y) ∈ R̊(t) one has

lim
λ1,λ2,λ3→+∞

λ1/λ2→1, λ1/λ3→1

p1(x, y, t) = η(x, y, t), (109)

where η(x, y, t) is the following p.d.f.

η(x, y, t) = 2t ξ1ξ2ξ3
det(A)

[
(ξ1ξ2)3 + (ξ1ξ3)3 + (ξ2ξ3)3

] , (110)

with ξ j ’s introduced in (108).

Figure 5 shows a plot of the limiting three-peaked density obtained in Corollary 6.
The results expressed so far in this section for V (0) = �v1 can be extended to the cases

V (0) = �v2 and V (0) = �v3 by adopting a similar procedure.

5 Conclusions

This paper has been centered on the analysis of telegraph processes in one and two dimen-
sions, with cyclically alternating directions, when the changes of direction follow a GCP.
The presence of intertimes possessing Pareto-type distributions yields results that are quite
different from those concerning the classical telegraph process with exponential intertimes.

In view of potential applications in engineering, financial and actuarial sciences, we note
that possible future developments can be oriented to
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– the study of first-passage-time problems for the considered processes,
– the extension of the stochastic model to the case of a non-minimal number of directions,

along the research line exploited by Lachal [22],
– the analysis of other dynamics governed by differently distributed inter-arrival times

and more general counting processes, even non-homogeneous processes as treated, for
instance, in Yakovlev et al. [44].

Further research areas in which the finite-velocity random motions can be used for applica-
tions related to (i) mathematical geology, for the description of alternating trends in volcanic
areas, to (ii) mathematical biology, for the modelling of the random motions of microorgan-
isms, and to (iii) mathematical physics, for the constructions of simple stochastic models of
vorticity motions in two or more dimensions.
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