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Abstract
We consider a modified Boltzmann equation which contains, together with the collision
operator, an additional drift term which is characterized by a matrix A. Furthermore, we
consider a Maxwell gas, where the collision kernel has an angular singularity. Such an
equation is used in the study of homoenergetic solutions to the Boltzmann equation. Under
smallness assumptions on the drift term, we prove that the longtime asymptotics is given
by self-similar solutions. We work in the framework of measure-valued solutions with finite
moments of order p > 2 and show existence, uniqueness and stability of these self-similar
solutions for sufficiently small A. Furthermore, we prove that they have finite moments of
arbitrary order if A is small enough. In addition, the singular collision operator allows to prove
smoothness of these self-similar solutions. Finally, we study the asymptotics of particular
homoenergetic solutions. This extends previous results from the cutoff case to non-cutoff
Maxwell gases.

Keywords Boltzmann equation · Homoenergetic solutions · Long-range interactions ·
Self-similar solutions ·Maxwell molecules · Non-equilibrium

Mathematics Subject Classification 35Q20 · 82C40 · 35C06

1 Introduction

The inhomogeneous Boltzmann equation is given by

∂t f + v · ∇x f = Q( f , f ), (1)

where f = f (t, x, v) : [0,∞) × R
3 × R

3 → [0,∞) is the one-particle distribution of a
dilute gas in whole space. In this paper, we restrict ourselves to the physically most relevant
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case of three dimensions, although our study can be extended to dimensions d ≥ 3 without
any additional difficulties.

On the right-hand side we have Boltzmann’s collision kernel

Q( f , f ) =
∫
R3

∫
S2

B(|v − v∗|, n · σ)( f ′∗ f ′ − f∗ f )dσdv∗,

where n = (v − v∗)/|v − v∗| and f ′∗ = f (v′∗), f ′ = f (v′), f∗ = f (v∗), with the pre-
collisional velocities (v, v∗) resp. post-collisional velocities (v′, v′∗). One parameterization
of the post-collisional velocities is given by the σ -representation, i.e. for σ ∈ S2

v′ = v + v∗
2
+ |v − v∗|

2
σ, v′∗ =

v + v∗
2
− |v − v∗|

2
σ.

For an introduction into the physical and mathematical theory of the Boltzmann equation (1)
see for instance [7, 33].

The collision kernel is given by B(|v− v∗|, n · σ) and it can be obtained from an analysis
of the binary collisions of the gas molecules. For instance, power-law potentials 1/rq−1 with
q > 2 lead to (see e.g. [7, Section II.5])

B(|v − v∗|, n · σ) = |v − v∗|γ b(n · σ), γ = (q − 5)/(q − 1), (2)

where b : [−1, 1)→ [0,∞) has a non-integrable singularity of the form

sin θ b(cos θ) ∼ θ−1−2/(q−1), as θ → 0, (3)

where cos θ = n ·σ , with θ being the deviation angle. It is customary to classify the collision
kernels according to their homogeneity γ with respect to |v−v∗|. There are three cases: hard
potentials (γ > 0), Maxwell molecules (γ = 0) and soft potentials (γ < 0). In this paper,
we consider the case of Maxwell molecules, hence B does not depend on |v − v∗|, cf. (2).
This corresponds to q = 5 for power-law interactions.

Collision kernels with an angular singularity of the form (3) are called non-cutoff kernels.
When γ = 0, one refers to non-cutoff or trueMaxwell molecules. This singularity reflects the
fact that for power-law interactions the average number of grazing collisions, i.e. collisions
with v ≈ v′, diverges. In kinetic theory the Boltzmann equation has often been studied
assuming that the collision kernel B is integrable in the angular variable (Grad’s cutoff
assumption), since the mathematical analysis is usually simpler.

In this paper, we analyze a particular class of solutions to (1) namely the so-called homoen-
ergetic solutions, which have been studied in particular in [5, 20] in the case of cutoffMaxwell
molecules. We show that the results obtain in their papers extend to non-cutoff Maxwell
molecules.

1.1 Homoenergetic Solutions and Existing Results

Our study concerns solutions to (1) of the form

f (t, x, v) = g(t, v − L(t)x), w = v − L(t)x, (4)

for L(t) ∈ R
3×3 and a function g = g(t, w) : [0,∞) × R

3 → [0,∞) to be determined.
One can check that solutions to (1) of the form (4) for large classes of functions g exist if
and only if g and L satisfy

∂t g − L(t)w · ∇wg = Q(g, g),
d

dt
L(t)+ L(t)2 = 0. (5)
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The second equation allows the reduction to the variablew. In particular, the collision operator
acts on g through the variable w. The second equation can be solved explicitly L(t) =
L(0)(I + t L(0))−1. Note that the inverse matrix might not be defined for all times, although
this situation will not be considered here.

Solutions to (5) are called homoenergetic solutions and were introduced by Truesdell [30]
and Galkin [15]. They studied their properties via moment equations in the case of Maxwell
molecules. As is known since the work by Truesdell andMuncaster [31], it is possible to write
a closed systems of ordinary differential equations for the moments up to any arbitrary order
for such interactions. This allows to derive properties about the solution to (5). In particular,
this approach has been applied in [15–17, 30]. More recently, this method has also been used
in [18] (and references therein) in order to obtain information on homoenergetic solutions
to the Boltzmann equation, as well as other kinetic models like BGK. The case of mixtures
of gases has been studied there as well. The well-posedness of (5) for a large class of initial
data, was proved by Cercignani [8]. Furthermore, the shear flow of a granular material for
Maxwell molecules was studied in [9, 10].

A systematic analysis of the longtime behavior of solutions to (5) for kernels with arbitrary
homogeneities has been undertaken in [5, 19–21]. In [19] they discussed the case of dominant
collision term, see also [22]. Furthermore, they proved the existence of a class of self-similar
solutions in the case of cutoff Maxwell molecules in [20]. The uniqueness and stability of
these self-similar solutions have been proved in [5] and the regularity has been obtained in
[13]. Homoenergetic solutions for the two-dimensional Boltzmann equation with hard sphere
interactions, as well as for a class of Fokker-Planck equations have been studied in [24].

It is worth mentioning that homoenergetic solutions to (1) can be interpreted in a wider
framework introduced in [11, 12]. There the authors studied a formulation of the molecular
dynamics of many interacting particle systems with symmetries. In particular, if the particles
of the system of molecules of a gas interact by means of binary collisions one obtains the
functional form (4) for the particle distribution.

In this paper, we extensively use the Fourier transform method, which was introduced by
Bobylev [2, 3] to study the homogeneous Boltzmann equation for Maxwell gases. This
method has also been applied in [5] for homoenergetic solutions with cutoff Maxwell
molecules.

Themain contribution of this paper is to adapt the techniques in [5, 20] andwell established
methods for the non-cutoff Boltzmann equation to extend the results to the case of non-cutoff
Maxwell molecules. The main difficulty is the singular behavior of the collision kernel (3).

1.2 Overview andMain Results

Notation. We denote by P(R3) the set of Borel probability measures on R
3 and by

Pp(R
3) ⊂ P(R3) the set of those which have finite moments of order p, i.e. μ ∈ Pp

if

‖μ‖p =
∫
R3
|v|pμ(dv) <∞.

The action of μ ∈ P on a test function ψ via integration is abbreviated by 〈ψ,μ〉. The
Fourier transform or characteristic function of a probability measure μ ∈P is defined by

ϕ(k) = F [μ](k) =
∫
R3

e−ik·xdμ(x).
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We denote by Fp the set of all characteristic functions of probability measures μ ∈ Pp .
Furthermore, we writeψ ∈ Ck for k-times continuously differentiable functions andψ ∈ Ck

b
if the standard norm ‖ψ‖Ck is finite.

We also use the notation 〈k〉 := √1+ |k|2 and denote the space of functions h : R3 → R

such that 〈k〉m h(k) ∈ L2(R3) by L2
m(R3). For matrices A ∈ R

3×3 we use the matrix norm
‖A‖ =∑i j |Ai j |. Finally, IB is the indicator function for some set B.
Assumption on the kernel. We consider non-cutoff Maxwell molecules, i.e. the collision
kernel has the form B = b(n · σ) = b(cos θ). The function b : [−1, 1) → [0,∞) is
measurable, locally bounded and has the angular singularity

sin θb(cos θ)θ1+2s → Kb > 0, as θ → 0 (6)

for some s ∈ (0, 1) and Kb > 0. This implies

� =
∫ π

0
sin θ b(cos θ) θ2dθ <∞. (7)

In particular, this covers inverse power-law interactions with q = 5, cf. (2) and (3).
Main result. In our study we consider the following modified Boltzmann equation, which is
a variant of equation (5),

∂t f = div(Av f )+ Q( f , f ), f (0, ·) = f0(·). (8)

In contrast to the previous equation, A ∈ R
3×3 is a time-independent matrix. However, the

study of solutions to (5) can be reduced to this situation using a change of variables and
perturbation arguments, see Sect. 4. We work with weak solutions with finite energy.

Definition 1.1 A family of probabilitymeasures ( ft )t≥0 ⊂Pp with p ≥ 2 is a weak solution
to (8) if for all ψ ∈ C2

b and all 0 ≤ t <∞ it holds

〈ψ, ft 〉 = 〈ψ, f0〉 −
∫ t

0
〈Av · ∇ψ, fr 〉 dr

+ 1

2

∫ t

0

∫
R3×R3

∫
S2
b(n · σ)

{
ψ ′∗ + ψ ′ − ψ∗ − ψ

}
dσ fr (dv) fr (dv∗)dr .

(9)

Here, we also assume that the integrands in the time integrals are measurable with respect to
the time variable.

Above we abbreviated ψ ′∗ = ψ(v′∗), etc. This formulation is motivated by testing (8) with ψ

and applying the usual pre-postcollisional change of variables (v, v∗)↔ (v′, v′∗) as well as
v ↔ v∗. See also e.g. [20, 23] concerning the above definition. For brevity wewill sometimes
denote the term involving the collision operator 〈ψ, Q( fr , fr )〉. Note that this is well-defined
due to the moment assumption ft ∈ Pp , p ≥ 2, in conjunction with the estimate (see e.g.
[23, 32])
∣∣∣∣
∫
S2
b(n · σ)

{
ψ ′∗ + ψ ′ − ψ∗ − ψ

}
dσ

∣∣∣∣ ≤ 2π�

(
max

|ξ |≤
√
|v|2+|v∗|2

|D2ψ(ξ)|
)
|v − v∗|2.

(10)

Using this and an approximation one can also use test functions ψ ∈ C2, which satisfy the
condition |D2ψ(v)| ≤ C(1+ |v|p−2), in the weak formulation.

Let us mention that one can always consider, without loss of generality, the case of van-
ishing momentum/mean

∫
R3 v f0(dv) = 0. To get a solution F with initial mean U ∈ R

3
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from ft , one defines F(t, v) = ft (v − et AU ) interpreted as a push-forward. However, as
we will see, solutions with initial condition different from a Dirac measure are smooth for
positive times due to the regularizing effect of the angular singularity.

Let us also define the following Fourier-based metric on probability measures.

Definition 1.2 For two probability measures μ, ν ∈Pp with finite moments of order p ≥ 2
we define a distance using the Fourier transforms ϕ = F [μ], ψ = F [ν] via

d2(μ, ν) := sup
k

|ϕ(k)− ψ(k)|
|k|2 .

Note that d2(μ, ν) < ∞ is finite if μ, ν have equal first moments. We sometimes write
d2(ϕ, ψ).

Theorem 1.3 Consider the equation (8). Let 2 < p ≤ 4. There is a constant ε0 = ε0(p, b) >

0 such that if ‖A‖ ≤ ε0, the following holds.

(i) There is β̄ = β̄(A) and fst ∈Pp so that (8) has a self-similar solution

f (v, t) = e−3β̄t fst
(

v − e−t AU
eβ̄t

)
, U ∈ R

3,

where fst has moments∫
R3

v fst (dv) = 0,
∫
R3

viv j fst (dv) = K N̄i j .

Here, K ≥ 0 and N̄ = N̄ (A) ∈ R
3×3 is a uniquely given positive definite, symmetric

matrix with
∥∥N̄∥∥ = 1. For K = 0, we have fst = δ0, a Dirac measure in zero.

Furthermore, when K > 0 the self-similar solutions are smooth

f (t, ·) ∈ L1(R3) ∩
⋂
k∈N

Hk(R3).

(ii) Let ( ft )t ⊂Pp be a weak solution to (8) with initial condition f0 ∈Pp and

U =
∫
R3

v f0(dv).

Then there is α = α( f0) ∈ R, C = C( f0, p) > 0, θ = θ(ε0) > 0 such that the
rescaled function

f̃ (t, v) := e3β̄t f
(
eβ̄tv + e−AtU , t

)

satisfies

d2
(
f̃ (t, ·), fst (t, ·)

)
≤ Ce−θ t ,

where fst is given in (i) with second moments α2 N̄ , K = α2. In particular, the self-
similar solution in (i) is unique for given K ≥ 0.

(iii) In addition, for all M ∈ N, M ≥ 3 there is εM ≤ ε0 such that the self-similar solution
from (i) has finite moments of order M if ‖A‖ ≤ εM.
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Remark 1.4 Note that fst in (i) solves

div((A + β)v fst )+ Q( fst , fst ) = 0, β = β̄(A). (11)

Furthermore, N̄ is a stationary solution to the second order moment equations (b̄ ∈ R

depending only on the collision kernel, see Lemma 3.2)

2β̄ N̄ − AN̄ − (AN̄ )� − 2b̄

(
N̄ − tr (N̄ )

3
I

)
= 0.

As we will see, β̄ = β̄(A) is chosen such that 2β̄ ∈ R is the simple eigenvalue with largest
real part. The corresponding eigenvector is given by N̄ = N̄ (A).

The uniqueness result in (i i) can nowbe formulated in amore preciseway: within the class
of probability measures Pp , p > 2, there is a unique solution fst ∈ Pp to the stationary
equation (11) with β = β̄(A) having moments

∫
R3

v fst (dv) = 0,
∫
R3

viv j fst (dv) = N̄i j .

Since fst (K−1/2v)K−3/2 solves (11) and has second moments K N̄i j , K > 0, it is the
respective self-similar profile in (i). For K = 0 this is a Dirac in zero.

Remark 1.5 The above theorem is similar to the results in [5, 20], where cutoff Maxwell
molecules have been considered. A comparison with Theorem 1.3, which covers the non-
cutoff case, shows that all results hold true under the same assumptions. Here, the smoothness
statement in (i) is a consequence of the regularizing effect of the non-cutoff collision kernel,
in contrast to the cutoff case [13], where this has been obtained in a perturbative framework
close to a Maxwellian.

Remark 1.6 Regarding part (i i i) in Theorem 1.3 it might be that for small but fixed A �= 0
the self-similar solutions do not have finite moments of arbitrary order, but that they have
power-law tails. For shear flow this is suggested by numerical experiments, see [18].

Let us also mention that the smallness of ‖A‖ is crucial for our perturbation arguments.
The precise behavior of solutions to (8) for large values of A remains open (see also Remark
4.2).

The paper is organized in the following way. In Sect. 2 we discuss the well-posedness theory
of equation (8) and in Sect. 3 the proof of Theorem 1.3. Finally, in Sect. 4 we study the
self-similar asymptotics of homoenergetic solution in the case of simple and planar shear.

2 Well-Posedness of theModified Boltzmann Equation

The following result summarizes the well-posedness theory of equation (8), needed in our
study. The assumption p > 2 can be relaxed, however we only need this case in the sequel.

Proposition 2.1 Under our general assumptions, the following statements hold.

(i) For all f0 ∈ Pp, p > 2, there is a weak measure-valued solution ( ft )t ⊂ Pp to (8).
In addition, every weak solution has the property t �→ 〈ψ, ft 〉 ∈ C1([0,∞);R) for all
test functions ψ ∈ C2 with

∥∥D2ψ
∥∥∞ <∞.
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(ii) For two weak solutions ( ft )t , (gt )t ⊂ Pp to (8), p > 2, such that f0, g0 have equal
first moments, it holds

d2( ft , gt ) ≤ e2‖A‖t d2( f0, g0). (12)

In particular, solutions are unique.
(iii) If the initial datum f0 ∈ Pp, p > 2, is not a Dirac measure, the solution is smooth,

i.e. for t > 0

f (t, ·) ∈ L1(R3) ∩
⋂
k∈N

Hk(R3).

Remark 2.2 The setting of measure-valued solutions was also used in [20] for homoenergetic
solutions. Measure-valued solutions to the homogeneous Boltzmann equation (A = 0 in (8))
were considered in e.g. [23, 27] for both hard and soft potentials with homogeneity γ ≥ −2.
In [27] solutions with infinite energies are studied as well, see also [6, 26] for the case of
Maxwell molecules.

The metric in Definition 1.2 is also termed Toscani metric and appeared first in [14] for
the study of convergence to equilibrium of the homogeneous Boltzmann equation with true
Maxwell molecules. Furthermore, it was used to prove uniqueness of respective solutions in
[29], by showing that solutions are contractive w.r.t. d2. Inequality (12) is the extension of
this Lipschitzianity to homoenergetic solutions.

A key ingredient in the proof of Theorem 1.3 is the following comparison principle between
solutions to (8). A similar result was used in [5, Section 5].

Proposition 2.3 Consider two weak solutions ( ft )t , (gt )t ⊂ Pp, p > 2, to (8) with zero
momentum. Let ϕ, ψ ∈ C([0,∞);Fp) be the corresponding Fourier transforms. Suppose
that

|ϕ0(k)− ψ0(k)| ≤ C1|k|p + C2|k|2, ∀k ∈ R
3.

Then, we have for all t ≥ 0 and k ∈ R
3

|ϕt (k)− ψt (k)| ≤ C1e
−(λ(p)−p‖A‖)t |k|p + C2e

2‖A‖t |k|2.
Here, λ(p) > 0 is defined in Lemma 2.5 and depends only on the collision kernel.

In the proof of both propositions we use an approximation by the cutoff problem. To this end,
let us introduce an arbitrary cutoff sequence bn : [−1, 1)→ [0,∞), bn �≡ 0, with bn ↗ b,
‖bn‖∞ <∞, e.g. bn := min(b, n) and denote the corresponding collision operators by Qn .
Furthermore, let �n ≤ � be the corresponding constant as defined in (7) with bn replacing
b.

Let us mention that (12) follows from Proposition 2.3 for C1 = 0. However, in the proof
we rely on the uniqueness of solutions due to our approximation procedure.

Proof of Proposition 2.1. (i). The proof follows well-known methods for the homogeneous
Boltzmann equation (i.e. A = 0). We only give the essential arguments.

First of all, for all f0 ∈Pp , p > 2 one can prove the existence of a unique weak solution
( f nt )t ∈ C([0,∞);Pp) of the corresponding cutoff equation with collision kernel bn using
e.g. semigroup theory [20, Section 4.1].

To get a solution to the non-cutoff equation on [0, T ]weuse aweak compactness argument,
see e.g. [23]. One can obtain the a priori bound

∥∥ f nt
∥∥
p ≤ CeC(p,A)T ‖ f0‖p via a Gronwall

argument, which yields tightness of the sequence ( f nt )n for all t ∈ [0, T ]. Furthermore,
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the a priori bound and the weak formulation (9) imply the following continuity property
independent of n ∈ N: for any test functionψ ∈ C2 with

∥∥D2ψ
∥∥
C2 <∞ and 0 ≤ s < t ≤ T

∣∣〈ψ, f nt
〉− 〈ψ, f ns

〉∣∣ ≤ (t − s)C
(
T ,
∥∥D2ψ

∥∥∞ , A,�
) ‖ f0‖2 .

Hence, we conclude that there is aweakly converging subsequence f nkt ⇀ ft for all t ∈ [0, T ].
We pass to the limit in the weak formulation as in [23, Section 4].

Finally, the stated regularity property t �→ 〈ψ, ft 〉 ∈ C1 follows from the weak formula-
tion. ��

We give a proof of part (ii) of Proposition 2.1 and Proposition 2.3 in the next subsection
using the Fourier transform method. Part (iii) of Proposition 2.1 is proved in Sect. 2.2.

2.1 TheModified Boltzmann Equation in Fourier Space

We reformulate the problem (8) via the Fourier transform. Consider a weak solution ( ft )t ⊂
Pp , p > 2 and its Fourier transform ϕt (k) = F [ ft ](k). For a fixed k ∈ R

3, we use
ψ(v) = e−ik·v as a test function in the weak formulation of (8) yielding

∂tϕt (k)+ A�k · ∇ϕt (k) = Q̂(ϕt , ϕt )(k). (13)

Note that part (i) in Proposition 2.1 implies that t �→ ϕt (k) ∈ C1 for any k ∈ R
3. The last

term in (13) corresponds to the collision operator, which has the form (Bobylev’s formula
[2, 3])

Q̂(ϕ, ϕ)(k) =
∫
S2
b(k̂ · σ) {ϕ(k+)ϕ(k−)− ϕ(k)ϕ(0)} dσ,

where k± = (k ± |k|σ)/2, k̂ = k/|k|. Let us write Q̂n for the Fourier representation of the
collision operator corresponding to a cutoff sequence 0 ≤ bn ↗ b. We will often consider a
decomposition of it in a gain and loss term

Q̂+n (ϕ, ϕ)(k) =
∫
S2
bn(k̂ · σ)ϕ(k+)ϕ(k−)dσ, Q̂−n (ϕ, ϕ)(k) = Snϕ(k).

In the last equation, we used ϕ(0) = 1 for characteristic functions and the constant

Sn :=
∫
S2
bn(e · σ)dσ, e ∈ S2. (14)

Observe that the integral does not depend on e ∈ S2 by rotational invariance. This integral
measures the average number of collisions and, since b is singular, we have Sn ↗ +∞ as
n→∞.

Finally, let us recall the following property of characteristic functions.

Lemma 2.4 Consider μ ∈ Pp, p > 0, then its characteristic function satisfies ϕ ∈
C�p�,p−�p�b if p /∈ N and ϕ ∈ C p

b if p ∈ N. Furthermore, ‖ϕ‖C ≤ 1 and ϕ(k) = ϕ(−k).

2.1.1 Linearization and Lipschitz Property of the Gain Term

For the Fourier transform of the cutoff operator Q̂n we introduce the linearization of Q̂+n
defined by

Ln(ϕ)(k) =
∫
S2
bn(k̂ · σ)(ϕ(k+)+ ϕ(k−))dσ, (15)
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where ϕ ∈ Cb, say. The following lemma can be proved as in [5, Theorem 5.8].

Lemma 2.5 Let us define

wp(s) :=1−
(
1+ s

2

)p/2

−
(
1− s

2

)p/2

,

λn(p) :=
∫
S2
bn(e · σ)wp(e · σ)dσ, λ(p) :=

∫
S2
b(e · σ)wp(e · σ)dσ.

(16)

Then, λ(p) is well-defined for p ≥ 2 and λn(p) → λ(p). Furthermore, λ(p) is strictly
increasing w.r.t. p ≥ 2. In particular, we have λ(p) > λ(2) = 0 for p > 2.

Remark 2.6 We remark that |k|p , p > 0, can be interpreted as an eigenfunction of the operator
(Ln − Sn I ) w.r.t. the eigenvalue −λn(p), since we have

(Ln − Sn I )|k|p = −λn(p)|k|p.
The following result is an adaptation of [5, Lemma 3.1], where we made the dependence on
the constant Sn explicit. Such an estimate was termed L -Lipschitz in [4, Definition 3.1].

Lemma 2.7 Consider two characteristic functions ϕ,ψ ∈ Fp, p ≥ 2, and a cutoff sequence
bn ↗ b. Then, we have with ϕ = F [ f ], ψ = F [g]

|Q̂+n (ϕ, ϕ)− Q̂+n (ψ,ψ)|(k) ≤ Ln(|ϕ − ψ |)(k) ≤ Snd2( f , g)|k|2. (17)

Proof The first inequality follows from

|ϕ(k+)ϕ(k−)− ψ(k+)ψ(k−)| ≤ |ϕ(k+)− ψ(k+)| + |ϕ(k−)− ψ(k−)|
The second one is a consequence of a straightforward estimation and |k+|2 + |k−|2 = |k|2.

��

2.1.2 Uniqueness of Weak Solutions

We turn to the proof of part (ii) of Proposition 2.1. The argument is similar to the ones for
the homogeneous Boltzmann equation in [29]. We only give the essential steps.

Proof of Proposition 2.1. (ii). Let ( ft )t , (gt )t be two weak solutions and ϕt (k) = F [ ft ](k),
ψt (k) = F [gt ](k) be the corresponding Fourier transforms. Assuming d2( f0, g0) < ∞, it
follows that the first moments are equal initially and hence for all times. As a consequence
d2( ft , gt ) < ∞ for all t ≥ 0. Using a priori bounds of the moments of order p ≥ 2 we get
for t ∈ [0, T ], T > 0 arbitrary but fixed,

Rn(t, k) := 1

|k|2 |(Q̂ − Q̂n)(ϕt , ϕt )− (Q̂ − Q̂n)(ψt , ψt )|(k) ≤ C(T )rn .

Here rn = �−�n → 0 as n→∞.
Let us abbreviate Et = et A

�
. A calculation shows that for k �= 0

d

dt

[
eSnt (ϕt − ψt )(Etk)

|Etk|2
]
=2 〈AEtk, Etk〉

|Etk|2
eSnt (ϕt − ψt )(Etk)

|Etk|2

+ eSnt

|Etk|2
[
Q̂+n (ϕt , ϕt )(Etk)− Q̂+n (ψt , ψt )(Etk)

]
+ eSnt Rn .
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Here, we used a splitting of Q̂n into gain and loss part. We estimate this term by term,
in particular using (17) in Lemma 2.7 for the gain term. Abbreviating ht (k) := (ϕ −
ψ)(t, et Ak)/|et Ak|2 and applying Gronwall’s lemma yields

eSnt ‖ht‖∞ ≤ ‖h0‖∞ e[2‖A‖+Sn]t + C(T )rn

∫ t

0
eSnr e[2‖A‖+Sn](t−r)dr . (18)

We divide by eSnt and let n→∞. This concludes the proof since ‖ht‖∞ = d2( ft , gt ). ��

2.1.3 Comparison Principle in Fourier Space

For the proof of Proposition 2.3 we consider the linearization of the cutoff equation given by

∂tϕ + A�k · ∇ϕ = (Ln − Sn I )(ϕ)(k), ϕ(0, ·) = ϕ0(·). (19)

Recall that Ln , Sn are defined in (15) and (14), respectively. As in [5], one can see that the
operator Ln : Cp → Cp is bounded, where

Cp(R
3) :=

{
ϕ ∈ C(R3) : ‖ϕ‖Cp

:= sup
k
|ϕ(k)|/(1+ |k|p) <∞

}

for p ≥ 2. Hence, the equation (19) defines a semigroup Pn
t : Cp → Cp .

In the non-cutoff case, the linear semigroup Pn
t is in general not well-defined for arbitrary

functions u0 as n→∞. However, the term (Ln − Sn)u still makes sense for n→∞ when
u satisfies u(0) = 0 and u ∈ C2

b . Let us hence define un,p ∈ Cp via

un,p(k, t) := |k|p exp(−(λn(p)− p ‖A‖)t),
where λn(p) is given in (16).

Proof of Proposition 2.3 We approximate ϕ, ψ by solutions ϕn, ψn ∈ C([0,∞);Fp) to
equation (13) with cutoff kernel 0 ≤ bn and initial datum ϕ0 resp. ψ0. Let us defineU (k) :=
C1|k|p + C2|k|2.

We can write in mild form

ϕn
t (k)− ψn

t (k) = ϕ0(k)− ψ0(k)

+
∫ t

0
e−(t−r)(Sn+A�k·∇)

[
Q̂+n (ϕn

r , ϕn
r )− Q̂+n (ψn

r , ψn
r )
]
(k)dr .

Here, we used the semigroup notation e−t A�k·∇ϕ(k) = ϕ(e−t A�k). Set vnt (k) := ϕn
t (k) −

ψn
t (k) and estimate using the L -Lipschitz property in Lemma 2.7 to get

|vnt (k)| ≤ |v0(k)| +
∫ t

0
e−(t−r)(Sn+A�k·∇)Ln(|vnr |)(k)dr .

A comparison principle for the linear equation implies |vnt (k)| ≤ Pn
t [|v0|](k). Since Ln

is positivity preserving, one can conclude that Pn
t is monotonicity preserving. Hence,

Pn
t [|v0|](k) ≤ Pn

t [U ](k) due to our assumption |v0| ≤ U .
Now, we estimate Pn

t [U ]. It is straightforward to prove

un,p(k, t) ≥ e−t(Sn+A�k·∇)|k|p +
∫ t

0
e−(t−r)(Sn+A�k·∇)Ln(un,p(·, r))dr .
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A comparison principle for the linear equation yields

Pn
t [| · |p](k) ≤ un,p(t, k)

and we infer

Pn
t

[
U
]
(k) ≤ C1un,p(t, k)+ C2un,2(t, k).

We combining all estimates to get

|ϕn
t (k)− ψn

t (k)| ≤ C1un,p(t, k)+ C2un,2(t, k).

Since weak convergence implies pointwise convergence of the characteristic function, we
can pass to the limit in the preceding inequality. Recall also λn(p) → λ(p) from Lemma
2.5. ��

2.2 Regularity ofWeak Solutions

We finally prove the regularity result in Proposition 2.1 (iii). We sketch the arguments fol-
lowing [28], which covers the homogeneous Boltzmann equation, i.e. A = 0.

Proof of Proposition 2.1. (iii). Let (ψt )t be the Fourier transform of a weak solution ( ft )t ⊂
P2.

Step 1. Let us first state a coercivity estimate analogous to the one in [28, Lemma 1.4]. As
in the original work, the non-cutoff assumption (6) is essential as well as the assumption that
f0 differs from a Dirac. There is T0 > 0 and a constant C > 0, both depending on f0 ∈P2,
such that for all h ∈ L2

2(R
3) and all t ∈ [0, T0]

t
∫
R3
〈ξ 〉2s |h(ξ)|2dξ

≤ C

{∫
R3

∫
S2
b(ξ̂ · σ)(1− |ψ(t, ξ−)|)dσ |h(ξ)|2 dξ +

∫
R3
|h(ξ)|2 dξ

}
. (20)

The constant s ∈ (0, 1) is given in (6).
The proof of this estimate in [28] still works in our case, since in most arguments only

the continuity of ψ and ∂tψ is used. Only in the case when f0 is supported on a straight
line, the equation (13) is used. However, the same arguments can be applied to the function
ψ(t, e−A�tξ) along the characteristics of the drift term. Since t ≤ T0 is chosen sufficiently
small, e−A�t is close to the identity and the original line of reasoning works.

Step 2. As in [28, Proof of Thm. 1.3] we prove smoothness of the solutions for 0 < t ≤
T0/2. To this end, we test equation (13) with M2

δ ψ , where

Mδ(t, ξ) := 〈ξ 〉Nt2−4 〈δξ 〉−NT 2
0 −4 , N ∈ N.

Here, N is chosen large enough such that Mδψ ∈ L2
2 for t ≤ T0/2. We use straightforward

estimates for the drift term and bounds from the original proof in [28], which rely on (20),
to get

d

dt

∫
R3
|Mδ(t, ξ)ψ(t, ξ)|2 dξ ≤ C(T0, A)

∫
R3
|Mδ(t, ξ) ψ(t, ξ)|2dξ

+ t
∫
R3

[
4N log 〈ξ 〉 − C2 〈ξ 〉2s

] |Mδ(t, ξ) ψ(t, ξ)|2dξ.
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Since 〈ξ 〉2s / log 〈ξ 〉 → ∞ as |ξ | → ∞, the last term on the right can be absorbed in the first
term. Using Gronwall’s lemma and letting δ→ 0 one obtains∫

R3
| 〈ξ 〉Nt2−4 ψ(t, ξ)|2 dξ ≤ C

∫
R3
| 〈ξ 〉−4 ψ0(ξ)|2 dξ.

Since this holds for all N ∈ N, we have f (t, ·) ∈⋂k∈N Hk(R3) for 0 < t ≤ T0/2.
Step 3. Here, we extend the smoothness to times t ≥ T0/2. By the smoothness we infer

that ft0 has finite entropy for t0 ∈ (0, T0/2), i.e.

H( ft0) :=
∫
R3

f (t0, v) log f (t0, v) dv <∞.

An a priori estimation yields for some arbitrary but fixed time T ′ > t0

H( ft ) ≤ H( ft0)+ C(T ′, A), t ∈ [t0, T ′].
To make this rigorous, we use a construction of weak solutions in L1

2 with finite entropy
initiating from ft0 . Here, L

1
2 is the weighted L1-space with weight (1+|v|2). Let us mention

that this was done in [8] in the case of homoenergetic solutions for cutoff kernels. Using weak
L1-compactness arguments, following from the Dunford-Pettis theorem, yields solutions for
the non-cutoff problem. See e.g. [32, Section 4] for such a construction in the case of the
homogeneous Boltzmann equation. These solutions are unique by Proposition 2.1.

As was noticed in [28], using the result [1, Lemma 3], the estimate (20) holds nowwithout
the condition of small times. Thus, as above we get f (t, ·) ∈⋂k∈N Hk(R3) for t ≥ t0. ��

3 Self-similar Solutions and Self-similar Asymptotics

In this section, we give the proof of Theorem 1.3. Let us briefly summarize the strategy, which
is partly guided by [5, 20].We first study the linear equations satisfied by the secondmoments
of a solution. Here, we use perturbation arguments to gain information of the eigenvalues
and eigenvectors. Then, the existence of self-similar solutions follows from a fixed point
argument.

The convergence to the self-similar solution in Theorem 1.3 (ii), is a consequence of the
comparison principle in Proposition 2.3 and a longtime analysis of the second moments.

Finally, Theorem 1.3 (iii), is a result of successive application of the Povzner estimate.

3.1 Existence of Self-similar Solutions

Let us recall the following version of the Povzner estimate due to Mischler and Wennberg
[25, Section 2]. As was noticed e.g. in [32, Appendix], their calculation also works in the
non-cutoff case.

Lemma 3.1 Let ϕ(v) = |v|2+δ for δ > 0. Then we have the following decomposition∫
S2
b(n · σ)

{
ϕ′∗ + ϕ′ − ϕ∗ − ϕ

}
dσ = G(v, v∗)− H(v, v∗)

with G, H satisfying

G(v, v∗) ≤ C�(|v||v∗|)1+δ/2, H(v, v∗) ≥ c�(|v|2+δ + |v∗|2+δ)
(
1− I{|v|/2<|v∗|<2|v|}

)
.

(21)
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Hence, for any f ∈Pp, with 2 < p ≤ 4, p = 2+ δ we have for some C ′, c′ > 0∫
R3×R3

(G(v, v∗)− H(v, v∗)) f (dv) f (dv∗) ≤ C ′� ‖ f ‖22 − c′� ‖ f ‖p . (22)

Proof The definition and estimates for G, H can be found in [25, Section 2], see also [32,
Appendix]. To derive (22) note that δ = p − 2 ≤ 2, thus 1 + δ/2 ≤ 2. We conclude by
applying (21) and

(|v|2+δ + |v∗|2+δ)I{|v|/2<|v∗|<2|v|} ≤ 8(|v||v∗|)1+δ/2.

��
The following result follows by choosing ϕ jk(v) = v jvk in the weak formulation (9), recall-
ing that t �→ 〈

ϕ jk, ft
〉
is continuously differentiable, see [20, Prop. 4.10] or [5, Section 6].

Lemma 3.2 The second moments M jk(t) :=
〈
v jvk, ft

〉
of a solution to (8) satisfy the equa-

tions

dMt

dt
= −AMt − (AMt )

� − 2b̄

(
Mt − tr (Mt )

3
I

)
=: A(b̄, A)Mt (23)

with the constant

b̄ = 3π

4

∫ π

0
b(cos θ) sin3 θdθ. (24)

Here, the linear operator A(b̄, A) : R3×3
sym → R

3×3
sym acts on symmetric 3 × 3 matrices. As

noticed in Remark 1.4, a self-similar solution fst is a steady state of the equation (8) with A
replaced by A+ β̄ I . Hence, as in the cutoff case [20, Lemma 4.16], we study the linear map
A(b̄, A + β I ) = A(b̄, A)− 2β I .

Lemma 3.3 Consider the linear operator A(b̄, A) from Lemma 3.2. There is a sufficiently
small constant ε0 = ε0(b) > 0 such that for all A ∈ R

3 with ‖A‖ ≤ ε0 the following holds.

(i) The eigenvalue 2β̄ > 0, β̄ = β̄(b̄, A), with largest real part is unique and simple. One
can uniquely choose a corresponding eigenvector N̄ = N̄ (b̄, A) ∈ R

3×3
sym with ‖N‖ = 1

which is positive definite.
(ii) The nonzero eigenvalues ofA(b̄, A)−2β̄ I have real part less than−ν, for some ν > 0.
(iii) In addition, there is c0 > 0 such that |β̄(b̄, A)| ≤ c0ε0.

Proof This is a perturbation argument noting thatA(b̄, A) : R3×3
sym → R

3×3
sym depends smoothly

on A. For A = 0 there are the eigenvalues λ1 = 0 and λ2 = −2b̄ with a one-dimensional
subspace of eigenvectors given by M = K I , K ∈ R, respectively, a five-dimensional
subspace of eigenvectors defined by {tr (M) = 0}. The statement now follows by continuity
results for eigenvalues when ‖A‖ is small. We choose 2β̄(b̄, A) to be the eigenvalue close to
λ1 = 0 and let N̄ (b̄, A) ∈ R

3×3
sym be the corresponding normalized eigenvector close to I .

��
In the fixed point argument compactness is a consequence of the following estimate.

Lemma 3.4 Consider a weak solution ( ft )t ∈ C([0,∞);Pp) to (8), 2 < p ≤ 4, with matrix
A replaced by A + β̄ I . Assume that ‖A‖ ≤ ε0 with ε0 > 0 from Lemma 3.3 and that the
initial condition has zero mean as well as second moment K N̄ . Then, we have for all t ≥ 0∫

R3
v ft (dv) = 0,

∫
R3

viv j ft (dv) = K N̄i j . (25)
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Furthermore, by decreasing ε0 = ε0(b, p) > 0, if necessary, there is C∗ = C∗(K ) such that
for all t ≥ 0

‖ f0‖p ≤ C∗ �⇒ ‖ ft‖p ≤ C∗.

Proof As was mentioned already in the introduction, the first moment remains zero for all
times. Since N̄ is a stationary solution to the equation (23), we obtain (25). For the final
statement, we use the Povzner estimate from Lemma 3.1

d

dt
‖ ft‖p =

d

dt

〈|v|p, ft
〉 ≤ p

∥∥A + β̄ I
∥∥ ‖ ft‖p + C ′� ‖ fr‖22 − c′� ‖ ft‖p

≤ [pε0(1+ c0)− c′�
] ‖ ft‖p + C ′�K 2.

For ε0 sufficiently small we have δ := c′� − pε0(1 + c0) > 0 and hence from a Gronwall
type argument, in conjunction with ‖ f0‖p ≤ C∗,

‖ ft‖p ≤ C∗e−δt + C ′�K 2

δ
= C∗ +

(
1− e−δt ) (C ′�K 2

δ
− C∗

)

We conclude by choosing C∗ = C∗(K ) sufficiently large. ��
For convenience let us recall the following fact concerning the topology induced by themetric
d2, see e.g. [29, Lemma 1, Lemma 2].

Lemma 3.5 Define De ⊂P2 by

De =
{
f ∈P2 :

∫
v f (dv) = 0,

∫
|v|2 f (dv) = e

}
, e ≥ 0.

Consider f n, f ∈P2 for n ∈ N. Then, the following statements are equivalent:

(i) fn, f ∈ De and f n⇀ f weakly, i.e. 〈ψ, f n〉 → 〈ψ, f 〉 as n→∞ for all ψ ∈ Cb;
(ii) d2( fn, f )→ 0 as n→∞.

Proof of Theorem 1.3. (i) We use similar arguments as in [20, Section 4.3]. Let us define the
set U ⊂Pp , 2 < p ≤ 4, consisting of measures f ∈Pp with∫

R3
v f (dv) = 0,

∫
R3

viv j f (dv) = K N̄i j , ‖ f ‖p ≤ C∗.

Here, N̄ is given in Lemma 3.3 and we assume that ‖A‖ ≤ ε0 as in Lemmas 3.3, 3.4. Note
that U is a convex, compact subset of the space M f (R

3) of signed Radon measures on R
3

with finite total variation, equipped with the weak-∗ topology. With this topology M f (R
3)

is a locally convex space. Note that weak convergence within U implies convergence w.r.t.
the metric d2 by Lemma 3.5.

Let us define the nonlinear semigroup St : Pp → Pp mapping any f0 to ft , where
( ft )t is the unique solution to the equation (8) with matrix A + β̄ I replacing A and initial
condition f0. By Lemma 3.4 we haveSt : U → U . Furthermore, f �→ St f is continuous
on U for each t ≥ 0, as follows from (12). We can now apply Schauder’s fixed point
theorem to S1/n : U → U yielding a fixed point f nst . By compactness of U we have for a
subsequence f nkst → fst as k → ∞. As a consequence of the semigroup property, it holds
Sm/nk f

nk
st = f nkst for any k,m ∈ N.

Now, let t ≥ 0 be arbitrary. We can find a sequence of integers mk ∈ N with mk/nk → t
as k →∞ and write

fst = lim
k→∞ f nkst = lim

k→∞Smk/nk f
nk
st = St fst .

123



Self-similar Profiles for Homoenergetic Solutions... Page 15 of 22 27

To verify the last equality, we use (12) and estimate

d2
(
Smk/nk f

nk
st ,St fst

) ≤ d2
(
Smk/nk f

nk
st ,Smk/nk fst

)+ d2
(
Smk/nk fst ,St fst

)
≤ e2(t+1)‖A+β̄ I‖d2

(
f nkst , fst

)+ d2
(
Smk/nk fst ,St fst

)
.

The first term goes to zero, since f nkst → fst in U . By an approximation we obtain from
Proposition 2.1 (i) that t �→ 〈ψ, ft 〉 is continuous for anyψ ∈ Cb. Since the secondmoments
are K N̄ , we conclude with Lemma 3.5 that the last term goes to zero.

This yields a self-similar solution with zero momentum. To obtain mean U ∈ R
3 we use

the change of variables v �→ v − e−t AU . For K > 0 any self-similar profile is smooth by
Proposition 2.1 (iii). Finally, one can see that the Dirac measure fst = δ0 is a weak solution
to (11), yielding a self-similar profile with K = 0. This concludes the existence proof. ��

3.2 Uniqueness and Stability of Self-similar Solutions

Here, we prove that any solution to (8) converges to a self-similar solution after a change of
variables.

Proof of Theorem 1.3 (ii) Let us denote by � = F [ fst ] the characteristic function of the
profile fst ∈Pp , 4 ≥ p > 2 with second moments N̄ . We assume ‖A‖ ≤ ε0, where ε0 > 0
is chosen sufficiently small, such that part (i) of Theorem 1.3 holds.

For a solution ( ft )t ⊂ Pp , 2 < p ≤ 4 to (8) we take ( f̃t )t as in Theorem 1.3 (ii),
which yields a solution to (8) with matrix A + β̄ I and zero momentum. Let us denote the
characteristic functions of ( f̃t )t by (ϕt )t and the second moments by (Mt )t .

By Lemma 3.2, (Mt )t satisfies the equation M ′t = (A(b̄, A)− 2β̄ I )Mt . Furthermore, by
Lemma 3.3 the nonzero eigenvalues of A(b̄, A)− 2β̄ I have real part less than −ν < 0. The
steady states are given by the span of N̄ . Thus, there isC = C(M0) ≥ 0 and α = α(M0) ≥ 0
such that

∥∥Mt − α2 N̄
∥∥ ≤ Ce−νt . (26)

Using a Povzner estimate as in the proof of Lemma 3.4 we get supt≥0
∥∥∥ f̃t
∥∥∥
p

<∞ as long

as ‖A‖ ≤ ε0 is sufficiently small. Note that the second moments are uniformly bounded by
(26). This yields a uniform estimate of ‖ϕt‖C2,p−2 .

Observe that �(α·) is the characteristic function of the steady state α−3 fst (v/α) with
second moments α2 N̄ . We estimate the characteristic functions

|ϕt (k)−�(αk)| ≤
∣∣∣∣ϕt (k)− 1+ 1

2
Mt : k ⊗ k

∣∣∣∣+ 1

2

∥∥Mt − α2 N̄
∥∥ |k|2

+
∣∣∣∣1− 1

2
α2 N̄ : k ⊗ k −�(αk)

∣∣∣∣ .

For the first term we use a Taylor expansion, in conjunction with the fact that D2ϕt is at least
(p− 2)-Hölder continuous with

∥∥D2ϕt
∥∥
C p−2 ≤ C∗. We can assume here w.l.o.g p < 3. We

have
∣∣∣∣ϕt (k)− 1+ 1

2
Mt : k ⊗ k

∣∣∣∣ ≤ C∗|k|p.
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The last term is treated similarly due to � ∈ Fp . For the second term we apply (26). This
yields

|ϕt (k)−�(αk)| ≤ C |k|p + Ce−νt |k|2.
Now, we apply the comparison principle in Proposition 2.3 starting at time T to obtain

|ϕT+t (k)−�(αk)| ≤ Ce−(λ(p)−p‖A+β̄ I‖)t |k|p + Ce−νT+2‖A+β̄ I‖t |k|2.
Now, we further assume that ε0 > 0 is small enough to ensure

∥∥A + β̄ I
∥∥ ≤ (1+ c0) ‖A‖ ≤ min

(
λ(p)

2p
,
ν

4

)
.

Thus, we get for t = T and θ ′ = min( λ(p)
2 , ν

2 )

|ϕ2T (k)−�(αk)| ≤ Ce−θ ′T (|k|p + |k|2) , (27)

where C = C(ϕ0, p). Now, we apply the following inequality valid for all ϕ,ψ ∈ Fp

d2(ϕ, ψ) ≤ cp(γ + γ 2/p), γ := sup
k

|ϕ − ψ |(k)
|k|2 + |k|p . (28)

This can be proved by splitting the supremum in d2(ϕ, ψ) into |k| ≤ R and |k| ≥ R and
minimizing over R. Combining both (27) and (28) yields for some θ > 0

d2(ϕt , �(α·)) ≤ Ce−θ t .

This concludes the proof. ��

3.3 Finiteness of Higher Moments

To prove part (iii) of Theorem 1.3, we need an extension of Lemma 3.4.

Lemma 3.6 Let M ∈ N, M ≥ 3 and p ≥ M. Consider a solution ( ft )t ∈ C([0,∞);Pp) to
(8) with A replaced by A + β̄ I satisfying (25). Let ‖A‖ ≤ ε0 and ε0 > 0 from Lemma 3.3.

Then, there is εM ≤ ε0 and C∗ = C∗(K , M) such that: if ‖A‖ ≤ εM we have for all
t ≥ 0

‖ f0‖M ≤ C∗ �⇒ ‖ ft‖M ≤ C∗.

Proof This can be proved by induction over M by applying repeatedly Lemma 3.1. The case
M = 3, 4 is covered by Lemma 3.4 and at each step one has to choose εM ≤ εM−1 and
‖A‖ ≤ εM to absorb the drift term.

��

Proof of Theorem 1.3. (iii). We argue as for (i) of Theorem 1.3. However, now we include
the uniform bound ‖ f ‖M ≤ C∗(M, K ) in the definition of the sets U . The so constructed
stationary solutions coincide with the ones in (i) by uniqueness. ��
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4 Application to Simple and Planar Shear

In this section, we discuss the longtime behavior of homoenergetic solutions in the case
of simple and planar shear. Recall that homoenergetic flows have the form g(t, x, v) =
f (t, v − L(t)x) and f = f (t, v) satisfies

∂t f − L(t)v · ∇ f = Q( f , f ) (29)

with the matrix L(t) = (I + t L0)
−1L0. Under the assumption det(I + t L0) > 0 for all

t ≥ 0, one can study the form of L(t) as t →∞ (see [20, Section 3]). We consider the case
of simple shear resp. planar shear (K �= 0)

L(t) =
⎛
⎝ 0 K 0
0 0 0
0 0 0

⎞
⎠ resp. L(t) = 1

t

⎛
⎝ 0 0 0
0 0 K
0 0 1

⎞
⎠+O

(
1

t2

)
(t →∞). (30)

In the first case, (29) preserves mass, since tr L = 0, and our study applies for K sufficiently
small. Alternatively, one can assume a largeness condition on the kernel b, see the assumption
below.

Let us now turn to planar shear and write L(t) = A/(1 + t) + Ã(t) with tr A = 1,∥∥∥ Ã(t)
∥∥∥ ≤ O (1/(1+ t)2

)
. First, let us introduce the time-change log(1 + t) = τ and set

f (t, v) = F(τ, v)/(t + 1) yielding the equation (after multiplying with (1+ t)2)

∂τ F − div((A + B(τ ))v · F)+ tr B(τ )F = Q(F, F) (31)

where B(τ ) = (1 + t) Ã(t) = O (1/(1+ t)) = O(e−τ ). The well-posedness theory of (31)
does not change compared to (8) and so we omit further details about existence, uniqueness
and regularity.Weapply our results to (31) yielding a self-similar asymptotics.More precisely,
we have the following result (note that we write t instead of τ in the theorem).

Theorem 4.1 Consider (31) with A ∈ R
3×3 and Bt ∈ C([0,∞);R3×3) such that ‖Bt‖ =

O(e−t ). Let (Ft )t ⊂Pp, 2 < p, be a weak solution to (31) with F0 ∈Pp and first moments∫
R3

vF0(dv) = U .

We define mt ∈ R, Et ∈ R
3×3 as follows

mt =
∫

Ft (v)dv = exp

(
−
∫ t

0
tr Bs ds

)
, lim

t→∞mt = m∞, E ′t = (A + Bt )Et , E0 = I .

There is a constant ε0 = ε0(m∞b̄, p) > 0 such that for ‖A‖ ≤ ε0, the following holds.
Defining

F̃t := e3β̄t

mt
Ft
(
eβ̄tv + EtU

)
, f̃st (v) = fst (vα−1∞ )α−3∞

for a constant α∞ = α∞(F0) we have for λ > 0

d2(F̃t , f̃st ) ≤ Ce−λt .

Here, fst ∈Pp is the solution to

÷((A + β̄ I )v · fst )+ m∞Q( fst , fst ) = 0,
∫
R3

viv j fst (v) dv = N̄i j ,
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as in Theorem 1.3 with the corresponding objects β̄ = β̄(m∞b̄, A), N̄ = N̄ (m∞b̄, A).

With this let us now go back to solutions ( ft )t to equation (29) with L(t) = A/(1+ t)+ Ã(t).
To apply the previous result, we need ‖A‖ ≤ ε0. This might not be true for A coming from
the matrix L(t) above. However, one can instead assume a largeness condition on the kernel
b. To see this, let us rescale time τ �→ τM yielding

∂τ F − 1

M
div((A + B(τ ))v · F)+ 1

M
tr B(τ )F = 1

M
Q(F, F).

In particular, the collision kernel is given by b/M . We can hence consider the following
assumption. A similar condition was also used in [20, Section 5.2].
Assumption. Assume that the kernel b is chosen such that

‖A/M‖ ≤ ε0(m∞b̄/M)

is satisfied for some M > 0. Recall the definition of b̄ in (24).
Under this assumption, we can apply Theorem 4.1 to obtain the asymptotics in terms of

( ft )t solving (29). For this we undo the above transformations yielding

et/Me3β̄t

mt
f
(
et/M − 1, eβ̄tv + EtU

)
→ fst (vα−1)α−3 as t →∞. (32)

Here, U ∈ R
3 is the mean of the initial condition f0 ∈Pp and α = α( f0) is as in Theorem

4.1. For Bτ := eτ Ã(eτ − 1) we defined

mt = exp

(
− 1

M

∫ t

0
tr Bs ds

)
, E ′t =

1

M
(A + Bt )Et , E0 = I .

The convergence in (32) appears with an order O(e−λτ ) = O(t−λM ) w.r.t the metric d2.
Finally, let us give the main arguments for the proof of Theorem 4.1 following the analysis

in Sect. 3.

Proof of Theorem 4.1 Preparation.We rescale the solution Gt (v) = Ft (v+ EtU )/mt so that
the mass is one and the momentum is zero. This solves

∂t G −÷((A + Bt )v · G) = mt Q(G,G),

∫
Gt (dv) = 1,

∫
vGt (dv) = 0.

The assumption ‖Bt‖ = O(e−t ) implies mt → m∞ > 0 and |mT+t − mT | ≤ Ce−T . We
introduce the self-similar variables Gt (v) = ft (ve−β̄t )e−3β̄t and get

∂t f −÷((A + β̄ I + Bt )v · f ) = mt Q( f , f ). (33)

where β̄ = β̄(A,m∞b̄) is as in Theorem 1.3 or Lemma 3.3 when considering the collision
kernel m∞b̄.

Now, the plan is as follows. First, we study the longtime behavior of the second moments
Mt of ft in Step 1. Then, in Step 2, we want to compare (33) to solutions g(T ) to

∂t g
(T ) = ÷

(
(A + β̄ I )v · g(T )

)
+ m∞Q

(
g(T ), g(T )

)
, g(T )

0 = fT . (34)

This equation has the stationary solution fst . In Step 3, we apply Theorem 1.3 to g(T ) to
obtain g(T ) → fst (α

−1
T ·)α−3T . Altogether, we conclude ft → fst (α−1∞ ·)α−3∞ . Here, αT , α∞

are constants, which precise values will be apparent below.
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Step 1. Let Mt be the second moments of ft , which satisfy (see also Lemma 3.2)

dMt

dt
= A(mt b̄, A + 2β̄ I )Mt + Bt Mt ,

where A(mt b̄, A + β̄ I ), Bt are linear operators R3×3
sym → R

3×3
sym and ‖Bt‖ ≤ Ce−t . The first

operator corresponds to the drift term with matrix A + β̄ I and the collision operator. The
second operator captures the drift term with Bt . Due to the linear dependence of A w.r.t.
m∞b̄ we can write

dMt

dt
= A(m∞b̄, A + β̄ I )Mt +Rt Mt .

Since |mt − m∞| ≤ Ce−t we still have ‖Rt‖ ≤ Ce−t . The results of Lemma 3.3 hold for
the semigroup eAt generated byA := A(m∞b̄, A+ β̄ I ). Using Duhamel’s formula one can
prove that

eAt MT → α2
T N̄ , Mt → α2∞ N̄

as t →∞ for all T ≥ 0with a convergence of orderCe−νt . Furthermore, |α2∞−α2
T | ≤ Ce−T

where the constants C > 0 are always independent of T .
Step 2. Now, we compare f with g(T ) satisfying (34) via the following estimate for all

t, T ≥ 0

d2
(
ft+T , g(T )

t

)
≤ Ct e−T+2‖A+β̄ I‖t . (35)

Here, C is independent of t, T . This inequality can be proved as part (ii) in Proposition 2.1.
The difference here is the coefficient mt in front of the collision operator, as well as the term
due to Bt in (33). Both of them lead to a term of order e−T . We get analogously to (18)

em∞Snt d2(ϕt+T , ψt ) ≤
(
rn + Ce−T

) ∫ t

0
em∞Snr e

[
2‖A+β̄ I‖+m∞Sn

]
(t−r)dr .

Dividing by em∞Snt and sending n→∞ yields (35).
Step 3. Now, we apply Theorem 1.3 to the solutions g(T ) to (34). For this, let fst be the

stationary solution to (34) with secondmoments N̄ and� = F [ fst ]. We get in Fourier space
ψ

(T )
t = F [g(T )], with αT as in Step 1,

d2
(
ψ

(T )
t , �(αT ·)

)
≤ Ce−θ t .

The only problem now is that the constant C might depend on the initial condition fT and
thus on T . If we trace back the dependence of this constant in the proof of Theorem 1.3 (ii),
then two constants C1,C2 contribute. The first one satisfies∥∥∥eAβ̄ t MT − α2

T N̄
∥∥∥ ≤ C1e

−νt

and depends only on MT , which is uniformly bounded. The second constant is a uniform
bound on the moments of order 4 ≥ p > 2, see Step 2 in the proof of Theorem 1.3 (ii).
Looking at the arguments there, we see that it suffices to show supt ‖ ft‖p < ∞ in order

to obtain supt,T

∥∥∥g(T )
t

∥∥∥
p

< ∞. This can be proved again by an application of the Povzner

estimate to the equation (33). The difference here is an additional term due to Bt . Since this
is integrable in time one can choose ε0 > 0 small enough in exactly the same way.
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Conclusion. Let us combine all our estimates in Fourier space ϕt = F [ ft ], ψ
(T )
t =

F [g(T )
t ]

d2 (ϕt+T , �(α∞ ·)) ≤ d2
(
ϕt+T , ψ

(T )
t

)
+ d2

(
ψ

(T )
t , �(αT ·)

)
+ d2 (�(αT ·),�(α∞ ·))

≤ Ct e−T+2‖A+β̄ I‖t + Ce−θ t + Ce−T .

The first two estimates follow from Step 2 and Step 3. The last one follows from a Taylor
expansion and |α2∞ − α2

T | ≤ Ce−T . Let us now choose t = T and ensure 2
∥∥A + β̄ I

∥∥ ≤
2(1+ c0) ‖A‖ ≤ 1/2, by choosing ‖A‖ sufficiently small. This concludes the proof. ��

Remark 4.2 Let us comment on the smallness condition on A, which was used at three
different points: (1) in Lemma 3.3 when studying the eigenvalues resp. eigenvectors, (2) in
Lemma 3.4 for a uniform bound in time of moments of order p > 2 and (3) in the proof of
the convergence to the self-similar profile. The first two incidences concerned the existence
of self-similar solutions. In the case of simple shear, i.e. A is given by the first matrix in (30),
Lemma 3.3 has been extended for large values of K via explicit computations in [20, Section
5.1]. Furthermore, they formulated a condition to extend (2) for such matrices A. However,
this condition has not been studied in further detail. Concerning the stability result, different
convergence methods would be needed, which take into account the effect of the drift term.
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