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Abstract
When a stable phase is adjacent to a metastable phase with a planar interface, the stable phase
grows.We propose a stochastic latticemodel describing the phase growth accompanying heat
diffusion. Themodel is based on an energy-conserving Pottsmodel with a kinetic energy term
defined on a two-dimensional lattice, where each site is sparse-randomly connected in one
direction and local in the other direction. For thismodel,we calculate the stable andmetastable
phases exactly using statistical mechanics. Performing numerical simulations, we measure
the displacement of the interface R(t).We observe the scaling relation R(t) = LxR̄(Dt/L2

x ),
where D is the thermal diffusion constant and Lx is the system size between the two heat
baths. The scaling function R̄(z) shows R̄(z) � z0.5 for z � zc and R̄(z) � zα for z � zc,
where the cross-over value zc and exponent α depend on the temperatures of the baths, and
0.5 ≤ α ≤ 1. We then confirm that a deterministic phase-field model exhibits the same
scaling relation. Moreover, numerical simulations of the phase-field model show that the
cross-over value R̄(zc) approaches zero when the stable phase becomes neutral.

Keywords Phase growth · Stochastic model · Thermal fluctuation · Interface motion

1 Introduction

When a stable phase contacts a metastable phase, the stable phase grows and the metastable
phase eventually vanishes. This phenomenon is ubiquitously observed in nature [1]. The basic
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understanding of phase growth is that the propagation velocity of the interface between the
two phases is proportional to the difference in free energy densities, where the proportional
constant is the mobility [2]. This mechanism is applied to isothermal systems where the
energy locally dissipates in a heat bath. However, qualitatively different behavior is observed
in systems where the energy is locally conserved. In such a system, latent heat generated at
the interface in a growth process induces a change in local temperature of the interface, and
the energy transfers into the bulk region through heat diffusion. This effect modifies the law
of interface propagation.

There are several types of deterministic models for interface motion with heat diffusion.
The most classical is the heat diffusion model with moving boundary condition at the inter-
face, which was formulated by Stefan [3, 4]. In this description, called the sharp-interface
model, the interface is regarded as a singular region of the continuous temperature field.
Although this is mathematically defined, it is not easy to calculate the interface motion
numerically. A computationally efficient model that takes heat diffusion into account is the
phase-fieldmodel [5–10]. Thismodel is given as a set of coupled partial differential equations
of the order parameter field and the temperature field. Both models show that the displace-
ment of the planar interface is proportional to the square root of the time interval when the
extent of the metastability Δ is less than unity [11–14]. Here, Δ is defined as

Δ ≡ cp
Tc(δs)

|Tc − Tms|, (1)

where Tc is the equilibrium transition temperature, Tms is the temperature of the heat bath
in contact with the metastable phase, δs is the entropy jump per unit volume, and cp is the
specific heat capacity per unit volume under constant pressure.

Now, the question we address in this paper is whether thermal fluctuations influence
the phase growth with heat diffusion. According to non-equilibrium statistical mechanics,
the starting point of a mesoscopic description such as the phase-field model is the entropy
functional consisting of the spatial integration of the local entropy density and the gradient
term [9, 15, 16]. The entropy density is a function of the internal energy density and the
number density. Then, following the Onsager principle, one can determine the evolution
equation of these densities so that the irreversible currents are given as linear combinations
of thermodynamic forces. The obtained equation is equivalent to the phase-field model [9].
This form of the phase-field model was also introduced in the context of dynamical behavior
near the critical point [15, 17]. Because such models derived from the Onsager principle
are defined in a mesoscopic regime, thermal noises are inevitable in this description, where
the noise intensity is determined by the fluctuation-dissipation relation of the second kind.
Even worse, the interface may be out of the mesoscopic description, precisely speaking,
because the interface width is on the order of 10−7 cm [18]. We thus need to consider a more
microscopic model to study fluctuation effects. Although many statistical mechanics models
have been studied in the context of phase growth [19–27], heat diffusion has not been taken
into account. For this reason, we propose a statistical mechanics model describing the phase
growth with heat diffusion.

The model we propose is the q-state Potts model [28] with an additional variable repre-
senting the kinetic energy at each site, whose stochastic time evolution satisfies the detailed
balance condition at equilibrium [29–31]. A similar model without the kinetic energy term
was investigated to study ordering processes after quenching [32–34]. In equilibrium statis-
tical mechanics, we can determine the phase diagram at equilibrium. The model exhibits the
order-disorder transition as the temperature is changed. Including kinetic energy enables the
model to describe the conversion from potential energy to kinetic energy, which corresponds

123



Phase Growth with Heat Diffusion in a Stochastic Lattice Model Page 3 of 21 28

to the generation of latent heat. By introducing a transition rule with energy conservation,
heat diffusion is described by kinetic energy exchanging processes. We note that the conven-
tional Potts model without the kinetic term corresponds to the system where the generated
latent heat is immediately dissipated into the heat bath. We study the model defined on a
two-dimensional lattice, where each site is sparse-randomly connected in one direction and
local in the other direction. From this setting, we can precisely identify the metastable phase
in addition to the equilibrium properties.

We numerically simulate the model to measure the displacement of the interface R(t). Let
Ts be the temperature of the heat bath in contact with the stable phase. We find the scaling
relation R(t) = LxR̄(Dt/L2

x ), where D is the thermal diffusion constant and Lx is the
system size between the two heat baths. The scaling function R̄(z) shows R̄(z) � z0.5 for
z � zc and R̄(z) � zα for z � zc, where the cross-over value zc and the exponent α depend
on Ts , and 0.5 ≤ α ≤ 1. Because the scaling relation in the late stage has not been reported
in the phase-field model, the result could imply that the stochastic phase growth involves
a different universality class from that described by the phase-field model. However, we
have found that such a finite-size and long-time behavior is also observed in the phase-field
model even without noise. This indicates that the phase-field model is more universal than
that already known. Furthermore, systematic numerical simulations of the phase-field model
reveal the new feature that the cross-over value R̄(zc) approaches zero when the stable phase
becomes neutral.

This paper is organized as follows. In Sect. 2, we introduce the model. In Sect. 3, we
analyze the model via equilibrium statistical mechanics. We identify the metastable phase
in addition to equilibrium properties. In Sect. 4, we report the results of numerical simula-
tions and compare them with the numerical results of the phase-field model. We make some
concluding remarks in Sect. 5. The technical details of the theoretical calculation are sum-
marized in Appendix A. The values of Δ and D are estimated in Appendix B and Appendix
C, respectively. Throughout the paper, the Boltzmann constant is set to unity, and β is always
connected to the temperature T via β = 1/T .

2 Model

2.1 Hamiltonian

LetΛ = {i = (ix , iy)|1 ≤ ix ≤ Lx , 1 ≤ iy ≤ Ly, ix , iy ∈ Z} be a two-dimensional lattice.
For any site i ∈ Λ, a collection of sites connected to site i is denoted as Bi . We assume that
set Bi is decomposed as

Bi = B−
i ∪ B0

i ∪ B+
i , (2)

where jx = ix − 1 for j ∈ B−
i , jx = ix + 1 for j ∈ B+

i , and jx = ix for j ∈ B0
i .

Note that B−
1 = ∅ and B+

Lx
= ∅. For example, B−

i = {(ix − 1, iy)}, B+
i = {(ix + 1, iy)},

and B0
i = {(ix , iy ± 1)} for the square lattice in Fig. 1a. In this paper, we use a sparse-

randomly connected lattice defined by B−
i = {(ix − 1, iy), (ix − 1, b−(ix − 1, iy)}, B+

i =
{(ix + 1, iy), (ix + 1, b+(ix , iy))}, and B0

i = ∅, where b+(ix , ) is a one-to-one random map
from {1, · · · , Ly} to {1, · · · , Ly} that satisfies b+(ix , iy) 
= iy , and b−(ix , ) is defined by
the inverse of the map. This is a special case of the random graphs introduced in [35]. See
Fig. 1b for the illustration.
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(a) (b)

Fig. 1 Schematics of lattices

On each site i ∈ Λ, the q-state variable σi ∈ {1, 2, · · · , q} and the positive valued kinetic
energy pi ∈ R

+ are defined. The collections of variables, [σi ]i∈Λ and [pi ]i∈Λ, are simply
denoted by σ and p. The Hamiltonian we study is

H(σ, p) = −
∑

i∈Λ

2

|Bi |
∑

j∈Bi
δ(σi , σ j ) +

∑

i∈Λ

pi , (3)

where δ(·, ·) represents the Kronecker delta.

2.2 Model with Energy Conservation

Before presenting our model, we first describe a model for a thermally isolated system. We
describe the stochastic time evolution in which the stationary distribution is given by the
microcanonical ensemble associated with the Hamiltonian H(σ, p). The stochastic process
satisfies the detailed balance condition with respect to the uniform distribution on the energy
surface H(σ, p) = E , where E is the total energy, which is invariant under time evolution.

We perform the following five procedures at one step:

1. A site i ∈ Λ is chosen randomly with equal probability.
2. The potential energy difference dE is calculated for a transition σi → σ ′

i chosen ran-
domly with equal probability.

3. The transition σi → σ ′
i is accepted if pi −dE ≥ 0, and then the kinetic energy is changed

to p′
i = pi − dE .

4. A site k and another site j ∈ Bk are chosen randomly.
5. The transition (pk, p j ) → (pk − dp, p j + dp) is accepted if pk − dp ≥ 0, where dp is

a numerical parameter.

Let (p0i )i∈Λ be a collection of the initial value of kinetic energy for each site. From the
evolution rule, pi is written as pi = p0i + ni + midp, where ni ,mi ∈ Z. The set of all
possible values of pi is denoted by Pi . The phase space of the model Σ as a function of E
is then expressed by the discrete set

Σ(E) = {(σ, p)|H(σ, p) = E, σi ∈ {1, · · · , q}, pi ∈ Pi , i ∈ Λ}. (4)
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The transition probability determined by the procedures is expressed as W (σ ′, p′|σ, p).
Let t ∈ Z be the discrete time and Pt (σ, p) be the probability of taking the state (σ, p) at
t-step. Then, we have

Pt+1(σ, p) =
∑

σ ′,p′
W (σ, p|σ ′, p′)Pt (σ ′, p′). (5)

Because W (σ ′, p′|σ, p) = W (σ, p|σ ′, p′) holds, the stationary distribution is given by the
microcanonical form

Pmc(σ, p) = 1

|Σ(E)|δ(H(σ, p), E), (6)

where |Σ(E)| denotes the number of elements of set Σ(E).

2.3 Model with Two Heat Baths

In the model, we attach two heat baths, one on the left side ix = 1 and one on the right side
ix = Lx of the system introduced in the previous subsection. The temperatures of the left and
right heat baths are denoted by TL and TR , respectively. The stochastic time evolution of the
model is given by imposing an additional rule at the boundaries. We perform the following
procedures when a site i with ix = 1 or ix = Lx is chosen in procedure 1 of the time evolution
described in the previous subsection:

1. The potential energy difference dE is calculated for a transition σi → σ ′
i chosen ran-

domly.
2. The transition σi → σ ′

i is accepted with the probability w(σi → σ ′
i ), where

w(σi → σ ′
i ) = 1

2

(
1 − tanh

(
dE

2T

))
(7)

with T = TL for ix = 1 and T = TR for ix = Lx .
3. The value of pi is replaced with a new one sampled from the distribution

P(pi ) = 1

T
e− pi

T (8)

with T = TL for ix = 1 and T = TR for ix = Lx . We here note that pi takes positive
value.

Note that (7) satisfies the detailed balance condition

w(σ → σ ′)
w(σ ′ → σ)

= e− dE
T . (9)

The stochastic rule in the previous subsection is used except at the boundaries ix = 1 and ix =
Lx . The transition probability determined by the procedures is expressed as W̃ (σ ′, p′|σ, p).
Let t ∈ Z be the discrete time and P̃t (σ, p) be the probability of taking state (σ, p) at each
t-step. Then, we have

P̃t+1(σ
′, p′) =

∑

σ,p

W̃ (σ ′, p′|σ, p)P̃t (σ, p). (10)

When TL = TR = T , the detailed balance condition

W̃ (σ ′, p′|σ, p)

W̃ (σ, p|σ ′, p′)
= e− dE

T (11)
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holds. Thus, the stationary distribution is given by the canonical form

Pcan(σ, p) = 1

Z tot(β)
e−βH(σ,p), (12)

where Z tot(β) = ∑
σ,p e

−βH(σ,p).

3 Equilibrium Statistical Mechanics

In this section, for reference in studying dynamical processes, we confirm some results of
equilibrium statistical mechanics using the canonical ensemble

Pcan(σ ) = 1

Z(β)
e− β

2

∑
i∈Λ

∑
j∈Bi δ(σi ,σ j ) (13)

for the configuration space of σ , where Pcan(σ ) = ∑
p Pcan(σ, p). We study

m = lim|Λ|→∞
∑

σ

Pcan(σ )

∑
i δ(σi , 1)

|Λ| (14)

with an infinitely small external potential −∑
i hexδ(σi , 1) in the Hamiltonian, and the free

energy density defined as

f = − lim|Λ|→∞
T

|Λ| log Z . (15)

It should be noted that the free energy density f and the partition function Z are defined in
the configuration space of σ .

In the calculation of m and f , we conjecture that the contribution from loops in the
lattice can be ignored in the large-size limit [35–37]. On the basis of this conjecture, the
thermodynamic phase can be determined using themodel on aCayley treewith three branches
corresponding to coordination number 4. Concretely, it has been known that m and f are
calculated from the probability of the state σ ∈ {1, · · · , q} at a site connected with a cavity
site, which is denoted as u(σ ). As shown in Appendix A, we first have the self-consistent
equation for u(σ ),

u(σ ) =
[
γ u(σ ) + 1

]3
∑

σ

[
γ u(σ ) + 1

]3 , (16)

with γ = eβ − 1. Using the solutions of (16), we express the order parameter m(β) and the
free energy density f (β) as

m(β) = [γ u(1) + 1]4∑
σ [γ u(σ ) + 1]4 , (17)

f (β) = −β−1 log

∑
σ [γ u(σ ) + 1]4

[
γ

∑
σ u2(σ ) + 1

]2 . (18)

Here we notice that (16) has the trivial solution u0(σ ) ≡ 1/q for any β. There exists a
temperature βsp beyond which (16) has another solution denoted as u∗(σ ), where

u∗(σ ) =
{
c∗(β) (σ = 1)
1−c∗(β)
q−1 (2 ≤ σ ≤ q)

(19)
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(a) (b)

Fig. 2 a m as a function of β for the case q = 10. The solid (purple) and dashed (green) line represent m∗(β)

and m0(β), respectively. The vertical line indicates β = βsp. b f as a function of β for the case q = 10. The
solid (purple) and dashed (green) line represent f∗(β) and f0(β), respectively (Color figure online)

with c∗ 
= 1/q . The temperature βsp is called the spinodal point. Using these two solutions u0
and u∗, we have (m0(β),m∗(β)) and ( f0(β), f∗(β)). We display (m0(β),m∗(β)) in Fig. 2a,
and ( f0(β), f∗(β)) in Fig. 2b for the case q = 10. The equilibrium transition temperature
βc is identified as f0(βc) = f∗(βc).

To study the free energy landscape, we define

f̃ (β, c) = −β−1 log

∑
σ [γ ũ(σ ) + 1]4

[
γ

∑
σ ũ2(σ ) + 1

]2 , (20)

where

ũ(σ ) =
{
c (σ = 1)
1−c
q−1 (2 ≤ σ ≤ q).

(21)

Setting c0 = 1/q , we have f0(β) = f̃ (β, c0) and f∗(β) = f̃ (β, c∗). Furthermore, by
straightforward calculation, we confirm

∂

∂c

(
e−β f̃ (β,c)

)
= 0 (22)

at c = c0 and c = c∗. See Appendix A.4 for the derivation. Therefore, displaying f̃ (β, c) in
Fig. 3, we see that the solution u∗ appears at the spinodal point β = βsp, and the equilibrium
transition occurs at β = βc. We also find that ∂2 f̃ /∂c2 = 0 at c = c0 and β = βun, which
means that the trivial solution u0 loses stability. Letting F(u) be the right-hand side of (16),
the solutions of the self-consistent equation are given by the fixed points un+1 = F(un).
The temperature βun is also characterized by the onset of the instability of the trivial solution
for this iteration equation. For the case q = 10, we find that βsp � 1.34, βc � 1.39, and
βun � 1.78.

4 Numerical Simulation

Throughout this section, we simulate the model with q = 10 and choose the numerical
parameter dp = 0.01Tc. Before presenting our results, in Fig. 4, we show the statistical
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(a) (b)

Fig. 3 Free energy landscapes for a β < βsp, β = βsp, β = βc, and βc < β < βun from below, and b
βc < β < βun, β = βun, and β > βun from below (Color figure online)

average of
∑

i δ(σi , 1)/|Λ| for the model given in Sect. 2, where TL = TR = β−1 and
Lx = Ly = 100. The numerical result agrees with the theoretical calculation in Sect. 3.

Then, we prepare a metastable ordered phase of the temperature TL in 1 ≤ ix ≤ Lx/2
and a stable disordered phase of the temperature TR in Lx/2 + 1 ≤ ix ≤ Lx . Here, we fix
TL = 1.01Tc so that the ordered phase is metastable, and TR is assumed to be greater than Tc
so that the disordered phase is stable. We prepare configurations at t = 0 via the following
steps. First, we remove the coupling between ix = Lx/2 and ix = Lx/2 + 1 by setting
B+
i = ∅ for ix = Lx/2. Second, we prepare a configuration where σi = 1 and pi = TL for

any i satisfying ix ≤ Lx/2, while each σi is randomly chosen with equal probability and
pi = TR for any i satisfying ix > Lx/2 + 1. Third, we make the system evolve up to 50
MCS. The reached configuration is set to be an initial state at t = 0 in the following analysis.
Note that s MCS corresponds to the t = sLx L y step in the procedure described in Sect. 2.

The stable disordered phase grows from the initial configuration. To describe the phase
growth, we observe an order parameter profile defined as

φ(x, t) ≡ qm(x, t) − 1

q − 1
(23)

Fig. 4 Circle (green) symbols
represent the simulation result for
the model given in Sect. 2, with
TL = TR = β−1. The solid
(purple) curve is the theoretical
result obtained in Sect. 3 (Color
figure online)
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Fig. 5 a φ(x, t) as a function of x at t = 5×106 MCS for the systemwith Lx = 200, Ly = 100, TR = 1.2Tc ,
and TL = 1.01Tc . The purple and green graphs represent one snap shot and the average over 100 samples,
respectively. b T (x, t)/Tc as a function of x for the same condition as (a). The colors of lines correspond to
the graphs in (a) (Color figure online)

Fig. 6 Configuration of σ at
t = 5 × 106 MSC for the system
with Lx = 200, Ly = 100. The
dots represent sites where σi = 1.
The solid line represents the
interface position (Color figure
online)

with

m(x, t) ≡ 1

Ly

Ly∑

y=1

δ(σx,y, 1) (24)

for 1 ≤ x ≤ Lx . We define the value φ(x, t) for any real x via linear interpolation. Similarly,
we define the temperature field as

T (x, t) ≡ 1

Ly

Ly∑

y=1

px,y . (25)

Examples of φ(x, t) and T (x, t) are displayed in Fig. 5a, b.
We identify the interface position X(t) from φ(x, t) such that φ(X(t), t) = 0.5. X(t) is

uniquely determined because φ crosses 0.5 only once as far as we observe. R(t) denotes the
displacement of the interface |X(t) − X(0)|. In Fig. 6, we show an example of configuration
σ with the interface position.
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Fig. 7 R(t) versus t for
TR = 3Tc . The average of 100
samples was taken for the system
with different system sizes. The
solid line represents
R(t) = At0.5 with A = 0.18
(Color figure online)

In Fig. 7, we show the statistical average of R(t) for the case TR = 3Tc > Tsp. The five
graphs correspond to results for different systems sizes (Lx , Ly) = (100, 100), (200, 100),
(300, 100), (100, 200), and (200, 200). Because the interface eventually reaches the left
boundary and does not move anymore, all the curves become flat in the long-time limit. The
guideline represents R(t) = At0.5 with A = 0.18.We also confirmed that the Ly dependence
is hardly visible for this system size. From these results, we reasonably conjecture that the
behavior in the large-Lx limit is described by the phase-field model because the extent of the
metastability Δ is evaluated as 0.05, as shown in Appendix B.

An unexpected behavior of R(t) is observed for the case TR = 1.2Tc > Tsp. As shown in
Fig. 8a, four graphs for different systemsizes, (Lx , Ly) = (100, 100), (200, 100), (300, 100),
and (400, 100) do not overlap, while the Ly dependence is hardly visible. We then consider a
finite size scaling to plot R/Lx as a function of Dt/L2

x , where the thermal diffusion constant
D is estimated as 1.9×10−2 from the measurement of the relaxation time of the temperature
field, as shown in Appendix C. The result is displayed in Fig. 8b. We find the scaling relation

R(t)

Lx
= R̄

(
Dt

L2
x

)
(26)

works well, where R̄ is a scaling function. The scaling function indicates the cross-over from
R̄(z) � z0.5 to R̄(z) � zα with 0.5 ≤ α ≤ 1. It should be noted that the scaling relation in
the late stage is not observed in the phase-field model.

The exponent α depends on the value of TR . Decreasing TR further, we find that the late
stage becomes dominant and α increases. For the case TR = TL = 1.01Tc < Tsp, α turns
out to be close to unity, as shown in Fig. 9.

To our best knowledge, the cross-over behavior has never been reported in previous studies.
This observation raises a question about if this behavior is a unique feature of the stochastic
model. In order to answer this question, we carefully study finite-size effects for the determin-
istic phase-field model. Specifically, we perform numerical simulations of the model used in
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 1
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 100

104 105 106

R
(t
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t (MCS)

(Lx,Ly)=(100,100)
(100,200)
(200,100)
(200,200)
(300,100)
(400,100)

(a)

 0.01

 0.1

 1

 0.01  0.1  1

R
(t
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Dt/Lx
2

   (MCS)

(Lx,Ly)=(100,100)
(100,200)
(200,100)
(200,200)
(300,100)
(400,100)

(b)

Fig. 8 a R(t) versus t for TR = 1.2Tc . The average of 100 samples was taken for the system with different
system sizes. b R(t)/Lx as a function of z = Dt/L2x . The two guidelines are Az0.5 and A′z0.75, where
A = 0.32 and A′ = 0.60, respectively (Color figure online)

Fig. 9 R/Lx as a function of
Dt/L2x for the case TR = 1.01Tc .
The guideline represents Az0.95

with A = 3.6 × 10−2 (Color
figure online)

 0.01

 0.1

 1  10

R
(t

)/L
x

Dt/Lx
2

   (MCS)

(Lx,Ly)=(100,100)
(100,200)
(200,100)
(200,200)

[38]. Concretely, we study the following equations of the order parameter field φ(x, t) and
the dimensionless temperature field θ(x, t):

∂φ

∂t
= ∂2xφ + φ − φ3 − θ(1 − φ2)2, (27)

∂θ

∂t
= D∂2x θ + 1

2

∂ p(φ)

∂t
, (28)

where θ(x, t) is related to T (x, t) as

θ(x, t) = cp
Tc(δs)

(T (x, t) − Tc). (29)

The functional form of p(φ) is given by

p(φ) = 15

8

(
φ − 2φ3

3
+ φ5

5

)
. (30)
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R
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Lx = 100

Lx = 200

Lx = 400

10

100

10 100 1000 100000

(a)
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(c)

Fig. 10 Interface displacement for the phase-field model. a R(t) as a function of t for TR = 4.0Tc . The
guideline represents At0.5 with A = 1.53. b R/Lx as a function of Dt/L2x for TR = 1.05Tc . The guidelines
represent Az0.5 and A′z0.9 with A = 7.6 × 10−2 and A′ = 0.16. c R/Lx as a function of Dt/L2x for
TR = 1.01Tc . The guidelines represent Az0.5 and A′z with A = 2.6 × 10−2 and A′ = 5.6 × 10−2 (Color
figure online)

Fig. 11 TR -dependence of
R(tc)/Lx . The guideline is given
by (31) (Color figure online)

R
(t

c
)/

L
x

TR−Tc

Tc

0.01

0.1

1

0.01 0.1 1

We fix TL = 1.01Tc and D = 1. The results are shown in Fig. 10a–c. We observe the
same behavior as that observed in the statistical mechanics model. We thus conclude that the
cross-over behavior is not specific to stochastic systems.

Furthermore, for the phase-field model, we study TR-dependence more systematically.
Let tc be the cross-over time. In Fig. 11, we plot R(tc)/Lx as a function of (TR − Tc)/Tc.
R(t) is defined in the same way as done for the stochastic model. We then observe

R(tc)

Lx
� A

(
TR − Tc

Tc

)0.75

(31)

with A = 0.30. Since the interface position moves up to Lx/2, the interface reaches the
boundary before the cross-over occurs for temperatures TR satisfying R(tc) ≥ Lx/2. In this
case, only R(t) ∼ t0.5 is observed. On the other hand, as the temperature TR is close to Tc
with large Lx fixed, R(tc)/Lx tends to zero. This means that only R(t) ∼ tα with α � 1 is
observed. Note that if we take the limit Lx → ∞ first, R(t) ∼ t0.5 is observed. However,
when we observe the interface motion in finite-size systems, the behavior depends on the
order of the three limits Lx → ∞, t → ∞, and TR → Tc.
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5 Concluding Remarks

We have proposed a q-state Potts model with an additional variable representing the kinetic
energy at each site. By designing a two-dimensional lattice, where each site is sparse-
randomly connected in one direction and local in the other direction, we have explicitly
calculated the thermodynamic properties via equilibrium statistical mechanics. Simulating
thismodel, we have numerically observed that the interface between the stable andmetastable
phases moves following the scaling relation (26) with the scaling function R̄(z). The scaling
function shows a cross-over from R̄(z) � z0.5 to R̄(z) � zα , where the cross-over value of z
and the exponent α depends on the temperature of the heat bath attached to the stable phase.
We have only analyzed the case q = 10. Changing the value of q influences the quantita-
tive behavior through the Δ-dependence. We conjecture that the Δ dependence in the large
system size limit should be consistent with the theoretical result for the phase-field model
[14], because our stochastic model belongs to the same universality class as the phase-field
model. In ending this paper, we make two remarks.

The first is on the status of our model. We note that our model is rarely realizable in
experiments, like a more familiar mean-field type model, where a site (ix , iy) is connected
to all sites in the ix + 1 layer. Despite apparent unphysical nature of the random lattice, the
phase growth in our model is qualitatively same as that for the model on the square lattice,
as shown in Fig. 12a–c. This is a special property of our model, because the mean-field
type model shows a different behavior [39]. Thus, toward the microscopic derivation of a
coupled equation for the order parameter field and the temperature field, numerical results
for our model should be theoretically explained by extending the analysis shown in Sect. 3
and Appendix A.

The second remark is on the Mullins-Sekerka instability [40]. The instability of propagat-
ing interfaces was studied in the phase-field model for the case Δ ≥ 1 [41, 42]. We do not
clearly understand the instability condition for the case Δ < 1. Nevertheless, in any cases,
it is clear that the instability is not observed in our model on the sparse-randomly connected
lattice, because there is no spatial correlation in the vertical direction. While this aspect may
be a disadvantage of the model, we note that the instability is not our main concern. For the
model on the square lattice, there remains a possibility that Mullins-Sekerka instability could

 10

 100

104 105 106

R
(t

)

t (MCS)

(Lx,Ly)=(100,100)
(100,200)
(200,100)
(200,200)
(300,100)

(a)

 0.01

 0.1

1

 0.01  0.1 1

R
(t

)/L
x

Dt/Lx
2

(MCS)

(Lx,Ly)=(100,100)
(100,200)
(200,100)
(200,200)
(300,100)
(400,100)

(b)

 0.01

 0.1

1

 0.1 1  10

R
(t

)/L
x

Dt/Lx
2

(MCS)

(Lx,Ly)=(100,100)
(100,200)
(200,100)
(200,200)

(c)

Fig. 12 Interface displacement of the q-state Potts model on the square lattice. The value of D is measured as
0.02 in the sameway as shown inAppendix C . The value of Tc for q = 10was calculated exactly [28]. (a) R(t)
as a function of t for TR = 3.0Tc . The guideline represents At0.5 with A = 0.13. (b) R/Lx as a function of
Dt/L2x for TR = 1.2Tc . The guidelines represent Az0.5 and A′z0.75 with A = 0.28 and A′ = 0.38. (c)R/Lx
as a function of Dt/L2x for TR = 1.01Tc . The guidelines represent Az0.5 and A′z with A = 4.6 × 10−2 and
A′ = 2.8 × 10−2 (Color figure online)
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appear for larger system sizes than we studied. Clarifying the instability condition is left for
future study.
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Appendix A: Derivation of the Formulas in Sect. 3

In this section, we derive formulas (16), (17), (18), and (22) in Sect. 3.

A.1 Derivation of (16)

We study a Cayley tree with a root site connected with four sites in the first generation. Each
site in the n-th generation (n ≥ 1) is connected with three sites in the n + 1-th generation.
See Fig. 13 for the illustration of the Cayley tree.

Let Z be the partition function of the Potts model on the lattice. We consider the partition
function of a system in which a root site is replaced by the cavity and the state of a site in
the first generation is fixed as σ ′ ∈ {1, · · · , q}, which is denoted by Z̃1(σ

′). Z is then the
partition function of the model expressed as

Z =
∑

σ

(
∑

σ ′
eβδ(σ,σ ′) Z̃1(σ

′)
)4

. (A.1)

A graphical representation is displayed in Fig. 14.
By setting

γ ≡ eβ − 1, (A.2)

G1 ≡
∑

σ

Z̃1(σ ), (A.3)

Fig. 13 Illustration of the Cayley
tree
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Fig. 14 Graphical representation
of (A.1)

Fig. 15 Graphical representation
of (A.5)

we rewrite (A.1) as

Z =
∑

σ

(
γ Z̃1(σ ) + G1

)4
. (A.4)

Defining Z̃n(σ ) and Gn similarly, we have the iterative equation

Z̃n(σ ) =
(
γ Z̃n+1(σ ) + Gn

)3
, (A.5)

whose graphical representation is shown in Fig. 15.
We define un(σ ) as

un(σ ) ≡ Z̃n(σ )

Gn
, (A.6)

which corresponds to the probability of the state σ of the cavity-connected site in the n-th
generation. By substituting (A.6) into (A.5), we obtain

Gnun(σ ) = G3
n+1

[
γ un+1(σ ) + 1

]3
. (A.7)

We also have

Gn = G3
n+1

∑

σ

[
γ un+1(σ ) + 1

]3 (A.8)
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using
∑

σ un(σ ) = 1. From (A.7) and (A.8), we derive the iterative equation for un(σ ),

un(σ ) =
[
γ un+1(σ ) + 1

]3
∑

σ

[
γ un+1(σ ) + 1

]3 . (A.9)

Assuming homogeneity in the equilibrium state, un(σ ) is independent of n in the large-size
limit. This provides (16).

A.2 Derivation of (17)

The order parameter m for the model is calculated by the expectation value of δ(σ, 1) at the
root site. That is,

m = 1

Z

∑

σ

δ(σ, 1)
[
γ Z̃1(σ ) + G1

]4
. (A.10)

Using the expression given in (A.4), we have

m = [γ u1(1) + 1]4∑
σ [γ u1(σ ) + 1]4 . (A.11)

By replacing u1 with the solution of the self-consistent equation (16), we obtain (17).

A.3 Derivation of (18)

To derive the free energy density, we use a tactical method manipulating graphs. We first
remove one edge connected to the root site. The partition function of this system with σ at
the root site and σ ′ at the other site connected by the removed edge is Z̃0(σ )Z̃1(σ

′). See
Fig. 16. We thus express the partition function Z as

Z =
∑

σ,σ ′
eβδ(σ,σ ′) Z̃0(σ )Z̃1(σ

′) (A.12)

= G0G1

[
γ

∑

σ

u0(σ )u1(σ ) + 1

]
, (A.13)

where G0 ≡ ∑
σ Z̃0(σ ) and u0(σ ) ≡ Z̃0(σ )/G0. Note that u0(σ ) also satisfies (A.9).

Next, we prepare four independent systems. The partition function of the total system is
Z4. We remove one edge connected to the root site for each graph. Then, we combine four

Fig. 16 By removing one edge,
we get two rooted graphs. ×
represents the cavity
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Fig. 17 By adding one site, we
combine four graphs with the
root site

graphs with the root site by adding one site. See Fig. 17. The partition function of this system,
Ž0, is expressed as

Ž0 = G4
0

∑

σ

[
γ u0(σ ) + 1

]4
. (A.14)

Similarly, another Cayley tree is obtained by combining the other graphs with another
added site, and the partition function is written as

Ž1 = G4
1

∑

σ

[
γ u1(σ ) + 1

]4
. (A.15)

The free energies of the original system and the new system are−T log Z4 and−T log Ž0 Ž1,
respectively. The difference in free energy is equal to 2 f , where f is the free energy density,
because the two systems have the same free energy density in the large-size limit and the
new system is the original system with two sites added. That is,

−T log Ž0 Ž1 + T log Z4 = 2 f . (A.16)

This is rewritten as

e−β f =
(
Ž0 Ž1

Z4

)1/2

(A.17)

=
(∑

σ ′ [γ u0(σ ′) + 1]4 ∑
σ ′′ [γ u1(σ ′′) + 1]4

[
γ

∑
σ u0(σ )u1(σ ) + 1

]4

)1/2

. (A.18)

By replacing u0 and u1 with the solution of the self-consistent equation (16), we obtain (18).

A.4 Derivation of (22)

For later convenience, we set

c̃ ≡ 1 − c

q − 1
. (A.19)
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From the definition of f̃ given in (20), the left-hand side of (22) is calculated as

∂

∂c
e−β f̃ (β,c)

= 4γ
(γ c + 1)3 − (γ c̃ + 1)3

(γ c2 + γ (q − 1)c̃2 + 1)2

− 4γ (c − c̃)
(γ c + 1)4 + (q − 1)(γ c̃ + 1)4

(γ c2 + γ (q − 1)c̃2 + 1)3
. (A.20)

The self-consistent equation (16) is expressed as

(γ c̃ + 1)3 = c̃

c
(γ c + 1)3. (A.21)

Thus, the right-hand side of (A.20) for the special values of c satisfying (A.21) is calculated
as

4γ
(γ c + 1)3(c − c̃)

c(γ c2 + γ (q − 1)c̃ + 1)2

×
(
1 − γ c2 + γ (q − 1)c̃2 + c + (q − 1)c̃

γ c2 + γ (q − 1)c̃2 + 1

)
, (A.22)

which turns out to be zero from (A.19).

Appendix B: Estimation of1

In this section, we estimate the value of Δ defined by (1) for the model we study.
We first calculate the energy density h defined as

h ≡ lim|Λ|→∞
1

|Λ|
∑

σ,p

Pcan(σ, p)H(σ, p), (B.23)

where Pcan(σ, p) is given in (12). Using the free energy density f calculated in Sect. 3, we
express the energy density h as

h = T + g, (B.24)

where g is the potential energy density given by

g(β) ≡ ∂

∂β
(β f (β)) . (B.25)

As with the free energy density, g0(β) and g∗(β) denote the potential energy densities cor-
responding to the trivial solution u0 and the nontrivial solution u∗ of (16), respectively. In
Fig. 18a, g0(β) and g∗(β) are displayed. Then, the latent heat per unit volume Tcδs at the
equilibrium transition temperature is determined by the entropy jump defined as

δs ≡ βc(g0(βc) − g∗(βc)). (B.26)

For the model with q = 10, we obtain Tcδs � 1.07. Next, we consider the heat capacity
per unit volume C expressed as

C(β) ≡ ∂h

∂T
= 1 + ∂g

∂T
. (B.27)
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Fig. 18 a Potential energy density g as a function of β. The solid (purple) line represents g = g∗ in the range
β > βsp. The dashed (green) line represents g = g0 in the range β < βun. The black line indicates β = βc .
b Heat capacity per unit volume C as a function of β. The styles (colors) of lines correspond to the graphs in
(a) (Color figure online)

Using similar notations, we obtainC0(β) andC∗(β) from g0(β) and g∗(β). These are shown
at the bottom of Fig. 18b. For the cases q = 10 and TL = 1.01Tc, we obtain C∗(TL) � 6.95.
Therefore, for the model we numerically study, we have

Δ � 0.05, (B.28)

which is less than unity. Note that in the stochastic model studied in this paper,C corresponds
to cp in the phase-field model.

Appendix C: Estimation ofD

In this section, we estimate the value of the thermal diffusion constant D by measuring the
relaxation property of the temperature profile T (x, t), where

T (x, t) ≡ 1

Ly

Ly∑

y=1

px,y(t). (C.29)

For simplicity, we study the case TR = TL = 1.2Tc with the initial condition

T (x, 0) ≡ 1.2Tc + sin

(
π(x − 1)

Lx − 1

)
. (C.30)

To realize the initial condition T (x, 0), σi is randomly chosen with equal probability and
pi = T (ix , 0) for any i . We then define the spatial average of the local temperature as

T̄ (t) ≡
〈

1

Lx

Lx∑

x=1

T (x, t)

〉
, (C.31)

where 〈·〉 denotes the average over ten independent samples. Assuming the diffusion equation
for T (x, t), we have

T̄ (t)

Tc
= 1.2 + Be−Dπ2t/L2

x , (C.32)
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Fig. 19 T̄ /Tc as a function of
π2t/L2x . The solid line represents
the fitting curve (C.32) (Color
figure online)

where D is the thermal diffusion constant and B is a parameter associated with the initial
condition. As shown in Fig. 19, we find that the fitting of (C.31) with (C.32) works well for
various system sizes with B = 1. From this fitting, we estimate D = 1.9 × 10−2.
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