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Abstract
For many non-equilibrium dynamics driven by small noise, in physics, chemistry, biology,
or economy, rare events do matter. Large deviation theory then explains that the leading
order term of the main statistical quantities have an exponential behavior. The exponential
rate is often obtained as the infimum of an action, which is minimized along an instanton.
In this paper, we consider the computation of the next order sub-exponential prefactors,
which are crucial for a large number of applications. Following a path integral approach,
we derive the dynamics of the Gaussian fluctuations around the instanton and compute
from it the sub-exponential prefactors. As might be expected, the formalism leads to the
computation of functional determinants and matrix Riccati equations. By contrast with the
cases of equilibriumdynamicswith detailed balance or generalized detailed balance,we stress
the specific non locality of the solutions of the Riccati equation: the prefactors depend on
fluctuations all along the instanton and not just at its starting and ending points. We explain
how to numerically compute the prefactors. The case of statistically stationary quantities
requires considerations of non trivial initial conditions for the matrix Riccati equation.

Keywords Non-equilibrium statistical physics · Rare events · Large deviation theory ·
Arrhenius law · Sub-exponential prefactors · Stochastic differential equations

Communicated by Jorge Kurchan.

B Freddy Bouchet
Freddy.Bouchet@cnrs.fr

Julien Reygner
julien.reygner@enpc.fr

1 Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de Physique, Lyon, France

2 CERMICS, Ecole des Ponts, Marne-la-Vallée, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10955-022-02983-7&domain=pdf
http://orcid.org/0000-0002-1623-0818


21 Page 2 of 32 F. Bouchet, J. Reygner

1 Introduction

1.1 Rare Events, Instantons and Sub-exponential Prefactors

Many systems in physics, chemistry, economics or biology can be described by stochastic
differential equations with small noise. In such cases many statistical quantities, for instance
the invariant distribution, first exit times, mean first passage times or transition probabilities
have asymptotic exponential behavior Cε exp(−I/ε), where I is the exponential rate, ε is
the noise amplitude, and Cε is a sub-exponential prefactor (see below for a more precise
definition).

This mathematical remark has profound consequences in physics. The most classical
examples of such exponential rates are the Arrhenius law, or thermodynamic potentials.1

Besides static properties, fromadynamical perspective,when conditioned on the occurence of
a rare event, path probabilities often concentrate close to a predictable path, called instanton.
This is a key and fascinating property for the dynamics of rare events and of their impact,
which was first observed in statistical physics, for the nucleation of a classical supersaturated
vapor [26]. Soon after, a similar concentration of path probabilities has been studied in gauge
field theories [10, 41], for instance for the Yang–Mills theory. Instantons continue to have
number of applications inmodern statistical physics, for instance to describe excitation chains
at the glass transition [27], reaction paths in chemistry [24], escape of Brownian particles in
soft matter [40].

The computation of the rate I is the subject of classical techniques using Laplace asymp-
totics, for instance in classical or path integrals [10, 22, 41]. At the mathematical level, this
is the subject of large deviation theory, see for instance the Freidlin–Wentzell theory for
small noise large deviations [17]. However, for most genuine applications, computing the
rate I is not sufficient and a proper estimation of the sub-exponential prefactor Cε , or of
its asymptotic behavior in the limit of small noise ε ↓ 0, is required. From a field theory
perspective, such computations require the estimation of the path integrals at next to leading
order. Such computations are very classical in the field theory context and involve the esti-
mation of expectations over Gaussian processes, for which solutions of Riccati equations are
needed. Several classical tools and approaches have been devised in quantum field theory and
for equilibrium problems, often on a case by case basis (see for instance [8, 41] as examples
among many others).

Recently, rare events, instantons, transitions rates, have been studied in far from equi-
librium systems and non-equilibrium steady states, were one starts from dynamics without
detailed balance. The statistical mechanics approaches have then be extended to scientific
fields so far unexpected. For instance rare events, instantons, and related concepts have been
used in turbulence [6, 11, 19, 20, 28], atmosphere dynamics [6, 37], climate dynamics [34],
astronomy [1, 39], among many other examples. Moreover, a large effort has been pursued
to develop dedicated numerical approches to compute the related instantons [18].

For all of these cases, it is essential to go beyond the computation of the exponential
rates and to compute the sub-exponential prefactors. Then, although formally classical ideas
still apply, several simplifications related to equilibrium dynamics no more occur. Often, the
extent of possible analytic simplifications is limited, and one has to rely more on numerical
simulations for actual computations. The aim of this paper is to develop the theoretical

1 Thermodynamic potentials are usually defined as static properties, independently of the dynamics, but they
also appear as quasipotential in effective dynamical theory, a classical example being macroscopic fluctuation
theory [3].
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analysis at a level were it will be useful for devising numerical algorithms. We will thus
consider stochastic differential equations with small noise, and develop the formalism and
show the potential for numerical computations. The numerical computationwill be illustrated
on a simple example.

At a technical level, wewill derive the neededmatrix Riccati equations, discuss their initial
conditions which are not trivial, for instance in the case of statistically stationary quantities,
and explain the relation between the matrix Riccati equations and the quantities of interest.

1.2 Setting

In this article, we consider systems described by the stochastic differential equation

dX ε
s = b

(
X ε
s

)
ds + √

2εdWs, s ≥ 0, (1)

inRd , where b : Rd → R
d is a smooth vector field,W is a d-dimensional Brownian motion,

and ε > 0 can be interpreted as a temperature parameter. In general, the diffusion process X ε

defined by (1) is not reversible, so that it serves as a model for physical systems driven out
of equilibrium. In particular, when the process possesses a stationary distribution Pε-called
the non-equilibrium steady state, the latter may not be explicit. Still, the Freidlin–Wentzell
theory [17] asserts that in the ε ↓ 0 limit and under suitable assumptions which we shall
detail in Sect. 2 below, Pε satisfies a large deviation principle, with a rate function V called
the quasipotential and defined in (6). We shall formally denote by

lim
ε↓0 −ε log Pε(x) = V (x) (2)

this large deviation principle, and we refer to [12] for standard material on large deviation
theory. The quasipotential is known to play the role of an entropy function for non-equilibrium
models [3, 17, 22].

Let us define the large deviation prefactor Cε(x) to the non-equilibrium steady state Pε

by the identity

Pε(x) = Cε(x) exp

(
−V (x)

ε

)
. (3)

An equivalent formulation of (2) is the assertion that limε↓0 ε logCε(x) = 0, so that no
precise information on the prefactor can be obtained merely from large deviation theory.
However, combining notions from this theory with a WKB approximation, we derived an
asymptotic equivalent of the prefactor in [4], recalled in Eq. (18) below.

The purpose of the present article is to continue our study of the prefactor, by proposing
an alternative method to obtain (18), based on the path integral formulation, and presenting
a numerical method to effectively compute the terms appearing in this formula. Both tasks
rely on the study of matrix-valued Riccati equations satisfied by quantities related to the
fluctuations of the diffusion process X ε around given deterministic paths.

1.3 Organization of the Paper

In Sect. 2, we state the asymptotic equivalent of the prefactor obtained in [4] and recall the
notions of large deviation theory involved in this formula. In Sect. 3,we describe an alternative
method leading to the same formula, which is based on the path integral formulation of
the non-equilibrium steady state and establishes a connection between the prefactor and
the fluctuations of the process X ε around its most probable path. The relation with sharp
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asymptotics formean exit times is discussed in Sect. 4. Section 5 is dedicated to the numerical
computation of the asymptotic equivalent of the prefactor, which we apply on an illustrative
example in Sect. 6. The conclusive Sect. 7 summarizes the main contribution of the paper
and discusses their relation with other recent works.

1.4 Notations

The Euclidian norm and inner product of Rd are respectively denoted by ‖ · ‖ and 〈·, ·〉. We
write Id for the identity matrix of size d×d . Given a smooth function f : Rd → R (typically,
V or bk , �k), we denote by ∇ f and ∇2 f the gradient and Hessian matrix of f . Similarly,
given a smooth vector field F : Rd → R

d (typically b or �), ∇F(x) refers to the matrix with
coefficient ∂ j Fi (x) at the i-th row and j-th column (that is to say, ∇F is the Jacobian matrix
of F), and ∇2F(x)(y, y) refers to the vector whose i-th coordinate is 〈y,∇2Fi (x)y〉. The
symbols � and div refer to the usual Laplacian and divergence operators of scalar functions.
The closure of an open set D ⊂ R

d is denoted by D̄. For two positive quantities uε , vε

indexed by ε > 0, the notation uε ∼
ε↓0 vε means that the ratio uε/vε converges to 1 when

ε ↓ 0.

2 Prefactor for the Stationary Distribution

In this section, we first precise the assumptions under which we shall work. We then provide
a very brief summary of the main notions from the Freidlin–Wentzell theory on which we
shall rely. Finally, we provide an asymptotic equivalent for the prefactor Cε(x), obtained
in [4] through a WKB approximation.

2.1 Assumptions on theVector Field b

Throughout this section, we make the following assumptions:

(A1) the deterministic system ẋ = b(x) possesses a unique equilibrium point x̄ ∈ R
d , which

attracts all the trajectories,
(A2) for all ε > 0, the SDE (1) possesses a unique stationary measure Pε .

Remark 1 Assumption (A1) allows to streamline the exposition of our results. In the more
general case where the deterministic system ẋ = b(x) possesses several (isolated) equi-
librium points, our arguments can be adapted and produce statements that are valid in the
neighborhood of the equilibrium points.

2.2 Action Functional, Quasipotential and Hamilton–Jacobi Equation

We recall a few notions from the Freidlin–Wentzell theory [17, Chapter 4] that will be useful
in the paper.

The action functional for the stochastic differential equation (1) is defined for a trajectory
φ = (φs)t1≤s≤t2 on the time interval [t1, t2] by

At1,t2 [φ] =
{∫ t2

s=t1
L(φs, φ̇s)ds ifφ is absolutely continuous,

+∞ otherwise,
(4)
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where the Lagrangian L writes

∀(x, v) ∈ R
d × R

d , L(x, v) = 1

4
‖v − b(x)‖2. (5)

It describes the large deviations of the trajectory (X ε
s )s∈[t1,t2] when ε ↓ 0 [17, Theorem 1.1,

p. 86].
The quasipotential with respect to x̄ is defined by the variational formula

V (x) = inf{At1,t2 [φ], φt1 = x̄, φt2 = x, t1 < t2}, (6)

where the infimum runs over all finite time intervals [t1, t2] and trajectories φ = (φs)t1≤s≤t2 .
The quasipotential is nonnegative. Besides, it is known that if it is smooth, then it solves the
Hamilton–Jacobi equation

〈∇V (x),∇V (x)〉 + 〈b(x),∇V (x)〉 = 0, (7)

in domains of Rd in which, in particular, x̄ is the only critical point of V . We refer to the
discussion in [17, pp. 100–101] for details. In this work, we shall assume that this property
actually holds globally:

(A3) the quasipotential V isC2 onRd ,∇V (x) �= 0 for any x �= x̄ , and the Hamilton–Jacobi
equation (7) holds on R

d .

Equivalently, the vector field � defined by

b(x) = −∇V (x) + �(x) (8)

satisfies
∀x ∈ R

d , 〈∇V (x), �(x)〉 = 0. (9)

Assumption (A3) then implies that the quasipotential satisfies the identity

V (x) =
0∫

s=−∞
L(ϕx

s , ϕ̇x
s )ds = A−∞,0[ϕx ], (10)

where ϕx = (ϕx
s )s≤0 is theminimum action path joining x̄ to x , defined as the unique solution

to the backward Cauchy problem
{

ϕ̇x
s = ∇V (ϕx

s ) + �(ϕx
s ), s ≤ 0,

ϕx
0 = x, lim

s→−∞ ϕx
s = x̄ . (11)

The identity (10) shows in particular that in (6), the quantity V (x) could be equivalently
defined as inf{A−∞,0[φ], limt→−∞ φt = x̄, φ0 = x}. In the sequel of the paper, we shall
call ϕx the fluctuation path, as it describes the most probable path followed by a fluctuation
of the diffusion process X ε joining x̄ to x .

Remark 2 Under Assumption (A3), differentiating the equality 〈∇V , �〉 = 0 twice, we get
the identity

d∑

k=1

(∂k∇2V )�k + ∇2V∇� + ∇��∇2V +
d∑

k=1

(∂kV )∇2�k = 0, (12)

which shall be useful in the course of the paper. We recall here that the notation ∇2 refers to
the Hessian matrix, see Sect. 1.4.

123



21 Page 6 of 32 F. Bouchet, J. Reygner

Remark 3 Putting (8) and (11) together shows that the fluctuation path, the quasipotential
and the drift b satisfy the identity

∇V (ϕx
s ) = 1

2

(
ϕ̇x
s − b(ϕx

s )
)
, (13)

which will be used in the sequel of the paper.

Remark 4 Assumption (A3) is satisfied in particular if the vector field b is known to possess
an explicit transverse decomposition of the form b = −∇V + �, for some smooth function
V : Rd → R which is such that 〈∇V , �〉 = 0 on R

d , and ∇V (x) �= 0 if x �= x̄ . In this
case, V can be then shown to coincide with the quasipotential with respect to x̄ , defined by
the right-hand side of the identity (6). However, even if the vector field b is smooth, it is
in general difficult to prove directly that the quasipotential, defined by the right-hand side
of (6), is smooth.

2.3 WKB Derivation of the Formula for the Prefactor

Injecting both the decomposition (8) of the vector field b and the ansatz (3) in the stationary
Fokker–Planck equation

ε�Pε − div(bPε) = 0 (14)

shows that Pε is equal to the Gibbs measure

Pε
Gibbs(x) = 1

Z ε
exp

(
−V (x)

ε

)
, Z ε =

∫

x∈Rd

exp

(
−V (x)

ε

)
dx, (15)

if and only if the condition
∀x ∈ R

d , div�(x) = 0 (16)

holds. In this case, the prefactor Cε does not depend on x and the Laplace approximation for
Z ε provides the asymptotic equivalence

Cε ∼
ε↓0

√
det∇2V (x̄)

(2πε)d
, (17)

as soon as the following assumption holds:

(A4) the matrix ∇2V (x̄) is positive-definite.

If the condition (16) does not hold, an expansion in powers of ε can be performed in (14),
following the usual WKB approximation method. This leads to the prefactor equivalent

Cε(x) ∼
ε↓0

√
det∇2V (x̄)

(2πε)d
exp

⎛

⎝−
0∫

s=−∞
div�(ϕx

s )ds

⎞

⎠ , (18)

which was derived in [4, Sect. 3], see also previous results in [9, 31, 32, 36]. The supplemen-
tary exponential term appearing in the right-hand side of (18) depends on the value of div�
along the whole trajectory of the fluctuation path ϕx . Therefore, we shall call it the nonlocal
contribution to the prefactor.
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3 Derivation of the Formula from the Path Integral Formulation

In this section,we still work underAssumptions (A1–4), and describe an alternativemethod to
theWKB approximation in order to derive the formula (18) for the prefactor to the stationary
distribution Pε . The method is based on the path integral formulation of Pε , in which a
Laplace approximation is performed, leading to the computation of an infinite-dimensional
Gaussian integral. The latter involves the fluctuations of the process X ε around the path ϕx ,
and thanks to the Feynman–Kac formula, it is computed by solving a backwardmatrix Riccati
equation.

Our derivation is rather formal; in particular, the Laplace approximation in the path integral
formulation is not rigorously justified. However, and although it is certainly less straightfor-
ward than the direct WKB approximation sketched in the previous section (which is also
nonrigorous), the method presented here has the conceptual advantage to establish a con-
nection between the prefactor, written under the form of a functional determinant, and the
process of fluctuations of X ε around the path ϕx . The latter process was recently studied in
the mathematical literature [30, 35].

3.1 Laplace Approximation in the Path Integral Formulation

In this subsection, we fix X ε
0 = x̄ . Then, observables of the trajectory (X ε

s )s∈[0,t] write in the
path integral formalism

E
[
F
(
(X ε

s )s∈[0,t]
)] =

∫

φ0=x̄

F[φ]e− 1
ε
A0,t [φ]D[φ], (19)

where the integral is taken over all absolutely continuous, Rd -valued trajectories φ =
(φs)s∈[0,t] such that φ0 = x̄ . This fact can be obtained following the standard time-
discretization construction of path integrals, using Ito’s convention for the discretization.
Alternatively, with a more probabilistic point of view, it may be derived from the Girsanov

theorem, once one takes the convention to denote by e− 1
4ε

∫ t
s=0 ‖φ̇s‖2dsD[φ] the law of the

Brownian trajectory (x̄ + √
2εWs)s∈[0,t].

In this formalism, we deduce that the density of the random variable X ε
t writes

Pε
t (x) =

∫

φ0=x̄

δ0(φt − x)e− 1
ε
A0,t [φ]D[φ], (20)

for any x ∈ R
d , where δ0 is the Dirac distribution at 0. In the sequel, it is more convenient

to consider trajectories defined on [t, 0], t < 0, rather than on [0, t], t > 0. Therefore we
introduce the notation

P̄ε
t (x) = Pε−t (x) =

∫

φt=x̄

δ0(φ0 − x)e− 1
ε
At,0[φ]D[φ], (21)

for t < 0. As a consequence, the stationary distribution Pε writes

Pε(x) = lim
t→+∞ Pε

t (x) = lim
t→−∞ P̄ε

t (x). (22)
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The second-order expansion of the action functional on [t, 0] around the fluctuation path
defined by (11) writes

At,0[φ] � At,0[ϕx ] + δAt,0

δφ
[ϕx ](φ − ϕx ) + 1

2

δ2At,0

δφ2 [ϕx ](φ − ϕx , φ − ϕx ). (23)

In the t → −∞ limit, the first-order term vanishes because of the optimality condition on
ϕx . The second-order term rewrites

1

2

δ2At,0

δφ2 [ϕx ](δφ, δφ)

= 1

4

0∫

s=t

(‖δφ̇s − ∇b(ϕx
s )δφs‖2 − 〈ϕ̇x

s − b(ϕx
s ),∇2b(ϕx

s )(δφs, δφs)〉
)
ds

= 1

4

0∫

s=t

(‖δφ̇s + Qx
s δφs‖2 + 2〈δφs, R

x
s δφs〉

)
ds,

(24)

where the matrices Qx
s and Rx

s are defined, for s ≤ 0, by

Qx
s = −∇b(ϕx

s ), Rx
s = −

d∑

k=1

∂kV (ϕx
s )∇2bk(ϕ

x
s ). (25)

At this stage, let us anticipate on the numerical discussion of Sect. 5, and point out that the
identity (13) shows that the matrices Qx

s and Rx
s can be computed from the mere knowledge

of the vector field b with its space derivatives, and the fluctuation path ϕx together with its
time derivative. In particular, it is not necessary to compute neither the quasipotential nor its
space derivatives along the fluctuation path.

As a consequence of the second-order expansion of the action functional, the Laplace
approximation yields, for ε > 0 small but fixed,

P̄ε
t (x) � e− 1

ε
At,0[ϕx ]

∫

δφt=x̄−ϕx
t

δ0(δφ0)e
− 1

4ε

∫ 0
s=t

(‖δφ̇s+Qx
s δφs‖2+2〈δφs ,Rx

s δφs 〉
)
dsD[δφ]. (26)

By (10), in the t → −∞ limit, At,0[ϕx ] converges to the quasipotential V (x), while (11)
shows that x̄ −ϕx

t vanishes. Therefore the prefactorCε(x) defined by (3) is equivalent, when
ε ↓ 0, to the t → −∞ limit of the path integral

∫

δφt=0

δ0(δφ0)e
− 1

4ε

∫ 0
s=t

(‖δφ̇s+Qx
s δφs‖2+2〈δφs ,Rx

s δφs 〉
)
dsD[δφ]

= 1

εd/2

∫

δφt=0

δ0(δφ0)e
− 1

4

∫ 0
s=t

(‖δφ̇s+Qx
s δφs‖2+2〈δφs ,Rx

s δφs 〉
)
dsD[δφ]

(27)

after rescaling δφ by the factor
√

ε and using the fact that δ0(
√

εy) = ε−d/2δ0(y). Since the
term appearing in the time integral above is quadratic in δφ, the path integral is an infinite-
dimensional Gaussian integral, the computation of which usually reduces to the computation
of a functional determinant. In the next paragraph, we adopt a different strategy to compute
its value, based on the use of the Feynman–Kac formula.
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3.2 Feynman–Kac Formula and BackwardMatrix Riccati Equation

Let us define, for all t ≤ 0 and x, y ∈ R
d ,

u(x; t, y) =
∫

δφt=y

δ0(δφ0)e
− 1

4

∫ 0
s=t

(‖δφ̇s+Qx
s δφs‖2+2〈δφs ,Rx

s δφs 〉
)
dsD[δφ], (28)

where the path integral is taken over trajectories δφ on [t, 0] such that δφt = y, so that
by (26–27),

Cε(x) ∼
ε↓0

1

εd/2 lim
t→−∞ u(x; t, 0). (29)

The introduction of this notation allows to provide a probabilistic interpretation to the right-
hand side of (28). Indeed, the path integral there writes as the expectation

u(x; t, y) = Et,y

⎡

⎣exp

⎛

⎝−1

2

0∫

s=t

〈Y x
s , Rx

s Y
x
s 〉ds

⎞

⎠ δ0(Y
ε
0 )

⎤

⎦ , (30)

where (Y x
s )s≤0 is the diffusion process defined by

dY x
s = −Qx

s Y
x
s ds + √

2dWs, s ≤ 0, (31)

and Et,y[·] refers to the expectation under which Y x
t = y while δ0 still denotes the Dirac

distribution in 0. The linear process (Y x
s )s≤0 describes the scaled Gaussian fluctuations of

the original process around (ϕx
s )s≤0.

By the Feynman–Kac formula, the function u(x; t, y) is the solution to the backward
parabolic problem
⎧
⎨

⎩
− ∂t u(x; t, y) = �yu(x; t, y) − 〈Qx

t y,∇yu(x; t, y)〉 − 1

2
〈y, Rx

t y〉u(x; t, y), t < 0,

u(x; 0, y) = δ0(y).
(32)

Since the diffusion process (Y x
s )s≤0 describes Gaussian fluctuations around the fluctuation

path, we shall look for a solution to (32) with the Gaussian ansatz

u(x; t, y) = 1
√

(4π)dηx
t

exp

(
−〈y, K x

t y〉
4

)
, (33)

where, for all t < 0, ηx
t > 0 and the matrix K x

t is symmetric. This is a natural ansatz
since (30) shows that u(x; t, ·) is the marginal distribution at time s = 0 of the Gaussian
process (Y ε

s )s∈[t,0], under an (unnormalized) exponential tilting by a quadratic functional
of this process. Since such changes of measure are known to preserve Gaussian distribu-
tions, the resulting density may be expected to remain Gaussian. Furthermore, the condition
u(x; 0, y) = δ0(y) implies the limit behavior

lim
t↑0 (K

x
t )−1 = 0, lim

t↑0 ηx
t = 0, lim

t↑0 ηx
t det K

x
t = 1. (34)

Injecting the ansatz (33) into the problem (32), we get the system of ordinary differential
equations

∀t < 0,

{
η̇x
t = −ηx

t trK
x
t ,

K̇ x
t = (K x

t )2 + Qx
t
�K x

t + K x
t Q

x
t − 2Rx

t .
(35)
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The second equation is a backward matrix Riccati equation, it is solved in Appendix 2. We
obtain the explicit result

∀t < 0, K x
t = −2∇2V

(
ϕx
t

)+ (
Zx
t

)−1
, (36)

with

Zx
t =

0∫

s=t

⎢
⎢
⎢
⎣exp

⎛

⎝
t∫

r=s

Ax
r dr

⎞

⎠

⎥
⎥
⎥
⎦

⎢
⎢
⎢
⎣exp

⎛

⎝
t∫

r=s

Ax
r dr

⎞

⎠

⎥
⎥
⎥
⎦

�

ds,

Ax
r = ∇2V (ϕx

r ) + ∇�(ϕx
r ),

(37)

and �exp(·)� denotes the time ordered exponential of matrices, the definition and a few
properties of which are recalled in Appendix 1. From (36) we deduce in Appendix 3 that

lim
t→−∞ ηx

t = 1

2d det(∇2V (x̄))
exp

⎛

⎝2

0∫

s=−∞
div�(ϕx

s )ds

⎞

⎠ . (38)

Combining this result with the identities (29) and (33) allows to recover the formula (18). As
a conclusive statement, we write the asymptotic equivalence for the non-equilibrium steady
state

Pε(x) ∼
ε↓0

√
det∇2V (x̄)

(2πε)d
exp

⎛

⎝−V (x)

ε
−

0∫

s=−∞
div�(ϕx

s )ds

⎞

⎠ . (39)

The computation of the solution (36) to the system (35), together with the proof of the
identity (38), make our derivation of the final asymptotics (39) for the non-equilibrium steady
state definitely different from theWKB approximation from Sect. 2. This chain of arguments
may be considered as the main conceptual result from this article.

4 Application toMean Exit Times

Let D ⊂ R
d be a domain containing an equilibrium point x̄ of the deterministic system

ẋ = b(x). Let us define the exit time from D by

τ ε
D = inf{s ≥ 0 : X ε

s /∈ D}. (40)

Under suitable assumptions on D, the Freidlin–Wentzell theory asserts that

lim
ε↓0 ε logEx̄ [τ ε

D] = inf
y∈∂D

V (y), (41)

where the subscript x̄ indicates that X ε
0 = x̄ , and V still refers to the quasipotential with

respect to x̄ defined by (6).
When the deterministic system ẋ = b(x) possesses several stable equilibrium points and

D denotes the basin of attraction of one of these points x̄ , then the diffusion process (X ε
s )s≥0

is called metastable, and the logarithmic equivalent (41) is called the Arrhenius law.
In any case, the associated prefactor Lε

D to the mean exit time from D is defined by

Ex̄ [τ ε
D] = Lε

D exp

(
1

ε
inf
y∈∂D

V (y)

)
. (42)

In this section, we express this prefactor in terms of the function Cε(x) computed in (18).
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4.1 Domain with a Noncharacteristic Boundary

In this subsection, we assume that D is an open, smooth and connected subset ofRd satisfying
the following conditions, where we denote by n(y) the exterior normal vector at y ∈ ∂D.

(B1) The deterministic system ẋ = b(x) possesses a unique equilibrium point x̄ in D, which
attracts all the trajectories started from D, and 〈b(y), n(y)〉 < 0 for all y ∈ ∂D.

(B2) The function V is C1 in D; for any x ∈ D̄, the fluctuation path ϕx
s goes to x̄ when

s → −∞; and 〈∇V (y), n(y)〉 > 0 for all y ∈ ∂D.

Under these assumptions, we proceed as in Sect. 2.2 and define the vector field � : D̄ → R
d

by the identity b = −∇V + �. Then � still satisfies the orthogonality relation (9).

(B3) The minimum of V over ∂D is reached at a single point y∗, at which

μ∗ = 〈∇V (y∗) + �(y∗), n(y∗)〉 > 0, (43)

and the quadratic form h∗ : ξ �→ 〈ξ,∇2V (y∗)ξ 〉 has positive eigenvalues on the
hyperplane n(y∗)⊥ = {ξ ∈ R

d : 〈ξ, n(y∗)〉 = 0}.
By Assumption (B1), [17, Theorem 4.1, p. 106] applies and yields (41). In [4, Eq. (4.25)],

the integral formula

λε
D =

∫

y∈∂D

〈∇V (y) + �(y), n(y)〉Cε(y) exp

(
−V (y)

ε

)
dy (44)

was derived for the exit rate λε
D = Ex̄ [τ ε

D]−1. Using the second-order expansion of V in the
neighborhood of y∗ in this formula, we obtain the equivalent

Lε
D ∼

ε↓0
1

Cε(y∗)μ∗

√
det h∗

(2πε)d−1

∼
ε↓0

1

μ∗

√
2πε det h∗
det∇2V (x̄)

exp

⎛

⎝
0∫

s=−∞
div�

(
ϕ
y∗
s

)
ds

⎞

⎠

(45)

for the prefactor to the mean exit time from D.

4.2 The Eyring–Kramers Formula for Metastable States

In this subsection, we assume that the deterministic system ẋ = b(x) possesses two sta-
ble equilibrium points x̄1 and x̄2, whose basins of attractions are separated by a smooth
hypersurface S.

We call D the basin of attraction of x̄1 and formulate the following set of assumptions.

(C1) All the trajectories of the deterministic system ẋ = b(x) started on S remain in S and
converge to a single equilibrium point x∗ ∈ S; besides, the matrix ∇b(x∗) possesses
d − 1 eigenvalues with negative real part and a single positive eigenvalue λ∗.

(C2) Denoting by V the quasipotential with respect to x̄1 still defined by (6), there exists a
unique (up to time shift) trajectory ρ = (ρt )t∈R ⊂ D such that

lim
t→−∞ ρt = x̄1, lim

t→+∞ ρt = x∗, and V (x∗) = A−∞,+∞[ρ]. (46)
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(C3) V is smooth in the neighborhood of (ρt )t∈R, and the vector field � defined by the
identity b = −∇V + � satisfies the orthogonality relation (9).

In this context, V reaches its minimum on S at the point x∗, and we refer to [2] for a proof
of the Arrhenius law (41) based on the Freidlin–Wentzell theory. Furthermore, the path ρ is
called the instanton and it satisfies

∀t ∈ R, ρ̇t = ∇V (ρt ) + �(ρt ). (47)

As a consequence, for any t ∈ R, the fluctuation path (ϕx
s )s≤0 joining x̄ to x = ρt coincides

with the instanton, in the sense that

∀s ≤ 0, ϕx
s = ρs+t . (48)

In order to describe the prefactor Lε
D in this case, we formulate the following supplemen-

tary assumption.

(C4) The matrix H∗ = limt→+∞ ∇2V (ρt ) exists and has d − 1 positive eigenvalues and 1
negative eigenvalue.

Under Assumptions (C1–4), a formula was obtained in [4, Eq. (1.10)] to describe the
sharp asymptotics of the expected time taken by the process to reach the neighborhood of x̄2,
which is the contents of the so-called Eyring–Kramers formula in the context of reversible
diffusion processes [7]. Large deviation theory shows that with overwhelming probability,
the path taken by the process to reach x̄2 passes close to x∗. At this point, since b(x∗) = 0,
the process has a probability close to 1/2 to turn back into D and a probability close to 1/2
to reach the neighbourood of x̄2. Therefore, the expected time taken by the process to exit D
is half the time described by the Eyring–Kramers formula. As a consequence, dividing the
right-hand side of [4, Eq. (1.10)] by 2, we get the estimate

Lε
D ∼

ε↓0
π

λ∗

√
| det H∗|

det∇2V (x̄1)
exp

⎛

⎝
+∞∫

t=−∞
div�(ρt )dt

⎞

⎠ (49)

for the prefactor to the mean exit time from D.

Remark 5 Notice that in the case addressed in Sect. 4.1, Lε
D is proportional to

√
ε, while in

the present case, Lε
D does not depend on ε.

4.3 Comments on the Nonlocal Contribution

In the formula obtained for Lε
D in the cases of bothSects. 4.1 and4.2, thenonlocal contribution

discussed at the end of Sect. 2 appears. In particular for the Eyring–Kramers formula, the
identity (48) allows to relate the integral term of (49) to fluctuation paths by the remark that

+∞∫

t=−∞
div�(ρt )dt = lim

t→+∞

0∫

s=−∞
div�(ϕρt

s )ds. (50)

As a consequence, in the sequel of this paper, we focus on the numerical evaluation of this
term.

Recent rigorous derivations of the Eyring–Kramers formula for nonreversible diffusion
processes have been obtained in [25, 29], but to our knowledge, they are restricted to the case
of processes whose invariant distribution is given by the measure (15) and therefore do not
include the nonlocal contribution.
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5 Effective Computation of the Prefactor C�

In Sect. 4, we showed that sharp asymptotics for mean exit times essentially follow from an
accurate computation of the prefactorCε to the stationary distribution,whichwas the object of
Sects. 2 and 3. In this section, we therefore come back to the framework of Assumptions (A1–
4) and focus on the numerical evaluation of this prefactor, whose equivalent is given by (18).

For a given x ∈ R
d , the evaluation of the right-hand side of (18) requires the computation

of the following quantities:

– the fluctuation path (ϕx
s )s≤0,

– the divergence of � along the fluctuation path,
– the determinant of ∇2V (x̄).

The main difficulty to access these quantities is that in general, the transverse decomposi-
tion (8) of the vector field b is not explicit, and therefore neither∇V nor � are straightforward
to obtain.

As a first step, one can remark that thanks to (8),

∀s ≤ 0, div�(ϕx
s ) = divb(ϕx

s ) + �V (ϕx
s ), (51)

so that computing the Hessian matrix ∇2V (ϕx
s ) of the quasipotential along the fluctuation

path is sufficient to obtain div�(ϕx
s ) and det∇2V (x̄).

Motivated by the large deviation principle (2), specific methods have been developed in
the computational physics community to evaluate the quasipotential V (we provide more
context in Remark 7 below). The geometric Minimum Action Method (gMAM) [23, 38] is a
numerical procedure which computes the fluctuation path ϕx and returns the value of V (x)
given by (10). Once we are supplied with ϕx , we could virtually iterate the method described
above in order to compute the values of V in the neighborhood of the fluctuation path, and
hence approximate ∇2V (ϕx

s ) for selected points s on a time grid. However, computing a
fluctuation path for each evaluation of V is too costly and we shall look for an algorithm
that avoids doing so. Our method relies on the fact that ∇2V (ϕx

t ) satisfies a forward matrix
Riccati equation, which was already observed in [31, 32].

Proposition 1 Let x ∈ R
d . Under Assumption (A3), the family of matrices (Hx

t )t≤0 defined
by

Hx
t = ∇2V

(
ϕx
t

)
(52)

satisfies the forward matrix Riccati equation

Ḣ x
t = −2

(
Hx
t

)2 + Qx
t
�Hx

t + Hx
t Q

x
t + Rx

t , (53)

complemented with the limit condition

lim
t→−∞ Hx

t = ∇2V (x̄). (54)

Proof By (11), the time derivative of Hx
t writes

Ḣ x
t =

d∑

k=1

(
∂kV

(
ϕx
t

)+ �k
(
ϕx
t

))
∂k∇2V

(
ϕx
t

)
. (55)
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On the one hand, using (8) and (25) yields

d∑

k=1

∂kV (ϕx
t )∂k∇2V (ϕx

t ) =
d∑

k=1

∂kV (ϕx
t )∇2(−bk(ϕ

x
t ) + �k(ϕ

x
t ))

= Rx
t +

d∑

k=1

∂kV (ϕx
t )∇2�k(ϕ

x
t ),

(56)

while on the other hand, the identity (12) yields

d∑

k=1

�k(ϕ
x
t )∂k∇2V (ϕx

t )

= −∇2V (ϕx
t )∇�(ϕx

t ) − ∇�(ϕx
t )�∇2V (ϕx

t ) −
d∑

k=1

∂kV (ϕx
t )∇2�k(ϕ

x
t ),

(57)

so that
Ḣ x
t = −∇2V (ϕx

t )∇�(ϕx
t ) − ∇�(ϕx

t )�∇2V (ϕx
t ) + Rx

t . (58)

We now compute

Qx
t
�Hx

t + Hx
t Q

x
t = 2(Hx

t )2 − ∇2V (ϕx
t )∇�(ϕx

t ) − ∇�(ϕx
t )�∇2V (ϕx

t ), (59)

which yields (53) and completes the proof.

Remark 6 The backward matrix Riccati equation (35) and the forward Riccati equation (53)
are related by the fact that if Ht is a solution to (53), then Kt = −2Ht is a solution to (35).
This remark is employed in Appendix 2 to solve (35) by quadrature.

As was already noted in Sect. 3.1, the coefficients Qx
t and Rx

t of the forward matrix
Riccati equation (53) can be computed from the mere knowledge of b and ϕx , thanks to the
identity (13). As a consequence, ∇2V (ϕx

t ) can be obtained by numerical integration of (53).
Therefore we are left with two tasks: computing the limit condition ∇2V (x̄) for (53), and
integrating this equation on (−∞, 0]. These tasks are discussed in the respective Sects. 5.1
and 5.2. The whole method is then summarized in Sect. 5.3.

Remark 7 The numerical evaluation of large deviation quantities, such as quasipotentials or
prefactors, is known to be a difficult question, even in low-dimensional cases. Indeed, the
presence of a small term ε in the second-order part of the infinitesimal generator ε� +
〈b,∇〉 of (1) may make standard discretization schemes for Fokker–Planck or Kolmogorov
equations ill-conditioned and unstable. Therefore, dedicated methods need to be developed.
Roughly speaking, two classes of such methods exist: path-based methods, such as the
gMAM employed in this section, which rely on the computation of minimum action paths,
andmesh-based solvers which compute the value of the quasipotential V on a predetermined
grid. We refer for instance to the recent work by Paskal and Cameron [33] for an example
of the latter class of methods, which has the advantage to also provide an approximation of
∇V on the grid, but crucially suffers from the curse of dimensionality.

5.1 Determination of the Limit Condition

The t → −∞ limit condition for Hx
t is given by

H̄ = ∇2V (x̄), (60)
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which we assume to be positive-definite. This matrix satisfies the stationary version of (53),
which writes

2H̄2 = Q̄� H̄ + H̄ Q̄, (61)

with Q̄ = −∇b(x̄). In the context of optimal control, this equation is referred to as a contin-
uous time algebraic Riccati equation (CARE). Alternatively, since x̄ is a stable equilibrium
point of the dynamical system ẋ = b(x), the eigenvalues of Q̄ have nonnegative real parts.
Let us assume that these eigenvalues have positive real parts. Then H̄−1 solves the continuous
Lyapunov equation

2Id = H̄−1 Q̄� + Q̄ H̄−1, (62)

so that

H̄−1 = 2

+∞∫

t=0

exp(−t Q̄) exp(−t Q̄�)dt . (63)

5.2 Reparametrization and Integration of the System

The system (53-54) is defined on the time interval (−∞, 0], with a limit condition in t = −∞.
To facilitate its numerical integration, we first introduce a reparametrization of time by the
length of the fluctuation path, in the spirit of gMAM [23, 38].

The length of the fluctuation path is defined by

Lx =
0∫

s=−∞
‖ϕ̇x

s ‖ds =
0∫

s=−∞
‖b(ϕx

s )‖ds, (64)

where the second identity follows from the orthogonality relation (9). For all t ≤ 0, we
denote

σt =
t∫

s=−∞
‖ϕ̇x

s ‖ds =
t∫

s=−∞
‖b(ϕx

s )‖ds ∈ (0, Lx ]. (65)

The reparametrized fluctuation path is the trajectory (ϕ̃x
σ )σ∈[0,Lx ] defined by the identity

∀t ≤ 0, ϕx
t = ϕ̃x

σt
, (66)

and the continuous extension ϕ̃x
0 = x̄ . It is easily observed that, for all σ ∈ (0, Lx ],
d

dσ
ϕ̃x

σ = ∇V (ϕ̃x
σ ) + �(ϕ̃x

σ )

‖b(ϕ̃x
σ )‖ . (67)

We now define
H̃ x

σ = ∇2V (ϕ̃x
σ ), (68)

so that H̃ x
σt

= Hx
t for all t ≤ 0. Then the family (H̃ x

σ )σ∈[0,Lx ] satisfies the problem
⎧
⎨

⎩

d

dσ
H̃ x

σ = ‖b(ϕ̃x
σ )‖−1

(
−2(H̃ x

σ )2 + (Q̃x
σ )� H̃ x

σ + H̃ x
σ Q̃

x
σ + R̃x

σ

)
, σ ∈ (0, Lx ],

H̃ x
0 = H̄ ,

(69)
with

Q̃x
σt

= Qx
t , R̃x

σt
= Rx

t . (70)
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Notice that when σ ↓ 0, both ‖b(ϕ̃x
σ )‖ and −2(H̃ x

σ )2 + (Q̃x
σ )� H̃ x

σ + H̃ x
σ Q̃

x
σ + R̃x

σ vanish.
Therefore in order to integrate this system starting from σ = 0, we have to provide an a
priori estimate of the σ ↓ 0 limit of

d

dσ
H̃ x

σ =
d∑

l=1

d

dσ
ϕ̃x
l,σ ∂l∇2V (ϕ̃x

σ ). (71)

First, a first-order expansion in (67) yields, in the σ ↓ 0 regime,

d

dσ
ϕ̃x

σ �
(∇2V (x̄) + ∇�(x̄)

) (
ϕ̃x

σ − x̄
)

∥
∥∇b(x̄)

(
ϕ̃x

σ − x̄
)∥∥ =

(
2H̄ + ∇b(x̄)

) (
ϕ̃x

σ − x̄
)

∥
∥∇b(x̄)

(
ϕ̃x

σ − x̄
)∥∥ (72)

thanks to (8). Each individual term in the right-hand side is computable, so that one can
evaluate the quantities d

dσ ϕ̃x
l,σ |σ=0

for all l ∈ {1, . . . , d}.
It remains to compute the third derivatives of V at x̄ in order to evaluate the matrices

∂l∇2V (x̄), l ∈ {1, . . . , d}. To this aim, we take the derivative of (12) with respect to the l-th
coordinate, and evaluate the result at x̄ . Using the fact that �(x̄) and ∇V (x̄) vanish, we get
the matrix identity

0 =
d∑

k=1

(
∂k∇2V (x̄)

)
(∂l�k(x̄)) + (

∂l∇2V (x̄)
)
(∇�(x̄)) + (∇2V (x̄)

)
(∂l∇�(x̄))

+ (∂l∇�(x̄))�
(∇2V (x̄)

)+ (∇�(x̄))�
(
∂l∇2V (x̄)

)+
d∑

k=1

(∂kl V (x̄))
(∇2�k(x̄)

)
.

(73)

Substituting the derivatives of � with those of b + ∇V , and introducing the notations

vi jl = ∂i jl V (x̄), hi j = ∂i j V (x̄), βi, j = ∂ j bi (x̄), γi, jl = ∂ jlbi (x̄), (74)

we finally obtain that, for all i, j, l ∈ {1, . . . , d},

0 =
d∑

k=1

vi jk(βk,l + hkl) + vikl(βk, j + h jk) + hik(γk, jl + v jkl)

+ (γk,il + vikl)h jk + (βk,i + hik)v jkl + hkl(γk,i j + vi jk).

(75)

Since the coefficients hi j , βi, j and γi, jl are known, the system of equations above induces
d3 linear relations between the d3 unknown coefficients vi jl –- more precisely, since both
the left-hand side of (75) and the value of vi jl are invariant by permutation of the indices i ,
j and l, the number of independent linear relations and unknown coefficients is reduced to
d(d+1)(d+2)/6. The resolution of this system allows to reconstruct the matrices ∂l∇2V (x̄)
and completes the computation of (71). Notice that these matrices also possess an explicit
formulation as an integral along the fluctuation path associated with the linearized stochastic
differential equation

d X̃ ε
s = ∇b(x̄)

(
X̃ ε
s − x̄

)
ds + √

2εdWs, s ≥ 0, (76)

see [5, Sect. 3.3 and Eq. (3.39)].

123



NESS Prefactors and Matrix Riccati Equations… Page 17 of 32 21

5.3 Conclusion

Given x ∈ R
d and ε > 0, the numerical procedure sketched above to compute the right-hand

side of (18) can be summarized in the following steps.

1. Compute the fluctuation path ϕx , for example using gMAM [23, 38]. From this step, the
value of V (x) along the fluctuation path can be deduced thanks to (10), which allows to
evaluate the right-hand side of (2).

2. Solve the stationary matrix Riccati equation (61) to get H̄ = ∇2V (x̄). This can be done
either:

– by computing the integral (63), which solves the Lyapunov equation (62), and inverting
the result;

– or by using a numerical solver for the CARE (61) directly.

3. Compute Lx and for a given number of time steps N � 1, compute times 0 = tN >

tN−1 > · · · > t1 > t0 = −∞ such that

∀n ∈ {1, . . . , N − 1},
tn+1∫

s=tn

‖b(ϕx
s )‖ds = θ, (77)

with θ = Lx/N .
4. Using (72), compute

d

dσ
ϕ̃x

σ |σ=0
�
(
2H̄ + ∇b(x̄)

) (
ϕx
t1 − x̄

)

∥∥∇b(x̄)
(
ϕx
t1 − x̄

)∥∥ , (78)

and solve (75) to get the matrices ∂l∇2V (x̄), l ∈ {1, . . . , d}.
5. Compute the approximation H̃ [n] of H̃ x

nθ = Htn by integrating the matrix-valued differ-
ential equation

d

dσ
H̃ x

σ = −2(H̃ x
σ )2 + (Q̃x

σ )� H̃ x
σ + H̃ x

σ Q̃
x
σ + R̃x

σ

‖b(ϕ̃x
σ )‖ (79)

on the grid σ ∈ {θ, 2θ, . . . , Nθ}, with initial conditions
⎧
⎪⎪⎨

⎪⎪⎩

H̃ [0] = H̄ ,

H̃ [1] = H̃ [0] + θ

d∑

l=1

d

dσ
ϕ̃x
l,σ |σ=0

∂l∇2V (x̄).
(80)

Many schemes can be employed for this numerical integration; in the example of Sect. 6,
we use a first-order implicit Euler scheme, which is observed to have satisfying stability
properties.

6. Deduce from (51) that

0∫

s=−∞
div�(ϕx

s )ds �
N−1∑

n=0

(tn+1 − tn)
(
divb(ϕx

tn ) + trH̃ [n]) , (81)

where we recall that the times t0, . . . , tN are chosen so that the length of the instanton
on each time interval (tn, tn+1) be equal to θ .
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6 Numerical Illustration

In this section, we apply the method devised in Sect. 5 to a two-dimensional process which
exhibits bistability, in the sense that the associated vector field b : R2 → R

2 possesses two
stable equilibrium points. We are therefore in the context of Sect. 4.2 and our purpose is to
numerically approximate the various quantities appearing in the right-hand side of (49).

We shall fix one equilibrium point x̄ and first compute the instanton (ρt )t∈R. By (48), the
integral term involved in the computation of the prefactorCε(x) to the stationary distribution
at the point x writes

0∫

s=−∞
div�(ϕx

s )ds =
t∫

s=−∞
div�(ρs)ds. (82)

For notational convenience, we denote this quantity by J (t). Hence, computing J (t) for any
t ∈ R amounts to computing a whole family of prefactors Cε , at points x = ρt . In the
t → +∞ limit, we shall finally obtain the value of the prefactor Lε

D to the mean exit time
from the basin of attraction of x̄1, as is described in Sect. 4.2.

In the present section, we follow the steps of the procedure detailed in Sect. 5.3. Step 1,
which corresponds to the computation of the fluctuation path, is addressed in Sect. 6.1,
where we first present the example. The computation of H̄ (Step 2) is performed in Sect. 6.2.
Anticipating on Step 4, we compute the third derivatives of V at x̄ in Sect. 6.3. Steps 3, 4
and 5 are then addressed in Sect. 6.4, which yields H̃ [n]. Since we are considering fluctuation
paths which finally reach the saddle-point (that is to say, the instanton), the reparametrization
by the arclength of the instanton display a singularity when approaching this point, so that
the computation of H̃ [n] becomes unstable. This point is treated in Sect. 6.5. Last, the overall
value of J (t) is computed in Sect. 6.6, which corresponds to Step 6 of the procedure.

6.1 Presentation of the Example

For α > 0, we consider the potential function on R2 defined by

V (x1, x2) = v1(x1) + v2(x2), v1(x1) = x41
4

− x21
2

, v2(x2) = α
x22
2

, (83)

the critical points of which are (−1, 0), (0, 0) and (1, 0). It is easily checked that the first and
third points are stable equilibria of the dynamical system ẋ = −∇V (x), while the second
point is stable in the direction of x2 but unstable in the direction of x1.

For a smooth scalar field c : R2 → R to be chosen below, let us define the vector field b
by

b = −∇V + �, �(x1, x2) = c(x1, x2)

(−v′
2(x2)

v′
1(x1)

)
. (84)

For any choice of c, the Hamilton–Jacobi equation (7) is satisfied, the vector field b vanishes
at the same points as −∇V , and the points (−1, 0) and (1, 0) are stable equilibria of the
dynamical system ẋ = b(x). The saddle-point (0, 0) is stable in one direction and unstable
in one direction, but these directions may differ from the canonical vectors of R2.

Let us denote x̄ = (−1, 0) and x∗ = (0, 0). The instanton (ρt )t∈R is the heteroclinic orbit
of the dynamical system

ẋ = ∇V (x) + �(x) (85)
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Fig. 1 The level lines of V (pale blue), some field lines associated with b (red) and the instanton (thick blue)
joining x̄ = (−1, 0) to x∗ = (0, 0)

joining x̄ in t = −∞ to x∗ in t = +∞. The instanton, the level lines of V and the field lines
of b are plotted on Fig. 1 for the choice

c(x1, x2) = βx1, β > 0. (86)

The numerical illustrations of this section are plotted for α = 0.5 and β = 3.

6.2 Stationary Matrix Riccati Equation

With our definition of the vector field b and the choice (86) for the scalar field c, the matrix
Q̄ = −∇b(x̄) appearing in (61) writes

Q̄ =
(

v′′
1 (x̄1) c(x̄)v′′

2 (x̄2)−c(x̄)v′′
1 (x̄1) v′′

2 (x̄2)

)
=
(
2 −βα

2β α

)
, (87)

where we have used the fact that ∇V (x̄) = 0 for the first identity. The numerical resolution
of (61) yields the expected result

H̄ =
(
2 0
0 α

)
. (88)
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6.3 Third Derivatives of V at x̄

In order to determine the initial condition for the computationof H̃ [n],wewrite the coefficients
appearing in (75):

– the computation of H̄ performed above yields

h11 = 2, h12 = 0, h22 = α; (89)

– the computation of ∇b(x̄) yields

β1,1 = −2, β1,2 = βα, β2,1 = −β, β2,2 = −α; (90)

– the computation of the second derivatives of b yields
{

γ1,11 = 6, γ1,12 = −βα, γ1,22 = 0,

γ2,11 = 10β, γ2,12 = 0, γ2,22 = 0.
(91)

The system of linear equations (75) contains 4 equations, corresponding to the choices
{i, j, l} = {1, 1, 1}, {1, 1, 2}, {1, 2, 2}, {2, 2, 2}, which write

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 = 36 + 6v111 − 3βv112,

0 = 6βα + βαv111 + (4 + α)v112 − 2βv122,

0 = 2βαv112 + 2(1 + α)v122 − βv222,

0 = 3βαv122 + 3αv222.

(92)

The unique solution of this system is

v111 = −6, v112 = v122 = v222 = 0, (93)

therefore we recover

∂1∇2V (x̄) =
(−6 0

0 0

)
, ∂2∇2V (x̄) =

(
0 0
0 0

)
, (94)

as expected from the analytical expression of V .

6.4 Computation of H̃[n]

The instanton on Fig. 1 is computed for times t ranging from tmin such that ‖ρtmin − x̄‖ � 1
to tmax such that ‖ρtmax − x∗‖ � 1. The length of the instanton is thus

L =
+∞∫

t=−∞
‖b(ρt )‖dt �

tmax∫

t=tmin

‖b(ρt )‖dt . (95)

For the example which we are studying, L � 2.15.
The parametrization of the instanton by its length is defined by

σt =
t∫

s=−∞
‖b(ρs)‖ds �

t∫

s=tmin

‖b(ρs)‖ds, (96)

123



NESS Prefactors and Matrix Riccati Equations… Page 21 of 32 21

and we denote

ρ̃σt = ρt , Q̃σ = −∇b(ρ̃σ ), R̃σ = −
d∑

k=1

∂kV (ρ̃σ )∇2b(ρ̃σ ). (97)

In order to integrate the differential equation

d

dσ
H̃σ = −2(H̃σ )2 + (Q̃σ )� H̃σ + H̃σ Q̃σ + R̃σ

‖b(ρ̃σ )‖ , (98)

we use standard, first-order Euler schemes. The explicit scheme

H̃ [n+1] − H̃ [n]

θ
= −2(H̃ [n])2 + (Q̃nθ )

� H̃ [n] + H̃ [n] Q̃nθ + R̃nθ

‖b(ρ̃nθ )‖ (99)

is observed to be unstable. A semi-implicit scheme is presented in [15]; in the present case,
it is also observed to be unstable. Following ideas introduced in [13, 14], we finally consider
the implicit scheme

H̃ [n+1] − H̃ [n]

θ
= −2(H̃ [n+1])2 + (Q̃nθ )

� H̃ [n+1] + H̃ [n+1] Q̃nθ + R̃nθ

‖b(ρ̃nθ )‖ (100)

which requires to solve the CARE

2θ̃n(H̃
[n+1])2+

(
I2
2

− θ̃n Q̃nθ

)�
H̃ [n+1]+ H̃ [n+1]

(
I2
2

− θ̃n Q̃nθ

)
= H̃ [n]+θ̃n R̃nθ , (101)

with θ̃n = θ/‖b(ρ̃nθ )‖, at each step. This scheme is observed to be stable and convergent.
We point out the fact that, to our knowledge, the theoretical results regarding the numeri-

cal analysis of the matrix Riccati equation (98), such as [13–15], assume that the matrix R̃σ

remains nonnegative, which then ensures the nonnegativity of the solution H̃σ . In our situa-
tion, the matrix H̃σ is clearly not nonnegative in general, except at the initial point σ = 0.
Therefore, the result of our numerical simulations are purely empirical, and are not backed
up by some rigorous stability or convergence result.

Figure 2 represents the value of the coefficient H̃ [n]
11 for n = 0, . . . , N , for several choices

of the mesh size θ . The actual values of the first coefficient of ∇2V (ρtn ), computed from the
analytical expression of V , are provided as a benchmark. We observe that the convergence is
slow in the neighborhood of the saddle-point x∗, which is discussed in the next subsection.

When the dimension d is large, solving the CARE (101) at each step of the algorithmmay
turn out to be costly and lessen the interest of the implicit scheme. In such cases, alternative
approaches such as the ‘fundamental solution method’ from [13] can be employed. The latter
method also allows to implement higher-order schemes.

6.5 Singularity at the Saddle-Point

When σ approaches L , the instanton becomes close to the saddle-point x∗ and the value of
‖b(ρ̃σ )‖ goes to 0. Therefore the integration of (98) becomes sensitive to the fact that the
denominator in the right-hand side takes small values, which causes the singularity observed
on Fig. 2. In order to overcome this issue, we note that, similarly to the initial value H̄ = H̃0,
the terminal value

H̃L = lim
t→+∞ Ht = ∇V (x∗) = H∗ (102)
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Fig. 2 Comparison between the computed value of H̃ [n]
11 (blue curves) and the actual value of ∂11V (ρtn )

(red), parametrized by the arclength of the instanton σ ∈ [0, L]. The smaller the mesh size θ , the better the
convergence at the saddle-point. The different choices of θ correspond to the values 2000, 4000, 8000, 16,000
and 40,000 for the number of steps N = L/θ

can be computed by solving the stationary matrix Riccati equation

2H∗ = (Q∗)�H∗ + H∗Q∗, Q∗ = −∇b(x∗). (103)

This remark allows us to implement the following interpolation procedure.

1. Fix a threshold δ such that θ � δ � L .
2. Among the indices n such that nθ ≥ L − δ, select the index n∗ for which the linear

continuation

H̃ [n] + H̃ [n+1] − H̃ [n]

θ
(L − nθ) (104)

is the closest to the terminal value H∗, for a given matrix norm.
3. For n between n∗ and the total number of steps N , replace the estimation H̃ [n] of H̃nθ

with the linear interpolation

H̃ ′[n] = N − n

N − n∗ H̃
[n∗] + n − n∗

N − n∗ H
∗. (105)

This procedure allows to alleviate the singularity at the saddle-point, as is shown on Fig. 3.
We observe that the computed value of the first coefficient of H̃σ is correct up to an error
of the order of magnitude 5% (respectively 1%) for the coarsest mesh size θ = L/2000
(respectively the finest mesh size θ = L/40, 000), localized in the area close to the critical
point, for distances of order 10% of L or less.
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Fig. 3 A zoom on the numerical computation of the first coefficient of H̃σ when σ ↑ L . The red curve is the

actual value. The blue curves are the values of H̃ [n]
11 already shown on Fig. 2. The green curves are the values

of H̃ ′[n]
11 obtained by the interpolation procedure. Here, δ = 0.2 (Color figure online)

6.6 Evaluation of J(t)

From the quantity J (t), defined by (82), let us define J̃ (σ ) for σ ∈ [0, L] by

J̃ (σt ) = J (t). (106)

The quantity J̃ (σ ) is the value of the prefactor at the point with arclength σ on the instanton.
These values, computed from the numerical resolution of the matrix Riccati equation for
(Ht )t∈R, are plotted on Fig. 4 (the interpolation procedure at the saddle-point discussed in
the previous subsection is employed), for several choices of the mesh size θ . The actual
values of J̃ (σ ), computed from the analytical expression of V , are provided as a benchmark.
We observe a good agreement, up to an error of the order of magnitude 1% localized in the
area close to the critical point, for distances of order 10% of L or less, which supports the
efficiency of our method. The evolution of the discretization error on J̃ (L) as a function of
θ is plotted on Fig. 5, it is observed to be proportional to

√
θ .

7 Summary and Relation to RecentWorks

In this conclusive section, we summarize the main contributions of the article, on both
theoretical and numerical aspects. We also compare these results with other recent works, in
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Fig. 4 Comparison between the computed value of J̃ (σ ) (blue curves) and its actual value (red curve), for
σ ∈ [0, L]. The closer the curve, the smaller θ . The different choices of θ correspond to the values 2000,
4000, 8000, 16,000 and 40,000 for the number of steps N = L/θ (Color figure online)

particular [21] which was released during the last stages of our work and contains several
related ideas and results.

7.1 Theoretical Contributions

At the conceptual level, the main original contribution of the article is the derivation in Sect. 3
of a sharp equivalent, when ε ↓ 0, to the prefactor Cε of the stationary distribution Pε . It is
done in two steps.

(i) We perform an asymptotic expansion in the path integral formulation of Pε (see Eq. (26))
in order to relate the prefactor Cε with the process of scaled fluctuations Y x defined
by (31), through the identity (30).

(ii) We expressCε in terms of two quantities ηx
t and K x

t , which are related by the matrix Ric-
cati equation (35). We then solve explicitly this equation in the Appendix by a quadrature
method, which finally allows to recover a sharp equivalent for Cε .

As is recalled in Sect. 2, the expression of the sharp equivalent for Cε is not new and was
already derived by aWKB approximation in [4]. Therefore the real novelty here is the sketch
of the argument, and in particular the resolution of the matrix Riccati equation.

The fact that large deviation prefactors induced by Gaussian fluctuations around action
minimizing paths can be described in terms of solutions to matrix Riccati equations has
already been observed in various contexts [16, 31, 32]. It was put forth in the recent work [21]
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Fig. 5 Log–log plot of the discretization error on J̃ (L) as a function of θ , with linear fit of slope 0.50

byGrafke, Schäfer andVanden-Eijnden, who conducted a thorough derivation of expressions
of large deviation prefactors in terms of solutions to matrix Riccati equations, both for finite-
time observables and quantities related to stationary distribution. Their work includes many
illustrative examples and generalization towards nongaussian noises and infinite-dimensional
systems.

Some fundamental ideas in [21] are similar to the present paper; for instance, the use of the
Girsanov transform in Proposition 2.2 there makes the scaled fluctuation process Y x appear
in the prefactor Cε in an equivalent way to our use of the path integral formalism. However,
both works differ on several methodological aspects. In particular, both the formulation of
matrix Riccati equations and the expression of prefactor asymptotics in [21] involve the fact
that the fluctuation path ϕx is defined by the forward-backward Hamiltonian system

ϕ̇x
s = b(ϕx

s ) + 2θ x
s , θ̇ x

s = −(∇b(ϕx
s ))�θ x

s , s ∈ [0, t], (107)

with suitable limit conditions onϕx
0 and θ x

t depending on the large deviation quantity onwhich
prefactors are computed. In contrast, in the present article, the definition (11) of fluctuation
paths relies on the transverse decomposition (8) of b. As is noted in [21, Sect. 3.2], this is
due to the fact that we are merely interested in quantities related with infinite time horizon.
Still, this allows us to then derive prefactor asymptotics from the explicit resolution of the
matrix Riccati equation (35) by quadrature, which as is argued above is the main theoretical
contribution of our article and is inherent to the use of the transverse decomposition.
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7.2 Numerical Contributions

The second main contribution of the paper is the formalization in Sect. 5 of a complete
numerical method to compute all quantities involved in the prefactor Cε . In fact, based on
the connections recalled in Sect. 4 between this prefactor and mean exit times, our numerical
procedure enables one to evaluate prefactors to transition times between metastable sets, as
is illustrated in Sect. 6.

Numerical schemes, based on the resolution ofmatrix Riccati equations, are also discussed
in [21] (but the study of metastable settings is not covered there). A common feature of
both works is the preliminary reparametrization of these equations by the arclength of the
fluctuation path, which allows to address their long-time behavior. The singularity at σ =
0 induced by this reparametrization, which is addressed in Sect. 5.2, is also discussed in
Remark 3.4 and Appendix A of [21], and solved with similar arguments.

On the other hand, Paskal and Cameron [33] recently devised a mesh-based method
dubbed ‘Efficient Jet Marcher’ which allows to compute the values of V and ∇V on a grid
(see Remark 7). In Sect. 6.2 of their article, they applied this method to evaluate the prefactor
Lε
D from (49) of the mean transition time in a two-dimensional metastable setting. This

method, which radically differs from the path-inspired approaches from the present article
and [21], is however currently limited to low-dimensional situations.
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Appendix

The Appendix is organized as follows. In Sect. 1, the notion of time ordered exponential
is introduced and a few properties are stated. Section 2 is dedicated to the resolution of
the backward matrix Riccati equation appearing in (35). Finally, Sect. 3 presents the proof
of (38).

Throughout the Appendix, wework under Assumptions (A1–4). Furthermore, as is argued
in the beginning of Sect. 3, our overall purpose here is to emphasize the connections between
fluctuation paths, large deviation prefactors, functional Gaussian determinants and matrix
Riccati equations. Therefore, we chose not to obscure the exposition of our arguments with
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the exhaustive mathematical justification of technical details, which can however be checked
on a case-by-case basis.

Time Ordered Exponentials

Throughout this section we let A = (At )t≤0 be a bounded family of matrices of size d × d .
The choice of (−∞, 0] as the set of times is convenient for our purpose but the contents of
this section could easily be adapted to any interval.

For all t0, t ≤ 0, we denote by

Mt =
⌊
exp

(∫ t

s=t0
Asds

)⌋
∈ R

d×d (108)

the solution to the (two-sided) Cauchy problem
{

Ṁt = AtMt , t ≤ 0,

Mt0 = Id .
(109)

It is called the time ordered exponential of A from t0 to t . It is related with the notion of path
ordering which is in particular used in quantum field theory. However, in the context of the
present article, we are only dealing with bounded, finite-dimensional matrices, therefore the
following properties, which will be used in the sequel, are elementary consequences of the
Cauchy–Lipschitz theorem for linear ordinary differential equations.

(i) For all t0, t1, t2 ≤ 0, �exp(∫ t2
s=t0

Asds)� = �exp(∫ t2
s=t1

Asds)��exp(
∫ t1
s=t0

Asds)�.
(ii) For all t0, t1 ≤ 0, �exp(∫ t1

s=t0
Asds)� is invertible and �exp(∫ t1

s=t0
Asds)�−1 =

�exp(∫ t0
s=t1

Asds)�.
(iii) For all t0, t ≤ 0, det�exp(∫ t

s=t0
Asds)� = det(exp(

∫ t
s=t0

Asds)) = exp(
∫ t
s=t0

trAsds). As

a consequence, if (Mt )t≤0 solves the matrix ordinary differential equation Ṁt = AtMt ,
then mt = det Mt satisfies ṁt = mt trAt .

Solving the BackwardMatrix Riccati Equation

In this section, we solve the backward matrix Riccati equation which corresponds to the
second line of (35). In order to alleviate the notations, we drop the superscript notation x
on the quantities ϕx , Qx

s , R
x
s , etc., therefore we are led to consider the backward Cauchy

problem ⎧
⎨

⎩

K̇t = K 2
t + Q�

t Kt + Kt Qt − 2Rt , t < 0,

lim
t↑0 K−1

t = 0.
(110)

We employ a quadrature method. Let us first define

K 0
t = −2∇2V (ϕt ). (111)

By Proposition 1 and Remark 6, we have

K̇ 0
t = (

K 0
t

)2 + Q�
t K

0
t + K 0

t Qt − 2Rt ; (112)

in other words, K 0
t is a particular solution to the backward Riccati equation (110), but with

a different behavior when t ↑ 0.
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For all t ≤ 0, we now let

At = ∇2V (ϕt ) + ∇�(ϕt ) = 2∇2V (ϕt ) − Qt , (113)

and introduce

Zt =
∫ 0

s=t

⌊
exp

(∫ t

r=s
Ardr

)⌋⌊
exp

(∫ t

r=s
Ardr

)⌋�
ds. (114)

Notice that since ∇V and � are assumed to be smooth, and by definition, the fluctuation path
ϕx is bounded in R

d , the family of matrices (At )t≤0 is bounded and therefore matches the
setting of Sect. 1. Then Zt solves the time-dependent Lyapunov equation

Żt = −Id + At Zt + Zt A
�
t , (115)

so that
d

dt
Z−1
t = −Z−1

t Żt Z
−1
t = (Z−1

t )2 − A�
t Z

−1
t − Z−1

t At . (116)

We may now define
Kt = K 0

t + Z−1
t , (117)

for all t < 0, and check that K̇t = K 2
t + Q�

t Kt + Kt Qt − 2Rt using (111), (112), (113)
and (116). Furthermore, K 0

t remains bounded when t ↑ 0 whereas |t |Z−1
t converges to Id ,

which implies that K−1
t converges to 0.

As a conclusion, Kt is the solution to (110), which yields the formula (36) in Sect. 3.2.

Remark 8 It follows from the expression of Kt that |t |Kt converges to Id when t ↑ 0. This
implies that |t |d det Kt converges to 1, so that the third condition in (34) takes the more
explicit form

lim
t↑0 |t |−dηt = 1. (118)

Proof of (38)

In this sectionwe prove the identity (38). The solution (Kt )t<0 to the backwardmatrix Riccati
equation was constructed in the previous section, and it is easily observed that (ηt )t<0 is
defined up to a multiplicative constant by

∀t1, t2 < 0,
ηt2

ηt1
= exp

⎛

⎝−
t2∫

s=t1

trKsds

⎞

⎠ . (119)

The appropriatemultiplicative constant shall be chosen in accordancewith the third condition
of (34), which shall then provide the correct t → −∞ limit for ηt .

We first introduce the notation

Ut =
0∫

s=t

⌊
exp

(∫ 0

r=s
Ardr

)⌋
⎢⎢⎢
⎣exp

⎛

⎝
0∫

r=s

Ardr

⎞

⎠

⎥⎥⎥
⎦

�

ds, (120)

for all t ≤ 0.

Lemma 1 For all t1, t2 < 0,

ηt2

ηt1
= detUt2

detUt1
exp

(
2
∫ t2

s=t1
�V (ϕs)ds

)
. (121)
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Proof We first inject the formula (117) for Ks into (119) and obtain

ηt2

ηt1
= exp

⎛

⎝2

t2∫

s=t1

�V (ϕs)ds −
t2∫

s=t1

trZ−1
s ds

⎞

⎠ . (122)

By Property (i) of time ordered exponentials, for all t < 0,

Zt =
⎢
⎢
⎢
⎣exp

⎛

⎝
t∫

r=0

Ardr

⎞

⎠

⎥
⎥
⎥
⎦Ut

⎢
⎢
⎢
⎣exp

⎛

⎝
t∫

r=0

Ardr

⎞

⎠

⎥
⎥
⎥
⎦

�

, (123)

so that ⎢
⎢
⎢
⎣exp

⎛

⎝
0∫

r=t

Ardr

⎞

⎠

⎥
⎥
⎥
⎦

�

= Z−1
t

⎢
⎢
⎢
⎣exp

⎛

⎝
t∫

r=0

Ardr

⎞

⎠

⎥
⎥
⎥
⎦Ut , (124)

where we have used Property (ii) of time ordered exponentials. On the other hand,

U̇t = −
⎢⎢⎢
⎣exp

⎛

⎝
0∫

r=t

Ardr

⎞

⎠

⎥⎥⎥
⎦

⎢⎢⎢
⎣exp

⎛

⎝
0∫

r=t

Ardr

⎞

⎠

⎥⎥⎥
⎦

�

, (125)

therefore

U̇t = −
⎢⎢⎢
⎣exp

⎛

⎝
0∫

r=t

Ardr

⎞

⎠

⎥⎥⎥
⎦ Z−1

t

⎢⎢⎢
⎣exp

⎛

⎝
t∫

r=0

Ardr

⎞

⎠

⎥⎥⎥
⎦Ut (126)

and by Property (iii) of time ordered exponentials, mt = detUt satisfies

ṁt = −mt tr

⎛

⎝

⎢⎢⎢
⎣exp

⎛

⎝
0∫

r=t

Ardr

⎞

⎠

⎥⎥⎥
⎦ Z−1

t

⎢⎢⎢
⎣exp

⎛

⎝
t∫

r=0

Ardr

⎞

⎠

⎥⎥⎥
⎦

⎞

⎠ (127)

which reduces to
ṁt = −mt trZ

−1
t (128)

thanks to Property (ii) of time ordered exponentials again. As a consequence,

exp

⎛

⎝−
t2∫

s=t1

trZ−1
s ds

⎞

⎠ = mt2

mt1
= detUt2

detUt1
, (129)

which completes the proof.

In the next lemma we describe the t2 ↑ 0 limit of the ratio ηt2/ηt1 .

Lemma 2 For all t1 < 0,

ηt1 = detUt1 exp

⎛

⎝−2

0∫

s=t1

�V (ϕs)ds

⎞

⎠ . (130)
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Proof We fix t1 < 0 and let t2 grow to 0 in (121). By the definition ofUt , |t2|−1Ut2 converges
to Id , so that by Remark 8,

lim
t2↑0

ηt2

detUt2
= 1, (131)

which completes the proof.

We finally address the t1 → −∞ limit of the expression obtained for ηt1 .

Lemma 3 We have

lim
t1→−∞ ηt1 = 1

2d det(∇2V (x̄))
exp

⎛

⎝2

0∫

s=−∞
div�(ϕs)ds

⎞

⎠ . (132)

Proof Let t1 < 0. Using Properties (i) and (iii) of time ordered exponentials and (123), we
rewrite

ηt1 = det

⎛

⎝exp

⎛

⎝−
0∫

s=t1

∇2V (ϕs)ds

⎞

⎠Ut1 exp

⎛

⎝−
0∫

s=t1

∇2V (ϕs)ds

⎞

⎠

⎞

⎠

= exp

⎛

⎝2

0∫

s=t1

div�(ϕs)ds

⎞

⎠ det

⎛

⎝exp

⎛

⎝
0∫

s=t1

Asds

⎞

⎠Ut1 exp

(∫ 0

s=t1
Asds

)�
⎞

⎠

= exp

⎛

⎝2

0∫

s=t1

div�(ϕs)ds

⎞

⎠ det Zt1 .

(133)

We are therefore led to compute the t1 → −∞ limit of Zt1 . To this aim we recall that (Zt )t≤0

solves the time-dependent Lyapunov equation (115). In addition to the notation H̄ = ∇2V (x̄)
introduced in Sect. 5.1, let us denote D̄ = ∇�(x̄), so that taking the t → −∞ limit of (115)
shows that

Z̄ = lim
t→−∞ Zt (134)

satisfies the stationary Lyapunov equation

(H̄ + D̄)Z̄ + Z̄(H̄ + D̄)� = Id . (135)

In addition,

– evaluating the identity (12) at x̄ yields D̄� H̄ + H̄ D̄ = 0,
– H̄ is assumed to be positive-definite.

As a consequence,

Z̄ = 1

2
H̄−1, (136)

from which we deduce that

lim
t1→−∞ ηt1 = exp

⎛

⎝2

0∫

s=−∞
div�(ϕs)ds

⎞

⎠ det

(
1

2
H̄−1

)
, (137)

and the proof is completed.
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