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Abstract
This paper is concernedwith the probability of consensus in amultivariate, socially structured
version of the Hegselmann–Krause model for the dynamics of opinions. Individuals are
located on the vertices of a finite connected graph representing a social network, and are
characterized by their opinion, with the set of opinions � being a general bounded convex
subset of a finite dimensional normed vector space. Having a confidence threshold τ , two
individuals are said to be compatible if the distance (induced by the norm) between their
opinions does not exceed the threshold τ . Each vertex x updates its opinion at rate the
number of its compatible neighbors on the social network, which results in the opinion at x
to be replaced by a convex combination of the opinion at x and the nearby opinions: α times
the opinion at x plus (1−α) times the average opinion of its compatible neighbors. The main
objective is to derive a lower bound for the probability of consensus when the opinions are
initially independent and identically distributed with values in the opinion set �.

Keywords Interacting particle systems · Hegselmann–Krause model · Opinion dynamics ·
Martingale · Martingale convergence theorem · Optional stopping theorem ·
Confidence threshold · Consensus

AMS 2000 Subject Classifications: Primary 60K35

1 Introduction

As illustrated by the popular Axelrod model [1], opinion and cultural dynamics are driven by
two key components: social influence, the tendency of individuals to become more similar
when they interact, and homophily, the tendency to interact more frequently with individuals
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who are more similar [4]. Another important component in the context of social dynamics is
the topology of the social network whose connections indicate who interacts with whom, an
aspect that is well captured by stochastic models known as interacting particle systems [27,
29].
The votermodelThe simplest example of interacting particle systemmodeling the dynamics
of opinions is the voter model introduced independently in [5, 15]. Individuals located on the
vertices of a connected graph (interpreted as a social network) are characterized by one of
two competing opinions, and update their opinion independently at rate one by mimicking
one of their neighbors chosen uniformly at random. In particular, this model accounts for
the topology of the social network as well as social influence, but not homophily. Most of
the results about the voter model rely on a duality relationship with a system of coalescing
random walks. When the individuals are located on the d-dimensional integer lattice, the
system clusters, and so a local consensus is reached, in dimensions d ≤ 2, whereas the
process converges to a nontrivial stationary distribution, and so the two opinions coexist at
equilibrium, in higher dimensions [15]. The asymptotic behavior of the cluster size for the
one- and the two-dimensional voter models is studied in [3, 7]. In higher dimensions, even
though the two opinions coexist at equilibrium, as time evolves, spatial correlations build up
due to the presence of local interactions. The spatial correlations in the infinite time limit are
studied in [2, 31]. On finite connected graphs, the voter model always reaches a consensus,
and the time to consensus on the large d-dimensional torus is studied in [6].
Threshold voter modelsNatural variants of the voter model that also describe the dynamics
of opinions on social networks are the threshold voter models. In this case, individuals
switch their opinion at rate one if and only if they disagree with at least θ of their neighbors.
Looking again at the process on the d-dimensional integer lattice, when the threshold is equal
to one, coexistence occurs except in one dimension [28]. While increasing the threshold θ ,
the process exhibits two phase transitions, from coexistence to clustering, and then from
clustering to fixation where both opinions again coexist, but coexistence is now due to the
system becoming frozen locally as opposed to convergence to a unique nontrivial stationary
distribution. Fixation occurs in particular when the individuals switch their opinion if and
only if they disagree with a strict majority of their neighbors [9], a particular case referred
to as the majority vote model.
Themajority rulemodelAnother process related to themajority votemodel that includes the
simultaneous updates of multiple individuals is the majority rule model [10]. In the original
version of this model, the population is finite, individuals are again characterized by one
of two competing opinions, and a single update consists in choosing a random number of
individuals uniformly (referred to as a discussion group), which results in all the individuals
in the group adopting themajority opinionwithin the group before the interaction. In case of a
tie, all the individuals adopt a preferred opinion representing the status quo. A spatial version
of the majority rule model where individuals are located on the integer lattice is introduced
in [19]. The discussion groups consist of all the n × · · · × n hypercubes and are chosen to be
updated independently at rate one. In this case, the behavior depends on the parity of n: the
system clusters with the density of each opinion being preserved when n is odd whereas the
status quo wins when n is even.
The Axelrod model The classical and threshold voter models and the majority rule model
account for social influence but not homophily, the tendency to interact more frequently
with individuals who are more similar. The most popular interacting particle system that
includes both social influence and homophily is the Axelrod model [1]. Individuals are
now characterized by one of q possible opinions about F different issues, which results
in qF possible vectors of opinions representing cultural profiles. Homophily is modeled by
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assuming that neighbors interact at a rate equal to the fraction of opinions or cultural features
they have in common while social influence is modeled by matching one of the opinions
the two neighbors do not share, if any. Depending on the values of F and q , the system
either clusters so that a local consensus is reached or fixates in a fragmented configuration
where disagreements persist. Intuitively, increasing the value of F promotes consensus while
increasing the value of q promotes discordance. For the one-dimensional model where the
individuals are located on the integers, consensus is studied in [16, 23] while discordance is
studied in [20]. See also [26] for a study of the two-dimensional process.
Constrained voter models Homophily in the Axelrod model is incorporated by assuming
that the rate at which individuals interact is proportional to the amount of agreement between
neighbors. In many other models, this component is modeled instead through the inclusion of
a so-called confidence threshold: neighbors either interact at a constant rate or do not interact
at all depending on whether their level of disagreement is within a reasonable threshold or
not. The simplest such model is the constrained voter model [30] where individuals are either
leftist, centrist or rightist, andmimic a randomly chosen neighbor unless one of the individuals
is leftist and the other one rightist. This model has been generalized in [22] where the set of
opinions is represented by the vertices of a general finite connected graph and where the level
of disagreement is measured using the geodesic distance on the opinion graph: neighbors
interact at rate one, which results in one neighbor mimicking the other neighbor if and only
if the geodesic distance (or graph distance) between their opinions does not exceed some
confidence threshold τ . It is proved in [22] that the one-dimensional process clusters when
the confidence threshold exceeds the radius of the opinion graph while sufficient conditions
for fixation in a fragmented configuration are also given. A lower bound for the probability
of consensus for the process where individuals are located on a finite connected graph is
derived in [12]. The constrained voter model [30] corresponds to the particular case where
the opinion graph consists of the path with three vertices and two edges and where τ = 1
while the particular case where the opinion graph consists of the hypercube with 2n vertices
is referred to as the vectorial Deffuant model introduced in [8] and studied in [21].
TheDeffuantmodel In another (more popular) version of theDeffuantmodel [8], the opinion
space is uncountable and consists of the unit interval. Edges become active independently at
rate one and the two individuals connected by that edge interact if and only if the distance
between their opinions does not exceed some confidence threshold τ , which results in the
two neighbors’ opinions getting closer to each other. If the opinions are initially independent
and uniform, it is conjectured that the system on infinite graphs converges to a consensus
when τ > 1/2 whereas disagreements persist when τ < 1/2. This conjecture was first
established in [17] for the one-dimensional process while [11] gave an alternative simpler
proof. Multivariate versions of the model where the opinion space consists of a bounded
convex subset of a normed vector space are also studied in [14] for the one-dimensional
system and in [18] for the process on general finite connected graphs.
The Hegselmann–Krause model The Hegselmann–Krause (HK) model [13] is a general
interacting particle system. The opinion space again consists of the unit interval but, in
contrast with the Deffuant model which evolves via pairwise interactions, the new opinion
at a vertex x is now replaced by a weighted average of all the opinions in the population that
are within some confidence threshold τ of the opinion at x . General conditions under which
certain initial configurations and certain sets of parameters can lead to asymptotic stability
and/or consensus are discussed in [24, 25]. In the version of the HK-model considered in
[4], the matrix of the weights between individuals is chosen to be the adjacency matrix of a
graph (the weight is one if the two individuals are connected by an edge and zero otherwise)
thus inducing an opinion dynamics on a social network: Individuals are located on the vertices
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of a graph representing a social network, and each update at vertex x results in the newopinion
at x to be the average of the opinions of the neighbors that are compatible with x (at opinion
distance less than τ ). The objective of this paper is to derive a lower bound for the probability
of consensus for a multivariate version of this model.

2 Model Description and Results

To define the model rigorously, let G = (V , E ) be a finite connected graph representing
a social network: each vertex is occupied by an individual and any two individuals are
connected by an edge if and only if they are socially connected or acquainted. Individuals are
characterized by their opinion, and we assume that the opinions are initially independent and
distributed across a bounded convex subset � ⊂ R

n , thus extending the opinion space [0, 1]
of the original HK-model. To measure the disagreements between two neighbors, meaning
from now on two individuals who are acquainted, and define the dynamics of the process,
we also assume that R

n is equipped with an arbitrary norm || · ||. The state of the process at
time t is a configuration of opinions

ξt : V → � where ξt (x) = opinion at vertex x at time t .

Having a confidence threshold τ > 0, two neighbors are said to be compatible at time t if
the distance (induced by the norm) between their opinions does not exceed this threshold,
and we denote by Nt (x) the set of neighbors of x that are compatible with x , i.e.,

Nt (x) = {y ∈ V : (x, y) ∈ E and ||ξt (x) − ξt (x)|| ≤ τ }. (1)

The process we study evolves as follows: Individuals update their opinion independently at
a rate equal to the number of their compatible neighbors, the new opinion being equal to
the average opinion of their compatible neighbors. More precisely, letting Ft be the natural
filtration of the process, we assume that

lim
ε→0

1

ε
P

(
ξt+ε(x) = 1

|Nt (x)|
∑

y∈Nt (x)

ξt (y)
∣∣∣ Ft

)
= |Nt (x)| (2)

when Nt (x) �= ∅ whereas the transition rate is zero when x has no compatible neighbors.
These transitions indicate that the individuals are open-minded in the sense that the new
opinion only depends on the opinions of the compatible neighbors. Following [24, 25], we
can include more realistically a degree of stubbornness by assuming that the new opinion is
given by

α ξt (x) + 1 − α

|Nt (x)|
∑

y∈Nt (x)

ξt (y) where 0 ≤ α < 1.

The parameter α represents the degree of stubbornness of the individuals. To simplify the
algebra, we assume from now on that α = 0, which corresponds to model (2), but we point
out that all our proofs and our main result easily extend to the model with stubbornness.
Indeed, when 0 < α < 1, each update results in an individual’s opinion moving closer to
the average opinion of its compatible neighbors, and only this aspect of the dynamics is used
throughout our proofs.

The main objective is to study the probability of consensus, i.e., the probability that
all the opinions converge to the same limit, when starting from a configuration where the
opinions are independent, identically distributed with values in the opinion space�. Because
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the opinion space is uncountable, it is also natural to assume that the initial distribution is
continuous. Under this assumption, replacing the large inequality in (1) by a strict inequality,
i.e., assuming that neighbors at exactly opinion distance τ from each other are incompatible,
does not change the behavior of the process. Indeed, for any given opinion c ∈ �, because
the initial opinions are independent continuous random variables, the probability that an
individual has initially or at any time exactly opinion c is equal to zero. It follows that the
probability of two neighbors being exactly at opinion distance τ (or any given positive real
number) of each other is equal to zero so our model and the model with a strict inequality
are equal with probability one. There is however a positive probability that two neighbors
have the exact same opinion (opinion distance zero), which occurs when there is an update
at a vertex that has exactly one compatible neighbor. To state our result, let

C =
{
limt→∞ maxx,y∈V ||ξt (x) − ξt (y)|| = 0

}

be the consensus event. We also define

r = inf{r > 0 : � ⊂ B(c, r) for some c ∈ �}
= inf{r > 0 : supa∈� ||a − c|| ≤ r for some c ∈ �},

which can be viewed as the radius of the opinion space, and

c ∈ � such that � ⊂ B(c, r),

which can be viewed as the center of the opinion space. Throughout this paper, we also
assume that the opinions across the social network are initially independent and identically
distributed, and we let X be the �-valued random variable describing the initial opinions:

P(ξ0(x) ∈ B) = P(X ∈ B) for all x ∈ V and Borel set B ⊂ �.

Then, we have the following universal lower bound that holds uniformly over all possible
finite connected graphs (social networks).

Theorem 1 (probability of consensus) For all τ > r, P(C ) ≥ 1 − E ||X − c||/(τ − r).

This result is identical to [18,Theorem 2.1] which applies to the Deffuant model. However,
because the HK dynamics is significantly different from the Deffuant dynamics, our proof is
quite different from the proof in [18].

To begin with, we prove that, for all c ∈ R
n , the process Xt (c) that keeps track of the total

disagreement between a virtual external agent with opinion c and the vertices of the graph is a
supermartingale (Lemma 1). Looking at 2n of these processes for values of c that surround the
opinion space and applying the martingale convergence theorem, we deduce that the opinion
model converges almost surely to a random configuration ξ∞ (Lemma 2). The evolution rules
of the HK-model imply that, in the configuration ξ∞, any two neighbors on the social network
either completely agree or disagree by more than the confidence threshold τ (Lemma 3).
Using this characterization, we deduce that, for all ε > 0, the first time Tε at which any two
neighbors disagree by at most ε or at least τ is almost surely finite (Lemma 4). Note that the
assumption τ > r means that, regardless of their opinion, all the individuals are compatible
with the center of the opinion space. In particular, a stubborn individual with that opinion
would lead the system to a consensus. Using this idea, we prove that the event A that the
opinion at a vertex is at distance less than τ−r from the center c of the opinion space at time Tε

for some ε small always drives the process to a global consensus (Lemma 5). Applying the
optional stopping theorem to the bounded supermartingale Xt (c) stopped at time Tε gives a
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lower bound for the probability ofA (Lemma 6) which, together with Lemma 5, implies the
theorem.
Numerical example Before going into the details of the proof, we give a numerical example
to show how our result applies to the original HK-model. Assume that the opinion space is

� = B(a, r) = {c ∈ R
n : ||a − c|| < r},

the ball with center a and radius r , and that the opinions are initially independent and uni-
formly distributed: X = Uniform(�). Then, c = a and r = r . In addition, for all s ≤ r ,

P(||X − a|| ≤ s) = P(X ∈ B(a, s)) = λ(B(0, s))

λ(B(0, r))
= sn λ(B(0, 1))

rn λ(B(0, 1))
=

(
s

r

)n

where λ(B) refers to the Lebesgue measure of set B ⊂ R
n . It follows that

E ||X − a|| =
∫ ∞

0
P(||X − a|| > s) ds =

∫ r

0

(
1 −

(
s

r

)n)
ds = nr

n + 1
.

Therefore, the theorem implies that

P(C ) ≥ 1 − E ||X − c||
τ − r

= 1 − E ||X − a||
τ − r

= 1 − nr

(n + 1)(τ − r)
when � = B(a, r).

In particular, for the original HK-model (n = 1 and a = r = 1/2),

P(C ) ≥ 4τ − 3

4τ − 2
> 0 for all τ > 3/4 when � = [0, 1].

3 Underlying Supermartingales

In this section, we prove that the processes that keep track of the total disagreement between
a fixed point c and the model’s opinions, i.e.,

Xt (c) =
∑
x∈V

||ξt (x) − c || for all c ∈ R
n,

are supermartingales. Applying the martingale convergence theorem to these supermartin-
gales will show almost sure convergence of the HK-model to a limiting configuration ξ∞.
This result will also be used later in combination with the optional stopping theorem to derive
the lower bound for the probability of consensus in the theorem.

Lemma 1 The processes Xt (c) are supermartingales for the filtration Ft .

Proof Let Vt be the set of vertices with at least one compatible neighbor, i.e., at least one
neighbor at opinion distance at most τ of the vertex. To simplify the notation, we let

ξ̄t (x) = 1

|Nt (x)|
∑

y∈Nt (x)

ξt (y) for all x ∈ Vt .

By the absolute homogeneity of the norm and the triangle inequality, for all x ∈ Vt ,

|Nt (x)| · ||ξ̄t (x) − c || = |Nt (x)| ·
∣∣∣∣
∣∣∣∣ 1

|Nt (x)|
∑

y∈Nt (x)

ξt (y) − c

∣∣∣∣
∣∣∣∣

=
∣∣∣∣
∣∣∣∣

∑
y∈Nt (x)

ξt (y) − |Nt (x)| · c
∣∣∣∣
∣∣∣∣ =

∣∣∣∣
∣∣∣∣

∑
y∈Nt (x)

(ξt (y) − c)

∣∣∣∣
∣∣∣∣ ≤

∑
y∈Nt (x)

||ξt (y) − c ||.
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In particular, recalling the transition rates of the HK-model, we get

lim
ε→0

E

(
Xt+ε(c) − Xt (c)

ε

∣∣∣ Ft

)
=

∑
x∈V t

|Nt (x)| ·
(
||ξ̄t (x) − c || − ||ξt (x) − c ||

)

=
∑
x∈V t

⎛
⎝

⎛
⎝ ∑

y∈Nt (x)

||ξt (y) − c ||
⎞
⎠ − |Nt (x)| · ||ξt (x) − c ||

⎞
⎠ .

To conclude, observe that

|{x ∈ Vt : y ∈ Nt (x)}| = |{x : (x, y) ∈ E and ||ξt (x) − ξt (y)|| ≤ τ }|
= |{x : (y, x) ∈ E and ||ξt (y) − ξt (x)|| ≤ τ }| = |Nt (y)|.

In otherwords, the number of vertices x such that y is in the neighborhood of x and compatible
with x at time t is equal to the number of vertices that are in the neighborhood of y and
compatible with y at that time. It follows that

lim
ε→0

E

(
Xt+ε(c) − Xt (c)

ε

∣∣∣ Ft

)
≤

∑
x∈V t

⎛
⎝ ∑

y∈Nt (x)

||ξt (y) − c ||
⎞
⎠

−
∑
x∈V t

|Nt (x)| · ||ξt (x) − c ||

=
∑
y∈V t

|Nt (y)| · ||ξt (y) − c ||

−
∑
x∈V t

|Nt (x)| · ||ξt (x) − c || = 0,

which proves that Xt (c) is a supermartingale. 	

Using Lemma 1, we now prove almost sure convergence of the HK-model.

Lemma 2 There is a random configuration ξ∞ : V → � such that

lim
t→∞ ξt (x) = ξ∞(x) almost surely for all x ∈ V .

Proof Let r > 0 be sufficiently large that � ⊂ 	 = [−r , r ]n (see Figure 1). Assuming that
the configuration ξt does not converge, there exists ε > 0 such that

max
x∈V ||ξt (x) − ξt−(x)||1 = max

x∈V

n∑
i=1

|〈ξt (x) − ξt−(x), ei 〉| > ε at arbitrary large times

(3)

where ei = (0, . . . , 0, 1, 0, . . . , 0) denotes the i th unit vector in R
n and where ξt−(x) refers

to the opinion at vertex x just before time t . By the choice of r and by the equivalence of the
norms in finite dimension, there exists m1 > 0 such that, for at least one of the corners of
the n-dimensional cube 	, say corner c,

|Xt (c) − Xt−(c)| ≥ m1 maxx∈V |||ξt (x) − c ||1 − ||ξt−(x) − c ||1|
= m1 maxx∈V ||ξt (x) − ξt−(x)||1 > εm1 > 0.

In particular, for at least one corner c,

|Xt (c) − Xt−(c)| > εm1 at arbitrary large times, (4)
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Fig. 1 Picture related to the proof of Lemmas 2 and 3

showing that Xt (c) does not converge. Now, using again the equivalence of the norms, there
exists m2 < ∞ such that the process is bounded by

|Xt (c)| ≤ max
a∈�

||a − c || card(V ) ≤ m2 max
a,b∈	

||a − b||1 card(V ) = 2nrm2 card(V ) < ∞.

Because the process Xt (c) is also a supermartingale according to Lemma 1, it follows
from the martingale convergence theorem that it converges almost surely. In particular, the
events in (3) and (4) and the divergence of ξt occur with probability zero, which proves the
lemma. 	

To study the limiting configuration ξ∞, we now let G∞ = (V , E∞) be the random subgraph
of the social network G induced by the edges that are compatible in the limit:

(x, y) ∈ E∞ if and only if (x, y) ∈ E and ||ξ∞(x) − ξ∞(y)|| ≤ τ. (5)

The next lemma shows that, in the limiting configuration, individuals on the same connected
component of the graph G∞ share the same opinion.

Lemma 3 Configuration ξ∞ is constant on each of the connected components of G∞.

Proof Let G ′ = (V ′, E ′) be a connected component of the graph G∞, and observe that,
because ξ∞ is an absorbing state for the HK-model, it follows from the evolution rules that

N∞(x) = lim
t→∞ Nt (x) = ∅ or ξ∞(x) = 1

card(N∞(x))

∑
y∈N∞(x)

ξ∞(y)
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for all x ∈ V . When V ′ reduces to one vertex, ξ∞ is trivially constant on V ′. Otherwise,
because the subgraph G ′ is connected and all its edges are compatible in the limit, we have

N∞(x) �= ∅ so ξ∞(x) = 1

card(N∞(x))

∑
y∈N∞(x)

ξ∞(y) for all x ∈ V ′. (6)

In this case, let K be the convex envelope of the limiting opinions in V ′,

K = Conv{ξ∞(z) : z ∈ V ′} ⊂ �,

and let ξ∞(x) ∈ K , x ∈ V ′, be an extreme point of K , i.e., a point which is not an inner
point of segments of the convex envelope (see Fig. 1). Now, assume by contradiction that

ξ∞(y) �= ξ∞(x) for some y ∈ N∞(x). (7)

Then, it follows from (6) that

ξ∞(x) ∈ Int(K ′) where K ′ = Conv{ξ∞(y) : y ∈ N∞(x)}. (8)

Here, Int(K ′) refers to the interior of the set K ′. Because

N∞(x) ⊂ V ′ and so K ′ ⊂ K ,

wededuce from (8) that ξ∞(x) ∈ Int(K ), contradicting the fact that ξ∞(x) is an extreme point
of the convex set K . This shows that the statement in (7) is false therefore all the neighbors
of x on the connected component must share the same opinion as x in the limit. This also
implies that the neighbors’ opinions are (identical) extreme points of K so, by the same
reasoning, the neighbors of the neighbors of x must share the same opinion as x , and using
a simple induction, we deduce that the convex envelope reduces to one point: K = {ξ∞(x)},
which proves the lemma. 	

Note that the proof of the lemma can be simplified when dealing with the original HK-
model, where 	 = (0, 1) and || · || refers to the Euclidean norm, using that, according to (6),
the restriction of the limiting configuration to each of the connected components of G∞ is
harmonic. Indeed, in this case, let x ∈ V ′ be a vertex where ξ∞ reaches its maximum:

ξ∞(x) = max{ξ∞(z) : z ∈ V ′}.
Then, because ξ∞(x) ≥ ξ∞(y) for all y ∈ N∞(x) ⊂ V ′ and

1

card(N∞(x))

∑
y∈N∞(x)

(ξ∞(x) − ξ∞(y)) = ξ∞(x) − 1

card(N∞(x))

∑
y∈N∞(x)

ξ∞(y) = 0,

we must have ξ∞(x) = ξ∞(y) for all y ∈ N∞(x).

4 Optional Stopping and Consensus

As previously mentioned, the next step to prove the theorem is to apply the optional stopping
theorem to the supermartingale Xt (c). In order to apply the optional stopping theorem, we
also define the collection of stopping times

Tε = inf {t : ||ξt (x) − ξt (y)|| /∈ [ε, τ ] for all (x, y) ∈ E } for all ε ∈ (0, τ ).

The next lemma shows that these stopping times are almost surely finite, which is one of the
required assumptions to apply the optional stopping theorem.
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Lemma 4 For all ε ∈ (0, τ ), time Tε is almost surely finite.

Proof On the event that Tε = ∞, there exists (x, y) ∈ E such that

||ξt (x) − ξt (y)|| ∈ [ε, τ ] at arbitrary large times. (9)

This, together with Lemma 2, implies that

||ξ∞(x) − ξ∞(y)|| = lim
t→∞ ||ξt (x) − ξt (y)|| ∈ [ε, τ ]. (10)

Observing also that, by the definition of E∞ in (5),

(x, y) ∈ E and ||ξ∞(x) − ξ∞(y)|| ≤ τ �⇒ (x, y) ∈ E∞
||ξ∞(x) − ξ∞(y)|| ≥ ε �⇒ ξ∞(x) �= ξ∞(y),

we deduce that the limiting configuration ξ∞ is not constant on the connected components
of the random graph G∞ which, according to Lemma 3, is an event with probability zero. In
conclusion, the events in (9) and (10) and the event that Tε = ∞ all have probability zero. 	

Next, we prove that if, at time Tε for ε small, the opinion of at least one vertex is close
enough to the center c of the opinion space, an event that we call A , then all the opinions
across the network should be close to that opinion. This, together with a convexity argument
and Lemma 3, implies consensus. In particular, the probability of consensus is larger than
the probability of A , which will be used later to deduce the theorem.

Lemma 5 For all ε′ ∈ (0, τ/2) and τ > r + ε′, there is ε > 0 such that

A = A (ε, ε′) =
{
||ξTε (x) − c|| < τ − r − ε′ for some x ∈ V

}
⊂ C .

Proof First, we observe that, on the event A , for all y ∈ V ,

||ξTε (x) − ξTε (y)|| ≤ ||ξTε (x) − c|| + ||ξTε (y) − c|| < τ − r − ε′ + r = τ − ε′. (11)

Now, we prove by induction that, on the event A ,

||ξTε (x) − ξTε (y)|| ≤ d(x, y) ε for all y ∈ V when ε = ε′/ card(V ). (12)

Here, d(x, y) refers to the graph distance between vertex x and vertex y.
Base case Assume that d(x, y) = 0. Then,

y = x and ||ξTε (x) − ξTε (y)|| = 0 = 0 × ε.

Induction step: Let y �= x and d = d(x, y) and assume that (12) holds for all vertices at
graph distance d − 1 from vertex x . Letting z be a neighbor of y at distance d − 1 from x ,

||ξTε (x) − ξTε (z)|| ≤ (d − 1) ε. (13)

Because the longest self-avoiding path on the social network contains less than card(V )

edges, we must have d < card(V ). Assuming by contradiction that ||ξTε (y) − ξTε (z)|| > ε.
By definition of the stopping time Tε , the two neighbors y and z must be incompatible at that
time:

||ξTε (y) − ξTε (z)|| > τ. (14)

Using the triangle inequality, then (11) and (14), we deduce that

||ξTε (x) − ξTε (z)|| ≥ ||ξTε (z) − ξTε (y)|| − ||ξTε (y) − ξTε (x)||
≥ τ − (τ − ε′) = ε′ = ε card(V ) > (d − 1) ε,
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which contradicts (13), therefore ||ξTε (y) − ξTε (z)|| ≤ ε and

||ξTε (x) − ξTε (y)|| ≤ ||ξTε (x) − ξTε (z)|| + ||ξTε (y) − ξTε (z)|| ≤ (d − 1) ε + ε = dε.

This completes the proof of (12).
Recalling that d(x, y) < card(V ) for all y ∈ V , we deduce that, on the event A ,

||ξTε (x) − ξTε (y)|| < ε card(V ) = ε′ and so ξTε (y) ∈ B(ξTε (x), ε
′) for all y ∈ V .

Since at each update of the process the new opinion is contained in the convex envelope of
the other opinions, we deduce that, on the event A ,

ξ∞(y) ∈ Conv{ξTε (z) : z ∈ V } ⊂ B(ξTε (x), ε
′) and so ||ξ∞(y) − ξ∞(z)|| < 2ε′ < τ

for all y, z ∈ V . In conclusion, G∞ is connected and C occurs by Lemma 3. 	

The last step to prove the theorem is to apply the optional stopping theorem to the supermartin-
gale Xt (c) stopped at time Tε to get a lower bound for the probability of the sub-event A .

Lemma 6 The event A = A (ε, ε′) defined in Lemma 5 has probability

P(A ) ≥ 1 − E ||X − c||/(τ − r − ε′).

Proof Observing that, on the complement of A ,

||ξTε (x) − c|| ≥ τ − r − ε′ for all x ∈ V ,

we deduce that the conditional expectation of XTε (c) is bounded from below by

E
(
XTε (c) |A c) = E

( ∑
x∈V

||ξTε (x) − c ||
∣∣∣A c

)
≥ (τ − r − ε′) · card(V ).

In particular, conditioning on the partition {A ,A c}, we get
E(XTε (c)) = E(XTε (c) |A )P(A ) + E(XTε (c) |A c)P(A c)

≥ E(XTε (c) |A c)P(A c) ≥ (τ − r − ε′) card(V )P(A c).
(15)

Because the process Xt (c) is a (bounded) supermartingale according to Lemma 1 and
because Tε is an almost surely finite stopping time according to Lemma 4, we may apply the
optional stopping theorem. This, together with the previous inequality (15), gives

P(A ) = 1 − P(A c) ≥ 1 − E(XTε (c))
(τ − r − ε′) card(V )

≥ 1 − E(X0(c))
(τ − r − ε′) card(V )

. (16)

Recalling that the opinions across the social network G are initially independent and identi-
cally distributed with values in the opinion space �, we also have

E(X0(c)) = E

( ∑
x∈V

||ξ0(x) − c ||
)

=
∑
x∈V

E ||ξ0(x) − c ||=E ||X − c|| · card(V ). (17)

The result follows from (16) and (17). 	

To deduce the theorem, let τ > r. Then, for all ε′ ∈ (0, τ −r), we have τ > r+ε′. Therefore,
according to Lemmas 5 and 6 , there exists ε > 0 such that

P(C ) ≥ P(A (ε, ε′)) ≥ 1 − E ||X − c||/(τ − r − ε′).
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Because this holds for all ε′ > 0 arbitrary small,

P(C ) ≥ 1 − lim
ε′→0

E ||X − c||/(τ − r − ε′) = 1 − E ||X − c||/(τ − r).

This completes the proof of Theorem 1.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10955-022-02920-8.
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