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Abstract
Quantummany-body systems exhibit a rich and diverse range of exotic behaviours, owing to
their underlying non-classical structure. These systems present a deep structure beyond those
that can be captured by measures of correlation and entanglement alone. Using tools from
complexity science, we characterise such structure.We investigate the structural complexities
that can be found within the patterns that manifest from the observational data of these
systems. In particular, using two prototypical quantum many-body systems as test cases—
the one-dimensional quantum Ising and Bose–Hubbard models—we explore how different
information-theoretic measures of complexity are able to identify different features of such
patterns. This work furthers the understanding of fully-quantum notions of structure and
complexity in quantum systems and dynamics.

Keywords Quantum Ising · Bose hubbard · Complexity · Quantum complexity · Quantum
model · Stochastic process

1 Introduction

Quantummany-body systems hold a distinguished position inmodern physics, playing a vital
role in providing insight into the physical world. On the one hand, they constitute an excellent
platform for studying a range of phenomena through their utility in quantum simulation [1–
4]. Conversely, the properties intrinsic to these systems are interesting in their own right,
and they thus form a target of simulation and modelling themselves [5–12]. Understanding
the structures present in these systems, and the resources needed to characterise, study and
emulate them, is thus of paramount importance.

Quantum entanglement [13,14] captures the quantum correlations present in a system,
and so plays a significant role in identifying structure in quantum systems. In particular, the
half-chain entanglement quantifies the amount of information shared between the left and
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right halves of a one-dimensional quantum system; it provides an indicator to the amount
of classical resources needed to simulate such systems [15–18], and related quantum mutual
information-based quantities have previously been associatedwith structural complexity [19].
Nevertheless, complex systems possess structure beyond such correlations; we turn to tools
from complexity science to identify and quantify this structure. The field of computational
mechanics [20–22] adopts an information-theoretic approach to this this task, and equates
structure in a stochastic processwith theminimal amount of information thatmust be stored by
amodel that replicates its behaviour.Moreover, it offers a systematic approach to determining
such minimal models.

Impelled by the growth of quantum technologies, recent efforts have extended the com-
putational mechanics framework into the quantum regime, finding that classical limits on the
information that models must store can be overcome [23–30]. This fundamentally changes
howwemight perceive and characterise structure—two prominent examples being the ambi-
guities of simplicity [31–33] and optimality [30,34], which highlight properties of complexity
that might be considered truisms classically no longer hold in the quantum domain. Practi-
cally, these quantum models can provide memory savings for stochastic simulation, and the
resource gap between minimal quantum and classical simulators can even grow unbounded
[28,29,35–39].

It is natural then to ask how these measures of complexity look— and what they can tell
us about structure—when applied to quantum many-body systems. In this article, we apply
this framework to study their structure and complexity. To this end, we look at the structure
manifest in the measurement statistics of quantum states. This serves as a crucial first step
in identifying the structure in the quantum processes that gave rise to the states. We begin
by reviewing in Sect. 2 the relevant details of causal models and measures of complexity
that form the background to our work. In Sect. 3, we introduce the mapping from states
of quantum chains to stochastic processes through the statistics of observation sequences,
and apply it to quantify structure in the one-dimensional quantum Ising and Bose–Hubbard
models. We discuss the implications of our results and the future directions to which our
framework may be applied in Sect. 4.

2 Framework

2.1 Stochastic Processes

We consider discrete-event, discrete-time stationary stochastic processes [40]. At each
timestep t ∈ Z such a process emits a symbol rt drawn from a configuration space R.
We use Rt to denote the random variable governing output rt . We also designate the semi-
infinite strings �Rt := . . . Rt−1Rt and �Rt := Rt+1Rt+2 . . . as the random variables associated
with the past and future observation sequences �r t := . . . rt−1rt and �rt := rt+1rt+2 . . . at
time t respectively (throughout, upper case indicates random variables, and lower case the
corresponding variates). The output symbol statistics are then described by a conditional
probability distribution over these strings P( �Rt | �Rt ), detailing how future observations are
correlated with past observations. We use the notation rt :t+n = rtrt+1 . . . rt+n−1 to represent
the sequence of outputs between t and t+n−1. Stationarity of a stochastic process is defined
by P(R0:n) = P(RL:L+n) ∀n, L ∈ Z; this allows us to drop the subscript t from semi-infinite
strings.
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2.2 Causal Models

A causal model of a stationary stochastic process [20,21,37] is tasked with replicating its
future output statistics according to the distribution P( �R| �R); it stores information about the
past of a stochastic process in its internal memory, and uses this to predict the future output
statistics. Crucially, a causal model contains no information about the future that cannot be
inferred from the past (i.e., the mutual information between the memory and future outputs
given the past outputs is zero). Causal models use an encoding function f to map pasts �r
to states m ∈ M according to m = f ( �r), such that P( �R|m = f ( �r)) = P( �R| �r). At each
timestep t , the model produces an output r following P(Rt+1 = r |mt ) = P(Rt+1 = r | �r t ).
At time t + 1, r becomes part of the past observation sequence, and the memory state is
updated to mt+1 = f ( �r ′), where the new past �r ′ = �rr is the concatenation of the previous
past with the new output symbol. The information stored by such a model is given by the
Shannon entropy of its set of internal memory states:

H(M) =
∑

m∈M
−Pm log Pm, (1)

where Pm = ∑
�r∈m P( �r).

For any given stationary stochastic process, one can construct myriad causal models of the
process thatwill faithfully replicate the future statistics. The field of computationalmechanics
provides us with a systematic way to identify and construct the provably optimal classical
causal model of a given process [20–22]. By optimal, we here mean the model that stores the
least possible amount of past information [Eq. (1)] while accurately simulating the process;
the optimal classical causal model is referred to as the ε-machine. In this framework, sets of
pasts are grouped into equivalence classes called causal states according to the relation

�r ∼e �r ′ ⇐⇒ P( �R = �r | �R = �r) = P( �R = �r | �R = �r ′)∀�r . (2)

Equation (2) mandates that past observations leading to statistically identical futures belong
to the same causal state. Let us denote S as the set of causal states, where each state s ∈ S
is given by an associated encoding function s = ε( �r). At each time step the ε-machine
transitions from causal state j to k whilst emitting an output r ∈ R, with transition probability
T r
k j = P(Rt+1 = r , St+1 = k|St = j). The encoding function enforces unifilarity of the

ε-machine, where, given the current causal state j and the emitted output symbol r , the
subsequent causal state k of the model is uniquely specified [21]. We denote this mapping
by a function λ( j, r) that outputs the value of the label of the subsequent causal state. This
allows us to express

T r
k j = P(Rt+1 = r , St+1 = k|St = j) (3)

= P (r | j) δk,λ( j,r) (4)

where δ jk is the Kronecker-δ function. The amount of information required to track the
dynamics of causal states has been widely employed as a measure of structure [20,41–49],
designated as the statistical complexity:

Cμ := −
∑

j

Pj log Pj , (5)

where Pj = ∑
�r∈ j P( �r) is the steady-state probability of causal state j . The statistical

complexity is often compared to the mutual information between the past and future of the
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system,

E =
∑

�r ,�r
P( �r , �r) log

(
P( �r , �r)

P( �r)P(�r)
)

. (6)

a quantity known as the excess entropy. It quantifies the amount of information in the past that
correlates with future statistics. The excess entropy (also sometimes called the ‘predictive
information’) is also used as a measure of complexity [50,51]. The data processing inequality
[52] ensures that the excess entropy represents a lower bound on the amount of information
a simulator of a process must store in any physical theory, and thus Cμ ≥ E .

2.3 Quantum Causal Models

Recently, computational mechanics has been extended into the quantum regime [23], where it
has been shown that quantum effects allow one to construct causal models that require a lower
amount of information than is classically possible. The present state-of-the-art systematic
construction methods for quantum models [26,27,30] involve step-wise unitary interactions
between the model memory and a probe system. The memory of such quantum models store
a member of a set of quantum memory states {∣∣s j

〉} that are in one-to-one correspondence
with the causal states of the process. The memory states are then used to produce the future
outputs of the process sequentially. Starting from state

∣∣s j
〉
and a blank ancilla, there exists

a unitary operator U that satisfies

U
∣∣s j

〉 |0〉 =
∑

r∈R

√
P(r | j) ∣∣sλ( j,r)

〉 |r〉 . (7)

The stationary state of the model memory is given by ρ = ∑
j Pj

∣∣s j
〉 〈
s j

∣∣, where Pj is as
defined for Eq. (5). The amount of information stored internally is given by the von Neumann
entropy of ρ:

Cq := −Tr
(
ρ log2 ρ

)
. (8)

Cq is referred to as the quantum statistical memory. In general, the memory states are non-
orthogonal (i.e.,

〈
s j |sk

〉 ≥ 0), due to a quantummodel being able to encode pastswith partially
overlapping futures into partially overlapping states. Therefore, Cq ≤ Cμ; a quantum causal
model can utilise less memory than the ε-machine of the same process [23–30]. While the
quantummodels presented here require less memory than ε-machines, they are in general not
optimal over all quantum models [30]. However, in certain specific cases, this construction
has been shown to be the provably optimal quantum model [31,37]. Paralleling Cμ, the
minimal possible memory cost across all quantum models is called the quantum statistical
complexity.Cq thus upper bounds the quantum statistical complexity, and due to the difficulty
associated with finding the true quantumminimum has been suggested as a potential measure
of complexity in itself [23,53–55]. As with Cμ, the data processing inequality mandates that
Cq ≥ E .

2.4 Measures of Complexity

We focus our attention on the following measures of complexity:

• Statistical complexity Cμ.
• Quantum statistical memory Cq .
• Excess entropy E .
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• Half-chain entanglement entropy S 1
2
.

Cμ,Cq , and E have been formally introduced above. The half-chain entanglement entropy of
a one-dimensional quantummany-body systemquantifies the amount of quantumcorrelations
(entanglement) between the left and right halves of the system [13]. It is defined as

S 1
2

:= −Tr(ρA log2 ρA) = −Tr(ρB log2 ρB), (9)

where ρA = TrB (ρAB) and ρB = TrA (ρAB) are the density matrices describing the states
of the left and right halves of the quantum system respectively. S 1

2
is measurement basis-

independent, and depends only on the state of the quantum many-body system. S 1
2
is very

closely related to the quantum mutual information (Iq (A, B) = 2S 1
2
for pure states), and

is loosely analogous to the excess entropy for quantum processes. Beyond identifying cor-
relations, entanglement has also been suggested as an indicator of critical points of phase
transitions in quantummany-body systems [56–58]. However, experimental measurement of
S 1

2
in real quantum systems is a highly non-trivial task [59–62].

3 Results

3.1 Stochastic Processes fromQuantumMany-Body Systems

Themeasures of structural complexity used in thismanuscript are defined in terms of classical
stochastic processes. To apply them to quantum systems, we need some method to meaning-
fully extract such a process from a quantum system. Sincemeasurements of a quantum system
are inherently probabilistic, when making a series of measurements on a quantum system
the outputs form a stochastic sequence. We can then analyse the structure in this sequence
using the above measures. The structure in this sequence can embody structure present in
the underlying quantum state that gave rise to the observations. Taking this as a proxy for
structure in the quantum system itself, the approach can be described as a ‘semi-classical’
method for describing the structural complexity of quantum systems and processes.

There are many possible measurement protocols that could extract a classical time-series
from an infinite length one-dimensional quantum many-body chain. For instance, one could
measure the same site at multiple points in time, allowing the system to evolve between
measurements. Alternatively, as done here, one can take measurements sequentially across
consecutive sites of the chain, sweeping from left to right. This effectively measures one
different site per timestep, and the outcomes of this form a time-series, where the temporal
indices of the time-series are in one-to-one correspondence with the spatial indices of the
sites in the chain. This is illustrated in Fig. 1.

Specifically, we consider non-degenerate, site-local measurement operators such that on
site j , a set of measurement outcomes r j ∈ R are associated with unique eigenstates

∣∣r j
〉
of

the measurement operator. This measurement outcome is taken to be the corresponding j-th
observation in the constructed stochastic process. As we sweep the output sequence from left
to right, it follows then that the output sequence ←→r occurs with probability

P(
←→r ) = 〈ψ |

∞⊗

j=−∞

∣∣r j
〉 〈
r j |ψ

〉
(10)

where |ψ〉 is the quantum state of the one-dimensional system being investigated. For the
examples considered here, we will take the quantum chains to be in the ground states of their
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Quantum
spin chain

Successive
measurements

1 1 0 1 1 1 10 0Time-series
data

Fig. 1 Extracting stochastic processes from quantum chains: By measuring a quantum chain with local oper-
ators sequentially at each site a time-series is generated, with temporal indices in the series corresponding
directly to spatial indices of the sites. The structure in these sequences can be used as a proxy of structure in
the underlying quantum chain

respective Hamiltonians, with no temporal evolution between measurements. We emphasis
that there is no dynamical evolution of the systems considered here; the temporal dynamics
of the extracted stochastic process manifest as a mapping of spatial position in the underlying
chain.

3.2 Numerical Considerations

For numerical tractability, we make two approximations regarding the system size and the
measures of complexity. Firstly, rather than an infinite chain, we study large finite-size quan-
tum chains of length N . Secondly, we introduce the truncated Markov memory order L . It
represents the number of sites from which past information may be obtained. That is, we
approximate P(r | �r) ≈ P(r |r−L:1). We take N � L . We employ tensor network methods
[19] (see Appendix) to obtain near exact ground states of the example systems we study,
as well as to extract the corresponding measurement sequences that form the stochastic
processes.

We now apply our framework to explore the structures of two paradigmatic quantum
many-body chains in their respective ground states.

3.3 Quantum Ising Chain

A quantum Ising chain [63] describes the physics of a system of interacting quantum spins
subject to the influence of a magnetic field. They are governed by the Hamiltonian:

HQI =
∑

l

−Jσ x
l σ x

l+1 − Bσ z
l (11)

where J is a coupling parameter, B is the external magnetic field strength, and σw
l , w ∈

{x, y, z}, are the Pauli operators at site l. The system undergoes a quantum phase transition
at B/J = 0.5. At B � J , the field along the z-direction dominates the correlations in
the system; the ground state of the system is

∣∣ψg
〉 = |. . . ↓i−1↓i↓i+1 . . .〉, fully-polarised

along the z-axis. On the other hand, when B � J , the field is much weaker than the spin-
spin correlation along the x-direction. There are then two degenerate ground states, with
all spins either parallel or anti-parallel with the x-axis,

∣∣ψg
〉 = |· · · →i−1→i→i+1 . . .〉 or

|· · · ←i−1←i←i+1 . . .〉.
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Fig. 2 Comparisonbetween E ,Cq ,Cμ in the a σz , andbσx measurement bases, and S 1
2
of the one-dimensional

quantum Ising system for L = 9. The vertical dashed line demarcates the phase transition of the system

We investigate the structure of the model at a range of truncated Markov memory orders
L ∈ {1, 3, 5, 7, 9}, with N = 500. The causal states are then determined by the L rightmost
spins of the past spins, as defined in Eq. (2). We find that each length L spin configuration
belongs to a unique causal state. To ensure that there is no spurious splitting of causal states,
we determine that the conditional probability distributions differ by more than O (

10−12
)

from each other, while the ground states
∣∣ψg

〉
are accurate to O (

10−14
)
; i.e., the error in the

ground state is significantly smaller than the distance between conditional distributions of
the spin configurations.

Using the framework above, we study the structural complexity of the quantum Ising chain
through its measurement sequences as obtained from σθ -basis measurements, where

σθ =
(
cos θ sin θ

sin θ − cos θ

)
, (12)

with θ ∈ [0, π/2] the angle measured from the z-axis of the Bloch sphere. Angles θ = 0
and θ = π/2 correspond to the z- and x-axes respectively. Intuitively, σz measurement in
the B � J regime will result in a highly-ordered stochastic process, while σx will return a
near-random process. Conversely in the B � J regime, measurement sequences along σz
will yield a near-random stochastic process, while σx will result in a highly-ordered process.

Figure 2 compares Cμ, Cq , E , and S 1
2
for measurements of σx and σz at different B/J ,

whereweobserve interesting differences between thesemeasures of structure and complexity.
Firstly, in all measurement bases studied, Cq , E , and S 1

2
reach maximal values close to the

phase transition B/J ≈ 0.5. Instead,Cμ exhibits its largest gradient near the phase transition.
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We also observe that S 1
2

> Cq for all measurement bases. This is because projecting a
quantum state onto a specific basis effectively destroys information about other measurement
bases, while S 1

2
is a quantity that takes into account the full information contained in the

quantum state. The relation S 1
2

> Cq highlights that simulating a quantum system measured
in a specific basis can require less information than the quantum correlations present in the
system. This highlights that if we don’t require replication of all measurement bases, the state
is not the most efficient simulator of itself.

Figure 2 also shows that when sequences from measurement outcomes of the quantum
Ising chain are more ordered (B � J for σz-basis, B � J for σx -basis), the corresponding
values ofCμ,Cq , and E are lower. In a highly-ordered stochastic process, the corresponding ε-
machine consists of a single dominant causal state that is occupied with very high probability,
and other causal states arisewith very lowprobabilities. Thus the resulting ε-machine requires
little information to be stored to accurately simulate the corresponding stochastic process.
Our quantum model behaves similarly in this regime, hence Cq mirrors Cμ. Further, in this
parameter regime the more ordered the sequences are, the less information is carried forward
from the left half to the right half of the system, resulting in low values of E .

On the other hand, when the observation sequences are near-random (B � J for σx -
basis, B � J for σz-basis), Cμ exhibits drastically different qualitative behaviour compared
to Cq and E , as seen in Fig. 2. Both Cq and E are lower when the sequences appear more
random, unlike Cμ, which saturates in this regime. This is because in the near-random limit
the past configurations have different-yet-strongly-overlapping conditional future probability
distributions, and thus they are mapped into different causal states. As a classical model,
the ε-machine can only store information in distinguishable states, despite multiple causal
states having significantly overlapping conditional future statistics; consequently, Cμ is high
in this regime. In contrast, quantum models have the ability to store information in non-
orthogonal states. Thus, causal states with highly-overlapping future conditional probability
distributions will be encoded into highly-overlapping quantum states, resulting in low Cq in
the near-random regime.

We also observe differing behaviour ofCμ,Cq , and E with respect to the truncatedMarkov
memory order, as illustrated in Figs. 3, 4, and 5. As L is increased, Cq also increases, but at
a decreasing rate, indicating that the value of Cq converges as larger L is considered (Fig. 3).
This is consistent with the decrease in correlation strength between spins when the distance
between them increases (i.e., spins that are further apart are more weakly correlated). This
means that at high L , increasing the Markov memory order further adds little predictive
information. This cannot be utilised effectively by the classical ε-machine with access only
to orthogonal states; as L increases, so too does the number of causal states—resulting in a
higher Cμ, as illustrated by Fig. 4.

We see that the behaviour of Cμ with respect to B/J changes as we rotate the measure-
ment angle θ from σz to σx (Fig. 6b). As θ changes from 0 to π/2, the measurement outcome
sequences sweep between near-random and near-deterministic in the region B � J , and
between near-deterministic and near-random in the region B � J . Figure 6a shows the
counterpart behaviour of Cq with respect to the different measurement angles. As the mea-
surement basis changes from σz to σx , we observe that the peak of Cq increases with respect
to σθ . In the parameter region that is neither random nor deterministic, our quantum model
stores less information than when measured in a basis that is closer to the z-axis. This cap-
tures the underlying structure of the quantum Ising chain verywell, asmeasurement outcomes
along the z-axis are less dependent on the past spins, because the inter-spin coupling of the
system is along the x-axis.
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Fig. 3 Cq plotted against B/J for sequences of measurements of the quantum Ising chain along a σz , b σx .
The vertical dashed lines demarcate the phase transition of the system

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0
1

3

5

7

9
L=1
L=3
L=5
L=7
L=9

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
0

2

4

6

8 L=1
L=3
L=5
L=7
L=9

(b)

Fig. 4 Cμ plotted against B/J for sequences of measurements of the quantum Ising chain along a σz , b σx .
The vertical dashed lines demarcate the phase transition of the system
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Fig. 5 E plotted against B/J for sequences of measurements of the quantum Ising chain along a σz , b σx , .
The vertical dashed lines demarcate the phase transition of the system

3.4 Bose–Hubbard Chain

We now look at structure in the one-dimensional Bose–Hubbard model, which describes the
physics of interacting spinless bosons on a lattice [3,5,6]. It is governed by:

HBH = −J
∑

l

b†l bl+1 + h.c. + U

2

∑

l

nl(nl − 1), (13)

whereb†l andbl are bosonic creation and annihilation operators andnl = b†l bl is the number of
bosons at site l. The variable J denotes the hopping amplitude, describing the kinetic energy
of the bosons, andU is the on-site repulsive interaction strength. The filling factor ν is defined
as the average number of bosons per site; we consider a chain with ν = 1. In our numerical
calculations, we use N = 300 and truncated Markov memory orders of L ∈ {1, 2, 3, 4}. We
also enforce that each site has a maximum occupation number nmax = 4—higher values of
occupation number have very low probability of occurrence (and thus have little impact on the
state), yet demand significantly more computational power. In the ground state, when J � U
all bosons occupy zero-momentum eigenstates, wherein they are completely delocalised
across the lattice; this is the superfluid phase. On the other hand, when J � U , the system
is in the Mott insulator phase, where at integer filling factors ν, each site contains ν highly-
localised bosons. The one-dimensional Bose–Hubbard model undergoes a quantum phase
transition at U/J ≈ 3.1 [6,64] for the case of ν = 1.

We calculate the structural complexity measures for measurement outcome sequences of
the Bose-Hubbard chain in the number basis, wherein n is measured sequentially on every
site. Figure 7 shows the behaviour of Cμ, Cq , and E for these sequences, as well as S 1

2
. We

observe that E peaks close to the phase transition, while Cq peaks earlier. This indicates
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Fig. 6 Plot of how the behaviours of Cq , Cμ, and E changes with respect to θ (rad)

that E may identify the phase transition, while Cq and Cμ do not. This is in contrast to
the quantum Ising chain, where both E and Cq (in multiple measurement bases) reach a
maximum value in the vicinity of the phase transition.

In the superfluid phase (J � U ) Cμ behaves very differently to Cq and E : Cμ increases
asU/J → 0, whileCq and E decrease. This is because the bosons are delocalised, leading to
near-random measurement sequences for the site occupations. Hence, the models occupy all
available (quantum) causal states with almost equal probabilities. Analogous to the quantum
Ising chain however, Cμ and Cq behave very differently, due to the (non-)orthogonality of
(quantum) memory states.

On the other hand, in the Mott insulator phase (J � U ), Cμ, Cq , and E decrease asU/J
increases. In this regime, the bosons in the system are highly localised, and so measurement
in the n-basis yields a highly-ordered stochastic process since the number of bosons at each
site tends to ν as U/J → ∞. Similar to the analogous limit in the quantum Ising chain,
measurement sequences that are highly-ordered have a single causal state that manifests with
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Fig. 7 E , Cq and Cμ at L = 4, and S 1
2
, plotted against U/J , for sequences of measurements of n in the

Bose-Hubbard chain. The vertical dashed line demarcates the phase transition of the system

very high probability, while other causal states all occur with low probabilities. This results
in low values of both Cμ and Cq .

Figure 7 also shows that S 1
2
is larger than Cq for the measurement outcome sequences;

as with the quantum Ising chain, this is because S 1
2
quantifies the full quantum correlations

between two halves of the system, while Cq results from projecting the quantum state onto
one specific basis, and discarding information about all other bases. Notably, in the superfluid
parameter region S 1

2
behaves very differently to Cq and E : S 1

2
increases, while Cq and E

decrease. This is because projecting the state into the n-basis removes the structure in the
conjugate basis (i.e., momentum), that would have manifest large half-chain entanglement.

Finally, Fig. 8 shows how Cμ and Cq scale with increasing L . As with the quantum Ising
chain, we see that Cq displays signs of convergence as L is increased, while Cμ does not.
Again, this is due to the decay in the strength of correlations between site occupations with
increasing distance.

4 Discussion

Our results show that classical and quantum measures of structural complexity can exhibit
drastically different qualitative behaviour when applied to sequences generated by measure-
ment outcomes of quantum systems. In particular, it is evident that the measures interpret
near-randomness very differently; quantum models are typically able to capture the predic-
tive features in near-random sequences without storing a large amount of information about
the past, in contrast to corresponding minimal classical models. The quantum measures also
appear to signal proximity to a phase transition. For a given Hamiltonian, the most infor-
mative (i.e., highest complexity) basis appears to vary with the Hamiltonian parameters; by
considering maximisations of Cq over all measurement bases we may obtain a stronger indi-
cator of phase transitions and other related phenomena—we leave this question for future
work. Another interesting open question in this direction is the study of universality classes
of quantum systems—can quantum systems be categorised into universality classes accord-
ing to their structural complexities? Members of the same universality class have identical
critical behaviour despite possibly having radically diverse microscopic behaviour.

Moving forward in the field of computationalmechanics, the transducer framework [39,65,
66] provides a natural extension to study quantum systems as input–output processes, and thus
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Fig. 8 Scaling with L of aCμ and bCq againstU/J for sequences of measurements of n in the Bose-Hubbard
chain. The vertical dashed lines demarcate the phase transition of the system

lines up as a natural next step to this work. In such processes, the choice of the measurement
basis would form the input, and the resulting measurement sequence is the output, allowing
for the fully-quantum nature of non-commuting measurements to be considered. It would be
interesting tomake this extension and study the dynamics of quantumprocesses bymeasuring
them at different bases at different timesteps, capturing the structure and complexity within
an evolving quantum system. An ultimate goal of quantum computational mechanics is to
construct quantum causal models that can simulate any quantum stochastic processes without
restriction in choice of measurement bases; the results in this manuscript serve as a crucial
first step towards this direction.
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Technical Appendix

Tensor Network Theory (TNT) [67] is a set of powerful and efficient numerical methods
for classically simulating quantum many-body systems. In this Appendix, we briefly review
matrix product states (MPS), matrix product operators (MPO), and the density matrix renor-
malisation group (DMRG) in the context of our work. MPS and MPO provide efficient
descriptions of states and operators of quantum many-body systems respectively, while
DMRG is an iterative procedure that variationally minimises the energy of Hamiltonians
to obtain the ground states of quantum many-body systems.

MPS [18] are widely used as efficient representations of low energy states of one-
dimensional quantum systems. In a quantummany-body chain, each lattice site is represented
by a tensor, and the tensors are connected to their neighbours. Consider a quantummany-body
chain of size N in a quantum state

|ψ〉 =
∑

i1i2...iN

ci1i2...iN |i1〉 |i2〉 · · · |iN 〉 (14)

where {∣∣i j
〉} are the local orthonormal basis states. We can perform repeated Schmidt decom-

positions [52] at each site, splitting the tensor ci1i2...iN into local tensors �[ j], and Schmidt
coefficients λ[ j] that quantify the entanglement across the split, which gives us the canonical
form of the MPS representation of the state:

|ψ〉 =
∑

{i},{α}

(
�[1]i1

α1
λ[1]

α1
�[2]i2

α1α2
λ[2]

α2
. . . λ[N−1]

αN−1
�[N ]iN

αN−1

)
|i1〉 |i2〉 . . . |iN 〉 , (15)

where α j takes positive integer values up to the rank of �[ j]. By contracting the Schmidt
coefficient tensors λ[ j] into the local tensors �[ j], we obtain a more generic form:

|ψ〉 =
∑

i1i2...iN

Ax1 Ax2 · · · AxN |i1〉 |i2〉 · · · |iN 〉 , (16)

where Ax j is a matrix with the same dimension as the local basis states.
In a similar fashion, a quantum operator can be written in the form of MPO [68]:

H =
∑

i,k

Hi1,k1Hi2,k2 · · · HiN ,kN |i1i2 · · · iN 〉〈 k1k2 · · · kN |, (17)

where Hi j ,k j is a matrix with the dimension of the local basis state. With quantum states and
Hamiltonians represented in MPS and MPO forms respectively, ground states

∣∣ψg
〉
may then

be obtained by minimising 〈ψ |H |ψ〉 across all states using the DMRG algorithm.
The DMRG algorithm [69,70] is an iterative, variational method that truncates the degrees

of freedom of the system, retaining only the most significant features required to accurately
describe the physics of a target state. The algorithm achieves remarkable precision in describ-
ing one-dimensional quantum many-body systems [71].

In the DMRG algorithm, the elementary unit is a site, described by the state di where
i = 1, . . . , D is the label of the states accessible to a given site. A block B(L, vL) consists
of L sites, and has total dimension vL ; HB is the Hamiltonian of the block, containing only
terms that involve the sites inside the block. Whenever a block is enlarged, a site is added to
the block, forming an enlarged block Be with a Hilbert space dimension that is the product
of the Hilbert space of B(L, vL) and a site, i.e. vL × D. An important step in the algorithm
is the formation of superblock Hamiltonians, consisting of two enlarged blocks connected to
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each other. The superblock ground state is calculated using Lanczos [72] or Davidson [73]
methods. The ground state is then truncated by discarding the least-probable eigenstates.

The algorithm itself consist of two parts: the warm-up cycle, and finite-system algorithm.
The warm-up cycle is designed to create a system block of the desired length of at most
dimension χ , before the finite-system algorithm is applied to compute the ground state.
Starting from a block B(1, D), each step of the warm-up cycle is carried out as follows [74]:

1. Start from a left block B(L, vL), and enlarge the block by adding a single site.
2. Form a superblock by adding a reflected copy of the enlarged block to its right.
3. Obtain the ground state of the superblock, and the vl+1 = min(vl D, χ) eigenstates of

the reduced density matrix of the left enlarged block with largest eigenvalues.
4. The truncated left enlarged block is used for the next iteration.
5. Renormalise all operators to obtain block B(L + 1, vL+1).

These steps are repeated until the desired length Lmax is reached. Once the infinite-system
algorithm reaches the desired length, the system consist of two blocks of B(Lmax/2− 1, χ)

and two free sites. The subsequent step is called the “sweep procedure", the goal of which is
to enhance the convergence of the target state. The sweep procedure consists of enlarging the
left block with one site and reducing the right block correspondingly to keep the length fixed.
While the left block is constructed by the usual enlarging steps, the right block is recalled
from memory, as it has been built in the infinite-system algorithm and saved. This procedure
is repeated until the left block reaches the length Lmax − 4. At this point the right block
B(1, D) with one site is constructed from scratch and the left block B(Lmax, χ) is obtained
through renormalisation. The sweep procedure is then repeated from right to left, and at each
iteration, the renormalised block has to be stored in memory. The procedure is stopped when
the system energy converges.

In this manuscript, we use the implementations of these algorithms as described in [67],
and the ground states are computed with χ = 150 for the one-dimensional quantum Ising
chain, and χ = 80 for the one-dimensional Bose–Hubbard chain. The resulting ground states
are accurate up to O(10−14).
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