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Abstract
We provide a necessary and sufficient condition for the validity of the following Landsberg–
Thirring theorem: for a real-valued function on a convex set, any two of the properties
of superadditivity, concavity and homogeneity implies the third. Applications to statistical
thermodynamics, following Thirring and Landsberg, are briefly revisited.
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1 Introduction and Summary

In [9], Landsberg studied the issue of whether equilibrium is always an entropy maximum,
having in view nonextensive (e.g., gravitational) systems, which has been recently revived
under a different point of view in [13]. In the process, he arrived at a connection between the
properties of homogeneity, superadditivity and concavity of a real-valued function. Unfor-
tunately, he did not formulate this connection as a theorem. Thirring attempted to do so in
his beautiful introduction to Lieb’s selecta [21] as follows (we present the version used by
Landsberg, which replaces subadditivity by superadditivity and convexity by concavity):

Proposition 1.1 Let x → f (x) be a map from a convex set of Rd into R. Then any two of
the conditions

(a) (H) (Homogeneity) f (λx) = λ f (x) for all λ ∈ R+;
(b) (Sp) (Superadditivity) f (x1 + x2) ≥ f (x1) + f (x2);
(c) (Cc) (Concavity) f [λx1 + (1 − λ)x2] ≥ λ f (x1) + (1 − λ) f (x2) for 0 ≤ λ ≤ 1.

implies the third.

The formulae (a), (b), (c) are equivalent to the following [21]:
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(a) (H) (Homogeneity) f (λx) = λ f (x) for all λ ∈ R+;
(b) (S) (Subadditivity) f (x1 + x2) ≤ f (x1) + f (x2);
(c) (Cv) (Convexity) f [λx1 + (1 − λ)x2] ≤ λ f (x1) + (1 − λ) f (x2) for 0 ≤ λ ≤ 1.

Moreover [21] (H) and (S) are conditions for stability agains implosion and explosion,
respectively, and (C) is the thermodynamic stability condition.

Proposition 1.1 cannot be true as stated, due to the counterexample given in the proof of
the forthcoming theorem 2.1 in Sect. 2. The additional assumption required there ((2) of Sect.
2, together with Assumption (A) throws some additional light into the proposed relationship
between (H), (Sp) and (Cc), because it yields a necessary and sufficient condition for the
validity of a theorem of type of Theorem 1.1. Its physical significance will be left to the
conclusion in Sect. 4, after the applications to statistical thermodynamics, due to Thirring
[21] and Landsberg [9], have been briefly revisited in Sect. 3.

The main ideas in the proof of the forthcoming theorem, whose statement and proof are
provided in pages 3–6, are due to the late Peter Landsberg andWalter Thirring, and therefore
we call it the Landsberg–Thirring theorem.Our ownmodest contributionwas to find (whatwe
believe is) the natural framework for a theorem, which may, however, be of general interest
in real analysis, because, on the one hand, it relates three basic properties of real-valued
functions, and, on the other, there seem to be few necessary and sufficient criteria for super
(sub) additivity, since the classic works [7,16]—see, however [1]. Possible generalizations
to a noncommutative setting may also be envisaged [23], for an introduction see also Sect.
8.1 of [2] and references given there.

2 Main Theorem

The function f0 in the counterexample to Proposition 1.1 given in the Proof of Theorem 2.1
below is defined on a convex open set X and exhibits a singularity (of the second kind) at
a point (chosen without loss of generality as the origin of the Cartesian coordinate system).
This motivates the introduction of the following simple framework.

Assumption A Let X be a convex open cone in Rd , 1 ≤ d < ∞, and X denote its closure
in Rd . Thus, X is a closed convex cone (see, e.g., [3]), and

(0, . . . , 0) ∈ X \ X (1)

By definition, X is closed under addition and multiplication by a scalar in R+.

Theorem 2.1 Let X be as in Assumption A, and f be a real-valued function on X. A necessary
and sufficient condition for the statement that any two of the properties (H), (Sp) and (Cc)
for f imply the third is

lim inf
(x1,...,xd )→(0,...,0)

f (x1, . . . , xd) ≥ 0 (2)

Proof Let Assumption A be valid. We need only show that

(Cc) ∧ (Sp) ⇒ (H) (3)

if and only if (2) holds. We first show necessity. Let d = 1, X = R+ = (0,∞) and

0 < c < ∞ (4)
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be given and define

h(x) =
{
log(cx), if 0 < x ≤ 2

c

0, otherwise
(5)

and

g(x) =
{
log(2) + ( c2 )

2(x − 2
c ), if 2

c ≤ x < ∞
0, otherwise

(6)

Notice that we have chosen the angular coefficient of the straight line equal to the tangent to
the logarithmic function at the point 2

c . Further, define the function on (0,∞):

f0(x) = h(x) + g(x) (7)

By (5) and (6), f0 is continuous, and has a continuous derivative at the point 2
c . The function

h is superadditive on (0, 2
c ] because

log[(c(x1 + x2)] ≥ log(cx1) + log(cx2) = log
(
c2x1x2

)
(8)

is true whenever

x1 + x2 ≥ cx1x2

or
x1 + x2
x1x2

≥ c (9)

Superadditivity of h on (0, 2
c ] means, by definition (5), that (8) holds for all x1, x2 ∈ (0, 2

c ]
such that x1 + x2 is also an element of (0, 2

c ], i.e., such that

0 < x1 + x2 ≤ 2

c
(10)

By (9), (8) holds under (10) due to the elementary inequalities

1

x1
+ 1

x2
≥ 2

x1/21 x1/22

≥ c (11)

We now consider the remaining case

x1 + x2 >
2

c
(12)

In case (12), we may have two different cases:

(a) x1 ≤ 2
c and x2 > 2

c ;
(b) x1 > 2

c and x2 > 2
c

Of course, the case (a) with x1 and x2 exchanged is the same. In case (a),

f0(x1 + x2) = g(x1 + x2) = g̃(x1) + g(x2) ≥ h(x1) + g(x2) = f0(x1) + f0(x2)

where g̃ denotes the natural extension of g to (0,∞), by the remark after Eq. (6). In case (b),

f0(x1 + x2) = g(x1 + x2) = g(x1) + g(x2) = f0(x1) + f0(x2)

which completes the proof of superadditivity of the function f0.
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The function h, defined by (5), satisfies d2h
dx2

≤ 0 under condition (4), and is, therefore,

concave on (0, 2
c ), and g, defined by (6), being linear, is concave as well on ( 2c ,∞). The

function f0, given by (7), is continuous on 0,∞) and has the property that through every
point of the curve y = f0(x) there is at least one line which lies wholly above the curve.
Indeed, for the point x = 2

c , at which the second derivative of f0 is discontinuous, such a
line is the tangent to the curve at the point. Thus, by [4], p. 95, f0 is concave on (0,∞). This
example trivially generalizes to Rd , by taking

f̃0(x1, . . . xd) =
d∑

i=1

f0(xi ) (13)

for (x1, . . . xd) ∈ R+ × · · · × R+. Finally, (H) obviously fails for f0, and consequently for
f̃0, and necessity is proved.
In order to show sufficiency, assume a real-valued function f satisfies (2) and both (Cc)

and (Sp) on a convex open X ∈ Rd satisfying Assumption A. By (Cc),

f (λx + (1 − λ)y) ≥ λ f (x) + (1 − λ) f (y) with x, y ∈ X and 0 ≤ λ ≤ 1 (14)

Since f satisfies (14) on an open set, it is continuous there (see [4], Theorem 111, p.91), and
therefore (14) yields, for all x ∈ X ,

lim
y→(0,...0)

f (λx + (1 − λ)y) = f (λx) ≥
≥ λ f (x) + (1 − λ) lim inf

y→(0,...0)
f (y)

from which, by (2),

f (λx) ≥ λ f (x) (15)

Choosing, now, n ∈ N and λ = 1
n , we obtain from (15)

f (x) ≤ n f
( x
n

)
for all x ∈ X (16)

We further obtain from (Sp),

f (nx) ≥ n f (x) for all x ∈ X (17)

Let w ∈ X and, given n ∈ N, define x ∈ X by nx = w. Then, by (17),

f (w) ≥ n f
(w

n

)
(18)

From (16) and (18),

f (w) = n f (
w

n
) for all w ∈ X (19)

By (19), replacing n by m, and writing u = w
m , we find f (mu) = m f (u) for all u ∈ X , and,

finally,

f (n−1mu) = n−1m f (u) for all u ∈ X and for all n,m ∈ N (20)

Take, now, any irrational number λ ∈ R+, and let pk
qk

be the continued fraction approximants

of λ ( [8], p.18). By the continuity of f , f ( pk
qk
u) → f (λu) as k → ∞ and (20) finally

yields (H). 	
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In the case d = 1, that is, for functions f of one real variable, the l.h.s. of (3) implies that
the function f which satisfies (H) is in fact trivial:

Proposition 2.1 If d = 1, under assumption (2), (3) implies that the function satisfying (H)
is trivial, i.e., f = cx for c a given constant. The analogue of this assertion no longer holds
if d = 2.

Proof Let h(x) = f (x)
x . By [4], Theorem 103, p. 83, and [7], p. 239, under the assumed

concavity, f is superadditive on (0,∞) if h is nondecreasing. Thus, the l.h.s. of (3) implies
that h is nondecreasing. Let x ∈ (0,∞), λ ∈ (0, 1] be given. Then, by (15),

f (λx) ≥ λ f (x)

by the assumption (2). Division by λx gives f (λx)
λx ≥ f (x)

x . Thus h is nonincreasing on (0,∞),
and, by the previous result, it must also be nondecreasing and thus be a constant on (0,∞),
i.e., f (x)

x = c.
For d = 2 the example sph(E, V ) in Sect. 3.3 provides a counterexample to the assertion

of the proposition, since sph(E, V ) �= c1E + c2V , with c1, c2 given constants.
	


Remark 2.1 If φ is a function on [0, 1] defined by φ(x) = 0 if x ∈ [0, 1), while φ(1) = 1, it
is convex on [0, 1] but not continuous on [0, 1]. Since continuity is important in in the Proof
of Theorem 2.1, this is an indication that the assumption that the domain of the function f is
an open convex set X in Theorem 2.1 is natural even in the case that the function is bounded
in the closure X of X .

Remark 2.2 The counterexample (13) is suggested by the entropy of a free, classical gas.

Remark 2.3 Proposition 3.1 shows that Theorem 2.1 is non-trivial only in the case d ≥ 2,
i.e., in the case of functions of several variables. In the applications to statistical thermody-
namics, to which we now turn, one is typically concerned with at least two variables, as the
forthcoming three examples demonstrate.

3 Applications to Statistical Thermodynamics

In this section we briefly review three applications to statistical thermodynamics, on the
light of theorem 2.1. In Sect. 3.1 we revisit non-relativistic gravitational systems, following
Thirring [21]. This is the most important application, in which Theorem 2.1 is natural,
because the origin lies outside the range of physical values of the variables involved. The
second one, in Sect. 3.2, is the Kerr–Newman black-hole, and is due to Landsberg [9],
but there no thermodynamic limit is involved, similarly to the third one, free photons, in
Sect. 3.3.

3.1 Non-relativistic Gravitational Systems

This application is based on the model of N fermions interacting via Newtonian attractions,
as represented by (21). The quantum thermodynamics of this model was derived by Hertel,
Narnhofer and Thirring [6].

In [6], the system of N electrically neutral, massive fermions of one species, interacting
by Newtonian forces, was studied as a model of a neutron star. We shall follow the excellent
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summary by Sewell [20] (see also [14] for a detailed study of the equilibrium states of the
system). The Hamiltonian on a Hilbert space HN ,V is given by

HN ,V = − �
2

2m

N∑
j=1

� j − κm2
N∑

j �=k∈V ; j,k=1

r−1
jk (21)

where κ is the gravitational constant, � j the Laplacian for the j − th particle, and r j,k
the distance between the j th and the kth particle. Due to the long-range and attractive
nature of the interactions, it is well explained in [20] and derived in [6] that the statistical
thermodynamics of the model may be formulated within a framework in which, for each
value of N , the system is confined to a spatial region �N such that the volume VN of �N is
proportional to N−1. It may then be proved that if the energy EN of the system is such that
N−7/3EN → e and NVN → v as N → ∞, the microcanonical specific entropy N−1SN
converges to a function s of (e, v). In order to preserve the original extensive variables
E, V , N , we proceed as in ([21], p. 5), defining the function

s(E, V , N ) ≡ lim
λ→∞

1

λ
S(λ−7/3E, λ−1V , λN ) (22)

where

S(E, V , N ) ≡ log dim(HE
N ,V ) (23)

and HE
N ,V denotes the subspace of HN ,V satisfying the condition

TrHE
N ,V

H(N , V ) < E (24)

We shall in the following consider a fixed number N of particles (as in [12]), and take the
limit in (22) along λ ∈ N, i.e., along the positive integers: we shall denote the function so
defined by s(E, V ). This number N is assumed to be an integer, and N ≥ 1. Note that N = 0
is a crucial value in [9], but would be ambiguous in (22).

Our first application of Theorem 2.1 consists in choosing there d = 2 and X ≡ RE− ×RV+ ,
where the superscripts refer to the variables E and V . This choice satisfies Assumption A.
Indeed, it follows from the framework just described that, and the attractive character of the
interactions in (21), that

− ∞ < E < 0 (25)

as well as

0 < V < ∞ (26)

are the ranges of the variables E and V . Further, both the point (E, V ) = (0, 0) and the
half-axes (R−, 0) and (0,R+) lie in the complementary region of the physical values of the
quantities (E, V ). The (quantum) microcanonical entropy S(E, V , N ) = log dim(HE

N ,V ) ≥
0, and thus

s(E, V ) ≥ 0 if (E, V ) ∈ R− × R+ (27)

Therefore (2) holds for s(E, V ), i.e.,

lim inf
(E,V )→(0,0)

s(E, V ) ≥ 0 (28)

By construction, s(E, V ) does not satisfy (H), but it does satisfy (Sp). The latter property
is most easily seen to hold from the property of the inverse function e(S, V ), which is
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subadditive [6,21], as a consequence of the attractive nature of the interactions (see also [17],
pp. 42, 65). We thus arrive at

Proposition 3.1 The function s(E, V ) does not satisfy (Cc), i.e., thermodynamic stability
fails for model (21).

(Cc) is the condition of thermodynamic stability. The standard manifestation of non- (Cc)
is the nonpositivity of the specific heat: s becomes convex with respect to E , leading to a
phase transition of van der Waals type. For model (21) this was shown in [6] (see also [5] for
a soluble model). We refer to [22] for the discussion of the stage in the stellar evolution in
which such behavior is expected.

Remark 3.1 When the specific entropy is regarded as a function of the state, represented by a
density matrix ρ, then s is subadditive rather than superadditive (see, e.g., [2], Theorem 6.5,
p. 122, and further for a comprehensive account of various related results). In this framework,
instead of continuity of s , upper semicontinuity obtains instead [18]. This property is crucial
in the dynamic proof of the second law in [25].

As remarked in [20], for very large N (of the order of 1060), the nonrelativistic model
(21) becomes unphysical, because the mean particle velocities become comparable to the
velocity of light. If the star’s mass exceeds the Chandrasekhar limit, rigorously analysed in
[11], it is believed that its collapse leads to a black-hole. A very nice account of black-hole
thermodynamics may be found in section 4 of [20], see also [19]. A special model thereof is
the Kerr–Newman black-hole, considered in [9], to which we now come.

3.2 The Kerr–Newman Black-Hole

A (classical) Kerr–Newman black-hole of charge Q, angularmomentum J andmass (energy)
M is assumed to be described by the Beckenstein–Hawking entropy SBH , defined by (see
[24]):

SBH = π
(
2M2 + 2M

√
M2 − a2 − Q2 − Q2

)
(29)

where

a = J

M
(30)

and the inequality

M2 > a2 + Q2 (31)

is assumed. A rigorous derivation of the second law of thermodynamics for black-holes
is given in [19]. As remarked and explained by Sewell ([19,20]), SBH has, at most, an
information-theoretic content, not a statistical thermodynamic one. This fact is due to the
idealization involved in models such as (29)–(31), essentially the characterization of a black-
hole by only three quantities, without any microstructure (Wheeler’s “no-hair theorem”). It
follows from the explicit formula (29) that SBH does not satisfy (H). Let, for simplicity,
Q = 0, and define the variables x = (M, J ), with ranges M ∈ (0,∞) and J ∈ (0,∞). It
may be shown that SBH is strictly superadditive, i.e.,

SBH (x1 + x2) > SBH (x1) + SBH (x2) (32)
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(see [9], p. 161)). Choosing X = R+ ×R+, we see that Theorem 2.1 is (trivially) applicable
to SBH (x), with SBH continuous at x = (0, 0), and SBH (0, 0) = 0, asserting that thermody-
namic stability (Cc) must be violated. It is straightforward to show this for the Kerr-Newman
black-hole, because SBH is twice continuously differentiable in each of its variables, and, in
this case, a necessary condition for (Cc) is (see, e.g., [4],p.81, (3.12.4))

∂2SBH
∂M2 ≤ 0 (33)

We find

∂2SBH
∂M2 ≥ 4 (34)

and, therefore, thermodynamic stability indeed fails for the Kerr–Newman black-hole, as
predicted by Theorem 2.1. Thus, although SBH is not a true statistical thermodynamical
entropy, by Sewell’s previously mentioned remarks, it is, nevertheless, reassuring that it has
“inherited” the instability properties non-(H) and non-(Cc) from themodels of nonrelativistic
gravitational systems.

3.3 The Free Photon Gas

The entropy of the free photon gas has curious properties from the thermodynamical stand-
point (see [12] and references given there). It is given by

sph(E, V ) = E3/4V 1/4 (35)

defined on R+ × R+, with sph continuous at (0, 0), and s(0, 0) = 0, thus satisfying (2)
trivially. sph clearly satisfies (H). Further, it is easily seen to be concave by ([4], p. 81,
(3.12.4)), but not strictly concave, because, denoting partial derivatives by superscripts,
(sEVph )2 − sEE

ph sV V
ph = 0, and, by (3.12.5) of [4], p.81, (sEV )2 − sEEsV V > 0 is neces-

sary for strict concavity of a function s. As a consequence of Theorem 2.1, sph satisfies (Sp),
a property which is (surprisingly) cumbersome to prove directly. Strict superadditivity does
not, however, follow from the theorem, because of the previous remark on strict concavity.

4 Conclusion

As remarked by Thirring ([21], p. 5), (H) has the interpretation of stability against implosion.
On the other hand, the property of subadditivity of the inverse function e(S, V ) has the
interpretation of stability against explosion: “one gains energy by putting two parts together”.
Due to the Newtonian attraction, therefore, strict superadditivity of s(E, V ) is therefore
expected, which indeed holds for the model in Sect. 3.1, and is even inherited by the black-
hole model of Sect. 3.2. This intuition is, of course, not applicable to the free photon gas of
Sect. 3.3, and, indeed, as remarked there, strict superadditivity is not a direct consequence of
Theorem 2.1.

Another indication that subadditivity of the energymay be the general property responsible
for the equivalence between stability in the sense of (H) and thermodynamic stability is, as
remarked by Thirring in [21], the universal character of van der Waals forces (which are
attractive) for neutral assemblies of atoms or molecules [10].

The main general obstruction to the validity of (2) in applications to statistical thermody-
namics (with f taken as the entropy function) is posed by classical statistical mechanics: the
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classical entropy is unbounded from below [15] (see also Remark 2.1). This adds a further
link to the importance of quantum theory in various stability and instability aspects of cosmic
bodies.
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