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Abstract
We consider heat transport across a harmonic chain of charged particles, with transverse
degrees of freedom, in the presence of a uniformmagnetic field. For an open chain connected
to heat baths at the two endswe obtain the nonequilibriumGreen’s function expression for the
heat current. This expression involves two different Green’s functions which can be identified
as corresponding respectively to scattering processes within or between the two transverse
waves. The presence of the magnetic field leads to two phonon bands of the isolated system
andwe show that the net transmission can bewritten as a sumof two distinct terms attributable
to the two bands. Exact expressions are obtained for the current in the thermodynamic limit,
for the the cases of free and fixed boundary conditions. In this limit, we find that at small
frequency ω, the effective transmission has the frequency-dependence ω3/2 and ω1/2 for
fixed and free boundary conditions respectively. This is in contrast to the zero magnetic field
case where the transmission has the dependence ω2 and ω0 for the two boundary conditions
respectively, and can be understood as arising from the quadratic low frequency phonon
dispersion.

Keywords Heat conduction · Ballistic transport · Integrable systems

1 Introduction

Heat transport in harmonic chains connected to heat reservoirs has been extensively stud-
ied since the seminal work of Rieder et al. [16] (RLL). The main results of RLL were the
demonstration that, in the nonequilibrium steady state (NESS), the heat current across the
chain saturates with increase in system size while the temperature profile is flat in the bulk of
the chain. They provided exact expressions for the asymptotic values of the current and the
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temperature profile. In later work Nakazawa extended these results to systems with on-site
potentials, not considered by RLL, and to higher dimensions [13,14]. RLL and Nakazawa
obtained the steady state current by an exact solution of the correlationmatrixwhich described
the Gaussian NESS measure. An alternative approach to compute NESS properties of har-
monic chains was used by [6,15] and this is essentially based on the so called Landauer and
nonequilibrium Green’s function formalism (NEGF) where the current is expressed as an
integral over frequency of a phonon transmission coefficient. The NEGF approach has been
successfully applied to various classical and quantum systems [2,7–9,11,15].

Recently, interesting results were obtained for heat transfer in harmonic chains made of
charged atoms that interact with an external magnetic field [17,20,21]. In particular, Ref.
[21] studied a harmonic chain with transverse degrees of freedom and with the Hamiltonian
dynamics perturbed by stochastic noise that conserves both momentum and energy. This
perturbation is added to micmic the deterministic chaos which should be produced by the
nonlinearities of the interactions if they were present [1]. In the context of anomalous heat
transport the authors identify a new universality class based on the system size dependence
of the thermal conductivity. An interesting observation made in the paper is on the phonon
dispersion in this model with a finite magnetic field—out of the two phonon bands it was
found that the lower band has a low frequency dispersion ω ∼ q2 and so a vanishing sound
speed. A natural question is the effect of this on heat conduction in this system in the absence
of stochastic noise. This question is addressed in the present paper. Systems of quantum
harmonic oscillator chains in external magnetic fields and in thermal equilibrium have earlier
been studied in the context of ergodicity, in [12,18], who studied the magnetization temporal
autocorrelation function. The effect of magnetic field on acoustic phonon modes have also
been considered experimentally [19].

In the present work we consider a charged harmonic chain of N oscillators in the presence
of a uniform magnetic field and with ends connected to heat reservoirs at different tempera-
tures. The baths are modeled via white noise Langevin equations so that the steady state is
Gaussian. We obtain the exact steady state current using the Langevin equations-NEGF for-
malism [8]. In this formalism, the expression for the heat current, JN , for a finite system size is
obtained as an integral over heat transmitted at different frequencies. Therefore, one can then
explore the behaviour of the heat transmission coefficient, TN (ω) at different phonon frequen-
cies ω. In the absence of the magnetic field, heat transmission in our model takes place via
independent transverse phonon modes. An interesting effect we observe is that the magnetic
field couples the phonon modes, thus one finds that the NEGF heat transmission coefficient
involves two Green’s functions which separately contribute to the current. These two con-
tributions can be interpreted physically as scattering processes between the two transverse
plane wavemodes which leads to change of polarization of the incoming plane wave.We also
derive explicit expressions, for the effective transmission coefficients, T∞, and the integrated
total current, J∞, in the thermodynamic limit. We show that the magnetic field modifies the
behaviour of the transmission at small frequencies, giving T∞ ∼ ω1/2 and T∞ ∼ ω3/2 for
free and fixed boundaries respectively. This is in contrast to the forms T∞ ∼ ω0, ω2 observed
in the zero field case, for free and fixed boundary conditions respectively [15].

The paper is structured as follows: in Sect. 2 we introduce the model and derive the
heat current expression using the Langevin equations-NEGF formalism. The transmission
coefficients involve particular Green’s function elements and in Sect. 3, we express these in
terms of product of 2×2 matrices. In Sect. 4 these are then used to find the exact expressions
for the current in the thermodynamic limit for the case of uniform magnetic field. This is
done for free as well as fixed boundary conditions. We conclude in Sect. 5.
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2 TheModel and Derivation of Heat Current Using NEGF

2.1 TheModel

Weconsider a chain of N harmonic oscillators each having two transverse degree’s of freedom
so that every oscillator is free to move in a plane perpendicular to the length of the chain. We
choose the plane of motion to be the x− y plane and denote the positions and momenta of the
nth oscillator by (xn, yn) and (pxn , p

y
n ) respectively, with n = 1, 2, . . . , N . The oscillators are

assumed to have masses,m, and each carry a positive charge e. We consider a site-dependent
magnetic field Bn = Bnez , perpendicular to the plane of motion, which can be obtained from
a vector potential An = (−Bn yn, Bnxn, 0) at each lattice site. The Hamiltonian of the chain
is given by:

H =
N∑

n=1

(pxn + eBn yn)2 + (pyn − eBnxn)2

2m
+ k

N∑

n=0

(xn+1 − xn)2 + (yn+1 − yn)2

2

where k denotes the inter particle spring constant.Wewill consider the two different boundary
conditions: (i) fixed boundaries with x0 = xN+1 = 0 and (ii) free boundaries with x0 =
x1, xN = xN+1. In order to study heat current through this system, we consider the 1st and
the N th oscillators to be connected to heat reservoirs at temperatures TL and TR respectively.
The heat reservoirs are modelled using dissipative and noise terms leading to the following
Langevin equations of motion:

mẍn = k(xn+1 + xn−1 − cnxn) + eBn ẏn + ηx
L(t)δn,1 + ηx

R(t)δn,N − (γ δn,1 + γ δn,N )ẋn,
(1)

mÿn = k(yn+1 + yn−1 − cn yn) − eBn ẋn + η
y
L(t)δn,1 + η

y
R(t)δn,N − (γ δn,1 + γ δn,N )ẏn .

(2)

for n = 1, 2, . . . , N . Here ηL(t) := (ηx
L(t), ηy

L(t)) and ηR(t) := (ηx
R(t), ηy

R(t)) are Gaussian
white noise terms acting on the 1st and N th oscillators respectively. These follow the regular
white noise correlations, 〈ηL/R(t)ηL/R(t ′)〉 = 2γ TL/Rδ(t−t ′) (Boltzmann’s constant is fixed
to one to simplify), where γ is the dissipation strength at the reservoirs. The coefficients cn
fix the boundary conditions of the problem. For fixed boundaries cn = 2 for all n, while for
free boundary conditions cn = 2 − δn,1 − δn,N .

2.2 Heat Current Using NEGF

For heat current in the setup considered here, we need to obtain the steady state solution of
the equations of motion given by Eqs. (1), (2). Denoting by ũ(ω) = 1

2π

∫∞
−∞ e−iωt u(t)dt the

Fourier transform of any function u(t), we rewrite the Langevin equations in Fourier space
as

(−mω2 + cnk + iγωδn,1 + iγωδn,N )x̃n(ω) − iωeBn ỹn(ω)

− kx̃n+1(ω) − kx̃n−1(ω) = η̃x
L(ω)δn,1 + ηx

R(ω)δn,N , (3)

(−mω2 + cnk + iγωδn,1 + iγωδn,N )ỹn(ω) + iωeBn x̃n(ω)

− k ỹn+1(ω) − k ỹn−1(ω) = η̃
y
L(ω)δn,1 + η

y
R(ω)δn,N . (4)
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The noise correlations in Fourier space now satisfy 〈ηL/R(ω)ηL/R(ω′)〉 = (γ TL/R/π)δ(ω+
ω′). Let us define the column vectors

X̃(ω) =

⎛

⎜⎜⎜⎜⎜⎝

x̃1(ω)

x̃2(ω)
...

x̃N−1(ω)

x̃N (ω)

⎞

⎟⎟⎟⎟⎟⎠
, Ỹ (ω) =

⎛

⎜⎜⎜⎜⎜⎝

ỹ1(ω)

ỹ2(ω)
...

ỹN−1(ω)

ỹN (ω)

⎞

⎟⎟⎟⎟⎟⎠
, η̃x/y(ω) =

⎛

⎜⎜⎜⎜⎜⎜⎝

η̃
x/y
L (ω)

0
...

0
η̃
x/y
R (ω)

⎞

⎟⎟⎟⎟⎟⎟⎠

to write Eqs. (3) and (4) jointly in the block-matrix form

G̃−1(ω)

(
X̃(ω)

Ỹ (ω)

)
=
(

η̃x (ω)

η̃y(ω)

)
with G̃−1(ω) =

(
Π(ω) K (ω)

−K (ω) Π(ω)

)
, (5)

where Π(ω) and K (ω) are square matrices with matrix elements given by

[Π(ω)]n,� = (−mω2 + cnk)δn,� − k(δn,�+1 + δn,�−1) + iγωδn,1δ�,1 + iγωδn,N δ�,N ,

[K (ω)]n,� = −ieBnωδn,�.

From Eq. (5), we can write the steady state solution directly by inverting the matrix G̃−1(ω).
Therefore we have

x̃n(ω) =
∑

�

[G+
1 (ω)]n,� η̃x

� (ω) +
∑

�

[G+
2 (ω)]n,� η̃

y
� (ω), (6)

ỹn(ω) = −
∑

�

[G+
2 (ω)]n,� η̃x

� (ω) +
∑

�

[G+
1 (ω)]n,� η̃

y
� (ω), (7)

where

G+
1 = [

Π + KΠ−1K
]−1

and G+
2 = −G+

1 KΠ−1. (8)

These two last matrices form the 2 × 2 block structure of the matrix G̃(ω) as

G̃(ω) =
(

G+
1 (ω) G+

2 (ω)

−G+
2 (ω) G+

1 (ω)

)
.

Defining the square matrices G−
1/2 = [G+

1/2]† and Γn,�(ω) = [Π†(ω) − Π(ω)]n,� =
−2iω(γ δn,1δ�,1 + γ δn,N δ�,N ), one gets from Eq. (8) that [G−

1 ]−1 − [G+
1 ]−1 = Π† −

Π + KΠ†−1
K − KΠ−1K . Multiplying this on the left by G+

1 and on the right by G−
1 we

get, after some manipulations, the following relation:

G+
1 (ω) − G−

1 (ω) = G+
1 Γ G−

1 + G+
2 Γ G−

2 . (9)

This will be useful later on to put the heat current in the Landauer or NEGF form.
Having obtained the steady state solution, we now proceed to calculate the average heat

current JN in the steady state. We can compute the current at any point on the chain since
the steady state value will be the same everywhere.

Let us consider the current from the left reservoir into the system. This is given by taking
the steady state average 〈·〉ss of the dot product of the velocity of the first particle with the
force on it from the left reservoir, thus

JN = −γ 〈ẋ21 + ẏ21 〉ss + 〈ηx
L(t)ẋ1〉ss + 〈ηy

L(t)ẏ1〉ss.
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The first term on simplification gives

− γ 〈ẋ21 + ẏ21 〉ss = −
∫ ∞

−∞
dω

π

{
2γ 2TLω2

({[G+
1 (ω)]1,1

}2 + {[G+
2 (ω)]1,1

}2)

+2γ 2TRω2
({[G+

1 (ω)]1,N
}2 + {[G+

2 (ω)]1,N
}2)}

, (10)

and the sum of the other two terms is given by

〈ηx
L(t)ẋ1〉ss + 〈ηy

L(t)ẏ1〉ss =
∫ ∞

−∞
dω

π

{
iω[G+

1 (ω)]1,1γ TL + iω[G+
1 (ω)]1,1γ TL

}
(11)

= 2TL

∫ ∞

−∞
dω

π
ω2
{({[G+

1 (ω)]1,1
}2 + {[G+

2 (ω)]1,1
}2)

γ 2

+
({[G+

1 (ω)]1,N
}2 + {[G+

2 (ω)]1,N
}2)

γ 2
}

, (12)

where in the last step we used Eq. (9). Adding Eqs. (10) and (12) we finally get

JN = (TL − TR)

∫ ∞

−∞
dωTN (ω) (13)

where TN is the net transmission amplitude across the harmonic chain defined by

TN (ω) = 2γ 2

π
ω2

[{[G+
1 (ω)]1,N

}2 + {[G+
2 (ω)]1,N

}2]
. (14)

Note that in the absence of the magnetic field, Bn = 0, the Green’s function, G+
2 , vanishes

and we recover the current due to two uncoupled oscillator chains [15]. The magnetic field
couples the two transverse modes. In fact, we see from Eq. (6) that G+

2 (ω) connects the
x-displacements with the y-displacements, and hence, it can be interpreted as the scattering
matrix for a x-polarized incident plane wave to be scattered into a y-polarized wave. The term
involving G+

1 (ω) is the normal transmission amplitude which is attributed to scattering of
the incoming plane wave without change of polarization. The combination of the two terms
leads to the rotation of the polarization of the incoming plane wave.

It is interesting to note that the mathematical structure of the Green’s functions obtained
here is of the same form as that found for electron transport in superconducting wires [2,3].
Analogous to the scattering between transverse modes that we see here, in superconducting
wires, the superconducting order causes scattering between particle and hole electronic states.

3 Green’s Function as Product of Matrices

In this section we rewrite the components of the two Green’s functions, [G+
1 (ω)]1,N and

[G+
2 (ω)]1,N defined by Eq. (8), as a product of matrices using a transfer matrix approach.

This will give us explicit expressions for the two components enabling us to obtain analytic
closed-form results in special cases. We start by rewriting the equations of motion in a way
such that the 2N×2N matrix G̃−1(ω) appearing in Eq. (5) gets restructured into a 2×2-block
tri-diagonal matrix, G(ω). To that end, we define for each k = 1, . . . , N the column vectors

R̃n(ω) =
(
x̃n(ω)

ỹn(ω)

)
, η̃n(ω) =

(
η̃x
n (ω)

η̃
y
n (ω)

)
,
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and notice that the Eqs. (3) and (4) can then be written as

N∑

�=1

[G−1(ω)]n,� R̃�(ω) = η̃n(ω), (15)

where [G−1(ω)]k,� are 2 × 2 matrices defined via G−1(ω) given by

G−1(ω) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A1(ω) + iγωI2 −k I2 0 0 . . . . . . 0 0
−k I2 A2(ω) −k I2 0 . . . . . . 0 0
0 −k I2 A3(ω) −k I2 . . . . . . 0 0
...

...
...

. . .
...

...
...

...
...

. . .
...

...
...

...
... . . . −k I2 AN−1(ω) −k I2

0 0 0 . . . . . . −k I2 AN (ω) + iγωI2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here In refers to a n × n identity matrix, while A�(ω) is the 2 × 2 matrix defined by

A� := A�(ω) =
(−mω2 + c�k −iωeB�

iωeB� −mω2 + c�k

)
, � = 1, . . . , N .

Notice that Eq. (15) gives R̃�(ω) = ∑
k[G(ω)]�,k η̃k(ω), so on comparison with the solution

in Eqs. (6) and (7) we can write the components of the 2 × 2 matrix [G(ω)]k,� to be

[G(ω)]n,� =
( [G+

1 (ω)]n,� [G+
2 (ω)]n,�

−[G+
2 (ω)]n,� [G+

1 (ω)]n,�

)
. (16)

Thus we now require the 2 × 2 block [G(ω)]1,N to calculate the components [G+
1 (ω)]1,N

and [G+
2 (ω)]1,N . Since the matrix G−1(ω) is tri-diagonal, [G+

1 (ω)]1,N can be expressed as
products of matrices using a transfer matrix approach. This may be achieved by writing down
the first column of equations from the identity G(ω)G−1(ω) = I2N ,

G1,1(A1 + iγωI2) − kG1,2 = I2 , (17)

G1,�−1 + G1,�+1 − k−1G1,�A� = 0 , 1 < � < N , (18)

G1,N (AN + iγωI2) − kG1,N−1 = 0. (19)

We now write these equations in the form

(
I2 G11

) = (
G11 G12

) (A1 + iγωI2 I2
−k I2 0

)
, (20)

(
G1,�−1 G�,l

) = (
G1,� G1,�+1

) (k−1A� I2
−I2 0

)
, 1 < � < N (21)

(
G1,N−1 G1,N

) = (
G1,N 0

) (k−1(AN + iγωI2) I2
0 0

)
. (22)

We then use Eq. (21) in Eq. (20) repeatedly and finally use Eq. (22) to get,
(
I2 G11

) = (
G1N 0

)
ΩL ΠN ΩR (23)
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with the the 4 × 4 matrices ΩL ,ΠN ,ΩR defined by

ΩL =
(
I2 −i γω

k I2
0 0

)
, ΩR =

(
k I2 0

iγωI2 I2

)
,

ΠN =
N∏

�=1

Ω� =
N∏

�=1

(
k−1A� I2
−I2 0

)
=

N∏

�=1

(
a� I2 + b�σ

y I2
−I2 0

) (24)

where σ y = (
0 −i
i 0

)
is the second Pauli’s matrix and

a� := a�(ω) = (−mω2 + c�k)/k, b� := b�(ω) = ωeB�/k. (25)

Thus we have expressed the required components of the Green’s function as a product of
4×4 matricesΩ�. This product can further be simplified by making a unitary transformation
such that σ y = U †σ zU with σ z = (

1 0
0 −1

)
the third Pauli’s matrix, in order to diagonalise

the matrix a� I2 + b�σ
y . This makes the product to be

ΠN =
N∏

�=1

(
a� I2 + b�σ

y I2
−I2 0

)
=
(
U † 0
0 U †

) N∏

�=1

(
a� I2 + b�σ

z I2
−I2 0

)(
U 0
0 U

)
.

The product in this equation is now composed of 2 × 2 diagonal blocks and therefore we
have that for any 1 ≤ n ≤ N ,

n∏

�=1

(
a� I2 + b�σ

z I2
−I2 0

)
=

⎛

⎜⎜⎝

f +
n 0 g+

n 0
0 f −

n 0 g−
n

− f +
n−1 0 −g+

n−1 0
0 − f −

n−1 0 −g−
n−1

⎞

⎟⎟⎠

where the numbers f ±
n , g±

n , defined for n = 0, 1, . . . , N , follow the same second order
recursive equation but with different initial conditions. More exactly we have that for

f ±
n+1 = (an+1 ± bn+1) f

±
n − f ±

n−1, f ±
0 = 1, f ±

1 = a1 ± b1,

g±
n+1 = (an+1 ± bn+1)g

±
n − g±

n−1, g±
0 = 0, g±

1 = 1.
(26)

Therefore, the 4×4 matrices in the product are effectively reduced to 2×2 matrices. The
expressions for f ±

n , g±
n could be exactly found for the two boundary conditions. We do this

in the next section, for now we conclude this section by expressing required components of
the Green’s function using the variables f ±

n , g±
n . We use U = 1√

2

(
i 1−i 1

)
to rewrite ΠN as,

ΠN = 1

2i

⎛

⎜⎜⎝

i( f +
N + f −

N ) ( f +
N − f −

N ) i(g+
N + g−

N ) (g+
N − g−

N )

−( f +
N − f −

N ) i( f +
N + f −

N ) −(g+
N − g−

N ) i(g+
N + g−

N )

−i( f +
N−1 + f −

N−1) −( f +
N−1 − f −

N−1) −i(g+
N−1 + g−

N−1) −(g+
N−1 − g−

N−1)

( f +
N−1 − f −

N−1) −i( f +
N−1 + f −

N−1) (g+
N−1 − g−

N−1) −i(g+
N−1 + g−

N−1)

⎞

⎟⎟⎠ .

(27)

We define the matrices PN and QN as follows,

PN = 1

2i

(
i( f +

N + f −
N ) f +

N − f −
N−( f +

N − f −
N ) i( f +

N + f −
N )

)
QN = 1

2i

(
i(g+

N + g−
N ) g+

N − g−
N−(g+

N − g−
N ) i(g+

N + g−
N )

)
.

(28)

Then

ΠN =
(

PN QN

−PN−1 −QN−1

)
. (29)
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Substituting ΠN from Eq. (27) in Eq. (23), we can show that

I2 = G1,N
(
kPN + iγω(QN + PN−1) − γ 2ω2

k
QN−1

)

= G1,N
( 1

2 (F
+
N + F−

N ) 1
2i (F

+
N − F−

N )

− 1
2i (F

+
N − F−

N ) 1
2 (F

+
N + F−

N )

)
(30)

G11 = G1,N
(
QN + i

γω

k
QN−1

)
(31)

where

F±
N := F±

N (ω) = k
(
f ±
N + i γ

k ω(g±
N + f ±

N−1) − γ 2

k2
ω2g±

N−1

)
. (32)

Using Eq. (16) and inverting Eq. (30) gives us the required components of the Green’s
functions:

[G+
1 ]1,N = 1

2

(
1

F+
N

+ 1

F−
N

)
and [G+

2 ]1,N = − 1

2i

(
1

F+
N

− 1

F−
N

)
.

These then give, using Eqs. (13), (14), the heat current to be

JN = (TL − TR)
γ 2

π

∫ ∞

−∞
dω ω2

[
1

{
F+
N (ω)

}2 + 1
{
F−
N (ω)

}2

]
. (33)

Thus we have now obtained a new expression for the net transmission amplitude TN (ω).
In the next section we use this form and, for the case of a uniform magnetic field, derive
analytical expressions for the current in the thermodynamic limit. Before that, we take a
quick digression to discuss the temperature profile.

Temperature Profile

We can also obtain the temperature profile of the chain, which is defined as T� =
m 〈ẋ2� (t) + ẏ2� (t)〉. Using the steady state expression for x�(t) and y�(t), we can show that
this is given by,

T� = TLΛ� + TR(1 − Λ�); Λ� =
∫ ∞

−∞
dω

π
mγω2 [[|G+

1 (ω)]1�|2 + |G+
2 (ω)]1�|2

]
(34)

Using Eqs. (20), (21) and (22), we could obtain the matrix block G1�, containing the required
components for the temperature profile, to be,

(
I2 G11

) = (
G1� G1,�+1

)
Π�ΩR = (

G1� G1,�+1
) ( kP� + iγωQ� Q�

−kP�−1 − iγωQ�+1 −Q�−1

)
(35)

whereΠ� is defined by Eq. (27) with n replaced by �. Using this equation we can write linear
equations for G1� and G1,�+1 in the block form as,

I2 − iγωG11 = G1�kP� − G1,�+1kP�−1 , (36)

G11 = G1�Q� − G1,�+1Q�−1 . (37)

G11 is obtained via Eq. (31). This set of equation seems complicated to simplify further but
when evaluated numerically, for an ordered chain, we obtain the results given in Fig. 1. The
temperature in the bulk is the same as for zero magnetic field case, (TL + TR)/2 and the
magnetic field mostly effects the profile near the ends of the chain.
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(a)B = 0 (b)B = 0.5

Fig. 1 Temperature distribution for the ordered chain. Parameter values—e = m = k = 1, N = 32, TL =
3.5, TR = 1.5

(a)B = 1 (b)B = 2

Fig. 2 Spectrum of the chain in the bulk. Parameter values—e = m = k = 1

4 Expressions for the Current in the Thermodynamic Limit

We consider a uniform chain (Bn = B for all n = 1, 2 . . . , N ) and derive the expressions for
the current in the thermodynamic limit,

J∞ = lim
N→∞ JN ,

for the cases of fixed boundary conditions and free boundary conditions.
For the infinite system, the phonon spectrum consists of two bands {ω±(q) ; q ∈ (0, π)}

where 2mω±(q) = ±eB + √
(eB)2 + 8mk(1 − cos q). The bands are gapped for eB >√

2mk. In Fig. 2a and bwe show the spectrum for eB <
√
2mk and eB >

√
2mk respectively.

In the former, the bands overlap while in the latter they are gapped.
We expect the transmission to be zero outside the bandwidth of the two bands which

becomes explicit in the thermodynamic limit. We will show that in the thermodynamic limit,
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the current expression in Eq. (33) is the sum of two terms due to the two frequency bands
of the system. Also, in the small ω limit we will find that T∞(ω) = limN→∞ TN (ω) is
equivalent to ω3/2 and ω1/2 for free and open boundary conditions respectively. We consider
the two boundary conditions separately and set k = e = 1 without loosing generality.

Fixed Boundary Conditions

We have then c� = 2 for all � = 1, . . . , N . The expressions for f ±
� for free boundary

conditions can be found exactly from Eq. (26). Recalling Eq. (25) let us denote q± :=
q±(ω) ∈ C such that

2 cos(q±(ω)) = a�(ω) ± b�(ω) = 2 − mω2 ± Bω. (38)

We obtain

f ±
� = sin[q±(� + 1)]

sin q±
and g±

� = f ±
�−1 ( for � ≥ 1). (39)

Recall Eq. (33). If ω is not in the frequencies band defined by ω+ (resp. ω−) then q+(ω)

(resp. q−(ω)) has a non-vanishing imaginary part and F+
N (ω) (resp. F−

N (ω)) becomes expo-
nentially large in N , so that these ω’s will not contribute in the thermodynamic limit to the
heat current.

We therefore obtain in the thermodynamic limit,

J∞ = (TL − TR)
γ 2

π
lim

N→∞

∫ ∞

−∞
dω ω2

[
1

{
F+
N (ω)

}2 + 1
{
F−
N (ω)

}2

]

= (TL − TR)
2γ 2

π
lim

N→∞

{∫ π

0
dω+(q)

[ω+(q)]2
{
F+
N (ω+(q))

}2 +
∫ π

0
dω−(q)

[ω−(q)]2
{
F−
N (ω−(q))

}2

}

where in the second equality, the 2 comes from the fact that by symmetry we restricted us to
positive frequencies.

To obtain the limits, we follow the steps given in [15]. By using Eqs. (32) and (39) we can
express F±

N (ω±(q)) as

F±
N (ω±(q)) = 1

sin(q)
[α±(q) sin(qN ) + β±(q) cos(qN )],

α±(q) = (1 − γ 2[ω±(q)]2) cos(q) + 2iγω±(q), β±(q) = (1 + γ 2[ω±(q)]2) sin(q).

(40)

We have then to study the limit as N → ∞ of

∫ π

0
dq

∂ω±

∂q
(q)

sin2(q)[ω±(q)]2
|α±(q) sin(qN ) + β±(q) cos(qN )|2 =

∫ π

0
dq

H±(q)

1 + R±(q) sin(2qN + ϕ±(q))

where

H±(q) = 2

|α±(q)|2 + |β±(q)|2
∂ω±

∂q
(q) sin2(q)[ω±(q)]2

and

R±(q) cos(ϕ±(q)) = 2�(α±(q)β±(q))

|α±(q)|2 + |β±(q)|2 , R±(q) cos(ϕ±(q)) = |α±(q)|2 − |β±(q)|2
|α±(q)|2 + |β±(q)|2.
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β±(q) is the complex conjugate of β±(q). It can be shown [6,11,15] that

lim
N→∞

∫ π

0
dq

H±(q)

1 + R±(q) sin(2qN + ϕ±(q))
=
∫ π

0
dq

H±(q)
√
1 − [R±(q)]2.

Since we have that

1√
1 − [R±]2 = |α±|2 + |β±|2

2|(α±β±)|
and


(
α±(q)β±(q)

)
= 2γω±(q)

(
1 + γ 2[ω±(q)]2) sin(q) ≥ 0 for q ∈ (0, π),

we get that

lim
N→∞

∫ π

0
dq

∂ω±

∂q
(q)

sin2(q)[ω±(q)]2
|α±(q) sin(qN ) + β±(q) cos(qN )|2

= 1

2γ

∫ π

0
dq

∂ω±

∂q
(q)

ω±(q) sin(q)

1 + γ 2[ω±(q)]2 = 1

2γ

∫ ω±(π)

ω±(0)
dω

ω sin(q±(ω))

1 + γ 2ω2 .

(41)

We conclude that

J∞ = (TL − TR)
γ

π

{∫ ω+(π)

ω+(0)
dω

ω sin(q+(ω))

1 + γ 2ω2 +
∫ ω−(π)

ω−(0)
dω

ω sin(q−(ω))

1 + γ 2ω2

}
. (42)

The two integrals run over the two bands of the spectrum: [ω−(0), ω−(π)] = [0, (−B +√
B2 + 16m)/2m] and [ω+(0), ω+(π)] = [B/2m, (B + √

B2 + 16m)/2m]. We see that
in the thermodynamic limit the transmission is exactly zero at energy values outside the
two bands of the spectrum and also the current is explicitly expressed as sum of two terms
coming from the two bands. For small ω behaviour of the transmission, T∞(ω), we take the
contribution due to the lower band (depending on the sign of eB we have ω+(0) = 0 or
ω−(0) = 0). It is straightforward to see from Eq. (42) that T∞(ω) ∼ ω3/2 for B �= 0 while
for B = 0, T∞(ω) ∼ ω2.

Free Boundary Conditions

For free boundary conditions we have c� = 2 − δ�,1 − δ�,N . Recalling Eq. (25) and the
definition of q± := q±(ω) ∈ C the numbers f ±

� , g±
� can once again be obtained with from

Eq. (26). We have

f ±
N = 2

(cos(q±) − 1)

sin(q±)
sin(q±N ), g±

N−1 = sin(q±(N − 1))

sin(q±)
,

and g±
N = f ±

N−1 = 1

sin(q±)
(sin(q±N ) − sin(q±(N − 1))),

where q± is defined in Eq. (38). Using these we can express F±
N defined by Eq. (32) as

F±
N (ω±(q)) = 1

sin(q)
[α±(q) sin(qN ) + β±(q) cos(qN )]
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(a) Fixed BC (b) Free BC

Fig. 3 Comparison of the transmission TN (ω) for fixed and free boundary for N = 20 with T∞(ω). Parameter
values—m = k = e = 1, γ = 0.2 and B = 2

where

α±(q) = 2(cos(q) − 1) − γ 2[ω±(q)]2 cos(q) + 2iγω±(q)(1 − cos(q)),

β±(q) = γ 2[ω±(q)]2 sin(q) + 2iγω±(q) sin(q).

It has the same form as F±
N appearing in Eq. (40) but with different expressions for α± and

β±. Hence using the same method, and noticing that


(
α±(q)β±(q)

)
= 2γ [ω±(q)]2 sin(q)

[∓B + (
γ 2 + m

)
ω±(q)

]

we deduce that

J∞ = (TL − TR)
γ

π

{∫ ω+(π)

ω+(0)
dω

sin(q+(ω))

−B + (
γ 2 + m

)
ω

+
∫ ω−(π)

ω−(0)
dω

sin(q−(ω))

B + (
γ 2 + m

)
ω

}
.

(43)

As in the case of fixed boundary condition, we have expressed the current as the sum of two
integrals running over the two bands of the spectrum. However, from this expression, for
small ω behaviour of T∞(ω), the lower band gives T∞(ω) ∼ ω1/2 and ∼ ω0 for B �= 0 and
B = 0 respectively.

In Fig. 3a, b, we show a comparison between T∞(ω) derived for the two boundary con-
ditions with the respect transmission obtained numerically for N = 20. It can be seen that
the transmission in the thermodynamic limit looks exactly like the envelope covered by the
transmission for finite N . Table 1 shows the comparison of the numerically obtained current
for N = 10, 20 and B = 1, 2 with the value of the current calculated from the Eqs. (42)
and (43) for the two boundary conditions respectively. These show a good agreement. We
also show in Fig. 4 the variation of the current in thermodynamic limit J∞ with respect to
the magnetic field and we find that it decreases monotonically to 0 with the magnetic field
B, as 1/B2 for large B, independently of the boundary conditions. We can also check easily
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Table 1 Comparison of
numerical values of the current
for finite N and the value of the
current in the thermodynamic
limit for γ = 0.2,
m = k = e = 1, TL = 1, TR = 0

JN J∞
Fixed BC Free BC Fixed BC Free BC

N = 10, B = 1 0.179 0.160 0.179 0.158

N = 20, B = 1 0.179 0.158 0.179 0.158

N = 10, B = 2 0.163 0.121 0.163 0.131

N = 20, B = 2 0.163 0.131 0.163 0.131

Fig. 4 Variation of the current with the magnetic field. Parameter values—e = m = k = 1, γ = 0.2,
TL = 1, TR = 0

that the limit B → 0 and N → ∞ commute, i.e. the limit of J∞ as B → 0 is equal to
the normalised current of the ordered harmonic chain without magnetic field considered in
[13–16], for free and fixed boundary conditions.

5 Conclusion and Perspectives

In conclusion we studied heat transport in an ordered harmonic chain in the presence of a
uniform magnetic field. Using non-equilibrium Green’s function formalism we found that
the heat current has contribution from two different terms involving two different Green’s
functions G+

1 (ω) and G+
2 (ω). These can be interpreted physically as the transmission ampli-

tude of a transverse plane wave being scattered without or with the π/2 rotation of its
polarization respectively. This happens due to the fact that the magnetic field couples the x
and y coordinates of the oscillators. We expressed the required components of the Green’s
functions as a product of 2 × 2 transfer matrices in which form one sees explicitly the con-
tribution to the current from the two phonon bands. In the thermodynamic limit, the currents
become N -independent andwe obtained analytic expressions for the current for free and fixed
boundary conditions. These expressions show that at small ω and B �= 0, the transmission,
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T∞(ω) ∼ ω3/2 for fixed boundary and T∞(ω) ∼ ω1/2 for free boundary. In the companion
paper [5] we extend these results to the case where the external magnetic field is random.

In [10] the authors introduce a family of heat conduction models in the presence of a
uniform or a non-uniform magnetic field, conserving energy and possibly momentum, and
argue that in all cases Fourier’s law is satisfied. In particular, they consider models with
impulsive magnetic fields which act periodically in time like kicks and relate then their
models to systems of discrete time coupled chaotic maps. In the high temperature limit
the discrete time models are reasonably well approximated by a purely stochastic model
satisfying Fourier’s law. It seems that a similar treatment can be performed for our system
resulting in a harmonic chain with a stochastic noise, very similar to the model introduced
in [4]. It would be of interest to investigate these last questions in further details.
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