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Abstract
We study atypical behavior in bootstrap percolation on the Erdős–Rényi random graph.
Initially a set S is infected. Other vertices are infected once at least r of their neighbors
become infected. Janson et al. (Ann Appl Probab 22(5):1989–2047, 2012) locates the critical
size of S, above which it is likely that the infection will spread almost everywhere. Below
this threshold, a central limit theorem is proved for the size of the eventually infected set. In
this work, we calculate the rate function for the event that a small set S eventually infects an
unexpected number of vertices, and identify the least-cost trajectory realizing such a large
deviation.

Keywords Bootstrap percolation · Phase transition · Random graphs · Large deviations ·
Discrete calculus of variations

1 Introduction

Bootstrap percolation was originally proposed by physicists [12,29] to model the phase tran-
sition observed in disordered magnets. Since then a large literature has developed, motivated
by beautiful results, e.g. [8,10,22,31], and a variety of applications across many fields, see
e.g. [1,2] and references therein.

In this work, we consider the spread of an infection by the r -neighbor bootstrap perco-
lation dynamics on the Erdős–Rényi [15] graph Gn,p , in which any two vertices in [n] are
neighbors independently with probability p. Althoughwe focus on this special case, we think
our methods could be useful in studying the large deviations of any Markovian growth or
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exploration process. For instance, we have more recently used these methods to study the
performance of the greedy independent set algorithm on sparse random graphs [26].

In bootstrap percolation, some subset S0 ⊂ [n] is initially infected. Other vertices are
infected once at least r of their neighbors become infected. Most of the literature has focused
on the typical behavior. Of particular interest is the critical size at which point a uniformly
random initial set S0 is likely to infect most of the graph. Less is known about the atypical
behavior, such as when a small set S0 is capable of eventually infecting many more vertices
than expected (e.g. influencers or superspreaders in a social network, viral marketing, etc.).

For analytical convenience, we rephrase the dynamics in terms of an exploration process
(cf. [23,30,32]) in which vertices are infected one at a time. At any given step, vertices are
either susceptible, infected or healthy. All susceptible vertices become infected eventually,
and then remain infected. When a vertex is infected, some of the currently healthy vertices
may become susceptible. The process ends once a stable configuration has been reached in
which no vertices are susceptible.

More formally, at each step t , there are sets It and St of infected and susceptible vertices.
Vertices in [n] \ (It ∪ St ) are currently healthy. Initially, I0 = ∅. In step t ≥ 1, some vertex
vt ∈ St−1 is infected. All remaining edges from vt are revealed. To obtain St from St−1, we
remove vt and add all neighbors of vt with exactly r −1 neighbors in It−1. We then add vt to
It−1 to obtain It . The process ends at step t∗ = min{t ≥ 1 : St = ∅}when no further vertices
can be infected. For technical convenience, we set |St | = 0 for all t ≥ t∗. Let I∗ = It∗ denote
the eventually infected set. Since one vertex is infected in each step t ≤ t∗, we have |It | = t
and |St | ≥ |St−1| − 1 for all such t . In particular, t∗ = |I∗|. Clearly, I∗ does not depend on
the order in which vertices are infected.

Janson et al. [23] (cf. [34]) identifies the critical size of S0, for all r ≥ 2 and

p = ((r − 1)!/n)1/rϑ1/r−1, 1 	 ϑ(n) 	 n, (1)

in the case that S0 is selected uniformly at random. By the symmetry of Gn,p , this is the
same as for a given set S0 (independent of Gn,p) of the same size. More specifically, a sharp
threshold is observed. If more than (1 − 1/r)ϑ vertices are initially susceptible, then all
except o(n) many vertices are eventually infected. Otherwise, the eventually infected set is
much smaller, of size O(ϑ) 	 n.

Theorem 1 ([23] Theorem 3.1) Let p be as in (1) and α ≥ 0. Put αr = (1− 1/r)α. Suppose
that a set S0 = S0(n) (independent of Gn,p) of size |S0| ∼ αrϑ is initially susceptible. If
α > 1, then with high probability |I∗| ∼ n. If α < 1, then with high probability |I∗| ∼ ϕαϑ ,
where ϕα ∈ [αr , α] uniquely satisfies

ϕα − ϕr
α/r = αr . (2)

The extreme cases p ∼ c/n and p ∼ c/n1/r are also addressed in [23], where the model
behaves differently. We assume (1) throughout this work.

Moreover, in the subcritical case, a central limit theorem is proved in [23] (see Theorem
3.8). In this work, we study large deviations from the typical behavior in the subcritical case
α < 1.

Definition 2 For β < ϕα (resp. β > ϕα), let P(S0, β) denote the tail probability that the
initial susceptibility of S0 ⊂ [n] in Gn,p results in some number |I∗| ≤ βϑ (resp. |I∗| ≥ βϑ)
of eventually infected vertices.

Informally, P(S0, β) is the probability that the number |I∗| of eventually infected vertices
is at least as atypical as βϑ .
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Fig. 1 For r = 2 and α = 2/3,
the rate function −ξ(α, β) is
plotted as a function of β

Theorem 3 Let p be as in (1),α ∈ [0, 1) andβ �= ϕα ∈ [αr , 1]. Suppose that a set S0 = S0(n)

(independent of Gn,p) of size |S0| ∼ αrϑ is initially susceptible. Then

lim
n→∞

1

ϑ
log P(S0, β) = ξ(α, β),

where

ξ(α, β) = −βr/r +
{

(β − αr )[1 + log(βr/(r(β − αr ))] β ≤ α

α/r − (r − 2)(β − α) + (r − 1) log(ββ/ααr ) β > α.
(3)

For any given α ∈ [0, 1), ξ(α, β) is increasing in β ∈ [αr , ϕα), decreasing in β ∈ (ϕα, 1]
(see Appendix A.2), and ξ(α, ϕα) = 0 by (2), in line with Theorem 1. See Fig. 1.

The asymptotically optimal trajectory ŷα,β(x) for |Sxϑ |/ϑ is given at (9) below (see also
Fig. 2). The rate function ξ(α, β) is found by substituting this into the associated cost function
(8). Detailed heuristics are given in Sect. 1.5 below. See Sect. 2 for the proof of Theorem 3.

The point ϑ (associated with β = 1) is critical. As such, we simply have that ξ(α, β) =
ξ(α, 1) for β > 1. The reason for this is that the underlying branching process (the Binomial
chain |St | discussed in Sects. 1.4 and 1.5 below) governing the dynamics becomes critical
upon surviving to time t = ϑ . Surviving beyond this point, supposing that it has been reached,
is no longer exponentially unlikely. In other words, the optimal (asymptotic) trajectory ŷ(x)
that |Sxϑ |/ϑ typically follows in order to survive beyond x = 1 is equal to ŷα,1(x) on [0, 1]
(this has cost −ξ(α, 1)). From then on (x > 1), there is a zero-cost path that ŷ(x) can follow.

We note here that in [23] (see Theorem 3.1) it is shown that |I∗|/ϑ converges to the typical
value ϕα in probability. By Theorem 3 (and the Borel–Cantelli lemma) it follows that this
convergence holds almost surely.

1.1 RelatedWork

Torrisi et al. [33] established a full large deviations principle in the supercritical case, α > 1,
where typically |I∗| ∼ n. As discussed in [33], the main step in this regard is establishing
sharp tail estimates (as in our Theorem 3 above). The full large deviations principle then
follows by “elementary topological considerations.” Although we have not pursued it, we
suspect that a full large deviations principle also holds in the present subcritical setting.
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Fig. 2 In both figures, r = 2 and α = 2/3. The typical, zero-cost trajectory appears as a dotted line. Least-cost,
deviating trajectories ŷα,β for β = 1/3, 2/5 appear at left and β = 1/2, 2/3, 5/6 at right

In closing, let us remark that it might be interesting to investigate the nature of Gn,p ,
conditioned on the event that a given S0 eventually infects a certain number of vertices, or
on the existence of such a set S0.

1.2 Motivation

We came to this problem in studying H-bootstrap percolation on Gn,p , as introduced by
Balogh et al. [11], where all edges in Gn,p are initially infected and any other edge in an
otherwise infected copy of H becomes infected. In the case that H = K4, there is a useful
connection with the usual r -neighbor bootstrap percolation model when r = 2. Theorem 3
(when r = 2 and ϑ = �(log n)) plays a role (together with [9,27]) in locating the critical
probability pc ∼ 1/

√
3n log n, where it becomes likely that all edges in Kn are infected

eventually. This solves an open problem in [11].

1.3 Contagious Sets

A susceptible set S0 is called contagious if it infects all of Gn,p eventually (i.e., I∗ = [n]).
Such sets have been studied for various graphs (e.g. [13,18,19,28]). Recently, Feige et al.
[16] considered the Gn,p case.

By Theorem 1, Gn,p has contagious sets of size �(ϑ), however, there exist contagious
sets that are much smaller. In [16], upper and lower bounds are obtained for the minimal size
m(Gn,p, r) of a contagious set in Gn,p . More recently [9], we showed that

pc ∼ [(r − 1)!/n]1/r [(log n)/(1 − 1/r)2]1/r−1 (4)

is the sharp threshold for contagious sets of the smallest possible size r .
For p < pc, Theorem 3 yields lower bounds for m(Gn,p, r) that sharpen those in [16]

by a linear, multiplicative factor in r . Of course, finding sets of this size (if they exist) is a
difficult and interesting problem (cf. the NP-complete problem of target set selection from
viral marketing [14,25]).
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Corollary 4 Suppose that, for some 1 	 ϑ 	 n,

p = [(r − 1)!/n]1/r [ϑ/(1 − 1/r)2]1/r−1.

Then, with high probability,

m(Gn,p, r) ≥ (1 − o(1))rϑ/ log(n/ϑ).

This result follows by an easy union bound, applying Theorem 3 in the case that α = 0
and β = 1, see Appendix A.4.

By [9] this lower bound is sharp for p close to pc, that is, when ϑ ∼ log n. The methods
in [9] might establish sharpness at least for ϑ ≤ O(log n).

1.4 Binomial Chain

As in [23],we study the bootstrap percolation dynamics using theBinomial chain construction
based on the work of Scalia-Tomba [30] (cf. Selke [32]). We only state here in this section
the properties of this framework that we require, and refer the reader to Sect. 2 of [23] for
the details.

Let Nt be the number of vertices that have become susceptible during some time s ∈ (0, t],
so that |St | = Nt − t + |S0|. By revealing edges (incident to infected vertices) on a need-
to-know basis, the process Nt can be expressed as the sum of n − |S0| independent and
identically distributed processes, each of which is 0 until some NegBin(r , p) time, and then
jumps to 1 (and remains at 1 thereafter). Informally, when a vertex is infected, it gives all of its
neighbors a “mark.” A vertex, which was not initially susceptible, is susceptible or infected
at a given time if it has received at least r marks by this time. In this way (see [23,30]), it can
be shown that |St | is a Markov process, with

|St | ∼ Bin(n − |S0|, πt ) − t + |S0| (5)

where πt = P(Bin(t, p) ≥ r). Moreover, its increments are distributed as

|St | − |Ss | ∼ Bin(n − |S0|, πt − πs) − (t − s). (6)

1.5 Heuristics

We first briefly recall the heuristic for Theorem 1 given in Sect. 6 of [23]. By the law of large
numbers, with high probability |St | ≈ E|St |. A calculation shows that if |S0| > (1 − 1/r)ϑ
then E|St | > t for t < n − o(n). On the other hand, if |S0| ∼ αrϑ , for some α < 1, then we
have E|Sϕαϑ | ≈ 0. To see this, note that pt = O[(ϑ/n)1/r ] 	 1 for t ≤ O(ϑ) since ϑ 	 n.
Hence (see e.g. Sect. 8 of [23]) we have

πt = (pt)r

r ! [1 + O(pt + 1/t)]
and so

E|Sxϑ |/ϑ ∼ xr/r − x + αr . (7)

Next, we describe a natural heuristic, using the Euler–Lagrange equation, that allows us to
anticipate the least-cost, deviating trajectories (the functions ŷα,β in (9) below), which lead
to Theorem 3. The proof, given in Sect. 2 below, makes this rigorous by a discrete analogue
of the Euler–Lagrange equation. We think this method will be of use in studying the tail
behavior of other random processes.
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Consider a trajectory y(x) ≥ 0 fromαr to 0 over [0, β]. Suppose that |Sxϑ |/ϑ has followed
this trajectory until step t − 1 = xϑ . In the next step t , some vertex vt ∈ St−1 is infected.
There are approximately a Poisson with mean npr

(t−1
r−1

) ≈ xr−1 (this approximation holds by
(1) and standard combinatorial estimates) number of vertices that are neighbors with vt and
r − 1 of the t − 1 vertices infected in previous steps s < t . Such vertices become susceptible
in step t . Therefore, to continue along this trajectory, we require this Poisson random variable
to take the value

1 + ϑ[y(x + 1/ϑ) − y(x)] ≈ 1 + y′(x).

(The “+1” accounts for the vertex vt ∈ St−1 that is infected in step t , and so removed from
the next susceptible set St .) As is well-known, this event has approximate log probability
−	∗

xr−1(1 + y′(x)), where

	∗
λ(u) = −u[1 − λ/u + log(λ/u)]

is the Legendre–Fenchel transformation of the cumulant-generating function of a mean λ

Poisson. Hence |Sxϑ |/ϑ ≈ y(x) on [0, β] with approximate log probability

ϑ

∫ β

0
(1 + y′(x))

[
1 − xr−1

1 + y′(x)
+ log

xr−1

1 + y′(x)

]
dx (8)

(cf. (13) below). Maximizing this integral is particularly simple, since the integrand depends
on y′, but not y. The Euler–Lagrange equation implies that the least-cost trajectory satisfies

d

dx
log

xr−1

1 + y′(x)
= 0 �⇒ y(x) = (β − αr )(x/β)r − x + αr ,

except where possibly the boundary constraint y(x) ≥ 0 might intervene.
Since, as noted above, |St | ≥ |St−1| − 1 for all t , we may assume that β ≥ αr . That is,

any trajectory y(x) of |Sxϑ |/ϑ decreases no faster than −x . Also note that (α − αr )/α
r =

1/(rαr−1), and that for any larger b > 1/(rαr−1) the function bxr − x + αr has no zeros in
[0, 1].

As it turns out, the least-cost trajectory from αr to 0 over [0, β] is

ŷα,β(x) =
[

(α ∧ β) − αr

(α ∧ β)r
xr − x + αr

]
1x≤α∧β

=
{

[(β − αr )(x/β)r − x + αr ]1x≤β β ≤ α

[xr/(rαr−1) − x + αr ]1x≤α β > α,
(9)

where α∧β = min{α, β}. Setting β = ϕα , we recover by (2) the typical, zero-cost trajectory
(7). See Fig. 2. Substituting (9) into (8), we obtain ϑξ(α, β) after some basic calculus (see
Appendix A.1 below).

2 Proof of Theorem 3

Before turning to the proof, let us recall Theorem 3 and the definitions involved. We fix some
α ∈ [0, 1) and β �= ϕα ∈ [αr , 1] (with ϕα as defined at (2)). We assume that |S0|/ϑ → αr =
(1− 1/r)α as n → ∞, where S0 = S0(n) is the initially susceptible set. Recall that I∗ = It∗
is the eventually infected set, where t∗ is the first time t that |St | = 0 (no susceptible vertices).
Finally, recall that Theorem 3 identifies the limit of (1/ϑ) log P(S0, β), where P(S0, β) is
the tail probability that |I∗| ≤ βϑ if β < ϕα or |I∗| ≥ βϑ if β > ϕα .
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Upper bounds for P(S0, β) are established in Sect. 2.1 (β < ϕα) and Sect. 2.2 (β > ϕα)
below.Themain idea is to use a discrete version of theEuler–Lagrange equation to identify the
asymptotically optimal trajectory ŷ(x) of the process |Sxϑ |/ϑ realizing the associated event
(|I∗| ≤ βϑ or |I∗| ≥ βϑ depending on β). It turns out that ŷ = ŷα,β (see (9) above). More
specifically, we use the following result, which is a special case of Theorem 5 in Guseinov
[20]. See also [3–7,17,24] and references therein for earlier related results and background.

Let �xi = xi+1 − xi denote the forward difference operator.

Lemma 5 Fix a, b ∈ R, a function f (u, v) with continuous partial derivatives fu and fv ,
and evenly spaced points x0 ≤ x1 ≤ · · · ≤ xm. Then the maximizer ŷ of

m−1∑
i=0

f (xi+1,�yi/�xi )�xi ,

over trajectories with y0 = a and ym = b, satisfies fv(xi+1,�ŷi/�xi ) ≡ c for some
constant c.

The proof of this result amounts to adding a Lagrange multiplier to constrain
∑

i �yi
and then comparing the derivative to 0. A more general version, more closely resembling
the regular Euler–Lagrange equation, appears in [20]. This allows for more complicated
functions f (xi , xi+1, yi , yi+1,�yi/�xi ) and points xi that need not be evenly spaced. The
proof is analogous to that of its continuous counterpart, using summation by parts instead of
integration by parts, for instance.

Finally, in Sect. 2.3, we establish asymptotically equivalent lower bounds for P(S0, β) by
considering specific trajectories y that are asymptotically equivalent to ŷα,β . This altogether
verifies the asymptotic optimality of ŷα,β and the convergence of (1/ϑ) log P(S0, β).

2.1 Upper BoundsWhenˇ < '˛

We begin with the simpler case that β < ϕα . The opposite case β > ϕα follows by an
elaboration of these arguments (see Sect. 2.2 below). Since β < ϕα , note that P(S0, β) is
simply the probability that |Sxϑ | = 0 for some x ≤ β, as this occurs if and only if |I∗| ≤ βϑ .

To begin, we discretize the unit interval [0, 1] as follows. Letm = �ϑ/(logϑ)2�. Consider
the points xi = (i/ϑ)�(logϑ)2�, for i = 0, 1, . . . ,m. Note that the points xiϑ are evenly
spaced integers. Also note that xm ∼ 1, since ϑ � 1.

Let Yn denote the set of trajectories yi = |Sxiϑ |/ϑ such that

(1) all yiϑ ∈ Z,
(2) y0ϑ = |S0|,
(3) all �yi/�xi ≥ −1, and
(4) yi = 0 for all xi ≥ β.

Note that we can assume (3) since, as discussed above, |St | ≥ |St−1| − 1 for all t . Since |St |
is Markov,

P(S0, β) ≤
∑
y∈Yn

m−1∏
i=0

P
( |Sxi+1ϑ |

ϑ
= yi+1| |Sxiϑ |

ϑ
= yi

)
.
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By (3) and (4) it follows that all yi ≤ β for any y ∈ Yn . Hence |Yn | ≤ ϑm . Therefore, taking
a union bound,

P(S0, β) ≤ ϑm
m−1∏
i=0

P
( |Sxi+1ϑ |

ϑ
= ŷi+1| |Sxiϑ |

ϑ
= ŷi

)
,

where ŷmaximizes the product over y ∈ Yn . Noting that (m/ϑ) logϑ 	 1,wefind altogether
that

1

ϑ
log P(S0, β) ≤ o(1) + 1

ϑ

m−1∑
i=0

logP
( |Sxi+1ϑ |

ϑ
= ŷi+1| |Sxiϑ |

ϑ
= ŷi

)
. (10)

We now turn to the issue of identifying ŷ ∈ Yn . By (5) it follows that

�|Sxiϑ | ∼ Bin(n − |S0|,�π(xiϑ)) − ϑ�xi . (11)

Hence, using the standard bound
(n
k

) ≤ (en/k)k and 1 − x ≤ e−x ,

P
( |Sxi+1ϑ |

ϑ
= yi+1| |Sxiϑ |

ϑ
= yi

)
= P(Bin(n − |S0|,�π(xiϑ)) = ϑ(�xi + �yi )

≤
(
e

n�π(xiϑ)

ϑ(�xi + �yi )

)ϑ(�xi+�yi )

[1 − �π(xiϑ)]n−|S0|−ϑ(�xi+�yi )

≤
(
e

n�π(xiϑ)

ϑ(�xi + �yi )

)ϑ(�xi+�yi )

e−n�π(xiϑ)

×e(|S0|+ϑ(�xi+�yi ))�π(xiϑ). (12)

(We have written the upper bound in this way so as to compare with the lower bound at (18)
below.)

Before substituting this upper bound into (10), we collect the following technical result.
The proof is elementary, though somewhat tedious, see Sect. Appendix A.5 below. Note that
by (1), 1 	 ϑ 	 1/p.

Lemma 6 We have that

rn

ϑ

�π(xiϑ)

�(xri )
= 1 + O

(
pϑ + 1

logϑ

)
∼ 1.

Altogether, we find that

1

ϑ

m−1∑
i=0

logP
( |Sxi+1ϑ |

ϑ
= yi+1| |Sxiϑ |

ϑ
= yi

)

≤ o(1) +
m∑
i=0

(�xi + �yi )

[
1 − �(xri )/r

�xi + �yi
+ log

�(xri )/r

�xi + �yi

]
.

Since log x − x is increasing for x ∈ (0, 1] and �(xri )/r ≤ xr−1
i+1 �xi , it follows by (10) that

1

ϑ
log P(S0, β) ≤ o(1) +

m−1∑
i=0

f (xi+1,�ŷi/�xi )�xi , (13)
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where

f (u, v) = (1 + v)

[
1 − ur−1

1 + v
+ log

ur−1

1 + v

]
(14)

(cf. (8) above) and ŷ ∈ Yn maximizes the sum in (13).
In order to apply Lemma 5, we lift the restriction that all yiϑ ∈ Z, and maximize

m−1∑
i=0

f (xi+1,�yi/�xi )�xi

over y ∈ R
m+1 with (i) y0 = αr , (ii) �yi/�xi ≥ −1 and (iii) yi = 0 for all xi ≥ β. By

Lemma 5, the maximizer ŷ = ŷ(n) satisfies

� fv(xi+1,�ŷi/�xi ) ≡ 0

between any two given points where ŷ > 0. Since

fv(u, v) = log
ur−1

1 + v

this implies that 1+�ŷi/�xi = bxr−1
i+1 , for some constant b, between any two points x j < xk

where ŷi > 0 for j < i < k. On the other hand, if both ŷ j = ŷk = 0, then necessarily ŷi = 0
for j < i < k. By standard results on the Euler approximation of differential equations
(see e.g. Theorems 7.3 and 7.5 in Sect. I.7 of [21]), it follows that, on all segments where
ŷi > 0, the discrete derivative �ŷi/�xi is within O(1/m) of the function bxr−1 − 1, for
some b = b(n).

Altogether, in the limit, it suffices to consider trajectories that take the form (β ′ −
αr )(x/β ′)r − x +αr (until they hit 0), for some β ′ ∈ [αr , β], since (as discussed in Sect. 1.5)
these are the only functions y(x) = bxr − x + αr for which (i) y(0) = αr , (ii) y′(x) ≥ −1
and (iii) y(x) = 0 for some x ≤ β. Hence, by the above considerations, and the continuity
of f , we find that

lim sup
n→∞

1

ϑ
log P(S0, β) ≤ sup

β ′∈[αr ,β]

∫ β ′

0
f (x, ŷ′

α,β ′(x))dx . (15)

To conclude, we observe, by Appendices A.1 and A.2, that the right hand side equates to

sup
β ′∈[αr ,β]

ξ(α, β ′) = ξ(α, β).

2.2 Upper boundsWhenˇ > '˛

The case β > ϕα follows by the same method of proof, however, there are two addi-
tional technical complications. Specifically, (i) the set of relevant trajectories Yn in this case
(defined below) no longer satisfies |Yn | ≤ [O(ϑ)]m , and (ii) to obtain an upper bound for
(1/ϑ) log P(S0, β), as in (15) above, we need to take a supremum over a more complicated
set of trajectories. This latter issue is due in part to the fact that is not a priori clear that the
optimal trajectory ŷ should hit 0 before x = 1 (that is, that ŷ is one of ŷα,β ). This indeed turns
out to be the case, however, even so, ŷα,β is slightly more complicated (defined piecewise)
when β > α.

First note that, for β > ϕα , P(S0, β) is the probability that |Sxϑ | > 0 for all x < β.
Therefore, in this case, we take Yn to be the set of yi = |Sxiϑ |/ϑ for which
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(1) all yiϑ ∈ Z,
(2) y0ϑ = |S0|,
(3) all �yi/�xi ≥ −1, and
(4) yi > 0 for all xi < β.

We no longer have that |Yn | ≤ [O(ϑ)]m . However, for t ≤ O(ϑ), by (5) and Chernoff’s
bound,

1

ϑ
logP(|St | ≥ (1 + δ)ϑ) ≤ −O(δ2).

Therefore, for A sufficiently large, the log probability that any |St | > Aϑ while t ≤ O(ϑ)

is less than ϑξ(α, β). Hence, arguing as the previous section, we find that

lim sup
n→∞

1

ϑ
log P(S0, β) ≤ sup

y∈Y

∫
f (x, y′(x))dx, (16)

where Y is the set of non-negative trajectories y(x) that start at y(0) = αr and take the form
bxr − x + a, for some b ≥ 0, wherever they are positive. However, it suffices to consider
a smaller set than Y . Indeed, observe that the maximizer ŷ ∈ Y is non-increasing. This is
intuitive, since the process is sub-critical while the total number of infected vertices remains
less than ϑ . To see this formally, note that (i) the derivative of any trajectory bxr − x + a is
brxr−1 − 1 ≤ 0 for any x ≤ 1 unless b > 1/r , and (ii) we have by (14) that

f (x, brxr−1 − 1) = [br − 1 − br log(br)]xr−1

is decreasing in b > 1/r . Hence, it suffices to consider trajectories which take the form
(β ′ − αr )(x/β ′)r − x + αr until they hit 0 at some β ′ ∈ [αr , α], and then, if β ′ < β, are 0
thereafter until x = β. (Note that, for any b > 1/(rαr−1), the function bxr − x + αr has no
zeros and, since α < 1, is increasing eventually on [0, 1].) Therefore, by Appendix A.1,

lim sup
n→∞

1

ϑ
log P(S0, β) ≤ sup

β ′∈[αr ,α]

[∫ β ′

0
f (x, y′

α,β ′(x))dx + 1β ′<β

∫ β

β ′
f (x, 0)dx

]

= sup
β ′∈[αr ,α]

[
ξ(α, β ′) + 1β ′<β

∫ β

β ′
f (x, 0)dx

]

By basic calculus (see Appendix A.3) it can be shown that the right hand side is bounded by
ξ(α, β).

2.3 Lower Bounds

The lower bound is much simpler. As discussed above, it essentially suffices to consider
any trajectory y(x) ∼ ŷα,β(x) which contributes to P(S0, β), and show that the scaled log
probability that |Sxϑ |/ϑ follows this trajectory is asymptotic to ξ(α, β).

Once again, there is some asymmetry in the cases β < ϕα and β > ϕα due to the definition
of P(S0, β). For β < ϕα , we note that if, for instance, all |Sxiϑ |/ϑ = ỹi , where

ỹi = 1

ϑ
�ŷα,β(xi )ϑ�1xi≤β−�xi /ϑ ,

then |I∗| ≤ βϑ . The indicator present here ensures that |Sxϑ | hits 0 by x = β. On the other
hand, if β > ϕα , set

ỹi = 1

ϑ
�ŷα,β(xi )ϑ� + �xi1xi<β.
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Then if all |Sxiϑ |/ϑ = ỹi we have |I∗| ≥ βϑ . The indicator in this case ensures that |St | > 0
between increments while t < βϑ .

Next, we show that

lim inf
n→∞

1

ϑ

m−1∑
i=0

logP
( |Sxi+1ϑ |

ϑ
= ỹi+1| |Sxiϑ |

ϑ
= ỹi

)
≥ ξ(α, β), (17)

since then, by Sect. 2.1 and 2.2, it follows that

lim
n→∞

1

ϑ
log P(S0, β) = ξ(α, β),

as stated in Theorem 3.
To this end, note that by (11) and the standard bounds

(n
k

) ≥ (n − k)k/k!, k! ≤ ek(k/e)k

and (1 − x)n ≥ e−xn(1 − nx2), it follows that

P
( |Sxi+1ϑ |

ϑ
= yi+1| |Sxiϑ |

ϑ
= yi

)

≥
(
e

n�π(xiϑ)

ϑ(�xi + �yi )

)ϑ(�xi+�yi )

e−n�π(xiϑ)

× (1 − n(�π(xiϑ))2)

eϑ(�xi + �yi )

(
1 − |S0| + ϑ(�xi + �yi )

n

)ϑ(�xi+�yi )

(18)

(cf. (12)). Therefore, in a similar way as for (13) above (however instead using �(xri )/r ≥
xr−1
i �xi ), we find that

1

ϑ

m−1∑
i=0

logP
( |Sxi+1ϑ |

ϑ
= ỹi+1| |Sxiϑ |

ϑ
= ỹi

)
≥ o(1) +

m−1∑
i=0

f (xi ,�ỹi/�xi )�xi ,

where f , once again, is as defined at (14). Therefore, by the choice of ỹi , it can be seen (using
Appendix A.1) that

lim inf
n→∞

1

ϑ

m−1∑
i=0

logP
( |Sxi+1ϑ |

ϑ
= ỹi+1| |Sxiϑ |

ϑ
= ỹi

)
≥

∫ β

0
f (x, ŷ′

α,β(x)) = ξ(α, β),

yielding (17), and thus concluding the proof of Theorem 3.
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Appendix A: Technical Results

This section contains several technical results, all of which follow by elementary methods.
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A.1: Rate Function �

We show that ∫ β

0
f (x, ŷ′

α,β(x))dx = ξ(α, β),

where ŷα,β and f are as in (9) and (14) above (that is, the cost of the least-cost trajectory
ŷα,β(x) over [0, β] is −ξ(α, β)).

First note that, whenever yα,β(x) > 0,

1 + y′
α,β(x) = r(β − αr )

βr
xr−1,

in which case

f (x, ŷ′
α,β(x)) = r xr−1 (β − αr )

βr

(
1 − βr

r(β − αr )
+ log

βr

r(β − αr )

)
.

Hence, if β ≤ α,∫ β

0
f (x, ŷ′

α,β(x))dx = (β − αr )

(
1 − βr

r(β − αr )
+ log

βr

r(β − αr )

)
= ξ(α, β).

On the other hand, note that

f (x, 0) = 1 − xr−1 + (r − 1) log x

and so ∫
f (x, 0)dx = −xr/r − (r − 2)x + (r − 1)x log x .

Therefore, if β > α, then we find (after some algebraic simplifications) that∫ β

0
f (x, ŷ′

α,β(x))dx = ξ(α, α) +
∫ β

α

f (x, 0)dx

= α − αr

r
+ (r − 1) log(αα/r ) − βr − αr

r
− (r − 2)(β − α) + (r − 1) log

ββ

αα

= −βr − α

r
− (r − 2)(β − α) + (r − 1) log

ββ

ααr
= ξ(α, β).

A.2: Shape of �

We note here that ξ(α, β) is increasing in β ∈ [αr , ϕα) and decreasing in β ∈ (ϕα, 1] (as in
Fig. 1 above). When β ≤ α,

∂

∂β
ξ(α, β) = log

βr/r

β − αr
+ r(1 − αr/β) − βr−1.

Therefore, if β ∈ [αr , ϕα], by (2) and log x ≥ 1 − 1/x ,

∂

∂β
ξ(α, β) ≥ 1 − βr−1

βr/r
(αr − β + βr/r) ≥ 0.
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On the other hand, if β ∈ [ϕα, α], by (2) and log x ≤ x − 1,

∂

∂β
ξ(α, β) ≤ (r − 1)(α − β)

β(β − αr )
(αr − β + βr/r) ≤ 0.

Finally, if β ∈ [α, 1], note that
∂

∂β
ξ(α, β) = 1 − βr−1 + (r − 1) logβ ≤ 1 − β + logβ ≤ 0.

A.3: An Inequality Involving �

We show that, for any β > ϕα and β ′ ∈ [αr , α],

ξ(α, β ′) + 1β ′<β

∫ β

β ′
f (x, 0)dx ≤ ξ(α, β).

If β ′ ≥ β the result is immediate, since by Appendix A.2 we have ξ(α, β ′) ≤ ξ(α, β) in this
case. Hence, assuming that β < β ′, we show that∫ β

β ′
f (x, 0)dx ≤ ξ(α, β) − ξ(α, β ′).

If β > α, then

ξ(α, α) +
∫ β

α

f (x, 0)dx = ξ(α, β),

so we may further assume that β ≤ α. As has already been noted above, f (x, 0) = 1 −
xr−1 + (r − 1) log x , and so∫

f (x, 0)dx = −xr/r − (r − 2)x + (r − 1)x log x .

Hence by (3) it suffices to show that

ξ(α, x) −
∫

f (x, 0)dx = (r − 1)(x − x log x) + (x − αr ) log
xr

r(x − αr )

is increasing in x ≥ αr . Differentiating the above expression with respect to x , we obtain
(after some straightforward simplifications)

r(x − αr )

x
− log

r(x − αr )

x
− 1 ≥ 0,

yielding the claim.

A.4: Lower Bound form(Gn,p, r)

Proof of Theorem 4 For δ > 0, let tδ = (1 − δ)rϑ/ log(n/ϑ). We show that, with high
probability, Gn,p has no contagious sets smaller than tδ . Note that

ξ(0, 1)ϑ/(1 − 1/r)2 = −rϑ.
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The expected number of subsets S0 ⊂ [n] of size |S0| = tδ which if initially susceptible
cause |I∗| ≥ ϑ/(1 − 1/r)2 vertices to be infected eventually is at most(

n

tδ

)
e−rϑ(1+o(1)) ≤ (ne/tδ)

tδe−rϑ(1+o(1)) = e−rϑψ,

where

ψ = 1 + o(1) − (1 − δ) log(ne/tδ)/ log(n/ϑ).

Since

log(ne/tδ) ≤ log(n/ϑ) + O (log log(n/ϑ)) ,

ψ > 0 for all large n, and the result follows. ��

A.5: Increments of�

Proof of Lemma 6 Recall that

m = �

(
1

�xi

)
= �

(
ϑ

(logϑ)2

)
.

When i = 0, we have �π(xiϑ) = π(x1ϑ) since x0 = 0. By the estimates discussed in
Sect. 1.5,

rn

ϑ
π(x1ϑ) = xr1

[
1 + O

(
pϑ + 1

(logϑ)2

)]
.

Next, we assume that i ≥ 1. Then xi+1 ≤ O(xi ) and, for all � ≥ r ,

1 ≤ �(x�
i )

�x�−1
i �xi

≤ O(1)�. (19)

For the lower bound, first note that

P(Bin(xi+1ϑ, p) > r) > P(Bin(xiϑ, p) > r)

and so

�π(xiϑ) > �P(Bin(xiϑ, p) = r).

Hence, using (1) and (19) (and the standard bounds (n−k)k ≤ (n
k

)
k! ≤ nk and (1− x)y ≥

1 − xy) we find

rn

ϑ
�π(xiϑ) ≥ (1 − p)xiϑ−r

[(
xi+1 − r

ϑ

)r
(1 − p)ϑ�xi − xri

]

≥ �(xri )(1 − pϑ)

[
1 − xri+1

�(xri )

(
pϑ�xi + r2

xi+1ϑ

)]

= �(xri )

[
1 − O

(
pϑ + 1

(logϑ)2

)]
.

The upper bound requires slightly more attention. Note that, by the choice of m, logm 	
x1ϑ . Therefore logm ≤ xiϑ for all large n. Hence, for all large n,

�π(xiϑ) < P(Bin(xi+1ϑ, p) > logm) +
logm∑
�=r

�P(Bin(xiϑ, p) = �).
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Since pϑ 	 1 	 m, for all large n,

P(Bin(xi+1ϑ, p) > logm) ≤ ϑ(xi+1 pϑ)1+logm .

Therefore, by (1), (19) and the choice of m,

rn

ϑ�(xri )
P (Bin(xi+1ϑ, p) > logm) ≤ O

(
n

�xi
(pϑ)1+logm

)
	 pϑ.

Next, by (19), it follows that, for all � ≤ logm and large n,

�P(Bin(xiϑ, p) = �) ≤ (pϑ)�

�!

[
x�
i+1 − x�

i

(
1 − �

xiϑ

)�
]

≤ (pϑ)�

�! �(x�
i )

(
1 + �

ϑ�xi

)
.

Therefore, by (1) and (19), for all large n,

rn

ϑ

logm∑
�=r

�P(Bin(xiϑ, p) = �) ≤
logm∑
�=r

r !(pϑ)�−r

�! �(x�
i )

(
1 + �

ϑ�xi

)

≤ �(xri )

(
1 + logm

ϑ�xi

) [
1 +

∑
�>0

O(pϑ)�

]

≤ �(xri )

[
1 + O

(
pϑ + 1

logϑ

)]
.

Altogether, we find that

rn

ϑ
�π(xiϑ) = �(xri )

[
1 + O

(
pϑ + 1

logϑ

)]

as claimed. ��
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