
Journal of Statistical Physics (2021) 184:18
https://doi.org/10.1007/s10955-021-02807-0

K -Averaging Agent-Based Model: Propagation of Chaos and
Convergence to Equilibrium

Fei Cao1

Received: 21 December 2020 / Accepted: 20 July 2021 / Published online: 28 July 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
The paper treats an agent-based model with averaging dynamics to which we refer as the K -
averaging model. Broadly speaking, our model can be added to the growing list of dynamics
exhibiting self-organization such as the well-known Vicsek-type models (Aldana et al. in:
Phys Rev Lett 98(9):095702, 2007; Aldana and Huepe in: J Stat Phys 112(1–2):135–153,
2003; Pimentel in: Phys. Rev. E 77(6):061138, 2008). In the K -averaging model, each of
the N particles updates their position by averaging over K randomly selected particles with
additional noise. To make the K -averaging dynamics more tractable, we first establish a
propagation of chaos type result in the limit of infinite particle number (i.e. N → ∞)
using a martingale technique. Then, we prove the convergence of the limit equation toward a
suitable Gaussian distribution in the sense ofWasserstein distance as well as relative entropy.
We provide additional numerical simulations to illustrate both results.

Keywords Agent-based model · Averaging dynamics · Propagation of chaos · Wasserstein
distance · Relative entropy

1 Introduction

The collective behavior of various particle systems is a subject of intensive research that has
potential applications in biology, physics, economics, and engineering [7,15,28]. Different
models are proposed to study the emergence of flocking of birds, formation of consensus in
opinion dynamics, and phase transitions in network models [5,14,27,33]. Broadly speaking,
all of the aforementioned models are instances of interacting particle systems, under various
interaction rules among the particles. We refer the readers to [23] for a general introduction
to this branch of applied mathematics.

In this work, we investigate a simple model to describe the collective alignment of a
group of particles. The model we examine here can be classified in general as an averaging
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Fig. 1 Sketch illustration of the K -averaging dynamics (1). At each time step, a particle updates its position
taking the averaging of K randomly selected particles and add some (Gaussian) noise

dynamics and will be referred to as the K -averaging model. The readers are encouraged to
consult [9,10,12,13] for a variety of models in biology and physics in which averaging plays
a key role in the model definition. One important inspiration for the present work is a paper of
Maurizio Porfiri and Gil Ariel [33], which can be thought as a K -averaging model on the unit
circle. In the K -averaging model considered in this manuscript, at each time step, we update
the position of each particle (viewed as an element of Rd ) according to the average position
of its K randomly chosen neighbors while being simultaneously subjected to additive noise
[see Eq. (1)]. Thus, we give the following definition.

Definition 1 (K -averaging model) Consider a collection of stochastic processes {Xn
i }1≤i≤N

evolving on R
d , where n is the index for time. At each time step, each particle updates its

value to the average of K randomly selected neighbors, subject to an independent noise term:

Xn+1
i := 1

K

K∑

j=1

Xn
Sni ( j) + Wn

i , 1 ≤ i ≤ N , (1)

where Sni ( j) are indices taken randomly from the set {1, 2, . . . , N } (i.e., Sni ( j) ∼
Uniform({1, 2, . . . , N }) and is independent of i, j and n), and Wn

i ∼ N (0, σ 21d) is inde-
pendent of i and n, in which 0 and 1d stands for the zero vector and the identity matrix in
dimension d , respectively (see Fig. 1 for a illustration).

We illustrate the dynamics in Fig. 1. The key question of interest is the exploration of
the limiting particle distribution as the total number of particles and the number of time
steps become large. We illustrate numerically (see Fig. 2) the evolution of the dynamics in
dimension d = 1 using N = 5000 particles after n = 1000 time steps.

One of the main difficulty in the rigorous mathematical treatment of models involving
large number of interacting particles or agents lies in the general fact that interaction will
build up correlation over time. Fortunately the framework of kinetic theories allows possible
simplification of the analysis of certain such models via suitable asymptotic analysis, see
for instance [20,21,25,26,29,35]. For the model at hand, our main contribution is two fold:
we first prove a result of propagation-of-chaos type under the large N limit (see Theorem 1
for a precise statement), in which interactions among particles are eliminated in finite time
and a mean-field dynamics emerges. After the large population limit is carried out and the
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Fig. 2 Simulation of the K -averaging dynamics in dimension d = 1 with K = 5 and N = 5000 particles
after 1000 time steps, in which we used σ = 0.1 and initially each Xi ∼ Uniform(−1, 1). As to be shown
later, the distribution of particles will be asymptotically Gaussian under the large N and large time limits

Fig. 3 Schematic illustration of the limiting procedure carried out for the study the K -averaging dynamics (1).
The empirical measure ρnemp(x) of the system [see Eq. (16)] will be shown to converge as N → ∞ to its limit
law ρn described by the evolution equation (11), and then the relaxation of ρn to its Gaussian equilibrium
will be established

simplified dynamics [see Eq. (6)] is obtained, we then show that the law of the limiting
dynamics defined by (6) is asymptotically Gaussian under the large time limit, and such
convergence of distribution occurs both in the Waasserstein distance (see Theorem 2) and in
the sense of relative entropy (see Theorem 3). A schematic illustration of the strategy used
in this manuscript is presented in Fig. 3.
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We briefly explain the possible motivation for study such a model (at least in dimension
d = 1). In the context of a opinion dynamics model (see for instance [6]), Xn

i may represent
an evolving opinion of agent i at time step n. For a given event, agent i has a opinion Xi

(which can be positive or negative) with strength |Xi |, and agents update their opinions based
on the Eq. (1).

There remain some open questions related to our current work. First, our analysis of the
model is restricted to K ≥ 2, under which we are able to identify the equilibrium distribution
and prove various results, we speculate that the propagation of chaos property will be lost if
K = 1, yet we have not been able to find a perfect analytical justification. We also remark
here that the case of K = 1 can be seen as a variant of the "Choose the Leader" (CL) dynamics
introduced in [13], in which each of the N particles decides to jump to the location of the
other particle chosen independently and uniformly at random at every time step, though noise
is injected in such a jump. Second, we think similar results can be obtained if the noise is no
longer Gaussian, except that the equilibrium will not be explicit in general.

The remainder of the paper is organized as follows: In Sect. 2.1, we present several
preliminaries related to random probability measures and the concept of propagation of
chaos. Sections 2.2 and 2.3 are concerned with the intuitive derivation of the simplified
model (6) and related properties. We give a full proof of the propagation of chaos result
in Sect. 3 and the large time asymptotic of (6) is investigated in 4. We devote Sect. 5 to
the continuous-time counterpart of the K -averaging model studied in previous sections, and
finish the paper with a conclusion in Sect. 6.

2 K -AveragingModel

In Sect. 2.1, we perform a brief review on convergence of random probability measures and
the notion of propagation of chaos. Section 2.2 encapsulated a heuristic argument for the
large N limit, and we prove a Lipschitz continuity property of the key operator T arising
naturally from the K -averaging dynamics in Sect. 2.3, which will be leveraged in the proof
of Theorem 1.

2.1 Review Propagation of Chaos and Convergence of Random (Probability)
Measures

We devote this section to a quick review on propagation of chaos and convergence of random
probability measures. First, we intend to briefly discuss propagation of chaos, but we need to
carefully define what propagation of chaos means. With this aim, we consider a (stochastic)
N -particle system denoted by (X1, . . . , XN ) in which particles are indistinguishable. In other
words, the particle system enjoys a property known as permutation invariance, i.e. for any
test function ϕ and permutation η ∈ SN :

E
[
ϕ
(
X1, . . . , XN

)] = E
[
ϕ
(
Xη(1), . . . , Xη(N )

)]
.

In particular, all the single processes Xi have the same law for 1 ≤ i ≤ N (although they
are in general correlated). Let ρ(N )(x1, . . . , xN ) to be the density distribution of the N -
particle process and denote ρ

(N )
k its k-particle marginal density, i.e., the law of the process

(X1, . . . , Xk):

ρ
(N )
k (x1, . . . , xk) :=

∫

xk+1,...,xN
ρ(N )(x1, . . . , xN )dxk+1 . . . dxN .
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Consider now a (potential) limit stochastic process (X1, . . . , Xk) where {Xi }1≤i≤k are
i.i.d. Denote by ρ1 the law of a single process, thus by independence assumption the law of
all the process is given by:

ρk(x1, . . . , xk) =
k∏

i=1

ρ1(xi ), i.e., ρk =
k⊗

i=1

ρ1.

The following definition is classical and can be found for instance in [13,35].

Definition 2 We say that the stochastic process (X1, . . . , XN ) satisfies the propagation of
chaos if for any fixed k:

ρ
(N )
k

N→∞−−−−⇀ ρk, (2)

which is equivalent to the validity of the following relation for any test function ϕ:

E
[
ϕ
(
X1, . . . , Xk

)] N→∞−−−−→ E
[
ϕ
(
X1, . . . , Xk

)]
. (3)

Next, we shift to a review on convergence of random probability measures. Such topic
can be found for instance in a classical book by Billingsley [11]. However, we prefer to
give a more practical treatment on convergence of random probability measures, based on
[8]. Consider a sequence of random probability measures μn(ω), i.e., for a given ω ∈ �,
μn(ω) ∈ P(Rd). We shall define the mode of convergence as follows:

Definition 3 We say that μn converges to μ ∈ P(Rd) in probability, denoted by μn
P−→ μ, if

〈μn(ω), ϕ〉 P−→ 〈μ(ω), ϕ〉 for any ϕ ∈ Cb(R
d). (4)

We record here a simple criteria to test the convergence in probability of randommeasures.

Lemma 1 Suppose that the sequence of random measures {μn(ω)}n satisfies
Eω[|〈μn(ω) − μ(ω), ϕ〉|] n→∞−−−→ 0 for all ϕ ∈ Cb(R

d). (5)

Then μn
P−→ μ.

Proof It is a direct application of the Markov’s inequality. Fixing ϕ ∈ Cb(R
d) and let ε > 0,

we have

P[|〈μn(ω), ϕ〉 − 〈μ(ω), ϕ〉| > ε] = P[|〈μn(ω) − μ(ω), ϕ〉| > ε]
≤ Eω[|〈μn(ω) − μ(ω), ϕ〉|]

ε

n→∞−−−→ 0.

Therefore, the random variables Xn(ω) := 〈μn(ω), ϕ〉 converges in probability to X(ω) :=
〈μ(ω), ϕ〉. Since it is true for any ϕ ∈ Cb(R

d), we deduce that μn
P−→ μ. 
�

2.2 Formal Limit as N → ∞

We would like to investigate formally the limit as N → ∞ of the dynamics, and we will
provide the rigorous derivation in the next section. Motivated by the famous molecular chaos
assumption (also known as propagation of chaos), which suggests that we have the statistical
independence among the particle systems defined by (1) under the large N → ∞ limit, we
henceforth give the following definition of the limiting dynamics of X1 as N → ∞ from the
process point of view.
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Definition 4 (Asymptotic K -averagingmodel) We define a collection of random variables
{Xn}n≥0 by setting X0 = X0

1 and

Xn+1 := 1

K

K∑

j=1

Yn
j + Wn, (6)

where {Yn
j }1≤ j≤K are K i.i.d copies of Xn and Wn ∼ N (0, σ 21d) is independent of n.

If we denote ρ to be the law of X , then it is possible to determine the evolution of ρ

with respect to time n. For this purpose, We will first collect some definitions to be used
throughout the manuscript.

Definition 5 We use P(Rd) to represent the space of probability measures on R
d . We will

denote by φ the probability density of a d-dimensional Gaussian random variable E ∼
N (0, σ 21d). For ρ ∈ P(Rd), we define T : P(Rd) → P(Rd) through

T [ρ] = φ ∗ SK [CK [ρ]], (7)

in which the CK is the K -fold repeated self-convolution defined via

CK [ρ] := ρ ∗ ρ ∗ · · · ∗ ρ︸ ︷︷ ︸
K times

, (8)

and SK is the scaling (renormalization) operator given by

SK [ρ](x) := Kd · ρ(K x), ∀x ∈ R
d . (9)

Remark 1 We emphasize here that the operator T given in Definition 5 fully encodes the
update rule (6) for the asymptotic K -averaging model. Indeed, for each valid test function
ϕ, we have

〈ρn+1, ϕ〉 = E[ϕ(Xn+1)] = E

⎡

⎣ϕ

⎛

⎝ 1

K

K∑

j=1

Yn
j + Wn

⎞

⎠

⎤

⎦ = 〈T [ρn], ϕ〉, (10)

where the last equality follows because the random variable 1
K

K∑
j=1

Y n
j + Wn has law T [ρn].

Thus, from the density point of view, as ρn is the law of X at time n, then T [ρn] represents
exactly the law of X at time n + 1.

Equipped with Definition 5, we can write the evolution of the limit equation as

ρn+1 = T [ρn], n ≥ 0. (11)

Notice that the mean value is preserved by the dynamics (6), we will make a harmless
assumption throughout this paper that

∫

x∈Rd
xρn(x)dx = 0 ∀n ≥ 0. (12)

Remark 2 In dimension 1, we derive from (6) that

Var(Xn+1) = Var

⎛

⎝ 1

K

K∑

j=1

Yn
j + Wn

⎞

⎠ = Var(Xn)

K
+ σ 2,
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leading to Var(Xn)
n→∞−−−→ Kσ 2

K−1 . A similar consideration demonstrates that the covariance

matrix associated with Xn ∈ R
d converges to Kσ 2

K−1 · 1d .
Now we can verify that a suitable Gaussian profile is a fixed point of the iteration process
described by (11) as long as K ≥ 2.

Lemma 2 Fixing K ≥ 2. Let

ρ∞(x) := 1

(2πσ 2∞)
d
2
e
− |x|2

2σ2∞ (13)

with σ 2∞ := K
K−1σ

2, then ρ∞ is a fixed point of T . i.e, ρ∞ satisfies ρ∞ = T [ρ∞].
Proof It is readily seen that the operator T maps a Gaussian density to another (possibly
different) Gaussian density. We investigate the effect of each operator appearing in the defi-
nition of T on ρ∞. Indeed, since Z1 +· · ·+ ZK ∼ N (0, Kσ 2∞1d) when (Zi )1≤i≤K are i.i.d.
with law N (0, σ 2∞1d), we have

CK [ρ∞](x) = 1

(2πKσ 2∞)
d
2
e
− |x|2

2Kσ2∞ .

Next, notice that Z
K ∼ N (0, σ 2∞

K 1d) if Z ∼ N (0, Kσ 2∞1d), from which we deduce that

SK [CK [ρ∞]](x) = 1

(2πσ 2∞/K )
d
2
e
− |x|2

2σ2∞/K .

Finally, we conclude that

T [ρ∞](x) = φ ∗ SK [CK [ρ∞]](x) = 1

(2π(σ 2∞/K+σ 2))
d
2
e
− |x|2

2(σ2∞/K+σ2) = ρ∞(x),

which completes the proof. 
�
We end this subsection with a numerical experiment demonstrating the relaxation of the

solution of (11) to its Gaussian equilibrium ρ∞, as is shown in Fig. 4.

2.3 Lipschitz Continuity of the Operator T

To conclude Sect. 2, we demonstrate a useful property of the operator T introduced in (7).
First, we start with the following definition.

Definition 6 For each μ ∈ P(Rd), we define the (strong) norm of μ, denoted by |||μ|||, via
|||μ||| = sup

‖ϕ‖∞≤1
|〈μ, ϕ〉|.

The main result in this section lies in the Lipschitz continuity of T , to which we now turn.

Proposition 1 For each μ, ν ∈ P(Rd), we have

|||T [μ] − T [ν]||| ≤ K |||μ − ν|||. (14)

123



18 Page 8 of 19 F. Cao

Fig. 4 Simulation of the discrete evolution equation (11) in dimension d = 1 with K = 5 after 3 time steps,
in which we used σ = 0.1 and a uniform distribution over [−1, 1] initially ρ0(x) := 1

21[−1,1](x) (the green
curve). The blue and red curve represent ρ3 and ρ∞, respectively. We also remark that in this example ρ5 and
ρ∞ are almost indistinguishable

Proof We recall that for each g ∈ P(Rd) we have

T [g] = φ ∗ SK [CK [g]].
Moreover, we have

〈SK [g], h〉 = Kd〈g, S 1
K
[h]〉, ∀g, h ∈ P(Rd).

Also, for μ, ν ∈ P(Rd) and ϕ ∈ Cb(R
d), there holds

〈μ ∗ ν, ϕ〉 = 〈ν, μ̂ ∗ ϕ〉,
where μ̂ is defined via μ̂(x) := μ(−x). Fixing ϕ with ‖ϕ‖∞ ≤ 1, for each pair of probability
measures μ, ν ∈ P(Rd), we have

〈T [μ] − T [ν], ϕ〉 = 〈SK [CK [μ]] − SK [CK [ν]], φ ∗ ϕ〉
= Kd 〈CK [μ] − CK [ν], S 1

K
[φ ∗ ϕ]〉

= Kd
K−1∑

j=0

〈
μ ∗ · · · ∗ μ︸ ︷︷ ︸

j times

∗ ν ∗ · · · ∗ ν︸ ︷︷ ︸
K−1− j times

∗ (μ − ν), S 1
K
[φ ∗ ϕ]

〉

:= Kd
K−1∑

j=0

〈
κ j ∗ (μ − ν), S 1

K
[φ ∗ ϕ]〉

= Kd

〈
μ − ν,

K−1∑

j=0

κ̂ j ∗ S 1
K
[φ ∗ ϕ]

〉
.

(15)
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Setting ψ j = κ̂ j ∗ S 1
K
[φ ∗ ϕ] for each 1 ≤ j ≤ K − 1, then we have

‖ψ j‖∞ ≤ ‖S 1
K
[φ ∗ ϕ]‖∞ ≤ ‖ϕ‖∞

Kd
≤ 1

Kd
.

Thus, if we define ϕ(1) = Kd ∑K−1
j=0 ψ j , then ‖ϕ(1)‖∞ ≤ Kd+1

Kd = K . Now taking the
supremum over all ϕ with ‖ϕ‖∞ ≤ 1, we deduce from (15) that

|||T [μ] − T [ν]||| ≤ K |||μ − ν|||
and the proof is completed. 
�

3 Propagation of Chaos

This section is devoted to the rigorous proof of propagation of chaos for the K -averaging
dynamics, by employing a martingale-based technique introduced recently in [25]. We will
need the following definition.

Definition 7 Let {Xn
i }1≤i≤N be as in Definition 1, we define

ρn
emp(x) := 1

N

N∑

i=1

δXn
i
(x) (16)

to be the empirical distribution of the system at time n. In particular, ρn
emp is s stochastic

measure.

Thanks to a classical result (see for instance Proposition 1 in [17] or Proposition 2.2 in
[35]), to justify the propagation of chaos, it suffices to show that

ρn
emp

L−→ ρn as N → ∞.

i.e.,

〈ρn
emp, ϕ〉 L−→ 〈ρn, ϕ〉 for any ϕ ∈ Cb(R

d).

In fact, one can prove our first theorem.

Theorem 1 Under the settings of the K -averaging model with K ≥ 2, if

ρ0
emp

P−→ ρ0 as N → ∞, (17)

then for each fixed n ∈ N we have

ρn
emp

P−→ ρn as N → ∞,

where ρn
emp and ρn are defined in (16) and (11), respectively.

Proof We adopt a martingale-based technique developed recently in [25]. We have for each
test function ϕ that

E

[
〈ρn+1

emp , ϕ〉
]

= E

⎡

⎣ 1

N

N∑

i=1

ϕ

⎛

⎝ 1

K

K∑

j=1

Yn
i, j + Wn

i

⎞

⎠

⎤

⎦ (18)
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where {Yn
i, j } are i.i.d. with law ρn

emp. Denoting

Zn
i = 1

K

K∑

j=1

Yn
i, j + Wn

i

for each 1 ≤ i ≤ N , since the law of Zn
i is T [ρn

emp] for each 1 ≤ i ≤ n and {Zn
i }1≤i≤N are

i.i.d., following the reasoning behind (10) we have

E

[
1

N

N∑

i=1

ϕ
(
Zn
i

) ∣∣∣∣ ρn
emp

]
= 〈T [ρn

emp], ϕ〉. (19)

Now if we set

Mn : = 1

N

N∑

i=1

ϕ
(
Zn
i

)− E

[
1

N

N∑

i=1

ϕ
(
Zn
i

) ∣∣∣∣ ρn
emp

]

= 〈ρn+1
emp , ϕ〉 − 〈T [ρn

emp], ϕ〉
(20)

for each n ≥ 0, then (Mn)n≥0 defines a martingale. Moreover, thanks to the fact that {ϕ(Zn
i )}

are i.i.d. bounded random variables, and using the convention that the variance operation
Var(X) is interpreted as Var(X) := ∑d

k=1 Var(Xk)when X is a d-dimensional vector-valued
random variable, we have

(E[|Mn |])2 ≤ E[|Mn |2] = E

[
Var

(
1

N

N∑

i=1

ϕ
(
Zn
i

) ∣∣∣∣ ρn
emp

)]

≤ Var

(
1

N

N∑

i=1

ϕ
(
Zn
i

)
)

≤ ‖ϕ‖2∞d

N
,

where we have employed Popoviciu’s inequality (see for instance [31]) for upper bounding
the variance of a bounded random variable. Comparing (20) with (11) yields

E
[|〈ρn+1

emp − ρn+1, ϕ〉|] ≤ E
[|〈T [ρn

emp] − T [ρn], ϕ〉|]+ ‖ϕ‖2∞d√
N

. (21)

Now if ‖ϕ‖∞ ≤ 1, we can recall the computations carried out in (15), which ensures the
existence of some ϕ(1) with ‖ϕ(1)‖∞ ≤ K such that

〈T [ρn
emp] − T [ρn], ϕ〉 = 〈ρn

emp − ρn, ϕ(1)〉. (22)

Then we can deduce from (21) and (22) that

E
[|〈ρn+1

emp − ρn+1, ϕ〉|] ≤ E
[|〈ρn

emp) − ρn, ϕ(1)〉|]+ d√
N

, (23)

in which ϕ(1) satisfies ‖ϕ(1)‖∞ ≤ K . We can iterate (23) to arrive at

E
[|〈ρn

emp − ρn, ϕ〉|] ≤ E
[|〈ρ0

emp − ρ0, ϕ(n)〉|]+ dn√
N

, (24)

in which ϕ(n) satisfies ‖ϕ(n)‖∞ ≤ Kn . Finally, combining (17) with (24) allows us to
complete the proof of Theorem 1. 
�
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Remark 3 As we do not have a uniform-in-time propagation of chaos, we would like to know
whether the convergence declared in Theorem 1 still holds if we do not fix n (i.e., if n → ∞).
We speculate such a uniform in time convergence can no longer be hoped for by looking at
the evolution of the center of mass of the particle systems. Indeed, define

Cn+1 := 1

N

N∑

i=1

Xn
i

to be the location of the center of mass, and denote by Fn the natural filtration generated by
(Xn

1 , · · · , Xn
N ), then in dimension d = 1 we have

E[Cn+1 | Fn] = 1

N

N∑

i=1

E[Xn+1
i | Fn] = 1

N

N∑

i=1

1

K

K∑

j=1

E[Xn
Sni ( j) | Fn]

= 1

N

N∑

i=1

1

K

K∑

j=1

1

N

N∑

�=1

Xn
� = Cn,

E[(Cn+1 − Cn)2 | Fn] = E

⎡

⎣
(
1

N

N∑

i=1

Xn+1
i − Cn

)2 ∣∣∣∣ Fn

⎤

⎦

= Var

[
1

N

N∑

i=1

Xn+1
i

∣∣∣∣ Fn

]
= 1

N
Var[Xn+1

1 | Fn]

≥ σ 2

N
,

where the last equality comes from the fact that Xn+1
i and Xn+1

j are i.i.d. given Fn . Thus,
loosely speaking, at least in dimension d = 1, the center of mass of the particle systems
behaves like a discrete time Brownian motion with intensity of order at leastO(1/

√
N ), such

variation can accumulate in time which will eventually ruin the chaos propagation property
in the long run.

4 Large Time Behavior

The long time behavior of the limit equation, resulted from the simplified mean-field dynam-
ics, is treated in this section. In Sect. 4.1, by employing a coupling technique and equipping
the space of probability measures on R

d with the Wasserstein distance, we will justify the
asymptotic Gaussianity of the distribution of each particle. Then we will strengthen the con-
vergence result shown in the previous section in Sect. 4.2, and numerical simulations are
also performed in support of our theoretical discoveries in Sect. 4.3. We emphasize here that
coupling techniques will be at the core of our proof in Sect. 4.1, and the technique used in
Sect. 4.2 depends heavily on several classical results from information theory.

4.1 Convergence inWasserstein Distance

After we have achieved the transition from the interacting particle system (1) to the simplified
de-coupled dynamics (6) under the limit N → ∞, in this section we will analyze (6) and
its associated evolution of its law (governed by (11)), with the intention of proving the

123



18 Page 12 of 19 F. Cao

convergence of ρn to a suitable Gaussian density. The main ingredient underlying our proof
lies in a coupling technique. First, we recall the following classical definition.

Definition 8 The Wasserstein distance (of order 2) is defined via

W2
2 (μ, ν) := inf

X∼μ
Y∼ν

E[|X − Y |2],

where both μ and ν are probability measures on Rd .

We can now state and prove our main result in this section.

Theorem 2 Assume that the innocent-looking normalization (12) holds and K ≥ 2, then for
the dynamics (11), we have

W2
2 (ρn+1, ρ∞) ≤ 1

K
W2

2 (ρn, ρ∞), ∀n ≥ 0 (25)

In particular, if ρ0 ∈ P(Rd) is chosen such that W2
2 (ρ0, ρ∞) < ∞, then

lim
n→∞W2

2 (ρn, ρ∞) = 0.

Proof We first show that

W2
2 (T (μ), T (ν)) ≤ 1

K
W2

2 (μ, ν) (26)

for each μ, ν ∈ P(Rd). In other words, if we equip the space P(Rd) with the Wasserstein
distance of order 2, T is a strict contraction as long as K ≥ 2. Now we fix μ, ν ∈ P(Rd). It
is recalled that T (μ) is the law of the random variable

X := X1 + · · · + XK

K
+ E,

where {Xi }1≤i≤K are i.i.d. with law μ and E ∼ N (0, σ 21d). Thus, if we also introduce

Y := Y1 + · · · + YK

K
+ Ẽ,

in which {Yi }1≤i≤K are i.i.d. with law ν and Ẽ ∼ N (0, σ 21d), then we can write

W2
2 (T (μ), T (ν)) = inf

X∼T (μ),Y∼T (ν)
E[|X − Y |2]

= inf
Xi∼μ,Yi∼ν

E

[∣∣∣∣
X1 + · · · + XK

K
+ E − Y1 + · · · + YK

K
− Ẽ

∣∣∣∣
2
]

.

We can couple (X1, · · · , XK , E) and (Y1, · · · , Yk, Ẽ) as we want. First, we take E = Ẽ ,
meaning we have a common source of noise. Second, fixing η > 0, we take (X1, Y1) such
that

E[|X1 − Y1|2] ≤ W2
2 (μ, ν) + η,

(i.e. almost best coupling). Finally, we perform similarly for the other (Xi , Yi ) with (Xi , Yi )
independent of (X j , Y j ) if i �= j . These procedures lead us to

W2
2 (T (μ), T (ν)) ≤ E

[∣∣∣∣
X1 − Y1 + · · · + XK − YK

K

∣∣∣∣
2
]

123



K -Averaging Agent-Based Model… Page 13 of 19 18

≤ 1

K 2

(
E[|X1 − Y1|2] + · · · + E[|XK − YK |2])

≤ 1

K
W2

2 (μ, ν) + η

K
.

Since this is true for any η > 0, (26) is verified. Now we can deduce from (26) that

W2
2 (ρn+1, ρ∞) = W2

2 (T (ρn), T (ρ∞)) ≤ 1

K
W2

2 (ρn, ρ∞),

whence (25) is proved. 
�

4.2 Convergence in Relative Entropy

In this subsection we will show that the evolution of the discrete equation (11) relaxes to its
Gaussian equilibrium ρ∞ in the sense of relative entropy, as long as K ≥ 2. Before stating
our result, we first clarify some definitions. We refer the reader to [16] for a comprehensive
account of modern information theory.

Definition 9 We use

H(X) := H(g) =
∫

Rd
g(x) log g(x)dx

to represent the differential entropy of aRd -valued random variable X with law g. Moreover,

DKL(g||h) := H(g) − H(g, h) =
∫

Rd
g(x) log g(x)dx −

∫

Rd
g(x) log h(x)dx

denotes the relative entropy from h ∈ P(Rd) to g ∈ P(Rd), in which

H(g, h) := H(X , Y ) =
∫

Rd
g(x) log h(x)dx

is the cross-entropy from g to h (or equivalently, from X to Y where the laws of X and Y are
g and h, respectively).

For the reader’s convenience, we explicitly state two fundamental results from information
theory that we shall reply on.

Lemma 3 (Shannon–Stam) Under the set-up of Definition 9, we have

H(
√

λX + √
1 − λY ) ≤ λH(X) + (1 − λ)H(Y )

for each λ ∈ [0, 1].
Lemma 3 is one of the three equivalent formulations of the well-known Shannon-Stam

inequality, see for instance Sect. 1.3.2 of [34]. The next lemma (see for instance Theorem
1 in [3] or Eq. (7) in [24]) demonstrates the monotonicity of the differential entropy along
re-scaled sum of i.i.d. square-integrable random variables.

Lemma 4 Let X1, X2, . . . be i.i.d. square-integrable random variables. Then

H

(
X1 + · · · + Xn√

n

)
≤ H

(
X1 + · · · + Xn−1√

n − 1

)

for each n ≥ 2.

123



18 Page 14 of 19 F. Cao

Theorem 3 Assume that ρ is a solution to (11), then for each fixed K ≥ 2 we have

DKL(ρn+1||ρ∞) ≤ 1

K
DKL(ρn ||ρ∞). (27)

In particular, for each K ≥ 2 we have DKL(ρn ||ρ∞) → 0 as n → ∞.

Proof Let {Xn}n≥0 be as in Definition 4. If we introduce a random variable X∞ with law
ρ∞, i.e.,X∞ ∼ N (0, σ 2∞1d), then for each n ∈ N, we can rewrite (6) as

Xn+1 = 1√
K

· 1√
K

K∑

j=1

Yn
j +

√
K − 1

K
X∞,

since
√

K−1
K X∞ = Wn in law. Setting γ = 1√

K
, we obtain

Xn+1 = √
γ · 1√

K

K∑

j=1

Y n
j +√

1 − γ · X∞.

Consequently, the Shannon-Stam inequality (see Lemma 3) together with the monotonicity
of differential entropy along normalized sum of i.i.d. random variables (see Lemma 4) yields

H(Xn+1) ≤ γH

⎛

⎝ 1√
K

K∑

j=1

Y n
j

⎞

⎠+ (1 − γ )H(X∞) ≤ γH(Xn) + (1 − γ )H(X∞). (28)

Next, we observe that the cross-entropy from each f ∈ P(Rd)withmean 0 to the equilibrium
distribution ρ∞ is essentially the variance of f , meaning that

H( f , ρ∞) = −d

2
log(2πσ 2∞) −

∫
Rd |x|2 f (x)dx

2σ 2∞
.

In particular, if X and Y are independent random variables with mean 0 and a2 + b2 = 1,
then

H(aX + bY , X∞) = a2H(X , X∞) + b2H(Y , X∞).

Thus, using this formulation with
√

γ and
√
1 − γ , we find

H(Xn+1, X∞) = γH

⎛

⎝ 1√
K

K∑

j=1

Yn
j , X∞

⎞

⎠+ (1 − γ )H(X∞, X∞)

= γH(Xn, X∞) + (1 − γ )H(X∞).

Combining this with (28) leads to

DKL(ρn+1||ρ∞) = H(Xn+1) − H(Xn+1, X∞)

≤ γH(Xn) + (1 − γ )H(X∞) − γH(Xn, X∞) − (1 − γ )H(X∞)

= γDKL(ρn ||ρ∞),

and the proof is completed. 
�
Remark 4 ByTalagrand’s inequality (see for instanceTheorem9.2.1 in [4]), the convergence
DKL(ρn ||ρ∞) → 0 implies the convergence W2

2 (ρn, ρ∞) → 0.
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Fig. 5 Simulation of the relative entropy from ρ to ρ∞ in dimension d = 1 with K = 5 after 15 time steps,
in which we used σ = 0.1 and a Laplace distribution ρ0(x) = 1

2 e
−|x | initially. The blue and orange curves

represent the numerical error and the analytical upper bound on the error, respectively. We also noticed that
the numerical error can not really go below 10−12, but this is presumably due to the floating-point precision
error

4.3 Numerical Illustration of Decay in Relatively Entropy

We investigate numerically the convergence of the solution ρn of (11) to its equilibrium ρ in
support of our Theorem3, see Fig. 5.We use d = 1 (dimension), K = 5 (number of neighbors
to be averaged over), σ = 0.1 (the intensity of a centered Gaussian noise) in the simulation
of the evolution equation (11). To discretize (11), we employ the step-size �x = 0.001 and
a cutoff threshold M = 100, 000 so that the support of ρn is contained in { j�x}−M≤ j≤M

for all n, and the total number of simulation steps is set to 15. As initial condition, we use
the Laplace distribution ρ0(x) = 1

2 e
−|x |. Moreover, the simulation result is displayed in the

semi-logarithmic scale, which clearly indicates a geometrically fast convergence.

5 Continuous-Time K -averaging Dynamics

With suitable modifications, the argument used in the discrete-time applies in continuous-
time as well, so in this section we briefly consider the continuous version of the K -averaging
model studied in previous sections, i.e., the K -averaging occurs according to a Poisson
process. First, we give a formal definition of the model.

Definition 10 (Continuous-time K -averaging model) Consider a collection of stochastic
processes {Xi (t)}1≤i≤N evolving on R

d . At each time a Poisson clock with rate λ rings, we
pick a particle i ∈ {1, . . . , N } uniformly at random and update the position of Xi according
to the average position of K randomly selected neighbors, subject to an independent noise
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term, i.e., for each test function ϕ the process must satisfy

dE[ϕ(X1(t), . . . , XN (t)
)] = λ

N∑

i=1

E[ϕ(X1(t), . . . , Zi (t), . . . , XN (t)
)

− ϕ
(
X1(t), . . . , XN (t)

)]dt,
(29)

where Zi (t) := 1
K

∑K
j=1 XSi ( j)(t) + Wi (t), Si ( j) are indices taken randomly from the set

{1, 2, . . . , N } (i.e., Si ( j) ∼ Uniform({1, 2, . . . , N }) and is independent of i, j and t), and
Wi (t) ∼ N (0, σ 21d) is independent of i and t .

In the large N limit, we expect an emergence of a simplified dynamics, which motivates
the following definition.

Definition 11 (Asymptotic continuous-time K -averaging model) Consider a R
d -valued

stochastic process X(t) which satisfies the following relation for each test function ϕ:

dE[ϕ(X(t)
)] = λE[ϕ(Z(t)

)− ϕ
(
X(t)

)]dt, (30)

in which Z(t) := 1
K

∑K
j=1 Y j (t) + W (t), where {Y j (t)}1≤ j≤K are K i.i.d. copies of X(t)

and W (t) ∼ N (0, σ 21d) is independent of t .

If we define ρ(x, t) to be the law of X at time t , one can readily see that the evolution of
ρ is governed by

∂tρ = λ(T [ρ] − ρ), t ≥ 0. (31)

Moreover, one can show the continuous-time analog of Theorem 1 and Theorem 3.

Theorem 4 Let ρemp(t) := 1
N

∑N
i=1 δXi (t) to be the empirical distribution of the system

determined by (29) at time t and ρ the solution of (31) with the Gaussian equilibrium ρ∞
defined in (13), then

(i) under the set-up of the continuous-time K -averaging model with K ≥ 2, if

ρemp(0)
P−→ ρ(0) as N → ∞, (32)

then we have

ρemp(t)
P−→ ρ(t) as N → ∞,

holding for all 0 ≤ t ≤ T with any prefixed T > 0.
(ii) for each fixed K ≥ 2 we have

d

dt
DKL(ρ||ρ∞) ≤ −λ(1 − γ )DKL(ρ||ρ∞), (33)

where γ = 1
K as before. In particular, we have

DKL(ρ(t)||ρ∞) ≤ DKL(ρ(0)||ρ∞) · e−λ(1−γ )t . (34)

Proof We assume without loss of generality that λ = 1. For (i), mimic the argument in the
discrete-time setting we obtain for each test function ϕ that

dE
[〈ρemp(t), ϕ〉] = E

[
1

N

N∑

i=1

ϕ
(
Zi (t)

)− 1

N

N∑

i=1

ϕ
(
Xi (t)

)
]
dt
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= E
[〈T [ρemp(t)] − ρemp(t), ϕ〉] dt,

in which Zi (t) = 1
K

∑K
j=1 Yi, j (t) + Wi (t) and {Yi, j (t)} are i.i.d. with law ρemp(t). Then by

Dynkin’s formula, the compensated process

Mϕ(t) := 〈ρemp(t), ϕ〉 − 〈ρemp(0), ϕ〉 −
∫ t

0
〈T [ρemp(s)] − ρemp(s), ϕ〉ds

defines a martingale. Comparing with (31) yields

〈ρemp(t) − ρ(t), ϕ〉| ≤ |Mϕ(t)| + |〈ρemp(0) − ρ(0), ϕ〉|
+
∫ t

0
|〈T [ρ(s)] − T [ρemp(s)] − (

ρ(s) − ρemp(s)
)
, ϕ〉|ds. (35)

We then take the supremum over all ϕ with ‖ϕ‖∞ ≤ 1 to deduce from Proposition 1 and
(35) that

∣∣∣∣∣∣ρemp(t) − ρ(t)
∣∣∣∣∣∣ ≤ η(t) + (K + 1)

∫ t

0

∣∣∣∣∣∣ρemp(s) − ρ(s)
∣∣∣∣∣∣ds,

where we have set

η(t) := sup
‖ϕ‖∞≤1

|Mϕ(t)| + ∣∣∣∣∣∣ρemp(0) − ρ(0)
∣∣∣∣∣∣.

By Gronwall’s inequality, we obtain

sup
t∈[0,T ]

∣∣∣∣∣∣ρemp(t) − ρ(t)
∣∣∣∣∣∣ ≤

(
sup

t∈[0,T ]
η(t)

)
e(K+1)T .

In order to justify our claim (i) for t ≤ T , it therefore suffices to show that

sup
t∈[0,T ]

η(t)
P−−−−→

N→∞ 0. (36)

To show (36), we address each term appearing in the definition of η(t) separately. The
second one vanishes due to our assumption (32). For the first one, i.e., the martingale term,
we note that the i-th coordinate of Mϕ is a continuous time martingale with jumps of size
1
N ϕ(Zi ) − 1

N ϕ(Xi ) whose rates of occurrence are λ · dt = dt . Therefore,

E[|Mϕ(T )|2] ≤
∫ T

0
E

[
N∑

i=1

∣∣∣∣
1

N
ϕ(Zi ) − 1

N
ϕ(Xi )

∣∣∣∣
2
]
dt ≤ 4‖ϕ‖2∞

N
T ≤ 4T

N
,

whence the convergence

sup
t∈[0,T ]

(
sup

‖ϕ‖∞≤1
|Mϕ(t)|

)
P−−−−→

N→∞ 0

follows readily fromDoob’smartingale inequality. For (i i), we recall that in the discrete-time
case (with γ = 1

K ), (27) can be rewritten as

DKL(ρn+1||ρ∞) − DKL(ρn ||ρ∞) ≤ −(1 − γ )DKL(ρn ||ρ∞).

This can be translated immediately to its continuous-time analog (33), whence the proof is
completed. 
�
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6 Conclusion

In this manuscript, we have investigated a model (which we call the K -averaging model)
for a system of self-propelled particles on R

d , in both discrete-time and continuous-time
settings. We also provided a rigorous proof on the convergence of the distribution of a typical
particle towards a suitable Gaussian equilibrium under the large particle size N → ∞ and
large time n → ∞ limit. Even though the majority of the work is done in discrete-time, the
relevant results carry over easily to continuous-time. It would also be interesting to examine
variants of this model. For instance, the K -averaging dynamics on S

1 is closely related to
several models in the literature [1,2,30,32,33], and it is reasonable to expect a rigorous proof
of the corresponding mean-field limit. Unfortunately, the situation on S

1 is inevitably much
more complicated due to the lack of a vector-space structure. More generally, averaging is
not a straightforward operation over a manifold [18]. Other extensions of the model in the
present manuscript are also possible. As of now, every agent communicates with each other.
Thus, what would happen if only agents are only interacting through a pre-defined graph of
neighboring few chosen neighbors? We would lose the invariance by permutation, thus the
notion of limit is more challenging. This would also link the model to certain "consensus
models" [19,22]. One can also explore different laws of communication between the particles
(especially of the non-symmetric and non-all-to-all variety), and investigate the role of noise
introduced into the system.
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