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Abstract
In this paper we investigate the two-dimensional Abelian sandpile model in which the conser-
vation of sand grains is locally violated using non-conservative lattice sites. We use spatially
correlated arbitrary fractal patterns to mark the non-conservative sites. We have observed a
“crossover” in the scaling behavior of the distribution functions of both the avalanche areas
and avalanche sizes. The pre-crossover scaling exponents are known already and are related
to the embedding dimension of the model. In addition to these, we have found that new
“post-crossover” scaling exponents result from fractality. In fact we have found a spectrum
of values for these exponents across the fractal dimensions 1 ≤ df ≤ 2 with a dominantly
declining “linear” trend.

Keywords Self-organized criticality · Abelian sandpile model · Fractal patterns · Scaling
exponents

1 Introduction

In contrast to the traditionally well-known critical systems such as those, for example,
described by the Isingmodelwhere the fine-tuning of the temperature is necessary to approach
criticality, many natural phenomena display scale-free (power-law) behavior, which is the
main feature of a critical state and they do this without any external tuning of the parameters.
This spontaneous approach to the critical state is the so called Self-Organized Criticality
(SOC) [1–3]; a non-equilibrium phenomenon that occurs in nonlinear systems with infinites-
imally small inputs. For a linear system in the equilibrium state, a small perturbation will
cause a small disturbance. This means that the response of the system is proportional to the
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size of the perturbations. On the other hand, in a self-organized critical system, the system’s
response to an external perturbation might be anything from a simple small reaction to a
cascade of reactions called an avalanche [2].

The most well-known model that illustrates SOC is the BTW sandpile model introduced
by Bak, Tang andWiesenfeld in 1987 [4]. For simplicity, we use a subclass of the model with
the particular properties of Abelian group, known as the Abelian sandpile model which was
introduced by Dhar in 1990 [5]. The essential point in an SOC model is the preservation of
the conservation law for a fluctuating variable [6]. Therefore the crucial point in the sandpile
model is the conservation of the sand grains in such a way that at each time step the number
of the sand grains is conserved ‘inside’ the lattice. The sand grains, however, are allowed to
leave the system at the boundaries. Tsuchiya et al. showed that the BTW model fails to be
critical when a slight annihilation is introduced in the toppling process ‘inside’ the lattice,
in addition to its boundaries (i.e., bulk dissipation) [7]. Manna et al. violated conservation
locally by creating and annihilating sand grains locally, but on average, the number of the sand
grains was conserved. They showed that the local violation of conservation did not destroy
criticality but the scaling exponents of their system did not belong to the same universality
class as the normal BTWmodel [6]. Moghimi-Araghi et al. also violated conservation locally
through quenched and annealed randomness. They labeled some sites as sinks that would
dissipate sand grains and labeled some other sites as sources that would produce sand grains
[8]. We use a similar model and call those sites non-conservative in the rest of this paper.

In some studies deterministic fractal patterns are used as the lattice in the usual BTW
model [9]. But, up till now in the non-conservative sandpile models, the non-conservative
sites do not have any specific spatial patterns (i.e., they are uncorrelated). In the model that
we consider, we construct the non-conservative sites by drawing them from fractal patterns
with an arbitrary Hausdorff dimension df between 1 and 2 inclusively (i.e., 1 ≤ df ≤ 2)
[10]. At each time step they could be identified as a sink or a source with equal probability as
explained in Ref. [8]. Investigating the probability distribution function of the avalanche sizes
shows a crossover in the power-law behavior resulting in two different scaling exponents.
Both exponents are slowly related to the fraction of the non-conservative sites p [11]. Also,
the post-crossover exponent seems to be dependent on the fractal dimensions of the patterns.

From statistical mechanics we know that the critical exponents are independent from the
details of interactions and the structure of the lattice (e.g., the coordinate number), but they
depend on the embedding dimensions. Our results indicate that the self-similarity of the
patterns of non-conservative sites and the fractal dimensions characterizing them affect the
critical exponents. The rest of the manuscript is organized as follows. In the next section our
non-conservative sandpile model is introduced and then the generation of the fractal patterns
is explained. Section 3 is dedicated to the results and discussions, and the summary and
conclusion are presented in the last section.

2 Methods

Our method is divided into two parts. In Sect. 2.2, we show how to generate two-dimensional
binary (square) patterns of {si j } that are used to mark the non-conservative sites. These
inhomogeneous patterns are fractals with long-range correlation. As will be discussed, we
define si j = 1 as the non-conservative case and define p as the ratio of the number of
non-conservative sites to the total number of sites. In this way, we produce patterns with
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arbitrary fractal dimensions and different values of p. Then, we apply these patterns to our
non-conservative model introduced below.

2.1 The Non-conservative Abelian Sandpile Model

We consider the usual Abelian sandpile model on an L × L square lattice where L is chosen
in powers of 2 in the range 27 to 210 to improve the efficiency of our algorithm and optimal
distribution of data on a logarithmic scale. For each site (i, j), we define zi j which takes
discrete values of 1 to 4. At each time step, we perturb a randomly chosen site (i, j) by
changing the corresponding zi j to zi j + 1. zi j may exceed the threshold value of zc = 4 in
which case the site becomes unstable and topples [5]. For the non-conservative model the
toppling rule is {

zi j → zi j − zc,
zi ′ j ′ → zi ′ j ′ + 1 + ξi ′ j ′ , (i ′, j ′) ∈ n.n.(i, j)

(1)

where n.n.(i, j) is a set of pairs denoting the nearest neighbors of the site (i, j). For a
conservative site (i, j), ξi ′ j ′ = 0. But if the site (i, j) is non-conservative, at each toppling,
for one of the nearest neighbors that is chosen randomly, the corresponding ξi ′ j ′ is +1 or −1
with equal probability and for the rest of the nearest neighbors, ξi ′ j ′ = 0. As a result, if the
site is non-conservative it will topple just like the conservative one except that in one of its
nearest neighbors, which is randomly chosen, a grain of sand will be dissipated or produced
with equal probability. Transferring sand grains according to the toppling rule [Eq. (1)] may
make other sites unstable so that they may topple and a chain of topplings called ‘avalanche’
is probable.

As was previously mentioned, the patterns of the non-conservative sites are spatially
correlated so that they illustrate fractal patterns. In the following section, we use the modified
Fourier filtering method to produce fractal patterns with arbitrary fractal dimensions [12].

2.2 Generating the Two-Dimensional Binary Patterns with Long-Range Correlation

We aim to generate two-dimensional binary patterns of si j = 0, 1 which have long-range
correlation. Therefore the correlation function

C(r) = 〈
si j si ′ j ′

〉 ∣∣
r2=(i−i ′)2+( j− j ′)2 , (2)

follows the scaling rule (1+ r2)−γ /2 where γ is the correlation exponent. We define si j = 1
as a non-conservative site and si j = 0 as a conservative site.

To do this, we used the modified Fourier filtering method in two-dimension introduced
in detail by Makse et al. in Ref. [12]. This method enables us to produce two-dimensional
patterns with long-range correlation.

After producing correlated patterns the next step is applying the Heaviside step function
with different threshold values to find the binary patterns and then calculating the fraction
of non-conservative sites, p. However applying the thresholds almost changes the fractal
dimension of the patterns and the correlation exponents. So we recalculate the Hausdorff
dimension applying thewell-knownbox-countingmethod [10] (The ImageJ software,Ver. 1.x
was used [13]). Since some samples are small (128 ≤ L ≤ 2048), and some of them are
inhomogeneous, the fractal dimension is estimated by the correlation dimension method
to verify the results [14]. Figure 1d shows the consistency of both the box-counting and
the correlation dimension with errors of about ±0.05. There are many types of dimensions
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(a) df = 1.42 (b) df = 1.63

(c) df = 1.89

(d)

Fig. 1 Binary 1024 × 1024 patterns with arbitrary fractal dimensions and different values of p, a p = 1%,
b p = 10%, and c p = 20%. The dark pixels represent the non-conservative sites. d The scatter plot of the
Hausdorff dimension of samples estimated by the box-counting method vs. the correlation dimension. The
solid line drawn through the data points has a slope of 1, as a guidance

for fractal sets, and it is not clear which should be involved in our problem. Also, there
are different methods to estimate each of them, but we chose the box-counting method to
estimate the Hausdorff dimension since it is simple and fits the data adequately. By the way,
applying themodified Fourier filteringmethod and different thresholds enables us to generate
random binary patterns with arbitrary fractal dimensions (df � 1.3) and different values of
p > 0.5◦/◦◦◦ (e.g., see Fig. 1).

Also, we applied the one-dimensional modified Fourier filtering method to produce a
fractal curve [12]. This curve was plotted on a two-dimensional mesh to produce a pattern
with 1 < df < 1.2; see Fig. 2a. In addition to fractal patterns, some regular patterns with
integer dimensions df = 1, 2 were also used in our investigation. See Fig. 2b, c for samples.
Finally, to ensure that the results do not depend on the method we used to generate the self-
similar patterns, we added several random fractal patterns, such as those shown in Fig. 2d–f,
to our collection.

3 Results and Discussion

Our investigation shows that the implemented non-conservative model is still critical and dis-
plays scaling behavior but there is a crossover in the distribution function of the characteristic
properties of the avalanches. Therefore two different exponents are obtained. For example,
Fig. 3a shows the distribution of avalanche sizes. The crossover at s× in the distribution func-
tion is marked with a vertical dashed line. For avalanches smaller than s×, the power-law
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(a) (b) (c)

(d) (e) (f)

Fig. 2 a A typical curve plotted on a two-dimensional 10 × 10 lattice to produce a binary pattern, b a solid
line with a specific thickness, c a checkerboard, d a stochastic fractal of the Iranian plateau’s faults, e the
Sierpinski triangle, and f a random Sierpinski carpet

behavior is characterized by ν1 and for s > s× a new power-law behavior with the scaling
exponent ν2 appears. ν2 is obtained using a linear fit to the log-log plot of the distribution,
excluding the crossover region (i.e., s � s×) and the tail of the distribution function [see
Fig. 3a]. The error in the tail is caused by the lack of large avalanches, due to the finite size
of the lattice.

In small avalanches (i.e., s < s×), an avalanche might spread without seeing any non-
conservative sites and would not be influenced by the spatial distribution of those sites (i.e.,
their fractality). So in this regime, our system behaves just like the usual conservative sandpile
model with a finite lattice. In the sandpile model, the exponents associated with the avalanche
sizes (τs) slowly relate to the system size [15] as,

τs(L) = τs(∞) − c

ln L
. (3)

Moghimi-Araghi et al. have shown that although the bulk dissipation rate is averagely zero,
the fraction of the non-conservative sites p in the system affects τs similar to the system
size. In addition to dissipation in the boundaries, the model also has dissipation/production
at the non-conservative sites. So we have another length scale which is 1/

√
p, if the non-

conservative sites are homogeneously distributed over the lattice. This length scale might
have the same effect on the dynamics of the system as L [8,16]. So by substituting l ∼ 1/

√
p

by L in Eq. (3) we have
ν1(p) = ν1(0) + c′/ ln p, (4)
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(a) (b)

Fig. 3 The log-log plot of the distribution function n(s) for avalanches of size s in a 1024 × 1024 lattice.
Solid lines show a linear fit to the corresponding region of the curves excluding the crossover. The vertical
dashed lines show the crossover, s×. a A specific pattern of non-conservative sites with fractal dimension
df = 1.80 and p = 1%. ν1 = 1.10 ± 0.02 shows the exponent of the fit for avalanches with s < s× and
ν2 = 1.71 ± 0.02 is the exponent for s > s×. b Two different patterns with different values of p. For clarity,
the curve corresponding to p = 1% has been shifted up. s× experiences a shift from 2.9 × 103 to a higher
value of 7.4 × 104 as p decreases

for the small length scale, which is verified in Ref. [16]. Investigating the distribution function
of the avalanche sizes shows that the pre-crossover exponent ν1 decreases gradually as p is
increased and this agrees with previous results [8,16].

In fact, the existence of two different exponents indicates that there are two different
regimes involved. In the first regime, where the sizes of the avalanches are small, the non-
conservative sites are not involved in the toppling process and our model behaves like the
usual Abelian sandpile model. But in the second regime where s > s×, the avalanches spread
over the non-conservative sites and the power-law behavior is influenced by them, so the new
scaling exponent ν2 appears at the tail of the distribution function. Figure 3b shows that as
p increases s× decreases. For large values of p, the participation of the non-conservative
sites in the toppling process is more probable, so they might be involved in avalanches with
smaller sizes compared to the case where the values of p are low. Results show that ν2 might
be related to df (see Fig. 4). Since there are large avalanches (s > s×) that might spread all
over the system and reach the boundaries, they would be affected by both of the characteristic
length scales l and L . So we expect that ν2 is a function of df , p, and L .

We should figure out the ν2 dependence on L and p and eliminate their effects on our
results. Considering Eq. (3), we know that the dependence on L vanishes at infinite size. Also
we can see in Eq. (4) that for small values of p the dependence on p may be negligible. So
we expect that for the samples with p < 1% and L ≥ 1024 illustrated with the empty circles
in Fig. 4, the effects of p and L on ν2 are negligible. The solid line in Fig. 4 shows the trend
in ν2 for these samples. If we successfully eliminate the effects of p and L on ν2, all results
may render the same trend. We assume that the ν2 dependence on L and p may be separated
into

ν2(df , p, L) = ν2(df , 0,∞) + f (df , p) + g(df , L), (5)

where f (d f , p) vanishes at infinitesimal p and g(d f , L) vanishes at infinite L . Considering
Eqs. (3) and (4), we guess that the logarithms of p and L would affect our results and Eq. (5)
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Fig. 4 ν2 is plotted against df for different values of p and L . The empty circles (◦) show the samples with
L ≥ 1024 and p � 1%, in which the dependence of ν2 on p and L is rather small. The solid line shows a
linear fit to the empty circles. The solid circles (•) show other samples that are scattered from the linear fit due
to the effects of p and L

can be rewritten as,

ν2(df , p, L) = ν2(df , 0,∞) + (p − 1)c1(df )

log p
+ c2(df )

log L
, (6)

where c1 and c2 are coefficients that depend on df . Considering that Eq. (4) has a singularity
at p = 1, we have replaced its second term with (p − 1)/ log p, which is well-defined at
p = 1. We will show that this simple correction, in addition to solving the problem of the
singularity at p = 1, predicts the behavior of the critical exponents close to the singular
point (see � symbols in Fig. 5). However, we will discuss later that the case p ∼ 1 in the
thermodynamic limit is onlymeaningful for df = 2. Finally, it should be noted, the correction
form of p as (p − 1)/ log p in Eq. (6) is inspired by the correction form 1/ log L for the
system size. According to our numerical results, it seems our assumption is plausible.

In order to find c1(df ) we restrict df and L to fixed values so that the variations of ν2 are
only caused by the variations of the second term in Eq. (6). Then c1 can be determined to be
a constant. In Fig. 5 the slope of the solid lines shows c1 for df = 1 and 2. We repeat this
approach to find c1 for different values of df . The results are presented in Fig. 6. To clarify
the variations of p in this figure the logarithmic scale is used for the x-axis. The solid curves
represent linear fits of ν2 against (p − 1)/ log p. As ν2(p) ∼ c1(p − 1)/ log p, their slope
represents c1 for the corresponding df . The inset in Fig. 6 shows c1 as a function of df . A
similar method can be used to obtain c2(df ) except that we look at the variations in ν2 while
keeping the values of df and p fixed. Finally the coefficients are obtained as

c1(df ) ≈ 2.72 − 1.32df , (7a)

c2(df ) ≈ −3.65 + 1.69df . (7b)
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Fig. 5 ν2 is plotted versus (p − 1)/ log p. The term 1 − p resolves the singularity at p = 1. Furthermore
corrects the behavior of the exponent for large values. L and df are fixed at specific values. The slope of the
solid lines denotes c1 for the corresponding df

Fig. 6 ν2 for L = 1024 is plotted against p. The solid curves represent linear fits of ν2 versus (p−1)/ log p. The
inset shows the slope of these linear fits (c1) vs. df . As the solid line in the inset shows, c1(df ) = 2.72−1.32df

By substituting Eqs. (7a) and (7b) in Eq. (6), we obtain ν2(df , 0,∞). The results show
that ν2(df , 0,∞) depends linearly on df as

ν2(df , 0,∞) ≈ 2.36 − 0.43df . (8)

Equations (7a) and (7b) are linear and now Eq. (8) is also linear, therefore we can use the
multidimensional least squares method to find all the 6 parameters simultaneously [i.e., the
three pairs of slopes and intercepts in Eqs. (7) and (8)], as explained in chapter 9 of Ref. [17]:
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Fig. 7 A plot of the scaling exponent ν2 of the patterns of sites with different fractal dimensions df ; the
exponent is corrected according to Eq. (6). The single error bars denote the average error of obtaining df and
ν2 for all samples. The solid line shows a linear fit to the data rendering ν2(df , 0,∞) = −0.47df + 2.31
which shows a trend similar to the one in Fig. 4

c1(df ) = 2.34 − 1.14df , (9a)

c2(df ) = −3.06 + 1.59df , (9b)

ν2(df ) = 2.31 − 0.47df . (9c)

This method slightly improved our previous results. We obtained ν2(df , 0,∞) explicitly as
illustrated in Fig. 7. The data points with df = 1 are scattered due to the fact that for small
values of p the post-crossover regions in n(s) are small, so the error of obtaining ν2 is high.

Just like the avalanche sizes, avalanche areas also render a crossover in the distribution
function (see Fig. 8). A vertical dashed line denotes the crossover at a×. For avalanches
smaller than a×, μ1 characterizes the scaling behavior and for a > a× ≈ πl2, a new
scaling behavior with the scaling exponent μ2 appears. Figure 9 shows μ2(df , p, L) for
different patterns. Because of the finite size of the system, there is a limit to the area of an
avalanche. It cannot be larger than the area of the system, L2. As a result the new scaling
region characterized byμ2 is small, and the error of obtaining the exponent is higher than the
error in determining ν2. We discarded some data where the deviation is too large. The new
scaling region is large enough only for large values of p. In such cases we have to eliminate
the effect of p. But due to the lack of data (Fig. 9), performing the elimination and obtaining
μ2(df , 0,∞) is not simple.

We assume thatμ2(df , p, L) is a function of df , p, and L in the same form as ν2(df , p, L):

μ2(df , p, L) = μ2(df , 0,∞) + (p − 1)b1(df )

log p
+ b2(df )

log L
, (10)

μ2(df , 0,∞), b1(df ), and b2(df ) depend linearly on df . According to Eq. (10), we expect
that for infinitesimal p and infinite L , 2nd and 3rd terms are negligible [For details, see the
explanation below Eq. (6)]. The empty circles in Fig. 9, show the samples with p < 1% and
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Fig. 8 The log-log plot of the
distribution function n(a) for
avalanches of area a in a
1024 × 1024 lattice. Solid lines
show linear fits to the
corresponding regions of the
curves and the vertical dashed
line shows the crossover a×. A
specific pattern of
non-conservative sites with the
fractal dimension of df = 1.89
and p = 1% is used.
μ1 = 1.09 ± 0.02 and
μ2 = 1.47 ± 0.03 show the pre-
and post-crossover exponents

Fig. 9 μ2 is plotted against df for patterns with different values of p and L . The empty circles (◦) show the
samples with p � 1% and L ≥ 1024 in which the dependency on the other parameters is irrelevant. The solid
line shows a linear fit to the empty circles. The solid circles (•) show μ2 for other samples scattered away
from the solid line due to the effects of other parameters (i.e., p and L)

L ≥ 1024. So according to Eq. (10), for these samples μ2(df , p, L) ≈ μ2(df , 0,∞). The
solid line shows the linear trend in these samples. We expect that after successful elimination
of the effects of p and L from μ2(df , p, L), the whole data in Fig. 9 will converge to the
linear trend μ2(df , 0,∞).

As the multidimensional least squares method improved our results in obtaining
ν2(df , 0,∞), we applied it to determineμ2(df , 0,∞). Then all the 6 parameters are obtained
as:

b1(df ) = 0.76 − 0.35df , (11a)

b2(df ) = −3.05 + 1.63df , (11b)

μ2(df ) = 3 − 0.6df . (11c)
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Fig. 10 A plot of the scaling exponent μ2 of patterns with different fractal dimensions df ; the exponent is
corrected as μ2(df , 0, ∞) according to Eq. (10). The single error bars denote the average error of obtaining
df and ν2 for all samples. The solid line shows the linear trend in μ2(df , 0, ∞) as −0.6df + 3

Now by substituting Eqs. (11) in Eq. (10) we are able to obtain μ2(df , 0,∞) as illustrated
in Fig. 10.

4 Summary and Conclusion

Investigation of the distribution function of the avalanche size (area) showed that a crossover
occurs in the scaling behavior resulting in two different scaling exponents obtained on both
sides of the crossover region denoted by s× (a×). We found that s× and a× are related to
the fraction of the non-conservative sites p, and so are the exponents ν1 and μ1. The scaling
behavior presented in Eq. (4) is discussed in Ref. [16]. We figured out that the exponents of
the second regime (ν2 and μ2) depend on the Hausdorff dimensions of the patterns used in
the model, as shown in Figs. 4 and 9. Meanwhile we found that these new exponents also
depend on the two different length scales l and L , where l shows the average distance between
non-conservative sites and depends on p. We studied the dependence of the exponents on p
and L and eliminated their effects on our results [see Eqs. (6) and (10) and the discussion
that follows]. For many patterns with specific values of df , p and L , the scaling exponents
ν2(df , p, L) and μ2(df , p, L) were obtained, and then our elimination method was used to
obtain the corresponding exponents ν2(df , 0,∞) and μ2(df , 0,∞). Taking into account the
error in determining the exponents, Figs. 7 and 10 show that all of the exponents obtained
show a clear (declining) linear trend as a function of df . As our results are derived from
numerical simulations, we could find out only the leading term, which is linear. It seems, our
method more or less succeeded to eliminate the effects caused by p and L . Although in the
case of the avalanche ‘areas’, because of the lack of data, the error in obtaining μ2(df , 0,∞)

is higher than that of ν2(df , 0,∞).
The number of non-conservative sites (denoting the mass of a fractal pattern) is propor-

tional to Ldf . So the fraction of the non-conservative sites is p ∼ Ldf−2. For infinite sizes
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and 0 ≤ df < 2, p will tend to zero. The special case of non-zero p is only possible for
df = 2, and in this case, which has already been investigated [8], the critical exponents in
the thermodynamic limit depend on p in addition to df [see Eqs. (6) and (10)].

The small length scale l = p− 1
2 ∼ L1−df/2. As L goes to infinity, l will tend to infinity too,

but more slowly. The distance between the two length scales l and L represents the tails of
the distribution functions, which are illustrated by the new exponents μ2 and ν2. For infinite
systems, this distance goes to infinity and it indicates the rate of “catastrophic events”, which
are quite important in natural self-organized critical phenomena.

The Abelian sandpile model is commonly used to illustrate self-organized critical phe-
nomena. Our model is simple but in nature most self-organized critical phenomena occur
in complex fractal media and as we have shown, their dynamics may be affected by the
fractal dimension of the medium. Also, in some of these phenomena, catastrophic events
such as avalanches and floods cause changes in the medium and its corresponding fractal
dimension. For example, earthquakes change the fractality of a fault planes. These changes
are taken to be a hysteresis effect in some models. For example, the effect of the history
is considered in some earthquake models using faults [18]. In such cases, faults might be
considered as fractal regions instead of simple curves [19–21]. To consider these cases, we
used quenched fractal patterns with arbitrary dimensions. We violated the conservation of
sand grains through the fractal patterns of the non-conservative sites and showed that the
local violation of conservation does not destroy criticality in our model.

SOC has been demonstrated in the dynamics of many natural phenomena. Yet in many
others, it remains hidden from us. The spatial fractal patterns produced as a result of SOC
may surround other systems and as we have shown, contribute to the behavior of the tails of
the distribution functions and the rate of catastrophic events in the surrounded systems. Thus,
the activities of human beings (i.e., industrialization) may cause a change in the fractality
of these patterns. For example, deforestation changes the patterns of forests and deserts,
thus changing the diversity of living organisms in these ecosystems. Today, it is common to
illustrate climate change by reporting the trends in the averages of ecological parameters.
However, we need to be more or less concerned with a change in the tail of the distribution
function which may even cause a change in a chain of self-organized critical systems, since
the high rate of catastrophic events causes damage to the ecosystem at a rate that might not
be possible to be resolved before the next extreme event. Our argument could be summarized
by a quote from Anderson [22], ‘Much of the real world is controlled as much by the “tails”
of distributions as by means or averages ...’
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