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Abstract

We consider systems of N bosons trapped on the two-dimensional unit torus, in the Gross-
Pitaevskii regime, where the scattering length of the repulsive interaction is exponentially
small in the number of particles. We show that low-energy states exhibit complete Bose—
Einstein condensation, with almost optimal bounds on the number of orthogonal excitations.
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1 Introduction

We consider N € N bosons trapped in the two-dimensional box A = [—1/2; 1/2]* with
periodic boundary conditions. In the Gross-Pitaevskii regime, particles interact through a
repulsive pair potential, with a scattering length exponentially small in N. The Hamilton
operator is given by
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N N
Hy =) A+ MV i —x)) M

j=1 i<j

and acts on a dense subspace of L2(A™N), the Hilbert space consisting of functions in L2(AN)
that are invariant with respect to permutations of the N particles. We assume here V € L3(R?)
to be compactly supported and pointwise non-negative (i.e. V (x) > 0 for almost all x € R?).
We denote by a the scattering length of the unscaled potential V. We recall that in two
dimensions and for a potential V with finite range Rp, the scattering length is defined by

=t [ [|V¢|2+ 1V|¢|2]d @
— = 1N - X

log(R/a) ¢ Jgy, 2
where R > Ry, Bg is the disk of radius R centered at the origin and the infimum is taken
over functions ¢ € H'(Bg) with ¢ (x) = 1 for all x with |x| = R. The unique minimizer of
the variational problem on the r.h.s. of (2) is non-negative, radially symmetric and satisfies
the scattering equation

1
_Ad)(R) + §V¢(R) =0

in the sense of distributions. For Ry < |x| < R, we have

log(|x|/a)

(R) _
P = e R

By scaling, ¢y (x) 1= ¢©" ® (N x) is such that

1
—Apy + EeZ’VV(eNx)qu =0

We have

1
o) = /ANy RN R x| < R,

log(R/an)
forall x € RZ withe ¥Ry < |x| < R.Here ay = ¢ VNa.

The spectral properties of trapped two dimensional bosons in the Gross-Pitaevskii regime
(in the more general case where the bosons are confined by external trapping potentials) have
been first studied in [13,14,16]. These results can be translated to the Hamilton operator (1),
defined on the torus, with no external potential. They imply that the ground state energy Ey
of (1) is such that

Ey =2rN(1+O0N"'?). )

Moreover, they imply Bose—Einstein condensation in the zero-momentum mode g (x) =
1 forall x € A, for any approximate ground state of (1). More precisely, it follows from [13]
that, for any sequence ¥y € L%(AN) with ||y ] = 1 and

lim

1
Jim N(WN, Hyyy) = 2m, “4)

the one-particle reduced density matrix yy = tra,. n|¥n)(¥n| is such that

1 — (g0, ynpo) < CN ™ )
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for a sufficiently small § > 0. The estimate (5) states that, in many-body states satisfying (4)
(approximate ground states), almost all particles are described by the one-particle orbital ¢y,
with at most N'=% « N orthogonal excitations.

Similar results have been obtained starting from a three dimensional Bose gas, trapped
by a potential which is strongly confining in one direction, so that the system becomes
effectively two-dimensional [22]. Finally, let us also mention [5,10], where rigorous results
on the time-evolution in the two-dimensional Gross-Pitaevskii regime have been established
(in [5], the focus is on the dynamics of a three-dimensional gas, with strong confinement in
one direction).

For V e L3(R?), our main theorem improves (3) and (5) by providing more precise
bounds on the ground state energy and on the number of excitations.

Theorem 1 Let V € L3(R?) have compact support, be spherically symmetric and pointwise
non-negative. Then there exists a constant C > 0 such that the ground state energy Ey of
(1) satisfies

2N —C < Enxy <2nN +ClogN . (6)
Furthermore, consider a sequence ¥y € L?(AN) with ||Yn || = 1 and such that
(Yn, Hvyn) < 27N + K )

fora K > 0. Then the reduced density matrix yy = tro __ nN|¥n)(¥n| associated with ¥y
is such that

C(+K)

1 — {0, ynpo) < N (®)

forall N € N large enough.

Remark We expect that the bounds of Theorem 1 can be extended to two-dimensional systems
of bosons trapped by an external potential (in three dimensions, similar estimates have been
recently established in [7,19]). In this case, the system exhibits condensation in the minimizer
of the Gross-Pitaevskii energy functional, as shown in [13,14,16].

It is interesting to compare the Gross-Pitaevskii regime with the thermodynamic limit,
where a Bose gas of N particles interacting through a fixed potential with scattering length
a is confined in a box with area L2, so that N, L — oo with the density p = N/L2 kept
fixed. Let b = |log(pa?)|~!. Then, in the dilute limit pa®> < 1, the ground state energy per
particle in the thermodynamic limit is expected to satisfy

eo(p) = 47rp2b(l +blogh + (1/2+ 2y +logm)b + o(b)) , )

with y the Euler’s constant. The leading order term on the r.h.s. of (9) has been first derived
in [21] and then rigorously established in [15], with an error rate b~1/3. The corrections up
to order b have been predicted in [1,18,20]. To date, there is no rigorous proof of (9). Some
partial result, based on the restriction to quasi-free states, has been recently obtained in [9,
Theorem 1].

Extrapolating from (9), in the Gross-Pitaevskii regime we expect | Ey —27 N| < C. While
our estimate (6) captures the correct lower bound, the upper bound is off by a logarithmic
correction. Eq. (8), on the other hand, is expected to be optimal (but of course, by (6), we
need to choose K = C log N to be sure that (7) can be satisfied). This bound can be used as
starting point to investigate the validity of Bogoliubov theory for two dimensional bosons in
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the Gross-Pitaevskii regime, following the strategy developed in [3] for the three dimensional
case; we plan to proceed in this direction in a separate paper.

The proof of Theorem 1 follows the strategy that has been recently introduced in [4]
to prove condensation for three-dimensional bosons in the Gross-Pitaevskii limit. There are,
however, additional obstacles in the two-dimensional case, requiring new ideas. To appreciate
the difference between the Gross-Pitaevskii regime in two- and three-dimensions, we can
compute the energy of the trivial wave function ¥y = 1. The expectation of (1) in this state
is of order N2. It is only through correlations that the energy can approach (6). Also in three
dimensions, uncorrelated many-body wave functions have large energy, but in that case the
difference with respect to the ground state energy is only of order N (N V(0) /2 rather than
4maN). This observation is a sign that correlations in two-dimensions are stronger and play
a more important role than in three dimensions (this creates problems in handling error terms
that, in the three dimensional setting, were simply estimated in terms of the integral of the
potential).

The paper is organized as follows. In Sect. 2 we introduce our setting, based on a descrip-
tion of orthogonal excitations of the condensate on a truncated Fock space. Factoring out
the condensate, we introduce an excitation Hamiltonian £y, unitarily equivalent to Hy. In
Sects. 3 and 4 we define two additional unitary maps, modelling the correlation structure
characterising low-energy states. The first map is a generalized Bogoliubov transformation,
given by the exponential of an anti-symmetric operator B, quadratic in creation and anni-
hilation operators, see Eq. (33). Its action on Ly leads to a second excitation Hamiltonian
GN o, Whose vacuum expectation matches (6), at leading order. Unfortunately, Gy o is not
coercive enough to directly show Bose—Einstein condensation. To overcome this difficulty,
we conjugate the main part of Gy  (later denoted by g;}‘fa) with a second unitary map, given
by the exponential of an operator A, cubic in creation and annihilation operators, see Eq.
(44). This defines a renormalized excitation Hamiltonian Ry ,, where the singular interac-
tion is regularized. In Sect. 5 we combine the bounds on Gy o and Ry o with a localization
argument proposed in [11] for the number of excitations to conclude the proof of Theorem 1.
Section 6 and App. 1 are devoted to the proof of the bounds on Gy , and on Ry  stated in
Sects. 3 and 4, respectively. Finally, in App. 1, we establish some properties of the solution
of the Neumann problem associated with the two-body potential V.

2 The Excitation Hamiltonian
Low-energy states of (1) exhibit condensation in the zero-momentum mode ¢ defined by

wo(x) = 1forallx € A =[—1/2;1/2)2. Similarly as in [2,4,11], we are going to describe
excitations of the condensate on the truncated bosonic Fock space

N
FV =P Lim®t
k=0

constructed on the orthogonal complement Li(A) of ¢ in L?(A). To reach this goal, we
define a unitary map Uy : L?(AN) — ]ff_N by requiring that Uy ¥y = {0, @1, ..., N},
witha; € L3 (A)®,if

N—1
Yy = a0l + a1 @, 00NV 4y
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With the usual creation and annihilation operators, we can write

N

Un ¥ = D — Igo) (9ol

n=0

)®n a (‘PO)N_n

N —n)! i

for all Yy € L2(AN). Itis then easy to check that U}, : ffN — L2(AN) is given by

N * N—n
a* (o)
n=0 :

and that Uy Uy = 1, i.e. Uy is unitary.
With Uy, we can define the excitation Hamiltonian Ly := Uy HyUS5;, acting on a

dense subspace of ]-'fN. To compute the operator Ly, we first write the Hamiltonian (1)
in momentum space, in terms of creation and annihilation operators a;, ap, for momenta

p € A* =2x7% We find

1 —~
Hy = Z pza;ap + 3 Z V(r/eN)a;‘,+,a;apaq+r (10)
peA* p.q,reA*

where
Vk) = / V(x)e % dx
]RZ

is the Fourier transform of V, defined for all k € R2 (in fact, (1) is the restriction of (10) to the
N-particle sector of the Fock space). We can now determine £y using the following rules,
describing the action of the unitary operator Uy on products of a creation and an annihilation
operator (products of the form a;aq can be thought of as operators mapping L? (AM) to

itself). For any p,q € A* = ZJTZZ\{O}, we find (see [11]):

UN(ZSLI()U;,ZN—N+
Uy ajao Uy = a,y/N — Ny
Uyaga, Uy =+/N —Nia,

* * %
Uy a,dq Uy = a,dq .

an

where N =

peAr. ayap is the number of particles operator on fN . We conclude that

Ly =9 4221 £ 4 L0 (12
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with

1~ 1~
£y = VO = DN = Np) + S VON (N = N)

2 ~ 1
LY = > pPajap,+N Y Vip/eV) [b;b,, — ﬁa;a,,

peAT peA’
N 2 *
+3 2 Vip/e™) [b;b_p +b,,b,,,]
peat (13)

3 -~
L) =VN Y V/e) Bt pag + agaspbpa ]
p-geAL:p+q#0

@ _ 1 74 Ny, * *
Ly = 5 Z V(r/e )ap+raqa,,aq+r,
P.qeAT reA™:
rE=p.—q

where we introduced generalized creation and annihilation operators

NN, NN,
b* = UNCIZUX] =a* —_— T

b » N and b, =Una,Uy =

ap
forall p € A%.

On states exhibiting complete Bose—Einstein condensation in the zero-momentum mode
@0, we have ag, a;j ~ +/ N and we can therefore expect that b; ~ a;‘, and that b, >~ a,. From
the canonical commutation relations for the standard creation and annihilation operators

ap, ay, we find

P
Ne |
b, b\1=(1—-——168,, — —a*
P bq] ( N) A (14)
by, byl = b5, 521 = 0.
Furthermore,
[b[H a;ar] = Squh [b;a a;ar] = _aprbz

for all p,q,r € AZ; this implies in particular that [b,, N4 ] = by, [0}, N4] = _b;‘ It
is also useful to notice that the operators b;, by, like the standard creation and annihilation
operators a,, ap, can be bounded by the square root of the number of particles operators; we
find
1/2
IbpEll < IN26l, 1056 < IWVe + D2

for all £ € ffN. Since Ny < N on J:EN, the operators b*, b, are bounded, with
6,11, D511 < (N 4 112,

3 Quadratic Renormalization
From (13) we see that conjugation with Uy extracts, from the original quartic interaction in
(10), some large constant and quadratic contributions, collected in ﬁf\?) and £ respectively.

In particular, the expectation of Ly on the vacuum state §2 is of order N, this being an
indication of the fact that there are still large contributions to the energy hidden among cubic
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and quartic terms in 553) and ﬁ%). Since Uy only removes products of the zero-energy mode
¢o, correlations among particles remain in the excitation vector Uy ¥y . Indeed, correlations
play a crucial role in the two dimensional Gross-Pitaevskii regime and carry an energy of
order N2.

To take into account the short scale correlation structure on top of the condensate, we
consider the solution f; of the equation

1
(—a+35v@)fil0 =2 i) (1)

associated with the smallest possible eigenvalue A¢, on the ball x| < eN ¢, with Neumann
boundary conditions and normalized so that fy(x) = 1 for |x| = eV¢. Here and in the
following we omit the N-dependence in the notation for f; and for A,. By scaling, we
observe that f (eV ) satisfies

€2N
( -A+ 7v<eNx))fz (€Vx) =N fo(eNx)

on the ball |x| < £. We choose £ < 1/2, so that the ball of radius £ is contained in the box
A = [—1/2; 1/2]*. We extend then f(e".) to A, by setting fy ¢(x) = fe(eNx),if |x| < €
and fy¢(x) = 1for x € A, with |x| > £. Then, assuming also that Roe N < ¢ (later we
will choose £ = N ™%, so this condition is satisfied, for all N large enough),

eZN
(= 2+ 5V D) fvet) = Ve fvexe). 16)

where yx, is the characteristic function of the ball of radius ¢. The Fourier coefficients of the
function fy ¢ are given by

ﬁ\’,é(ﬁ) IZ/Afz(eNx)e*ip'xdx

forall p € A*. We introduce also the function wy (x) = 1— fy(x) for |x| < e ¢ and extend
it by setting w¢(x) = O for |x| > e ¢. Tts re-scaled version is defined by wy,: A —R
wy o (x) = we(eNx) if |x] < Land wy o = 0if x € A with [x| > €.

The Fourier coefficients of the re-scaled function wy ¢ are given by

wy.e(p) = / weeVx)e P ¥ dx = e N, (e_Np) . 17)
A
We find ﬁ\]’[(p) =68p0— e 2N, (e_Np). From the Neumann problem (16) we obtain

o 1 -~ ~ _ ~
—pre Ny (e Np)+§ ZA Vie™Mp—a)fve@=eNn ZA Xe(p — @) fn.e(@).
qeA* qeN*

(18)

where we used the notation ¥y for the Fourier coefficients of the characteristic function on
the ball of radius £. Note that X¢(p) = £2 X(£p) with ¥ (p) the Fourier coefficients of the
characteristic function on the ball of radius one.

In the next lemma, we collect some important properties of the solution of (15).

Lemmal Ler V e L3(R?) be non-negative, compactly supported (with range Ro) and
spherically symmetric, and denote its scattering length by a. Fix0 < £ < 1/2, N sufficiently
large and let fy denote the solution of (16). Then
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(i)
0< fitx) <1 Vx| <eMe.
(ii) We have

2 C

Ae— (eNe)2log(eN e/ a) = (eN0)2log?(eNe/a) (19
(iii) There exists a constant C > 0 such that

‘ / dx V) fox) = —m | < € (20)

log(eNe/a)| ~ log?(eNe/a)
(iv) There exists a constant C > 0 such that
C iflx] = Ro
lwe(x)] < {C 1?5;6’;4515/)2\)) if Ry < |x] < eNe o)

Ny

Vw < ) <

[Vwe(x)] < log(eN /) x| + 1 forall |x| <e

(v) Letwyn ¢ = 1— fy ¢ with fo N = fo (eN x). Then the Fourier coefficients of the function
wy ¢ defined in (17) are such that

Wy, e(p)| < (22)

ptlog(eNe/a)’

Proof The proof of points (i)—(iv) is deferred in Appendix B. To prove point v) we use the
scattering equation (18):

2N 4N
~ N, _ € ~ _N —~ e - ~
D™ p) = 55 Y Ve N —a) v - T YAV RN NI
qgeN* qgen*
Using the fact that 2Ny < Ce72|In(eNe/a)| " and that 0 < f; < 1, we end up with
-~ N N o N = 2N =~ 7
Pee ™)l = 35 [V ™5 fv )] +28 0 | Gex o)
2N

[ / V() fu(x)dx + CE2|log(eN e/a)] ! f m(x)fz(eNX)dX]

C€2N
< "\
~ p?log(eNe/a)

<
_2p2

]
We now define 77 : A — R through
7(x) = =Nwn,e(x) = =Nwg(e"x). (23)
With (21) we find
ol = { Cleae/ e ey = ) < ¢ @
and in particular, recalling that e ™V Ry < £ < 1/2,
()| < Cmax(N,log(¢/[x])) < CN (25)
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for all x € A. Using (24) we find

Inli? = 12 gc/

1
flog(e/lx) PP = CE [ dognPrar = 2.
lx]=<¢ 0
In the following we choose £ = N, for some o > 0 to be fixed later, so that
Inll <CNT*. (26)

This choice of £ will be crucial for our analysis, as commented below. Notice, on the other
hand, that the H!-norms of n diverge, as N — o0o. From (23) and Lemma 1, part iv) we find

1317, :/ N N2 |(Vwe) (e x)|2d*x =/ N2V (x)2d*x
|x[<¢

|x|<eNe

1
< c/ ———d’x <CN
Ix|<eVe (lx[+1)

for N € N large enough. We denote with n : A* — R the Fourier transform of 7, or
equivalently

np=—Ny(p)=—-Ne Niy(p/e"). 27)

With (22) we can bound (since £ = N~%)

C
npl < — (28)
PE=pp2

forall p e A% = 27 Z*\{0}, and for some constant C > 0 independent of N, if N is large
enough. From (26) we also have

[Mllc < CNT¥. (29)

Moreover, (18) implies the relation

N ~ - o~
Ponp+ 5 (Ve 5 fyv.(p) = NeNaeRe = fv.o)(p) (30)
or equivalently, expressing also the other terms through the coefficients ),
2 No N 1 7 N
Py + SVl 45 Y Vi —a)/e)ng
qgeA*

=N nxe(p) + eV he Y Ke(p — Ing -
geAn*

3D

We will mostly use the coefficients 1, with p # 0. Sometimes, however, it will be useful
to have an estimate on 7g (because Eq. (31) involves 7). From (27) and Lemma 1, part iv)
we find

Inol < Nf we(eVx)d*x < c/ log(¢/|x])d*x + CNe™™ < Ce*.  (32)
NE

lx|<¢

With the coefficients (27) we define the antisymmetric operator

B = % > (nbjb=, = ipbyb-y) (33)

peAT
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39 Page100f72 C.Caraci et al.

and we consider the unitary operator

1 _
e —exp |3 Y (npbpb, = ipbyb—) | - (34)
peA’

We refer to operators of the form (34) as generalized Bogoliubov transformations. In contrast
with the standard Bogoliubov transformations

= 1 _
e? =exp 3 > (npa;‘,afl, - npapa_p) (35)
peA’

defined in terms of the standard creation and annihilation operators, operators of the form
(34) leave the truncated Fock space FEN invariant. On the other hand, while the action of
standard Bogoliubov transformation on creation and annihilation operators is explicitly given
by

e’BapeB = cosh(n,)a, + sinh(n,,)afp

there is no such formula describing the action of generalized Bogoliubov transformations.
Conjugation with (34) leaves the number of particles essentially invariant, as confirmed

by the following lemma.

Lemma 2 Assume B is defined as in (33), with n € £2(A*) and np =n—pforall p e A%.

Then, for every n € N there exists a constant C > 0 such that, on .7-'§N,

e B + 1B < ceCMnv, + 1) (36)
as an operator inequality on ffN.

The proof of (36) can be found in [6, Lemma 3.1] (a similar result has been previously
established in [23]).

With the generalized Bogoliubov transformation e? : F =N

F ]-'_EN, we define a new,
renormalized, excitation Hamiltonian Gy o : F. fN — ]—'fN by setting
Gy =e BLyel =e BUNHNUYER . (37)

In the next proposition, we collect important properties Gy . We will use the notation

1 —~
K= Z pza;‘,ap and Vy = 5 Z V(r/eN)a;Ha;aq_Hap (38)
peAt p.geAt reA:
r#F=p.—q

for the kinetic and potential energy operators, restricted on F. fN, and Hy = K + Vy. We
also introduce a renormalized interaction potential wy € L% (A), which is defined as the
function with Fourier coefficients @y

on(p) = gn X(P/N®), gy =2N'"2eN3y (39)

forany p € A%, and
on(0) = gnX(0) =mgnN - (40)
with x(p) the Fourier coefficients of the characteristic function of the ball of radius one.

From (19) and £ = N~% one has |gy| < C. Note in particular that the potential @y (p)

@ Springer



Bose-Einstein Condensation for 2D Bosons in the Gross—Pitaevskii Regime Page110f72 39

decays on momenta of order N, which are much smaller than ¢ . From Lemma 1 parts (i)
and (iii) we find
~ C C
oy @ = NIVAlh| = 0 [ov© —ar (140 5Y) | = & (41
N N’
Proposition 1 Let V € L3(R?) be compactly supported, pointwise non-negative and spher-
ically symmetric. Let Gy o be defined as in (37) and define

eff 1 N = 1 N
G, = FONON = 1) (1 - ﬁ) + [ZNV(O) - EwN(O)] Ny (1 — W*)
1 o~ s
3 X awbpbop+he) VN Y Vip/eM) ). ag +he
peAT P.geA:
p+q7#0

+Hy - (42)
Then there exists a constant C > 0 such that Eg = GN .o — g;’fa is bounded by

(€, £g &) < C(N'27 + N~!dog )" 2) I E NIV + 1)

43)
+ CNT WG+ DV I2 + Cllg )

foralla > 1,& € F_EN and N € N large enough.

The proof of Proposition 1 is very similar to the proof of [3, Prop. 4.2]. For completeness,
we discuss the changes in Appendix A.

4 Cubic Renormalization

Conjugation with the generalized Bogoliubov transformation (35) renormalizes constant and
off-diagonal quadratic terms on the r.h.s. of (42). In order to estimate the number of excitations
N through the energy and show Bose-Einstein condensation, we still need to renormalize
the diagonal quadratic term (the part proportional to N V(O)N+, on the first line of (42)) and
the cubic term on the second line of (42). To this end, we conjugate geff with an additional
unitary operator, given by the exponentlal of the anti-symmetric operator

Z e[} ,at,ay —he] (44)

r veA

with n,, defined in (27).

An important observation is that while conjugation with e? allows to renormalize the
large terms in G ., it does not substantially change the number of excitations. The following
proposition can be proved similarly to [4, Proposition 5.1].

Proposition 2 Suppose that A is defined as in (44). Then, for any k € N there exists a constant
C > 0 such that the operator inequality

AW + DR < CWp + DX
holds true on }"EN, for any a > 0 (recall the choice £ = N~ in the definition (27) of the

coefficients n, ), and N large enough.
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39 Pagel120f72 C.Caracietal.

We will also need to control the growth of the expectation of the energy H with respect
to the cubic conjugation. This is the content of the following proposition, which is proved in
Sect. 6.1.

Proposition 3 Let A be defined as in (44). Then there exists a constant C > 0 such that
e AHyer < CHy + CN(N; + 1) (45)

foralla > 1,5 € [0; 1] and N € N large enough.

We use now the cubic phase e to introduce a new excitation Hamiltonian, obtained by

conjugating the main part g,e\ffa of Gy .o We define

Ryai=e 2 Ga, e (46)

on a dense subset of ffN. Conjugation with e# renormalizes both the contribution propor-
tional to Ay (in the first line on the r.h.s. of (42)) and the cubic term on the r.h.s. of (42),
effectively replacing the singular potential V( p/e™) by the renormalized potential @y (p)
defined in (39). This follows from the following proposition.

Proposition4 Let V e L3(R?) be compactly supported, pointwise non-negative and spher-
ically symmetric. Let Ry  be defined in (46) and define

g 1 N 1
RV = 3 (N = D@ O)(1 = No/N) + 508 () Ny (1 = N /N)

+an©) Y a;ap(l - %) +% > an(p)[byb*, +bpbp]

peA’ peAt a7
1
+ — Z aN(r)[bf+vafrav + h.c.] +Hy .
\/ﬁ roveAl:
r#E—v

Then for £ = N=% and o > 2 there exists a constant C > 0 such that ER = RN« — R?Vﬁ:a
is bounded by

+Er < CIN> ™+ N~ (log N)'*I(Hy + 1), (48)
for N € N sufficiently large.

The proof of Proposition 4 will be given in Sect. 6. We will also need more detailed
information on Rf]’\ffa, as contained in the following proposition.

Proposition 5 Let R%f,a be defined in (47). Then, for every ¢ > O there is a constant C > 0
(large enough) such that
wn (0)

RV = 20N + =2 = N +

NZ
Hy — Clog N)2 ==+ —C 49
log N N (log N) N (49)

foralloa > 2 and N € N large enough.
Moreover, let f, g : R — [0; 1] be smooth, with f*(x) 4+ g>(x) = 1 for all x € R. For
M e N, let fpr == f(N3/M) and gy := g(N;/M). Then there exists C > 0 such that

R, = fu R, ot + gu R am + O (50)
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with

ClogN
+Ou < ——— (/"% + llg'I13) (Hn + 1)
foralla > 2, M € Nand N € N large enough.

Proof From (47), using that |oy (0)| < C we have

N _ R 1
RiVw 2 5 O8O + DN ON: + 5 3 an(p[B}b", +bypb-]

peAT
1 N2 (1)
+ — Z wN(r)[ @ rav—i—h.c.]—l—HN -c—*_-c.
ﬁ rveAL: N
r#E—v
For the cubic term on the r.h.s. of (51), with
~ 2
S v DIE _ clogn (52)
p

peAl

we can bound

1
— Y oN((E byt a)
ﬁr,veAi '
r#E—v
f > @ ONWNG + Db a £ W + D2aé |
rveAl
r#£E—v
1 2 —1/2 2 12
<& > rPIV: + D7 2ba & (53)
oy
1/2
X[ > 'wf(l?' ||(N++1)I/Zav§ll]
nzfAi
C(log N)!/?
< % I 2E NN + DE.

As for the off-diagonal quadratic term on the r.h.s of (51), we combine it with part of the
kinetic energy to estimate. For any 0 < u < 1, we have

1 ~
> Z on(p) b;bil,—f-b_pb ]+ d=w Z pa’ »ap

peA’ peAT
- Y P o) T, L onp) .
- Ty e | K Trpn e RCX)
peAT
1 |wN<p>| LN
- 3 bpby + (1 =) ) pPay=—ap
4(1 — ) pens p? pent Y

@ Springer



39 Pagel14o0f72 C.Caracietal.

since aya, — byb, = a), (N4 /N)ap. With (14), we conclude that

5 Z N (P)[b3b™, +b_pby] + (1 —p) Y plaka,

peal peAl
1 ) 2 1 @) 2
S | Np(f)| G~ G | Np(f)l '
peAy peAl
With the choice © = C/log N and with (52), we obtain
1 ~
3 Z on(p) b’;bfp-l—b pbp|+ (1 =) Z pa’ »ap
peA; peA’
1 lon (p)I? lon (p)|? 43
*
T a1 — Z 7 Yt T Z > —C.
4(1 — ) pens P 4 pens P

To bound the first terms on the r.h.s. of the last equation, we use the term @y (0)A, in (51).
To this end, we observe that, with (41),

|y (p)|? - &y (0)[? < wn (0) (1 ClogN)SZJN(O)
40 —wp> ~ 40 —wp? ~ 40— N 2

for every p € A% (notice that |p| > 27, for every p € A% ) and for N large enough (recall
the choice u = C /log N). Inserting (53) and (55) in (51) and using the kinetic energy
ukC = C(log N 'K (remaining after subtracting the term (1 — )/ needed on the Lh.s. of
(55)) to bound the r.h.s. of (53), we find

oy (p)I? +5N(0)N L€

Reft > _ 0 _
2“’() 42* p? 2 M loen W
peds (56)
clog N?
N ——N3

Let us now consider the second term on the r.h.s more carefully. Using that, from (39),
on(p) = gnX(p/N%), we can bound, for any fixed K > 0,

72 |wN(p)| Sy |6N(5)|2_

peAt peAl: p
K<|p|=N*

With |[@n (p) — @y (0)] < Clp|/N¥, we obtain

|wN(p>| L v P 1 , I
peA* peAL: peA}:
K <|p|<N® K <|p|<N?

For ¢ € R?, let us define h(q) = 1/p?, if ¢ is contained in the square of side length 27
centered at p € A% (with an arbitrary choice on the boundary of the squares). We can then
estimate, for K large enough,

1
4r? Y —zsf h(g)dq .
pedt: P K/2<|q|<N*+K
K<|p|=N*
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For ¢ in the square centered at p € A* , we bound

1
q2

2 2
_lpm=q71 _ C

p2q®> T lqlP

’h(q)

Hence

2 a !
4 Y0 5 < —dg+C <2malogN +C.
pea: p K/2<|q|<N*+K q

K <[p|<N®

Inserting in (57), we conclude that

1 -~ 2
— Z M <2malogN + C.

peAl p
Combining the last bound with (41) (and noticing that the contribution proportional to log N
cancels exactly), from (56) we obtain

N (0) ¢ (log N)?

Hy — C——" N2
2 N++logN N N -

R, = 27N +

which proves (49).
Next we prove (50). From (47), with |@y (0)| < C, the bound (53) and since, by (52),

> an(p)E bt 6| < Y v (I ENIVS + 1)'/2%]
peAl peA’
172

~ 2
> DL |+ 0

peAr.
< Clog )2V + D2 1K1 ¢
it follows that
Ry =27N +Hy +ON.a (58)
where for arbitrary § > 0, there exists a constant C > 0 such that
+0no <SHN +CIogN) NL +1). (59

We now note that for f : R — R smooth and bounded and 6 ,, defined above, there exists
a constant C > 0 such that

o’y + 1) (60)

for all @ > 2 and N € N large enough. The proof of (60) follows analogously to the
one for (59), since the bounds leading to (59) remain true if we replace the operators b,

# = (-, #), and @y with [f (N4 /M), Lf (N4 /M), b1 or [f (N /M), [f (N1 /M), aagl]
respectively, provided we multiply the r.h.s. by an additional factor M ~2|| f’ ||go, since, for
example

Lf /M), Lf N /M) bpll = (F NG /M) = F((Ny + 1)/M))b
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and || f(NVe/M) — fF((Ny + 1D/M)| < CM ™| f|loo. With an explicit computation we
obtain

RSl = SRS o+ s RS m + 5 (U e, RS+ g, [aw, RS 1)

Writing R?\ffa as in (58) and using (60) we get
C log N

= (Lfor U RETI + g, Lgur RE 1) < (1712 + 118" 12) (Hn + 1)

5 Proof of Theorem 1

The next proposition combines the results of Propositions 1, 4 and 5. Its proof makes use
of localization in the number of particle and is an adaptation of the proof of [4, Proposition
6.1]. The main difference w.r.t. [4] is that here we need to localize on sectors of =V where
the number of particles is 0(N), in the limit N — oo.

Proposition 6 Let V € L3(R?) be compactly supported, pointwise non-negative and spher-
ically symmetric. Let Gy o be the renormalized excitation Hamiltonian defined as in (37).
Then, for every o > 5/2, there exist constants C, ¢ > 0 such that

OGN —2nN>cNy —-C (61)
forall N € N sufficiently large.
Proof Let f, g : R — [0; 1] be smooth, with f2(x) + gZ(x) = 1 for all x € R. Moreover,
assume that f(x) = 0 forx > 1 and f(x) = 1 for x < 1/2. For a small ¢ > 0, we fix

M = N'7% and we set fiy = f(Ny/M), gy = g(Ny/M). It follows from Proposition 5

that
RS, — 22N = fu (RS, = 27N) fur + gm (RS, — 270N ) gm )
CN*2(log N)(Hy + 1)

Let us consider the first term on the r.h.s. of (62). From Proposition 5, for all « > 2 there
exist ¢, C > 0 such that

C
Rty — 2N > c Ny — ~ (og N?NE-C. (63)
On the other hand, with (58) and (59) we also find
R, — 27N = cHy — C(log N) (N4 + 1) (64)
for all @« > 2 and N large enough. Moreover, due to the choice M = N 1-¢ e have
(log N)? (log N)? ,
fuNT fu TN
With the last bound, Eq. (63) implies that
fur (R?vffa - 27TN) fu = cfANy —C (65)

for N large enough.
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Let us next consider the second term on the r.h.s. of (62). We claim that there exists a
constant ¢ > 0 such that

- (Rf;vffa _ ZﬂN)gM > cNg2, (66)
for all N sufficiently large. To prove (66) we observe that, since g(x) = 0 forall x < 1/2,

. , 1 »
om (RSl = 27N )gu = inf (&, RTE) —2m | Ngd,
EeFZy il I=1

where 7'—251\1;/2 ={£ e ffN 1 & = x(NWy > M/2)&} is the subspace of ]:_EN where states

with at least M /2 excitations are described (recall that M = N '~%). To prove (66) it is enough
to show that there exists C > 0 with

inf ! Ref 2 > C 67
_in — (£, Ry.46) — 21 = (67)
SE}_EM/Q:HEHZI

for _2_111 N large enough. On the other hand, using the definitions of Gy « in (42), Ry, and
R%f o 10 (47), we obtain that the ground state energy Ey of the system is given by

Ey= inf (e *Onae?e)=  inf (£ (RY, +EL)E)
geFIV:E=1 geFNEl=1

with & = Er + e’Ac‘,'geA. The bounds (43) and (48), together with Propositions 2 and 3,
imply that for any o > 5/2 there exists C > 0 such that

+& < CNTV2Uog N [(Hy + D)+ e (N (Hy + 1) + W4 + D)e ]+ C
<CN "21ogN)'?>(Hy + 1)+ C

With (64) we obtain
+& < CNPogN)' 2 (R, —27N) + CN~2(log N)* PN +C, (68)
and therefore, with N < N

Ey-2rN<C inf {5 (RS, —27N)E) + CN'2(log N)*/? + C.
geFEV =1

From the result (3) of [13,14,16]

. 1 ff . 1 ff
L SERVE —2m = inf (e (R, —27N)E)
€FupillEl=1 §eFrlEl=1

E C
> c(—N —271) — —(logN)3/2 —CN'>o0
N VN

as N — oo. If we assume by contradiction that (67) does not hold true, then we can find a
subsequence N; — oo with

1 "
_inf ~ & R%ﬁ_aS) —27 >0
seFoy) piliEl=1
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as j — oo (here we used the notation M; = NJ]. ~¢). This implies that there exists a sequence
z <N; g ;
En; € }-zMj-/z with [|§x; || = 1 for all j € N such that

lim N—(SN,, R §N_,~> =2m.

j*)OO
On the other hand, using the relation Rﬁ\ff o« = e’AQNj,aeA — &, with & _; satisfying the
bound (68) (with N < N;), we obtain that there exist constants ¢y, ¢, C > 0 such that

l/z(logN )%/2

c1(én;. (R — 27N;)én;) —
< (e"En;. (On;.a — 27Nj)e Ey))

< eaEw,. (RS, — 27N;)Ew)) + CN

(log N ;)32

Hence for £y, = e?€y, we have
J J

1
Nh~n>loo N “::N/agNl aSNﬂ =2m.

Letnow S := {N; : j € N} C N and denote by &£y a normalized minimizer of Gy, for all
N € N\ S. Setting Yy = UjeB&y, forall N € N, we obtain that ||| = 1 and that

1 1
Nli_{noo ﬁ(lﬁzv, Hyyn) = Nll_f)noo N(EN, OnaéN) =27 (69)

Eq. (69) shows that the sequence vy is an approximate ground state of Hy. From (5),
we conclude that vy exhibits complete Bose—Einstein condensation in the zero-momentum
mode ¢, and in particular that there exists § > 0 such that

11— (g0, yn@o)| < CN7°

Using Lemma 2, Proposition 2 and the rules (11), we observe that
1 —-B -B
N(EN’ NiEN) = — (e "Un¥n, Nye  "Unirn)
(Un, UyWN4 + DUNYN)
1 (70)
+C [1 - N(I/flv, a*(wo)a(wo)llfzv)]

+C[1 = (g0, ynpo)] < CN7P

Zlazlazaz|—

as N — oo.

On the other hand, for N € § = {N; : j € N}, we have &y = x(N; > M/2)éy and
therefore

M N_S
2N 2

(€N Nién) >

Choosing ¢ < Sand N large enough we get a contradiction with (70). This proves (67), (66)
and therefore also

on (RSN = 27N ) gur = eNgdy (71)
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Inserting (65) and (71) on the r.h.s. of (62), we obtain that
RS, — 27N = cNy — Clog N)N* 2 (Hy +1) = C (72)
for N large enough. With (64), (72) implies
R4, — 27N > Ny — C.

To conclude, we use the relation e_AgN,aeA = R’f\’;fa + &1 and the bound (68). We have
that for « > 5/2 there exist ¢, C > 0 such that

GN.a — 27N = ce* (RS, — 2nN)e™* — CN~'2(log N)*?e* Nye — C
>ce’Nye ™ —C>cN, - C

where we used (72) and Proposition 2. ]

We are now ready to show our main theorem.

Proof of Theorem 1 Let Ey be the ground state energy of Hy. Evaluating (42) and (43) on
the vacuum 2 € ffN and using (40), we obtain the upper bound

Ey <2nN 4+ ClogN .

Notice that we cannot reach the expected optimal upper bound Ey < 2w N + C because of
the logarithmic correction in @y (0) (see (40)). In the lower bound, this logarithmic factor
is compensated by the contribution arising from the off-diagonal quadratic term, extracted
starting from (54). To obtain the same term for the upper bound, we would have to modify
our trial state (diagonalizing the quadratic terms in Ry ); this, however, would produce
even larger contributions arising from the potential energy.

With Eq. (61) we also find the lower bound E > 27 N — C. This proves (6).

Let now ¥y € L2(AN) with ||¢y| = 1 and

(YN, HyYy) <27N + K. (73)

We define the excitation vector &y = e~ BUnvy. Then || x| = 1 and, recalling that Gy o =
e BUNHy U;'(,eB we have, with (61),

(Y, (Hy =27 N)YYn) = (En, (Gn,a — 27 N)EN) = clEn, Nibn) — C. (74)
From Egs. (73) and (74) we conclude that
(6N, NiEn) < CO+K).

If yn denotes the one-particle reduced density matrix associated with v, using Lemma 2
we obtain

1
(Un, a* (@o)a(po)¥n)

1— (g0, =1-—
(%0, YN®0) N
1
=1 - (UNe én, " (g)alpo)Uxeén)
1 C C(l1+K)
= —(ePtn. NyePen) < —(En. Nyby) < ———
N N
which concludes the proof of (8). O
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6 Analysis of the Excitation Hamiltonian Ry

In this section, we show Proposition 4, where we establish a lower bound for the operator
Ry =e 2G5 e, with G, as defined in (42) and with

1
A=— > nlbf,,a%a —hel]. (75)
W rveAl
We decompose
geff =ONy+K+Zyv+Cn+Vn (76)

with IC and Vy as in (38), and with
1 Ny | Ny
On = 3onON = (1= 55) + 2NV O = 3an O (1 - 5F),

1 ~
ZN = 5 Z on(p)(bpb_p +hc)
peAT

CNZ\/> Z V(p/eN)[ gl 71)aq+hC:|

P:qEA p+q#0

(7"

We will analyze the conjugation of all terms on the rh.s. of (76) in Sects. 6.2-6.6. The
estimates emerging from these subsections will then be combined in Sect. 6.6 to conclude
the proof of Proposition 4. Throughout the section, we will need Proposition 3 to control the
growth of the expectation of the energy Hy = K + Vy under the action of (75); the proof of
Proposition 3 is contained in Sect. 6.1.

In this section, we will always assume that V € L3(R?) is compactly supported, pointwise
non-negative and spherically symmetric.

6.1 A Priori Bounds on the Energy

In this section, we show Proposition 3. To this end, we will need the following proposition.

Proposition 7 Let Vy and A be defined in (38) and (44) respectively. Then, there exists a
constant C > 0 such that

1
[ Vn,Al= N1/2 Z V(@ —=r)/eM)n b0 a0 + he] + vy
u,r,veA’y
UFE—v
where
1/2

(&, Syy€)| < Cog N)'2NYZ 74 “g | (78)

forany o > 0, forall &€ € }'_EN, and N € N large enough.

Proof We proceed as in [4, Prop. 8.1], computing [a;‘ﬂrua;‘a,,aqﬂ, b}, ,a* a,]. We obtain

*

Yo Vw=r)/eVynb}a* an+ O1+ Oy + O3 +he.

* *
u€eA*,r,veA’y

1
Vv. Al = <77
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with

*

1 ~
O = T Z V/e"yn b, ak,, a* apa,,
A*
r,],)l,EUEAf‘F
1 *
0= > Ve ynbrahat, apa, (79)
A*
p,}Lf,eveAf‘F
1 *
O3 = —ﬁ Z V(u/eN)n,b;ﬁrvafra;;ﬂapavw,

* *
U€eA*, p,r,ve Ay

and with > running over all momenta, except choices for which the argument of a creation
or annihilation operator vanishes. We conclude that §y,, = @1 + &, + @3 + h.c.. Next, we
show that each error term ®;, with j = 1,2, 3, satisfies (78). To bound & we switch to
position space and apply Cauchy—Schwarz. We find

(. ©18)] < ﬁ /A dxdy ANV (x— ) NG ydok i |
<Clinl | drdy Ve s = ylavinél?

<CN~VY )R,

for any & € F. fN The term @3 can be controlled similarly. We find

1 .
5. ©36)] = ‘ﬁ [ dxdy VN = e b )

_ 1/2
< CN7YV IR,

It remains to bound the term @, on the r.h.s. of (79). Passing to position space we obtain, by
Cauchy-Schwarz,

1 2 v Mevsvsy v
(&, ©28)| = ‘ﬁ /A dxdydz MV (" (y = )i = ) (&, b;tayazaxaya‘
<cNTV? / dxdydz NV (@M (y = )i — )l ldxdydcE | larayE |
A

12
- 2 2 v v ov
< CN™2 A [ /A dxdydz NV (e (y — 2)lif(x —z>|2||axays||2] :

To bound the term in the square bracket, we write it in first quantized form and, for any
2 < g < oo, we apply Holder inequality and the Sobolev inequality |lull, < C./q |lu| 41 to
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estimate (denoting by 1 < ¢’ < 2 the dual index to q),

N n
ZZ/ [V V@) iR i = ) 1§P et )P dxy

n=2i<j

< Cqlle*MV(eN) « 7121l

N n (80)
x Y n Z/ [V06@ 01 i) P+ 6 x| . d,
n=2 i=1
< Cqllil3, 10 + N 2N g 12,
With the bounds (25), (26),
1713, < 17159 17158~V < N=2ald N2@ =Dl
we conclude that
(£, ©26)] < Cq'ANTVENUI NV VPN P 100+ N VAN g
< Cq'PN'ENTON K g
forany 2 < g < 00, if 1/q + 1/q’ = 1. Choosing ¢ = log N, we obtain that
(€. ©26)] < Clog N)/2N'2~|11)%g .
[m}

Using Proposition 7, we can now show Proposition 3.
Proof of Proposition 3 The proof follows a strategy similar to [4, Lemma 8.2]. For fixed
£ e F:N ands € [0; 1], we define
fe(s) = (&, e Hyes) .

We compute

fi(s) = (&, e MK, Ale*AE) + (£, e[V, Ale’E) . (81)
With Proposition 7, we have

1 ~
[Vy, Al = NG > (Vs [bryat a0 +he] + Sy,
u,veAY ,u#—v

with 8y, satisfying (78). Switching to position space and using Proposition 2 we find , using
(25) to bound [|7]lcc < CN,

L
VN

S (Ve/eN) 5 maie, oAbt ave >’

u,veA}
1

=|— [ dxdy NV (x —y)ix — —SA g oA
‘\/N//p xdy eV V(e (x — yNij(x — y)(§, e Cayayaye’E)

- . s 1/2 (82)
<N / [/ dxdy e V(e (x — y)llaaye’ & ]
A2

172
X |:/ dxdy NV (e (x — Y))Hﬂvlyemfﬂz]
A2

1/2 1/2
< CN'2 | /Pe e IN e |
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Together with (78) we conclude that for any o > 1/2
(€, e AV, Al )| = Clg, e My AE) + CN(E, e AN + Dete) (83)

if N is large enough. Next, we analyze the first term on the r.h.s. of (81). We compute

1
K, Al = — Z 2r2n, [b;‘+vafrav + h.c.]
ﬂ roveAl
2
+ Vi > revn[by,at,an+hel (84)

*
r,veA+

=T, +T,.
With (31), we write

Ti= —VN Y (V(/e") * fn.o()[b}ya ,au +he.]
r,vel\’jr

r#E—v
+2VN Y NG x fy.) ()bt ay +he]

*
r,veA+

=T +Tp.

(85)

The contribution of Ty can be estimated similarly as in (82); switching to position space and
using (20), we obtain

(61, T11 &)| < CVYN / dxdye® VeV (x — y)) fo(e™ (x — y))llaxayé | llay€ |l

=cVN| / dxdye®™ V(" (x — y)|ldrdyE “2]1/2 (86)

1/2
x [ [ axase v = myfece s - )l ]

172 1/2

= CIIVy SN

forany £ € F. fN . The second term in (85) can be controlled using that for any & € ffN and
2 < g < oo we have

N2a/2 dxdy x(Ix — y| = N™)llaxayé |[llax& |
A

1-1/q 1/q
< [ aviaer ([aveac-yi=vo) O ([anaar)
p (87)

12 12
< CN2ag12 [ / dxnéxsnz] [ / dxdy |y Vyiy& |2 + / dxdynéxaysw]

< CN*g' 2| Ny + D2 [IK2We + D2+ IV + DEN]
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Hence, choosing ¢ = log N,
[(£.T128)]|

= [VNn, [ |dxdy xe = 51 = N fate = s B
A2

(58)

< ONI [ dxdy xx = 31 = Nl glllisg

< Clog N)'2 W + D2 [IKY 21 + 1V + DV2e]
With (86) and (88) we conclude that
(&, e A T1e&)| < Clog )2 (Hy + D2 g | Wy + D2 4E]. (89)

forall ¢§ € F fN. As for the second term on the r.h.s. of (84) we have

|(€, T28)]
c 20 rl/2 2 12 2.2 2 V2
< = 3 PN ?a ) > Pnfllakll (90)

* *
reAl rveAl

< CN"|IK' 25,
forany £ € F. fN. With (89) and Proposition 2, we conclude that
(5, e ALK, Ale* )] < C(§, e Hye™8) + Clog N (£, e NG g) .
Combining with Eq. (83) we obtain
(6. e[ My, Ale8)] < C(. e Hye'E) + CN(E. e NG 6) .
With Proposition 2 we obtain the differential inequality

|f£()] < Cfe(s) + CN(E, (N4 + DE).

By Gronwall’s Lemma, we find (45). ]

6.2 Analysis of e A Oye?

In this section we study the contribution to Ry arising from the operator Oy, defined in
(77). To this end, it is convenient to use the following lemma.

Lemma 3 Let A be defined in (44). Then, there exists a constant C > 0 such that

—A _x A _ *
Z Fpe ayape” = Z F,,apap+5F
peAT peAT

where

(&1, &)l < CNTXIFlloo IV + D& TNV + D25

foralla > 0, &1,& € FEN, F e (OO(Aj_), and N € N large enough.
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Proof The lemma is analogous to [4, Lemma 8.6]. We estimate

‘ Z Fp((E1. e ahape’ts) — (Slaa;ap‘i:Z))‘

peA’
_'/ ds Z Fpr,e” apap7 ]esA§2>‘
peAT
f ds Z |Fro + For — Folin 11’481, bF, ya* ave™ 6)|
JeA]
5C||n||||F||oo||<N++1)‘/251||||<N++1)1%”.
where we used Proposition 2. O

We consider now the action of e on the operator Oy, as defined in (77).

Proposition 8 Let A be defined in (44). Then there exists a constant C > 0 such that

e Oyt = SoNON ~ 1) ( - %) [PNT©) — 5oy QNG (1~ A /M)
+ oy
where
+80y < CN'™*(W4 +1)

foralla > 0, and N € N large enough.

Proof The proof is very similar to [4, Prop. 8.7]. First of all, with Lemma 3 we can bound
i{e*/‘ BGN(O)(N ) (1 - %) +[2NV(0) - %aN(O)]NJF] et

-~ BJ)N(O)(N .Y (1 - %) +[2NV(0) - %GN(O)]J\A} }

<CN'"“WN,+1).
Moreover, for the contribution quadratic in Ay, we can decompose

(E, [e*A/\/ieA - /\/'er] E)

= <§1, [e_ANJré’A - N+] %’> + <’§, [e_ANJreA - N+] §2>

with & = e AN e4& and & = N, £, and estimate, again with Lemma 3,
. [em 3¢t i ]e)
< CN"We + DVZEN [T + D25+ IOV + D25

With Proposition 2, we have [[(Vy + 1)'/2&1|| < C|[(Vy + 1)32¢]]. a]
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6.3 Contributions from e~4/Ce”

In Sect. 6.6 we will analyse the contributions to Ry  arising from conjugation of the kinetic
energy operator K = ) peat, pza;‘,a p- To this aim we will exploit properties of the commu-

tator [/C, A], collected in the following proposition.

Proposition 9 Ler A be defined as in (44) and @y (r) be defined in (39). Then there exists a

constant C > 0 such that

= VN Z (V(/eV) * fy. (P (b a” ,aq + h.c.)

p.qeAL. pF—q
1 —~
+ Y. av[bygat ag +he] + b
P.geAL p#E—q

where
(&, 8c8)] < CN~"Qlog )"K' €| IN %€l + CNIIKM ¢ )12
foralla > 1,& € F_EN, and N € N large enough. Moreover, the operator
Ag = f Y. av[b)igat yaq. A]
p.qeAL pF—q

satisfies
(&, Axc8)| = CN“(og M) 2IK2E 17 + CN NIV + D2
oralla > 1,& € FN and N e N large enough.
+

Proof To show (91) we recall from Egs. (84), (85) that

(K, Al= —v/N Y (V(/e")* fn.)()]bfy,a" ay +he]
r,veAl

r#E—v
TN Y NGk Fr .o @)[b et a +he]

roveAl

\/7 Z r-vn bl at.ay+he]

rveAl

=Tn+Tr+T2.

with T, satisfying (90). Using the definition @x (p) = 2Ne2N A, Xe(p) we write

1 ~
T2 :ﬁ Z wN(p)[ pt+q —paq+hc]
P.geAL, pF—q
2
+ﬁ€2N)\.[ Z (XZ*")(P)[ p+q —paq +hC]
P.qeAl  p#—q
=Ti21 + T122.
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Hence, 6x = T> + T122. To bound Tj2; we switch to position space:

1€, T1228)|

< CN*72 / L Xe@ = i =yl € ll1d]l
A

172

1/2
< CNX30 [ f Xl = y)néxéysnzdxdy] [ / i = y)|2||&xs||2dxdy}
A A

1/2
< CN“ 2N % [ / X - )’)”éxéyéllzdxdy:l :
A

To bound the term in the parenthesis, we proceed similarly as in (80). We find
.y 1/2 _2a/q’
/ X0l = Yy Pdxdy < Cqllxell KN 2817 < CqN' =204 i 2 12
A

forany g > 2and 1 < g’ <2 with 1/g + 1/q’ = 1. Choosing g = log N, we obtain
- 1/2
(€, Tiné)| < CN~(log N) 2N PENIK! ¢ |

With (90), this implies (91).
Let us now focus on (92). We have

1 ~
— D an(P)[bhigat yag, Al
P.qeAL, pF—q
1 ~
== Z on(P)nr [b:;_l’_qaipaqa b;k_H)airav - a:a—rbr+v] .

N
r,p.q,vEAT,

PF—q.r#F =V

With the commutators from the proof of Proposition 8.8 in [4], we arrive at

12
1 -
—= Z ON(P)[bh g0t pag, Al +he. = Z Yj+he.
P.g€Ay pF—q j=1
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where
1 b -~ * * *
Ti= - ) (@@= +an)bl bl e a,
q.r,veAl,
qFv,rF—v
1 ~
= — Z oy +q)n(1 —N+/N)al’fa;‘+qaqa,+v ,
q.r,veAl,
r#E—V,r£—q
1 —~ ~
Tii=— > (@Bye+v)+an@)n( —Ny/Najay,
roweAt
r#&E—v
1 -
Yii=— Y anr+v—gn(—Ny/Naja;_, ,aray.
q.r,veAl
qFv,rF—v
1 -
Tsi= -5 Y an(pmeaidl,at arariuay,
p.q.r.veAT,
PF=GrF=V
1 ~
Yo = — V2 Z oy (r + v)n,al’fa;"frfva,raq,
q.r,veAl,
qFr+v
| ©3)
T = — m Z 6N(”)77ra;x;a;:rrarJrvaq s
q.r,veA},
qF#—r,r#—v
1 ~
Toi= D ONDIby b A a,
r,v,peA’,
pFE—Ir—v
1 ~
Toi=— Y an(pnbl_bi,at,a,
p.roveA’,
pFEr,r£—v
1 -
T = — Z WN (r)nrb;+ra:aqbr+v ,
q.r,veAl,
qF—r,r£—v
1 ~
T = — N Z wN(p)nrb;+Uatpafrbr+u s
p.roveAy,
pPFE—VIFE—V
1 -
T = — Z oy (r + v)nrb;_r_va:a,rbq .
q.r,veA}
r#q—v,—v

To conclude the proof of Proposition 9, we show that all operators in (93) satisfy (92).
To study all these terms it is convenient to switch to position space. We recall that wy (p) =
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gnX(€p) with |gy| < C and £ = N~%. Using (87) we find:

€. 1i)| < eNZ! /A daxdy xe (e = ) IbGiobeay | [I1a:€] + lay|]

< CN* | f dxdy xe(x — WIbrdy (N4 + DY 2g |||
A

< CN~“(log \)'?| (W4 + D21 ) .

The expectation of 7> is bounded following the same strategy used to show (87). For any
2 < g < oo we have

(5, 128)|

< CN*! /3 dxdydzxe(z — )iz — x)lllaxayé |llla-aé |
A

<ont [ dxdzlite - ollddsg)
A

1-1/q o 1/q
X (/ dy x(|z—yl < N‘“)) </ dyllaxayéllq>
A A

12
< Cq' PN Il + D ||[ /A dxdy||ix Vyiy€|)* + /A gxdynéxéysnz}

< CN"“(log \)'?| W+ + D211 ),

where in the last line we chose ¢ = log N. The term 73 is of lower order; using that
| >, ON (r)r]r‘ < IxC/N92lnll2 < C and Cauchy-Schwarz, we easily obtain

(&, 138)| < CNTHIWL + D22,

The term 73 can be estimated as 77 using (87):

e va)] = N [ dudy ex = 1€
A

= CN* | / dxdy xe(x = y)lacay€llay (Vs + D]
A

< CN™“(log N)' (W5 + D'E K¢
The term 7 is bounded similarly to 13; with ¢ = log N we have
_ v 12+
‘@, ng)} < CNZO[ 2”’7” /3 dxdydz xe(y — Z)”axayazS””NJr/ axay‘i:”
A

<CN ) [ dxdy i)
A

1-1/q oo 1/q
X </ dz x(ly —zl < N“")) (/ dz IIaxayazé§||’1>
A A

< CN~*(log \)' 2|V + D 2g 1K ¢
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The terms Y and 775 are of smaller order and can be bounded with Cauchy—Schwarz; we
have

|(&, Te)| < N2 f  dxdydz e (x = y)llaxayla i ag |
A

1/2 1/2

< CNeT32 ( / dxdy ||éxéy5||2) ( / dxdy x(|x — y| < N*“)Méysuz)
A2 A2

< CN7NWL + D22,

and

(€. T78)| < CN**72 / dxdydz xe(y = D)1z — x)|ldxdy€])>
A°
1/2
<CN*7? </3 dxdydz xe(y — z)lléxéyéll2>
A

1/2
" (/ dxdydz iz — x)I |acdyg ||2)
A‘
< CNHWy + D22
The terms 13, 111, Y12 are again bounded, as 17, using (87). We find

- 125 « ciins
(€. (Y5 + 11 + T12)8)| < CN** M| fdedy Kol = PN 2 axayg a6 |
A

< CN~“(log N)' W5 + D' 2e I ¢
It remains to bound 79 and 77¢. The term 7y is bounded analogously to 1%:

(&, 7o8) |

< CN*! /3 dxdydz x¢(x — 2)n(x — y)lllacayaz§|lllay§||
A

1-1/q
<ent [ avayiie - i ([ dexiy-a =87
A A

Lo 1/q
X ( / iz ||axayazsuq)
A

1/2
< Cq'PN¥I! [ | dxayie - y)|2||ay5||2} [ | dxay|ia.a,az)
A A
< CN™*(log N)'2|(N4 + D' 2g 1K)
As for T1g, we find

5 12
)

(€. T108)| = CN>*! f dxdydz xe(y = Dlii(x = 2)lllaayé I
A,
Proceeding as in (80), we obtain
(&, T10E)| < CaN™ lxe * lillly I1K"2E 117 < Cqllilly 1K1

for any ¢ > 2, and ¢’ < 2 with 1/g + 1/¢" = 1. Since, for an arbitrary ¢" < 2, |7l <
702 = lnll2 < N~%, we obtain

[(&, To&)| < CNT K22
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We conclude that for any o > 1
12

(&, ) TiE)| < CN~(log )2 |I(K + DV )? + CN W + 1)'2E)%.
j=1

6.4 Analysis of e Zye”

In this subsection, we consider contributions to Ry  arising from conjugation of Zy, as
defined in (77).

Proposition 10 Let A be defined in (44). Then, there exists a constant C > 0 such that

1

Ag A

e"Zye =5 E an(p) (b5 »bZ, +bpb_ p) +3zy
peAT

where
+5z, <CN'"™(Hy +1)
foralla > 0, and N € N large enough.

Proof We have

A
5 Z an(p) [e A (b5bE, +bpb_y)et — (b5b%, +byb_p)]
pEA*
%94)
/ ds Y @n(p) e *Albsb* , + byb_p, Ale™.
peA’
We compute
= Z an(P[b5bE ., b}y, a" ay — ata_rbyy]
peA*
_ 2
= —an)bEbY b, + DN (b (b:‘b,+v - Na;ka,ﬂ) 95)
+anr+of1- Ny ata ——Zw (p)ba* a*a_,a
N N —r—v%y Nppfpv—;r-k—v-

peA*
With (95) we write
1 ~
5 > (bt , +byb_p. Al = I +he.
peA* j
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with
1 ~
M= - > oyl bt bY,
rveAl
r#E—v
M=% axemb: (bt - 3a*am,) :
\/N = v r N r
r,v .
r¢7:
1 N Ny
My=—= Y ant+on(1-=" b5, aja.
\/N N r—=v-—v
r,veA
r#fi
1 ~
Iy = — W Z wN(p)nrb;aipa:a—rar+v~
rv, peAl:
r#—v
To bound the first term, we observe, with (52),
1/2
e, me) < L2 pt e v, + 012 | S 0]
» 441 = «/ﬁ + + v2

*
veAy

< CN~“(log N)' 2K 2 |4 + D2

The term I73 can be bounded similarly to /7y, with (52). We find

(€.

I3€)| < CN~“(log N)'2|(Wy + D)2 |lIK g ) .

With |oy (r)| < C, we similarly obtain

€, TE)| < N~ InllIK PN eV + D)2

< CNUIE2E NG + DY 2.

Finally, we estimate, using again (52),

12
(& )| < NR( YD PP Plla-pan Vs + D))

r.v,peA;

l@n (p)I? 12
(X P laansl?)
% )4
r,v,peA’l
< CN72|nlldog N2 2 (N4 + DENINVG + DE]
< CN~*(log )"K' £ | (Vx + D2

With (94), we conclude that

1 ~ _
\5 D on(p) [ e (bpb ), +bpbp)es) — (£, (bpb", + byb-p)E)]

peA*

1
< CN *(logN)'/? /0 ds |IK2e e || (Vg + D24
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With Proposition 2, Lemma 3, we conclude that

1 _ _
‘E > an(p) [(& e (b3bE, +bybp)es) — (€. (bhb*, +bpb,,,)g>]‘

peA*
2 1/2
= CN " (log )2 [ 17381 + NN g 1 I Ovs + 12
< CN'Z0iy + 1),

6.5 Contributions from e~ACye”

In Sect. 6.6 we will analyse the contributions to Ry  arising from conjugation of the cubic
operator Cy defined in (77). To this aim we will need some properties of the commutator
[Cwn, A], as established in the following proposition.

Proposition 11 Let A be defined in (44). Then, there exists a constant C > 0 such that

N _ N
[ev.Al=2 3 [Ver/em + Vi + v)/eN)n,]a:;a,,(1 - W+> + ey

*
r,veAl

where

172

(&, Sey &) < CNPPPHVZENING + D2 (96)

foralla > 0, & € ]-"fN, and N € N large enough.

Proof We consider the commutator

[CN,A] = Z V(P/eN)nr[ g aq,br+va Ly — a;ka_,br_;_v]—l—h.cn

P.q€A:p+q#0
rveAl

As in the proof of Proposition 9, we use the commutators from the proof of Proposition 8.8
in [4] to conclude that

NN, &
[ev Al =2 32 [V /e + T +v/em Jasa, 5 + (&) +he)

rveA} j=1
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where

I
Il

— Y Vip/eMmbr b at an
rv,peA,

pFY
3 Vp/eMn (1= Ny /Nyaka® ya s par o,

rv, peA}
r#—p
Y Vil = Ny /Nyaja® a-rar i p,

rov,peAl:
r+v#p

[
[3e)
Il

&3]
o
I

1 —~
N
v Z V(p/e )nra:a;+qafpa_,ar+vaq,
v, p,geAY:p+q#0
. % N
5 = — — Z V((r+v)/e )nrafja;“_r_va,raq,

rv,geAl:
r+v#q

74 N * ok
Z Vir/e )ﬂravaq+rar+vaq
rv,geAl:
r#-q
v N * % %
Yo Vp/emiby bt pat au,
rv,peAl:
r+v#E—p
74 N * * *
D Vip/eMm by by 0t a,
ru, peAl:
r#F=p
53 N * * *
_ Z V(v/eMneby_ by ,at a,
rv,qeAl:

q#v
Bl = Z V(r/eN)n,b;+ra:aqb,+v,

rov,qeAl:
r#E—q
Ei=— ) Vp/eMmbyat ja by,
rv, peAL:
pF—V
Bl = Z V(r+ v)/eN)nrb;_,_Ua:a_rbq .

rv,qeAl:
q#r+v

I
Il
I

[

6]

[=)}
I
|
|

&3]
~
Il

6]
o0
I

&3]
K=
Il

To prove the proposition, we have to show that all terms &, j = 1, ..., 12, satisfy the bound
(96). We bound = in position space, with Cauchy—Schwarz, by

(€. 518)| < C /A dxdydze®™ V(e (x — )i = 2)l1ax€ | |xdiydc |
1/2
<C [ / (dxdydze®™ V(e (x — y>)||éxéyézé||2]
A
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1/2
x [/ . dxdydz eV (e™ (x — y)|ii(x — z)IQIIszEIIZ]
A

< ClnllIWV + D'2e vy e |

< CN'"272 |V + D)2 IIV}V/zéII-

We can proceed similarly to control Z9. We obtain

(£, E9&)| < CNY2 | W + DIV e

The expectations of the terms Z3 and &1, can be bounded analogously:

(€, 238) + [ (€, E128)|

<C /A  dxdydz ANV N (x — ) (Inx — 2|+ 1n(y — 2 ) 1xdiy& |||
1/2
<C [/A dxdydz e® V(e (x — y)llaxay €12 (Inx — 2)1* + In(y — z>|2>]

12
X [/ dxdydz &NV (eV (x — y))llglevlz‘fﬂz]
A3

< ClInllNE + DENIVY €
< CN'2= Wy + D2e vy el

As for 24, we find

1 Mk MR NKNY NN N
(€., Ba&)| = ‘N /A _dxdydze®™ V(e (y - z))(;axayaza(nx)axaya’

_ v v v 1/2v
< CN 7l / 2dxdydze2NV(eN(y—z))naxayazaan dyayE|
A
12
<CN7Ynl [ / _dxdydz NV (y - z))néxéyézsnz]
A

12
x [ / dxdydz ANV (N (y —z))||/\/i/zéxéyé||2]
A

_ 172 1/2
< CN'YP eIV e
The terms &5 and Z¢ can be bounded in momentum space, using (154). Hence,

1§, E5&) + 1(§, Z65)l
v N
= CcN~! Z (MMr”vmavaq—r—vg” ”a—raq%_”

[v]
rv,qgeAl

V(r/eM)
[r + v
< CN'2 (W, + D)2 1K .

[nellr + vlllar+qavé |l IIaqar+vEII>
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Similarly we have

v N
€, E28) + 1€, EroB)l < ) (Mmﬁlpmava*pé”||ar+vafr7p$”

rv, peA’} Pl
V(r/eV)
+ m“ﬂ”r + v|||aqar+v‘§””ar+qav$”

< CN3>=9| (W, + D' 2g |1k %)

Next, we rewrite =7, Eg and Z11 as

87 = / daxdy NV (e (x — y)bibha* (i) .

)
o]
Il

f dxdydz PNV (x — )G — 0B B,
A2

XZ)

By = — / dxdy Vv (e (x — y))b*a*a(nx)b
AZ

Thus, we obtain

(€, Z78)| < Clin|l / dxdy NV (eN (x — y)) INLPacay€||a |

2 2 2
< CllniNY 2V eV e
1/2 1/2
< CN'2py E EINN el

as well as
(&, Z5)
=C / _dxdydz NV (" (x = )i — 2)llldxdydzE | aE |
A
1/2
<C |:/ dxdydz €2NV(€N(X - )’))”Elxéyézgnz}
A2
1/2
x [fzdxdydz 2NV (e = y)ntx - z>|2||ézsu2}
A
< CN'Z sV e,
and

(€, 5118)| < cunnf dxdy NV (eN (x — ) laxdy€ IV} 2aE |

1/2
< Clnlivy

12 1/2
ENINGEN < CNY2= Ve vy e
Collecting all the bounds above, we arrive at (96).
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6.6 Proof of Proposition 4

With the results of Sects. 6.1-6.5, we can now show Proposition 4. We assume « > 2. From
Eq. (76), Propositions 8 and 10 we obtain that

7€Na =

Q

—Ageff A
GV

tu\~

1
onO)(N — D1 = Ny/N) + [ZNV(O) - *wN(O)] N4 (1 =Ni/N)

+ 5 > BN (p)[byb*, +bpb_p] + K +Cx + Vv
peAT

1
+ / ds ™4 [IC +CnN + VN, A]eSA + 57(3])
0
with
+E5) < CN'™(Hy + 1).

From Propositions 7, 9 and 11, we can write, for N large enough,

m+w+w,]

Za)N(r) Lt ay +he] = VN Y Vir/eM)[br, % ay +hel]

r veAl rov,eAt,
p#—q
+2 3 [Ve/eMme + Vo +v)/eyn]atan (1 = N /N) + £
nueAi

where

1/2 1/2
(€, ER6)N <CN'~(log N) 218117 + N~ IR e NIV + D¢
+ N~ log M) 2NN + D)2

forall £ € }EN . From Proposions 2, 3 and recalling the definition (77) of the operator Cy,
we deduce that

1
/ ds e K+ Cy + Vy, Ale™?
0

! 1 ~ * *
= /0\ ds e_SAI: — CN + ﬁ Z a)N(r)[bH_va_rav +hC]

*
r,veAl

CD)

+2 3 [Ve/seMm + V(o + /e Jajan (1 - %)]e“‘ +&9

*
r,veAJr

with

+69 < CIN* + N2 (1og ) /21 (Hy + 1)

for N € N sufficiently large.
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‘We now rewrite

2 3 [Ve/em + V(o + vy /e Jagan (1 - %)
rveAl
=4 Z V(r/eN)majaUO - %) (98)

nveAi
~ -~ N
+2 3 [V +v/e") = Ve naian (1 - 5F) = Q + Q.
roveAl

With Lemma 1, part (iii) we get

~ . ~ C
23 V/eMin — 26y 0) =28V O] = (99)
reA*
and therefore, using Lemma 3 and (99)
_ A ~ N
It [6 SAQleSA — 2[20)1\/'(0) — ZNV(O)] Z:* a:tav<1 - ﬁ
veAl (100)

c
<CN'"™ W, + 1)+ NJ\&.

On the other hand it is easy to check that e=*4Q,¢*4 is an error term; to this aim we notice
that

Ve = Ve +v) /e ]| < CNJvle™ .
reA*
Hence with Props. 2 and 3 we find
+[e74Quet ] < CNe Ve INPKV2eh < CN2e N (Hy + 1), (101)

To handle the second term on the second line of (97), we apply Proposition 9 and then
Propositions 2 and 3

1 1 ‘ ‘
0

*
r,veAl

1 1 K
=+(— [ 4 dt ?) R L “‘)
(m/o g/o 2 v b a i, Ale (102)

r,veA’
1 K
< c/ ds / dte " (N (log N) K + N Wy + 1))e'?
0 0

<CN'""@logN(Hy +1).

As for the first term on the second line of (97), we use again Proposition 11. Using (98),
(100) and (101) we have

1 1 s
/ ds e ACye —Cy = / ds / dt e [Cy, Ale™
0 0 0

= [26n () — 2NV )] Y ata,(1- %) +eW

(103)
peA’
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with £ < CN2(Hy + 1) + CN~' (W, + 1).
Inserting the bounds (100), (101), (102) and (103) into (97) we arrive at

1 . 1.
Riva=5(N-DoyO0 —Ny/N) + EwN(O)M (1= Ny/N)

+ay0) > aj;a,,(l - %) +% > an(p)[byb*, +bpb_y]

peAl peAl

> an[bfat,ay +he] + Hy + Er
roweAy:

r#—v

1
+ R
VN
with
+6r < CIN*™ + N2 (log )/ 1(Hy + 1)
for N e N sufficiently large.
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Appendix A: Analysis of Gy

The aim of this section is to show Proposition 1. From (12) and (37), we can decompose
On.o =€ PLne! =GN, + Gy + G + O
with
g}(\{'y)a — e—BL%)eB )

To analyse Gy o we will need precise informations on the action of the generalized Bogoli-
ubov transformation e® with B the antisymmetric operator defined in (33), which are
summarized in Sect. 1. Then, in the Sects. 1-1 we prove separate bounds for the opera-
tors QI(\{.)Q, j =0,2,3,4, which we combine in Sect. 1 to prove Proposition 1.

The analysis in this section follows closely that of [4, Sect. 7] with some slight modifica-
tions due to the different scaling of the interaction potential and the fact that the kernel 7, of
P is different from zero for all p € A% (in [4] n is different from zero only for momenta
larger than a sufficiently large cutoff of order one). Moreover, while in three dimensions it
was sufficient to choose the function 7, appearing in the generalized Bogoliubov transfor-
mation with ||n|| sufficiently small but of order one, we need here ||5|| to be of order N ™% for
some « > 0 large enough. As discussed in the introduction this is achieved by considering
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the Neumann problem for the scattering equation in (16) on a ball of radius £ = N™%; as a
consequence some terms depending on £ will be large, compared to the analogous terms in

(4].

Appendix A.1: Generalized Bogoliubov Transformations

In this subsection we collect important properties about the action of unitary operators of
the form eB, as defined in (34). As shown in [2, Lemma 2.5 and 2.6], we have, if |5l is
sufficiently small,

= (=)
e_BbpeB = Z Tadg)(bp)

|
n=0 (104)

o0 ( 1)"

-B B — (n)

e b;e =E . ady (b;)
n=0

where the series converge absolutely. To confirm the expectation that generalized Bogoliubov
transformation act similarly to standard Bogoliubov transformations, on states with few
excitations, we define (for ||n]|| small enough) the remainder operators

dy=3" %[adi’”g(bq) — b | A=) %[adgmg CAREAC I
m>0 " m>0 "

where g € A*+, (Bm, o) = (-, +1) if m is even and (8, o0;y) = (%, —1) if m is odd. It
follows then from (104) that

e Pbye® = yyby +ogb*  +dy. e P’ =y bt +oyb_g +d} (106)
where we introduced the notation y, = cosh(#,) and o, = sinh(#,). It will also be useful to
introduce remainder operators in position space. For x € A, we define the operator valued
distributions dy, d through

-Bp B _ 1.~ H X g —Bpx B __ px.y, x T
e "bye” =b(yx) +b"(0x) +dx, e "bie” =b7(yx) +b(ox) +d;  (107)

where 7, (y) = 3, c o+ cosh(ng)e’? =) and &, (y) = >y sinh(1,)e’? =) The next
lemma is taken from [4, Lemma 3.4].

Lemma4 Letn € Ez(Aj_), n € Z. For p € A%, letd), be defined as in (106). If ||| is small
enough, there exists C > 0 such that

C
I+ D261 = = [Inp IOV + D726+ i, V. + DO 2],
(108)
C
I3 + DY2d5g|| < 7 Il I + He+I/2g

forallp e A* & € ]-'fN. In position space, with Jx defined as in (107), we find
v C
NN+ D2 = Inll[ IOV + D28 4+ b, + D228 (109)
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Furthermore, letting éx = JX + (N /N)b* (), we find
IVy + D"2a,d |

¢ M n
< < [ IIPHOVE + D228 4 Il = I + D047

+ I lllas W + DOFD2E + )Py (Vg + D2 e
+ Iy OV + D22 |
and, finally,
I+ D" 2dd 8 |
< %[ 1PNV + DOFORE ]+ Il — DIV + DD i

+ P lax Wy + DOI2E + )P llay Wy + DO
+ Il laxay (Vg + DO+ 2 ]
forallé € F£".

A first simple application of Lemma 4 is the following bound on the growth of the expec-
tation of NV.

Lemma 5 Assume B is defined as in (33), with 1) € 2(A*) and Np =n—pforall p e A%.
Then, there exists a constant C > 0 such that

|6 [P Nbe® — NG J6)| < IOV + D' 2P
forall & € }'_EN.
Proof With (106) we write
e_BAﬁ+€B-—.N;
1
= / E_SB[N+,B]€sBdS
0
! B B
— * g%k
= /O > npe Bbyby + bib* et B ds
peA’
1
- / > 0 [0y + o b, + A by + oD, +dC)) +he ] ds

peA’

with y" = cosh(sn,), o5 = sinh(sn,). Using |y < C and |0 < Clnpl, (108) in
Lemma 4 we arrive at

(6 [e7 PN — A )|
< CIWNG + D'2EN Y Inpl [Inp NV + D€+ 11b,yE 1] < ClinllIW + D212

peAT

[}
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Appendix A.2: Analysis of Q,E,OL =e B L,(\?) ef

We define £ ](\? ) 50 that

0 —B £0 1= 0
Gy =e BLef = FVON + N = DIV = Ny) + eQ.
where we recall from (13) that
9= 190 1+ N N
N =5 OYN =1T+NHN —N3).
Proposition 12 Under the assumptions of Proposition 1, there exists a constant C > 0 such
that
(0) l—a
N SCN T NL+ 1)
foralla > 0 and N € N large enough.

Proof The proof follows [4, Prop. 7.1].
We write

0 N(N —1) ~ N ~
L) = 2500+ EV(O)[ 3 b, —N+].
qeA;
Hence,
£0 _ Vo) 3 [e—Bb*b B — b*b ]— N0 [e_B./\/' B\ ]
N T 9 974 %4 ) + +1 -
qeA’
To bound the first term we use (106), I)/q2 —1] < Cng, log| < Clngl, the first bound in (108),

Cauchy—Schwarz and the estimate ||n|] < CN~“. To bound the second term, we use Lemma
5. We conclude that

1€, Vg) < Ny + D22

]
Appendix A.3: Analysis of g,fffx =eBLPeb
We consider first conjugation of the kinetic energy operator.
Proposition 13 Under the assumptions of Proposition 1, there exists C > 0 such that
e PP =K+ > pPup(bpb_p +b3b* )
peAT
112)
N =N\ (N=Ny—1 (
2.2 + + (K)
+Zp”1’( N )( N )+5N’a
peAT

where

(&, EpaE) < CNYVE I IOV + D26 + CN' W + D262 (113)

foranya > 1, & € ]:_EN and N € N large enough.
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Proof We proceed as in the proof of [4, Prop. 7.2]. We write

e Bre — K
1
:/0 ds Z pznp[(ylg‘y)bp—I—o](,s)bf,,)(y,g‘v)b_p—i—a,(f)b;) —i—h.c.]
peA’

1
+ /0 ds Z pznp[(y;‘v)bp + cr[(,‘?)bfp)d(_sg, + d[(f)(y[gs)b_p + a,(f)b;‘,) +h.c.] (114)

peAT
1
+ / ds Y pPnp[dd®) +he]
0 peA’
=:G1 + G2 +G3

with yp(‘v) = cosh(snp), O’p(s) = sinh(sn,) and where d,(f) is defined as in (105), with n,,
replaced by sn,. We find

N.
Gi= Y pinp(bpbp+b*,b5)+ Y p’n, (1 —~ W*) + &k
peAl peA’
with
1
g 22/ ds > pPnp(of)? (bpbp + b* ,b%)
peA’

1
+/ ds Z pznpylgs)ol(f)(élb;b,,—2Nfla;ap)
0 peAT

I , s ‘ M
+2/0 ds Y pnp [(y,?) — Dol + (o —snp)] (1 - WJr)

peA’

Since [((ry”)? = 1) < Cr2. (05)% < Cn3. plip| < C. [11lloc < N™%, we can estimate

(5,£( &)
<C Prnp PIbpg NN + DV2g | + C prnillapEll* + C prblEl?
p p
peA; peA’ peA’

(115)
< ClnllllN+: + D2e|> < CNTY|(W4 + DV 2g|2,

for any & € F. f_N. To bound the term G3 in (114), we switch to position space:

1
6. Ga)l = ON [ s [ dxay [ @YV -y 4 N =yl = N7)]
0 A

< Wy + D72dDdPe ||V + D'
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With (111), we obtain
(6. G36)l
<CN'e fA daxdy [V (N (x = y) + Ny (lx =yl = N7 IOV + 1)V
+CNT /A dxdy [NV (N (= ) + Ny =y = NIV + D

x [ OV + DE I+ 13y W+ DEN + ey W+ D]
< ON' W4+ D212 + ONY2 I + D2y 8

(116)
Finally, we consider G in (114). We split it as Gy = Gp1 4+ G2 + G23 + Gpg, with
Goy :/ ds Z P Np (V(Y)b d(s) +hC)
peA’
G22:/ ds Z p n,( () p* d(s) +hc)
peAT
(117)
Go3 :/ ds Z p? np (y(b)d“)b +h.c.),
peA’
G24:/ ds Z p? np (0 dl(f)b;—i-h.c.).
peA’
We consider Gy first. We write
Ni+1N-N
Gou=— Y pPs— ++[82K+h.c.]
N N
peAl
where 52K = 23:1 52’(]., with
K 1 P 1 %
521 = ﬁ Z 14 np(N"r + 1)(b Napap)’
peAT
1
= / ds 3 phup(ry” = Dbyd?,, (118)
0 peAT
Ezlng ds Z p n,,b d(s)
0 peA’

and where we introduced the notation E(f =d¥ » + 50N/ N)b%. With (29), we find

1/2

€, EREN < C Y mpllay&ll> < CN~IN "€ (119)

peA’
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Using vy — 1] < Cn3 and (108), we obtain

(& £58)1 < 30 PPl PING 6180 < CN T + D22 o)
peAl

To control the third term in (118), we use (30) and we switch to position space. We find

! 0]
&= —N / ds / dxdy NV @M (x =) fvox = y)bed,
0 A

1 L () 121
+ N/ dseZN/\e/dedy xe(x — ) fne(x — y)bxd, (120
0 A
With (110) and [7(x — y)| < CN, we obtain
1
(€, €5,8)) < N/ ds/ dxdy PNV (N (x — y))
0 A2
o () (122)
x|y + DWW + D7 a,d, &)
< CN' || + D2E2 + CNV2~ (W + D)2 vy e,
As for 62122, with (110) and Lemma 1 (recalling £ = N~%), we find
(g, EX,8) < CNTY W + D2
(123)

_ v v 1/2
+/2dxdy x(x = y| < N"OIW1 + D2 lda, N g
A

To bound the last term on the r.h.s. of (123) we use Holder’s and Sobolev inequality ||u |, <
Cq'?||lu| 1, valid for any 2 < g < co. We find

/Azd’“’y x(x = ¥l < N7 + D12 awa, N ¢
1-1/q " 1/q
= CIV: + 1>”2€H/Adx (/A dy x(1x = y| = N*“)) (/A dy iy N, an)

< CN/9722 (N + 1) | fA dx ( /A dy ||éxéyN+'/zs||Q)l/q
< Cq' PN NG + D)2
x [ /A dxdy i Vyiy Ny PE N2 + /A dxdy ||axzzyj\d/zs||2] 1/2
= Cq' N2 (N + D)2 [ 1PN+ IV e
Choosing ¢ = log N, we get
/Azdxdy x(x =31 = NTOIWy + D28l laxdy (Ve + D2

< CN'""(log N)'2| (Vg + D'2g 1K),

(124)

Therefore, for any & € F EN,

(&, 8,60 < N7 (1og M2 2E IV + DY2E] + N7V + D212
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Combining the last bound with (119), (120) and (122), we conclude that
1€, EKE) < CN'“ W + D€ 2 + N2 H eIV + D2 (125)

forany « > 1, N € N large enough, & € }"fN.
The term Gp; in (117) can be bounded using (108). We find

(€, Gn&)| < CNTX (N4 + D817 (126)

We split Gz = 53K1 + 6312 + h.c., with
1 1
& = / ds Z pznp(ylgn - l)dz(f)b—pi & :/ ds Z pznpdg)b—p
0 peAT 0 peA’
With (108), we find
1

(€, £5186)] < C/O ds Y pIn, PP &N pEllds < CN TNy + D'

peA’

To estimate 5315, we use (30) and we switch to position space. Proceeding as we did in (121),
(122), (123), we obtain

1
eehen = cn [ ds [ ardy [NV 3+ N (e =yl =N
0 A2
x [NV4 + DY2ENIVG + DT2d9h g
With (109) and (124) we find

e e = on e [ avay [PV )+ N -1 = N
A2

X NG+ D26 [llay W + DE I+ llddy Wy + D'25]]
< ON' s+ D287 + NP G + D5 1y

+ CN'""(log M) |V + D21k ¢

Combining the bounds for 531(1 and 6315 , we conclude that, if @ > 1,

(€, G3&)| < CNV2 W + D26 IHY 6] + CN WV + D2g)? (127)

To bound G4 in (117), we use (108), the bounds (28) and ||n ||12L11 < CN, and the commutator
(14):

1€, G248)|
1
<C / ds Y p'pl Wi+ DYV + D720 brg||
0 peA}
< I + D21 Y2 p2n [Inp IOV + Y26+ N Inllib,by (Ve + 1211

peAT
< CN7*|(WN4 + D22,
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Together with (117), (125), (126) and (127), this implies that

e _,,EZN; P %N NN+ +&f
with
&, EXE) < OV HPENIWVG + D€ + CNT |V + D252 (128)
Combining (115), (116) and (128), we obtain (112) and (113). ]

In the next proposition, we consider the conjugation of the operator

—~ 1 N —~
LEV =N 3 Vipre" [b;;b,, - Na;a,,] +5 2 Vip/e [b;;b’ip + b,,b,,,]
peA’ peAl

Proposition 14 Under the assumptions of Proposition 1, there is a constant C > O such that

e_BE%*V)eB =N Z ﬁ(P/eN)n1J(N_N+)<N_N+ — l)

N N
peAT
~ N-
+N Y Vip/eMaa, (1 - ﬁ) (129)
peA’
N S V)
+ 5 D Vp/e")(bpbp + b5 ,by) + Ey
peA’

where

1€, EVE) < NV HZE NIV + D€ + OV + 1)) (130)

foranya > 1, & € ]-"_EN and N € N large enough.

Proof We write
e_B[IE\%’V)eB =N Z ?(p/eN)e_Bb;bpeB — Z V(p/eN)e_Ba;apeB

peay peAl
N % Ny,—B B 131
+ 5 2 Vip/e)e P[bpboy + 037 e (131)
peA’
=F+F +F;.

With (106), we find
Fi=N Y V(p/eM[ypbh+opb_p][vpby +0pb* ]
peA’
+N Y Vip/eM)[(rpbly + 0pb_p)dy + di(vpby + 0pb* ) + disd,]
peAT
where y;, = cosh 7,0, = sinh ), and the operators d), are defined in (105). Using [1 -y, | <

n%, lop| < CInpl and using Lemma 4 for the terms on the second line, we find

Fi=N Y V(p/eMbsb,+& (132)
peA’
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with +&) < CNT=*(W, + D).
Let us now consider the second contribution on the r.h.s. of (131). We find
—Fy= )Y V(p/eVyaja, + & (133)

peAT
with

1
g =3y V(p/eN)/ e *Bmpb_pb, +hc)eds.
peAT 0

With Lemma 2, we easily find :i:SZV <CN*WN:+1).
Finally, we consider the last term on the r.h.s. of (131). With (106), we obtain

Fz = I;, Z Vip/eV) [ypbp +opbfp] [ypb_p +opb), ] +h.c.
peA’

N — -
+5 2 Vip/e [obp + 0pb™ ) dp + dy (rpb-p + 3pb5) ]| + hic.

peAr (134)
N o N
+ > Vip/eVydpd_, +he.
peAT
=:F31 + F32 + Fs3.
Using |1 — yp| < Cn%, lop| < Clnpl, we obtain
N —~
Fii =7 > VipleVy(bpbop +b* b5) +N D V(p/e" )n,, * ey (135)
peAT peA’
with +£} < CN'"*(N, + 1). As for F3; in (134), we divide it into four parts
N —~
Fo=2 Y Vip/eh) [(ypb,, +opb* ) d_p+dy (vpb_p +opb;)] +he.
peAi (136)
=: F321 + F320 + F323 + F324..
We start with F3,1, which we write as
~ N — N\ Ni+1
N + + v
F31 = =N Z Vip/e )np( N )( N )+54
peA’
where £ = &) + £}, + £}; +h.c., with
5V—NZV(/N)( —Db,d EV—NZV(/N)bE
4= pre )\yp p-p> 2= p/e )bpd—p
peAT peAl
N -~ Ny +1 _
Eh=—75 D Vp/eM = —byby — N™ajay)
peA’
and with the notationg,p =d_, —}—N_lnp ./\f+b;§. Since |y, — 1] < Cn%, Inllcc < CN™E,
we find easily with (108) that

(&, ELE) < CN'3 WV + D22
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Moreover

— 1/2
£ €48 < CN Y mpllayel* < CN' N2 )12
peAT

As for SXZ, we switch to position space and we use (110). We obtain

(&, £528) < CN /A dxdy V(N (x = DI + DNV + D Pad g
<CN'™ / dxdy 2NV (e (x — y)IV; + 1]
A

x IV + D2 + g + gl + N2 )1
< ON'™“ W + D262 + OV |y + DYV gL

We conclude that

(€, &Y &) < CN'2 W1 + D21V €l + CN' WV + 122

To bound the term F37; in (136), we use (108) and |0, | < C|np|; we obtain

(€, F3228)| < CN > Implllb—p&ll [Inp VG + D21 + InllIb-p& 1]

peAr
< CN'72| Wy + D22

Let us now consider the term F323 on the r.h.s. of (136). We write F3p3 = 55‘/1 + 85‘/2 + h.c.,
with

N — - N — -
E1=5 2Vl p = Ddpbp.  Eh=7 3 Vip/eM)dpb,.

peA’ peAl

With [y, — 1] < Cny, and (108) we obtain

(€. ENEN < CN Y mplldsglllapéll < CN' Wy + '/2E 1%
peAT

We find, switching to position space and using (109),

(&, £58)]
< czvfzdxdy MV (= DIWG + DN + 171 2deayg |
A
< CN'"| (W + D% / dxdy NV (e" (x — ) [llay&ll + N~V |ldvayé]l]
A
< CN'" |V + DV2E 2 + CNV2(V + DV v e
Hence,

€, F3ps)| < CN' Wy + D22 + NV vy + D21V e
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To estimate the term F3p4 in (136) we use (108) and the bound

_ 1 V(p/eV)]
Y Vp/Mimlsc Y S+C Y .
peA’; peAt, pl<eV peAL, Ipl>eV P
1/2 1 1/2
§CN+C( > |V(p/eN>|2) < > F)
peAl peAs, Ipl>e"
<CN
We find
(&, Fapab)| < CN Y [Vp/eM)]Imp Il VG + DNV + 1)712d, b |
peA’
<CN Y |[Vp/e™)|inpllVy + D'
peAT

x [Imp IOV + D21+ N~V nllibpbl N+ D' ]

<CN Y |[Vip/e™)|InpllVy + D'
peAT
x [Inp NG + DYV2E ) + NNl WV + D2+ linllllayé ]
< CN'"IWV5 + D22
Combining the last bounds, we arrive at

~ N — N Ny —1
ngzNZV(p/eNmp( I *)( v >+66V

peA’

with

€, £V E) < CNI (N + DV2E]2 + CNVZ vy + D21V el (137)

To control the last contribution F33 in (134), we switch to position space. With (111) and
(25) we obtain

(&, F3&)| < CN||(WN+ + D% /A | dxdy ANV e (x — IV + 1D 7V2d,dyé ||

< CN'"|(V + D282 + CNV2 2 vy + )2 v ).

The last equation, combined with (134), (135) and (137), implies that
N ~
Fy=2= %" V(p/eM)(byb_p + b ,b%)

2 *
peA

- N=Ny\ (N=Np—1
+N Y V(p/eN)n,,< 5 +>( N* >+57V
peA’

with
€, EVE) < CN'" (W1 + D€ + CNV2 v + D 2gvy/ el

Together with (132) and with (133), and recalling that b;bp — N_la;;ap = a;‘,ap(l -

N4 /N), we obtain (129) with (130). O
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Appendix A.4: Analysis of QSL =e B Lﬁ')eB

We consider here the conjugation of the cubic term Eg) , defined in (13).

Proposition 15 Under the assumptions of Proposition 1, there exists a constant C > 0 such
that

3 — 3 ~ 3
gl(v.)a:e Brye? =N Z V(P/eN)[ gl ,paq-l-hc] +eY
P.g€AY:p+q#0
where

172

(g, EDEY < CNY2= |y + DI2g IV Ell + CN'9 (Ve + D22 (138)

forany o > 1 and N € N large enough.
Proof This proof is similar to the proof of [4, Prop. 7.5]. Expanding e Ba* paqu , We arrive
at
3 ~
( '=VN Z V(p/e")((rp+q — Dby sy + Opigb—p—q +dpiy) a” yaq
P:qeA’ p+q#0

1
+VN > VpleMmpe Py, ef /Odse*fBb,,bqesB

p.q€A’, p+q#0

+VN Y Vp/eMmg e by ef /Odse Byt bt e'f
P.q4€AY, p+q#0

+h.c.
= &V +&” +&” +he

(139)

where, as usual, y,, = coshn(p), 6, = sinh n(p) and d, is as in (105). We consider 61(3). To
this end, we write

N -
eV =VN Y V[N g = Dby + 0prgb—p—g + i) a pag
p.qeAL:p+q#0

P E)) 3) 3)
=& +&5 +&5 .
Since |yp+q — 11 < Inp4ql? and 9] < CN~*, we find
(6, EDE) < CNIMIPING + D'2EI? < CN'2 (W + D282, (140)

As for &3, we commute a* , through b_,_ (recall g # 0). With [0p4| < Clnpql, we
obtain

(g, D) < CN'Y Wy 4+ 1) %. (141)
We decompose now SS) = 51(2)1 + 88)2 with

3
gn=vN ) Vip/eV)d:, a* aq

p-geAL:p+q#0

3) Wy +1) ~ N
En=—"—7 VYN 3 V/Mmprgbopgatag.
P.q€A:p+q#0
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* (/\/++1)
where we defined d; =d, g

to ES), moving a* , to the leftof b_,,_4; we find :I:Sg)2 < CN'"*(N; +1). We bound 6131
in position space. We find

Np+qb—p—q. The term 61(3)2 is estimated s1m11ar1y

(g, €3]
< N'/? / dxdy eV V(e (x — y))|dx& || dyds |
A2 :
< CNV / dxdy PV V(N (x — )kl
A2

x [NV + DEN+ N7 ae Wy + DY + lInlllldy Wy + D2 + llacay&]l]
< CN'"|(W + D262 + CNY2e (v + D2 v

With (140) and (141) we obtain
(g, €Ve)| < N2 IVEINNG + D2 + CN' |y + D). (142)

Next, we focus on 82(3), defined in (139). With Eq. (106), we find

3 = _
() =N Z Vip/eMn,e Bb;Jrqu
p-qeAL, p+q#0
1
x fo ds (v y\Obpby + oo Ob* b* 4+ yPo\b* b, + 0Py Ob* by)

+VN Y Vp/eMmpe By, e Bfo dsyPoPOlby, b* ]

P.qeAT, p+q#0 (143)

+VN Y Vip/mye oy e”

P.qeAL, p+q#0
1
x /0 ds [dS) (rObg +00b%,) + (rVby + oD% )d) +dPd|
= &Y +EF +EF

with y;” = cosh(sn)), crz(,s) = sinh(s7,) and d}(f) defined as in (105), with 5 replaced by
sn. With Lemma 2, we get

(. £56)] = CN'=| Wy + D22 (144)
Since [bp, b |1 = —a* jap/N for p # —q, we find

(8, £556)1 < CNT# | + D217 (145)
As for the third term on the r.h.s. of (143), we switch to position space. We find

52(? = \/N/AS dxdydz e*V V(e (x — )iy — 2) e Bb¥e?

1
X/ ds[ (s)(b(y(s))+b*(g(s))) (b(y(s))+b*(g(s))) (s)+d(s)d(s)]
0
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Using the bounds (109), (110), (111) and Lemma 2 we arrive at

(€, £38)]
< c\/ﬁfm dxdydz NV (e (x — )iy — 2)||bre®E]| /01 ds

x [né;” (bx +bGED) +b*G)EN + 1(By + bGE) +b*(5))dVE|| + 1dPd¢ ||]
< cﬁ/ﬁ dxdydz e* V (e" (x — )Ii(y — z)|||15xeBs||[N*1|ﬁ<x — MWV + DE

o+ BBy €N+ Il + DE N+ Il + D€+ Inlliby V. + 1] ]

< CN'"INPeBE NIV, + DE]|
< CN'" (W4 + D212

where 7 indicates the function in L2(A) with Fourier coefficients rp = 1 — yp, and the fact
that ||77]], [I7]l, [|6]] < CN~%. Combined with (144) and (145), the last bound implies that

+60) <CN'"™ Wy +1). (146)

To bound the last contribution on the r.h.s. of (139), it is convenient to bound (in absolute
value) the expectation of its adjoint

1
53(3)* =N Z V(p/eN)ﬂqfo ds e_SBb_quB

P:q€A%, p+q#0
X (Vzgir)b + “(‘)b* +d) )(Vl7+qbp+q +opigb’, g+ dp+q)
=vN Z V(p/eN)nq / dse ™ Bb_,eB
P-qEAL, p+q#0 0
[V;g "Yprab—pbp+q + U;(f)ap-wbzbipfq + y[(JS)o'P‘H/btpfqb—P + Vp+q‘7;(as)bfabp+q
4 (g + g o) + (7 + 086} g + A%y,
1
++N Z Vip/eMyn, f dse_‘YBb_qe‘Byl(, )op+q[b_p,bip,q]
P.q€AL. p+q#0 0
(3) + 8(3) )

Since g # 0, [b_p, b* , 1=

o= a—p,/N. Thus, we can estimate

*
—A—p—g

(£,E28)]

1
< CNfl/Z/ ds Y Ingllpeglla—p—g e B0 e Pslllapg 1l (147)
0 P.qeAL, p+q#0

< ClInlPIWNG + DY2g ) < CNT2 (W4 + DV 2g)1%.
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To bound the expectation of 53(?) , we switch to position space. We find
(€. €478
<N'7? /0 as /A dxdy NV (N (x = )IB e N [1Biby €

B N+ D2+ 1By N+ D260+ N7 i = wIIG + DN
With Lemma 2, we conclude that

g, E8) < CNVEZWPENING + D26 + CNY W + D212 (148)
From (147) and (148) we obtain

g &6 < CNV2 W PEINI WV + D26 + CNT [V + D122

Together with (139), (142) and (146), we arrive at (138). O

Appendix A.5: Analysis of g,f,“}! =e B LZ,(:) e

Finally, we consider the conjugation of the quartic term ES) . We define the error operator
&YW through
N g

_ 1 —~ N. Ni+1
gl(\f’)a =e B[:gs)eB =Vn+ 5 Z V(’”/EN)Uq+r77q <1 - i) (1 - )

N N
qeAl reA*
r#E—q
1 ~
32 Ve g (bybg + 0307, ) + &3
qeA} reA*:
r#FE—q

Proposition 16 Under the assumptions of Proposition 1 there exists a constant C > 0 such
that

g, EPEN < N2 IVENNNG + D26 + CN' [Ny + DY2]> (149)
foranyoa > 1,§ € ]-'fN and N € N large enough.

To show Proposition 16, we use the following lemma, whose proof can be obtained as in
[4, Lemma 7.7].

Lemma6 Letn € £>(A*) as defined in (27). Then there exists a constant C > 0 such that

NV + 1)n/2€_Bl;xéyeB€:”
= C[N||(/\/+ + D)2 + lléy (N s + 1)eth/2g))

o Iae OV + DO 4, Vs + 1" ]

forall & € F_EN, neZ.
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Proof of Proposition 16 We follow the proof of [4, Prop. 7.6]. We write

Gy, = VN + Wi+ W+ W3 + Wy

with
1 . 1
W == Z V(r/eN)nq+r/ ds (e_SBbqb_q B +h.c.)
qeA reA*ir£—q 0
. 1
W, = Z Vir/eM) Ng+r / ds (e_‘YBb;+,b;eSBafq_,ap + h.c.)
P.qeAL reA*r#p,—q 0
W3 = Z v(r/eN)nqurnp
P.qeA’ reA*r#—p—q (150)
1 K
x/(; ds /0 dt (e_sBb;+rb;esBe_’Bb’ipbiq_re’B —|—h.c.)
Wy = Z V(r/eN) 77[2,+r

PqEAL reA*r#E—p—q
1 s
x | ds | dr(e*Bp*, b e*Be ™ Bh byt e™® +hel).
0 0 p+r-q PYq+

Let us first consider the term Wy. With (106), we find

1 N :
Wi=2 X VMg / ds(v;")* (bgb—g + h.c.)
0

qeEA} reA*r#—q

1 . 1
+3 > V(r/eVngr /0 ds y Vol (Ibg. b1+ hec.)
qeAl reA*r#—q (151)

1 . 1
+5 > V(r/eN)ngsr fo ds v (bgd®) +hc.) + &)

qeAl reA*r#—q

=W +Wn+Wi3+ S](?))

where
(4) 4) (4) 4) 4) 4)
Elop = &1 i T 103 T Eou T Eips (152)
with
1 > 1
4
gh=3 X VeseMng /O ds[ 2700 biby + (o))" b + he.]

qeAl reA*r#—q

1
4 1 —~
=y X Ve [ dsafet,a e
qeAl reA*r#—q 0

1
4 1 —~
=y X V0 [ dsoP (@ vhe)
qeAl reA*r#—q 0

1
4 1 —~
=y X Ve [ Ay, +he)
qeAl reA*r#—q 0
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@ _ 1 S N b ®
Elos = 5 > V(r/eMmgir | ds(dVd") +he). (153)
qeAl reA*r#—q 0
With
1 ~
~ sup D [V@r/eM)ing| < C < o0 (154)

N

9€AL renr

uniformly in N € N, we can estimate the first term in (153) by
(. E1E) = CNT W + )18 )2

Using (154) and (108) we also find

(€, ElE) < CN'2 (W, + 1)1 2.

For the third term in (153) we switch to position space and use (109):

1
(&, Eiyé)l < 5 f dxdye® v (eN (x — y)li(x — y)|

1
x / ds |V + D72d,b* (eIl + D2
0

1
< ClillsslInl / dxdye® VeV (x — y) NG + D2 /0 ds

1 1 .
x (16 @e N+ 10 = DI + D' 2] + ﬁnb*((};“)bysn]

< CN'"Y| (W4 + D212,

@ _ @

4 1 . 1
51(0211 = ) Z V(r/eN)r]qH | ds (),q(S) _ l)dy)bfq

qeA reA*r£—q

1 - !

4

Eloi = 5 > V(V/eN)'?q+r/ dsdb_
qeA’ reA*r£—q 0

With [y — 1] < Clng |2, (154) and [|43€]| < ClInl| N+ + D'/?€]|, we find

€, £, 8) < CN'3 (W + D12
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As for 6‘1(3312, we switch to position space. Using (25) and (109), we obtain
4
148, Efoat)]

1
=I5 / ds / dxdy NV (" (x = y)ij(x = y) (&, dbyE)
0 A2
1
<CN /0 ds /A dxdy NV (eN (x — ING + DVZENING + D7V2dDbyg |

1
el [ ds [ | dxdy @V - I+ D e
0 A

x N7, N+ i, N e ]
< CNY Wy + D2E2 + N2 (v + 1) 2 vl e

Let us consider the last term in (153). Switching to position space and using (111) in Lemma
4 and again (25), we arrive at

1€, £

1
<CN / dxdy NV (@ (@ — DIy + D] /0 ds|(Ws + 1)712dPdPg |
A

< CNInllIVy + D] f2dxdy V(N )
A
< [V + D2+ Inlllall + nlllay& + N~ nlllady €]
< CN'"“|(Wy + D'2E 12 + CNVZ2 vy + D2 vy e
Summarizing, we have shown that (152) can be bounded by
_ 1/2 _

(&, E{0 ) <CNP V2 [ Wi + D€ + OV + D282 (155)
foranyo > 1,€& € ffN. Next, we come back to the terms Wiy, W12, W3 introduced in
(151). Using (154) and Iyq(s) -1 < Cng, we can write

1 —~
Wi =3 3 V(r/eV g ir(bgb—g +hc) + €7, (156)
qeAl reA*r£—q
where 5{‘1‘) is such that
(£, £78) < CN'72 | Wy + DEJ.
Next, we can decompose the second term in (151) as
1 Tir /N N )
Wi = 5 Z Vir/e Mg+rTg <1 - W) + 512 (157)

qeAl reA*r#—q

where :I:El(;) < CN™YN, + N!173
The third term on the r.h.s. of (151) can be written as

AA)NJ,_-Fl @)

1 %2 N
Wiz = _E Z V(r/e Ing+rng (1 - N N +513 (158)

qeA reA*r£—q
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where £ = €% + €3 + €93 + €%, with

1
4 1 —~
=5 X Ve / ds (9 = Dbyd®) +hec.
qeA reA*r£—q 0

1 ~ 1 N
£l 5 > V(V/eN)flq+r/ ds by [d(_s,; + 514 ﬁb;‘] +he.
qeA reA*r£—q 0

1 ~ Ni+1
4 +
5%; = - 2 Z V(”/eN)anrrnqbeq N
qeAl reA*r#—q
1 ~ Ny +1
4 +
81(321 = ﬁ Z V(r/eN)ﬁq+r nqa,}“aq 7]\’ .

geA reA*r£—q
With (154), we immediately find
+EW < ON'EWL D), £ED < ONTEWL + D).
With |yq(s) -1 < Cng, Lemma 4 and, again, (154), we also obtain

4 _
(&, EE) < CN' W + D22
> (s)
Let us now consider 51(;‘)2. In position space, with d,, = d;s) + (W4 /N)b*(11,) and using
(110), we obtain

. x(s)
y

1 1
e eher =3 [ as [ dxdy V- it = e b, )

son'e [ vy VN - i + 01
A

x [ I + D281+ a1 + Nl + N7 ldnd, N e |

< CN"* Wy + D212 + CNY2 |V + D 2e v el
It follows that
IE, EDY < CNY2=IVIPENIWVG + D'V2E] + N4V + D)2,
With (155), (156), (157), (158), we obtain

W = - Z v(r/eN)an (bqbfq + h.c.)
qeAl reA*r#—q

1 ~ N Np+1
+ 5 Z V(V/EN)'lq+r7lq <1 - i) (1 - +N ) +51(4)

. N
qeA L reA ir£—q

(159)

where
_ 2 _
(g, V&) < N2 IVENNNG + D26 + CN'= (W + D22,

Next, we control the term W», from (150). In position space, we find
1
Wy = / dxdy e V(e (x — y))/ ds(efst:b;eSBa*(ﬁx)fly + h.c.)
A2 0
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with 7y (z) = 17(x — z). By Cauchy-Schwarz, we have

1
(£, Wat)| < / dxdy NV (e (x — y))/ ds
A2 0
X NG+ DY2e™5Bhb e Be || (VG + D7 V2a* (0ayE ] -
With
IV + D7 2a*@oayl < Clinlllayéll < CN~Ylayé |
and using Lemma 6, we obtain
(&, WaE)| < CN™ / L dxdy NV (N (x = y)) g
A
x NIV + D26+ NIagl+ Nliael + NPl ) (160

_ _ 2
< CN' (W} + D2€]2 + CNY2 (W + D)2 VY e

Also for the term W3 in (150), we switch to position space. We find

W3 = / dxdy ezNV(eN(x —y))
A2

1 s
x / ds / dr (e*Pbib%e’ e " Pb* (0)b* (7y)e™ +hec.) .
0 0
and thus
1 s
(&, W3E)| < / dxdy V(e (x — y)) / ds f dr |V + 1)V 2e 85,5, B
A2 0 0 ’
X (NG + D727 Bp* (7,) b* (e B
With Lemma 2, we find
IV + D727 B () b*(hy)e™BE | < ClnlP NG + D 2e ]
Using Lemma 6, we conclude that

(&, W3£)| < Clinll® fAZ dxdy NV eV (x — Y)WV + D¢

x NIV + D126] + Nldgl+ Nlagl + NP jaagn) 10D
< ON'2 Wy + DI+ ONP2 el vy + D).

The term W4 in (150) can be bounded similarly. In position space, we find
Wy = / dxdy NV (eN (x — y))
1 s ..
x / ds / dv (e*Pbib% e e Ph(n})bye™” + hic.)
0 0

with 7;2 the function with Fourier coefficients 172, forg € A*, and where 77:2( (y) = r;v2 (x—y).
Clearly IInV)% | < CInl* < CN~2®. With Cauchy—Schwarz and Lemma 2, we obtain

1 K
(€. Wak)| < CN2 / ds / dr / dxdy PV V(N (x — I + D)2y beesBe 15,67 BE .
0 0
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Applying Lemma 6 and then Lemma 2, we obtain

1 K
e wae) = v [ as [Cae [ dxay v - bt
0 0

X NIy + DV2e|| + Nlacg | + NldyE | + N2 |laayé |}

< CN'2(Ny + D282 4 ONVE2 0 e v + DV

From (159), (160), (161) and the last bound, we conclude that

1 ~
Gu=Yvts X VMg (bybog +he)
qeA reA*r£—q

: v N Ny +1
+ 2 Z V(r/eN)nq+r77q (1 — —Jr) <1 — +T> + g[(é)a

N
qeA reA*ir£—q
4) :
where &£, satisfies (149). ]

Appendix A.6: Proof of Proposition 1

With the results established in Sects. 1-1, we cam now show Proposition 1. Propositions 12,
13, 14, 15, 16, imply that

V0
gAha ::jié‘z(Al4-Af+ —'1)(A7—-A[+)

+ Z ﬂp[PzVIp-I-N‘?(p/eN)-F% Z V(,/EN)UI)+r]<N—N+)(N—N+—1)

A% A* N N
pedy ;fr#O
172 Ny, * A[+
FE+N Y Vip/eraap(1- ) (162)
peA’
2 N N ! %2 N * 7%

+ Y [P35 Y Vs mg |(gbt, +bypboy)

peAl reA*: p+r+0

+VN Y Vip/e™) [b;+qai[,aq + h.c.] +Vn +&
nqui:p+q#0

where

€, £18)] < CN'2= | HPE WV + DV2E + CN'9 (Vg + D) 2g )2

foranyo > l and & € ]-'fN. With (31), we find
~ 1 —~
> np[pznp NV + o Y V(r/eN)np+r]
peAT reA*: p4+r#0

o -~ ~ 1~
= 2w V@) + NeVagep) + e Y Telp =g = 5V (/e |
peA’ geA*

| =
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From Lemma 1 and estimating || ;]| = llx¢ll < CN™% |Inll < CN~ and |3 * 5]l =
lxenll < lInll < CN~*, we have

[N 3 mpRep)| = CN*IRNINI < €.
peA’

and

i > Tp—@ngnp| = N e nllinl < N7
peEA, geA*

Moreover, using (154) and the bound (32) we find

1 ~ -
5 2 Vepseympmo| = oN' 72
peAT

We obtain

S mp[ PPy + NV(p/eM) + % )3 V(r/eN)np+,](N —M)(N NG — 1)

N N
peAT reA*
prreAl
N ~ N N—=N\ (N-N, -1
=5 2 Vip/e )np( N )( N +&
peA’

with £& < C for all @ > 1/2. On the other hand, using (32) we have

N ~ N ~ N ~
5 2 Vw/eMmy = (V/e) xn)©) — V(O
peA’
2

N ~ N
_ 7(/dxvu)fzm —T0) +&

with £& < CN!'=2¢_ With the first bound in (41) we conclude that

S o[+ NP h Y Ty (A (A
peAl reA*
P+reAi (163)

1

=5y [@n(©0) = NVO)] (N — Ny — 1) (N = Ny) + &

where £& < C, if « > 1/2. Using (31), we can also handle the fourth line of (162); we
find

N 1 -
Z[pznpﬁ-EV(p/eN)—i-E S Ve |57, +bpboy)

peAT reA*: p+reAi 1 (164)
= 2 [VeMasep) + o Y etp — g = 3V (p/eMmo | (B35, + bybop)
peA’ geA*
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The last two terms on the right hand side of (164) are error terms. With (32) and (154) we
have

| Vs, + bpb-y)|
peA’
172

v Nyi271/2
sov| @ ORI 5 e | v+ e

peal peAl

< CNV222 12 | (Vg + D2

The second term on the right hand side of (164) can be bounded in position space:

(€ Vae D2 G s mpBybE, +byb-pg)]

peA’

< CN*7N WV + D% /A daxdy xe(x = NI = MV + D7V2h,byk|

1/2
< CN“TH IV + D] [ fA dxdy xe(x = I+ 1>—‘/zéxéys||2] "
The term in parenthesis can be bounded similarly as in (80). Namely,
/A dxdy xe(x = HIWG + D71 ad,8 )7 < CgN 7K g2
forany g > 2and 1 < ¢’ < 2 with 1/q + 1/q’ = 1. Choosing ¢ = log N, we get

€.V 3 GexmBbE, +byb-p)8)|
peAT
< CN"'og M)Wy + DI e

and, from (164), we conclude that

N ~ 1 ~
S [Pre+ 3Vl w5 Y Vel |(B355, + bob-y)

peA® reA*:
* predl (165)
= Y NeMue(p)(byb* , + byb_p) + Ea,
peAT

with
(&, £48)| < CN~"log N)V2 (Vg + D 2g 1K ¢ ).

if « > 1. Combining (162) with (163) and (165), and using the definition (39) we conclude
that

A Ny N A Ny
Gva =538 OW = D(1= ) + [NV O = 3av O | A4 (1 -5
= N 1 -
+N Y Vip/eVyata, (1 - 7*) +3 > @n(p)(bpb_p +hc)
peAl pea’, (166)

++V/N Z Vip/e) [b;+qaipaq + h.c.]
P.qeAL:p+q#0
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with
_ 1/2 _
(£, E56)| < N2 |1\ PE NI W + DV25 | + CNT (VG + D22
+ CN " (log )P 2E Wy + D21+ ClIENR,
for any & > 1. Observing that |V(p/eN) - V(O)l < C|ple~" in the second line on the r.h.s.
of (166), we arrive at Gy o = Q?\fﬂx + &g, with g;}’fa defined as in (42) and with &g that
satisfies (43).

Appendix B: Properties of the Scattering Function

Let V be a potential with finite range Ry > 0 and scattering length a. For a fixed R > Ry,
we study properties of the ground state fr of the Neumann problem

1
(-a+ 5V(x))fR<x> = A fr(x) (167)

on the ball |x| < R, normalized so that fr(x) = 1 for |[x| = R. Lemma 1, parts (i)—(iv),
follows by setting R = ¢V ¢ in the following lemma.

Lemma7 LetV € L3*(R?) be non-negative, compactly supported and spherically symmetric,
and denote its scattering length by a. Fix R > 0 sufficiently large and denote by fr the
Neumann ground state of (167). Set wg = 1 — fr. Then we have

0=<frx) <1

Moreover, for R large enough there is a constant C > 0 independent of R such that

2 3001 C 1
AR 1+ N — (168)

_ e < — .
R%log(R/a) 4log(R/a)) | — R2 10g3(R/a)
and
VdV()f() R P (169)
x V(x Xx) — .
R log(R/a)| ~ log(R/a)
Finally, there exists a constant C > 0 such that
log(|x[/R)
lwr(x)| < x(Ix] < Ro) + C ————= x(Ro < [x| < R)
log(a/R) (170)

Vuge| < C 2 =R
k ~ log(R/a) |x|+1

for R large enough.

To show Lemma 7 we adapt to the two dimensional case the strategy used in [8, Lemma
A.1] for the three dimensional problem. We will use some well known properties of the zero
energy scattering equation in two dimensions, summarized in the following lemma.

Lemma8 Let V € L3(R?) non-negative, with supp V C B, (0) foran Ry > 0. Leta < Ry
denote the scattering length of V. For R > Ry, let ¢ : R? — R be the radial solution of
the zero energy scattering equation

[—A—}—%V] br =0 (171)
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normalized such that ¢r(x) = 1 for |x| = R. Then

_ log(|x|/a)

Pr(x) = log(R/a)

(172)

for all |x| > Rg. Moreover, |x| — ¢r(x) is monotonically increasing and there exists a
constant C > 0 (depending only on V) such that

C
> 0) > — 173
$r(x) > ¢r(0) > log(R/a) (173)
for all x € R2. Furthermore, there exists a constant C > 0 such that

C 1
T ICIILES

(174)

forall x € R2.

Proof The existence of the solution of (171), the expression (172), the fact that ¢pg(x) > 0
and the monotonicity are standard (see, for example, Theorem C.1 and Lemma C.2 in [17]).
The bound (173) for ¢z (0) follows from (172), comparing ¢ (0) with ¢g(x) at |x| = Ry,
with Harnack’s inequality (see [24, Theorem C.1.3]). Finally, (174) follows by rewriting
(171) in integral form

1
o) =1 = o= [ 1o (R/1x = y1) VO
T JR2

For |x| < Ry, this leads (using that ¢ (y) < log(Ro/a)/log(R/a) for all |y| < Rp and the
local integrability of 1.I73/2) to
Vv c|v

»Mor (y)dy < \4E

lx — vl log(R/a)
Combining with the bound for |x| > R obtained differentiating (172), we obtain the desired
estimate. O

Ve ()] sc/

Proof of Lemma 7 By standard arguments (see for example [17, proof of theorem C1]), fr(x)
is spherically symmetric and non-negative. We now start by proving an upper bound for Ag,
consistent with (168). To this end, we calculate the energy of a suitable trial function. For
k € R we define

Jo(ka)
Yo(ka)

with Jy and Yy the zero Bessel functions of first and second type, respectively. Note that
— Ay (x) = Kyr(x) .

and Yy (x) = 0 if |[x| = a. We define k = k(R) to be the smallest positive real number
satisfying 9, ¥ g (x) = O for |x] = R. One can check that

oo 2 <1+§ 1 >‘<£71 (75)
R2log(R/a) 41og(R/a)) |~ R%log*(R/a)

Vi (x) = Jo(klx]) — Yo(klx]).

in the limit R — oo. To prove (175), we observe that

Jo(ka)
Yo(ka)

a,qfk(x)“xl:R = —kJ1(kR) + k Y1 (kR), (176)
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and we expand for kR, ka < 1 using (with y the Euler constant)

2 2
Jor)—1+ | <cr* Jl(r)—i(l—i) <cr
4|~ ’ 2 8/~ ’
2 2
Yo(r) — = log(re” /2)| < Cr¥log(r), 177)
T
21 r2 r2 r2 3
Yo+ = (1- —(1 - —>log(re7”/2) + ) <
xr 2 8 4

With (177) one finds that (176)

hvR@)|
_ 1
= 2kRlog(kae” /2) (178)

(kR)* 1 2 1 4 2

173 0g(R/a) — (kR)” |log(R/a) — 5 +2+ O((kR)" + (ka)7)
The smallest solution of

(kR)* 5 1
3 log(R/a) — (kR) |:10g(R/a) - E:I +2=0

is such that

(kR)* =

-3
log(R/a) [1 + 4log(R/a)] + O(log™"(R/a)) (179)
in the limit of large R. Inserting in (178), we find that the r.h.s. changes sign around the
value of k defined in (179). By the intermediate value theorem, we conclude that there is a
k = k(R) > 0 satisfying (175), such that 9, gy (x) = 0if |x| = R.
Now, let ¢ g (x) be the solution of the zero energy scattering equation (171), with ¢pg (x) = 1
for |x] = R. We set

YR(x) := Y (mg(x)) = Jo(kmp(x)) —

Jo(k
YO( Y Yolkm (x)) (180)

o(ka)
with k = k(R) satisfying (175) and
mpg(x) := aexp (log(R/a)pr(x)) .

With this choice we have mg(x) = |x| outside the range of the potential; hence Yg(x) =
Yi(x) for Ry < |x| < R.In particular, ¥g satisfies Neumann boundary conditions at | x| = R.
From (172), (173) and the monotonicity of ¢, we get

Ca<mp(x) <Ry forall 0<|x|<Ry (181)
and for a constant C > 1, independent of R. From (174) we also get
[Vmp(x)| <C forall 0<|x|<R. (182)

With the notation h = —A + %V, we now evaluate <l1/R, b!I/R). To this end we note that

(PR, bwR) = /

|x[<Ro

Yr(x)(h%R(x))dx + k? / |WR (X)) dx . (183)

[x|=Ro
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Let us consider the region |x| < Rg. From (180) and (177) we find, first of all,

log(mg(x)/a)
log(kae? /2)

Next, we compute —AWR (x). With

Wr(x) + < C(kmg(x))?, (184)
1
Jo(r) = =Ji(r) Ji(r) = E(Jo(r) — h(r))

1
Yo(r) = =Y1(r) Yi(r) = E(Yo(r) —Ya(r).

we obtain (here, we use the notation m’R and m’l’e for the radial derivatives of the radial
function mpg)

—AWR(x) = — 37 WR(x) — ﬁarwzem
Jo(k
= — k([ — J1 (kmp () + Yiﬁkg Yy (kmg ()]
1 Jo(k
— SR (0) [ km () - Y(’Ekai Va(kmg ()]
1
- Ekz(m’,a(x)) [ — Jotkmpg(x)) + Yoik ;Yo(ka(X))]
k /
=P om0y o).
x| Yo (ka)
We note that, using the scattering equation (171),
. m)? 1 1 1
(= 5 Vmk $rlog(R/@) = —Vmglogimg/a).  (185)

mg x| R = 2
Now we write

— AWg(x)
= [~ k(e + 22
where ggr(x) = Z 1 gg)(x) with

m'p (x)
|x|

e = —5k2(m’R<x))2J2(ka(x)>

g(ka) ((186)
Yo(ka) + gr(x

k2
)¥ikmg () + 2 g () Falkme ()|

gk @) =k (i) +

)1k e (x))

Jo(ka)
Yo(ka)

1 k2
80 = =3k mlp (1) (= Jollam g (x) + T Vokmg (1) ) = - (mlg (1) "W (x)
With (185), (177) and (181), (182), we find
1
8k (0] = CK (R (22 4+ SV (m (x) logmp (1)/®)) < CK*(1+ V().
Next, with |J2(r) — r?/8| < Cr* we get

129 ()| < Ck*mlg ()2 (mg (x))? < CK*.
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With (184), we can also bound
log(mg(x)/a)
log(ka)

We conclude that |gr(r)| < C(1 + V(x))k? for all r < Ro and R large enough. Finally,
using Eq. (185), the expansion for Y;(r) in Eq. (177), and the bound

189 (0)] < CK2(mlg (x))> < Ck*log ™! (ka) .

4 1
no+=5|=c,
Tr

we can rewrite the first term on the r.h.s. of (186) as

) k? Jo(k
[ k() + "EDY vy ) + 5 )2 Pt g | 22
= Ly togm e/ 2ED L)
= x)log(mp(x)/a Yoka) R(x

with [hg(x)| < C(1 4 V (x))k? forall r < Ry, R large enough. With the identities (186) and
(187) we obtain

1 Jo(ka)
‘ —AYR0) = Y k)

forall x| < Rp and for R sufficiently large. With (184), we conclude that, for 0 < |x| < Ry,

V(x)log(mp(x)/a)| < C(1+ V(x)k*,

1
(A + V)W) < CO+ VK. (188)
With (183), (188) and the upper bound
C
YR <= —— (189)
¥ |log(ka))|
for all |x| < R (which follows from (184) and (181)), we get
Ck?

(Wr, hWR) < KX (¥R, Pg) (1+V(x))dx.

+ -
[log(ka)| Jix|<ro

On the other hand, Eq.(184), together with mg(x) = |x| for |x| > Ry, implies the lower
bound

(g, Wg) > / Wr(0)Pdx > log?(Jx|/a)dx > CR.

)
Ro<|x|<R |log(ka)|? Jgy<|x|<r
Hence, with (175), we conclude that

(¥R, h¥R) @ (1 N CIIOg(ka)|>

A
R= (W, W) R?

(190)

_ 2 < N 3 1 N c >
~ R2log(R/a) 4log(R/a)  log?(R/a)
in agreement with (168).
To prove the lower bound for A it is convenient to show some upper and lower bounds for

fr. We start by considering fr outside the range of the potential. We denote e = +/Ar R.
Keeping into account the boundary conditions at |x| = R, we find, for Ry < |x| < R,

SrR(x) = AR Jo(eR |x|/R) + Bg Yo(er |x|/R),
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with

Yo(eR)>“

AR = (JO(ER) — Ji(ér) Y1er)

and

J —1
B = (Yo<sR> - J?E:;Yl (sR>) .

From (190), we have |eg| < C | log(R/a)I’l/z. Thus, we can expand fg for large R, using
(177) and, for Yy, the improved bound

2 1, 2
Yo(r) — —log(re” /2) [ 1 — =1 <Cr-,
b4 4
we find
&2
.AR 14 f(Zlog(sReV/Z) - 1)‘ < Cek(loger)?,
2 (191)
‘BR—ZS%e _ R ‘<C8%.
4 8 -
which leads to
f()c)—l—i—é 21o (R/|x|)—1+ﬁ —ﬁlo (R/|x]) 1—{-2L2
R 4 £ R2 16 J R? (192)

< Cep(logeg)?.
We can also compute the radial derivative
e
0 fr(x) = == (Ar Ji(err/R) + Br i(exr/R))

With the expansions (177) and (191) we conclude that for all Ry < |x| < R we have

< Cshloger. (193)

o frco — S8 (12 TR R
PR R2 T gz OB/

The bound (193) shows that d, fr(x) is positive, for, say, Ry < |x| < R/2. Since 9, fr(x)
must have its first zero at | x| = R, we conclude that f is increasing in |x|,on Ry < |x| < R.
From the normalization fr(x) = 1, for |[x| = R, we conclude therefore that fg(x) < 1, for
all Rp < |x| < R.

From (192) and (190) we obtain, on the other hand, the lower bound

2
frG) =1 %R log(R/|x]) — Ceh(loger)?

1 Jog(®/IxD) (1 3.1 N C )_C(loglog(R/a))2
log(R/a) 4log(R/a)  log*(R/a) log?(R/a)

_ log(xl/a) _ 3log(R/Ix]) Clog(R/lxI) _c (loglog(R/a))?
~ log(R/a) 4 1log%(R/a) log?(R/a) log?(R/a)

(194)
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for R sufficiently large. Let R, = max{Ry, ea}. Then Eq. (194) implies in particular that, for
R large enough,

C
fr(x) > Tog(R/a) (195)

forall R, < |x| < R.

Finally, we show that fr(x) < 1 also for |x| < Ry. First of all, we observe that, by elliptic
regularity, as stated for example in [12, Theorem 11.7, part iv)], there exists 0 < o < 1 and
C > 0 such that

|fRC) = fROI = CIV = 24R) fRll2 X — ¥|*
With [[Vfrll2 = [IVI3lfrlle = Cllfrllgt = C( 4 Ar)[ frll2, we conclude that 0 <

fr(x) <14 C| fll2 forall |x] < Rg (because we know that fr(x) < 1for Ry < |x| < R).
To improve this bound, we go back to the differential equation (167), to estimate

1
Afw = 5Vfr = rfr = =Ar(L+CI 1) (196)

This implies that fr(x)+Ar(1+C| f ||2)x2/2 is subharmonic. Using (192), we find fr(x) <
1-C e% for |x| = Rp. From the maximum principle, we obtain therefore that

fRO) < 1= Cé + Chr(1 + Clif12) 197)

forall |x| < Ro.In particular, this implies that || fr1|x|<g,ll2 < C+CAg|l fr |2, and therefore
that

| fR1Ry<ix|<rll2 = I fRII2(1 — CAg) — C
With fr(x) < 1for Ry < |x| < R, we find, on the other hand, that || fr1g,<x|<rll2 < CR.
We conclude therefore that || fr |l < CR and, from (197), that fr(x) < 1— C«‘S%e +C/R <1,
for all |x| < Ry, if R is large enough.

We are now ready to prove the lower bound for L. We use now that any function @
satisfying Neumann boundary conditions at |x| = R can be written as @ (x) = g (x)¥r(x),
with Yg(x) the trial function used for the upper bound and g > 0 a function that satisfies
Neumann boundary condition at |[x| = R as well. This is in particular true for the solution
fr(x) of (167). In the following we write

fR(X) = gr(x)¥R(x)

where g satisfies Neumann boundary conditions at |x| = R. From (184), we find |¥g (x)| >
C/log(ka). The bound fr(x) < 1 implies therefore that there exists ¢ > 0 such that

gr(x) < Clog(ka) Vx| <Ro. (198)
From the identity
hfr = (O%R)qr — (Aqr)¥R — 2VqrV ¥R
we have
[ arsense= [ avivarPui [ axlaePwenve.
[x|<R [x|[<R [x|<R
From (188) and (189), we have

2

k
|WR () (WWR)(x) — K*WR(x)| < C———(1+ V() x(Ix] < Ro).
|log ka|
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Hence
2

fu Rdx TR SR = K2\ fRIP — dx 1+ V@)lgr)*. (199

[logk| Jix1<ry
With (198), we obtain
dx frbfr = K|l fr])> — CK* log(ka) .
[x|<R
With (195) (recalling that R, = max{Ry, ea}), we bound
2

2 2
1 fzl? = /R VP

and, inserting in (199), we conclude that

jp o ROTR) o (1 ~ 010g3(R/a>)
(fr. fr) R?

2 3001 c
> S |1+ - ’
R2log(R/a) ( 4 log(R/a) 1og2(R/a)>

where in the last inequality we used (175).
To prove (169) we use the scattering equation (167) to write

/dx V(x)fR(x)=2f dx AfR(x)—I—Z/ dxig fr(x).
[x|<R

Ix|<R

Passing to polar coordinates, and using that Afg(x) = |x1718,]x]8, fr(x), we find that the
first term vanishes. Hence

/ dx V(o) fr(x) = 20p f dr fr(x).

With the upper bound fr(r) < 1 and with (168), we find

/de(x)f () < 2R < — % <1+ ¢ )
RS = R = Tlog(R/a) log(R/a) )

To obtain a lower bound for the same integral we use that fg(r) > 0 inside the range of the
potential. Outside the range of V, we use (192). We find

R dgr c
J— 2 S — _——
/dx V(xX)fr(x) > 4mAg /RO drr (1 —Ceglog(R/r)) > log(R/0) (1 log(R/a))
We conclude that
4 C
V GVOIRD = R | = o2 R/
Finally, we show the bounds in (170). For r € [Rp, R], from (192) we have
log(R/|x|) C
‘ RO T g (R/a) | = loe(R/a) (200

As for the derivative of wg we use (193) to compute

C 1
[0, fR(X)| < mm .
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Moreover 9, fr(x) = 0if |x| = R, by construction.
On the 0~ther hand, if |x]| < Ro, we have wg(x) = 1 — fr(x) < 1. As for the derivative,
we define fr on Ry through fr(r) = fr(x), if |x| = r, and we use the representation

fr() = }/Ords(?;’(s)s + fr(5)) .
With (167), we have (with V defined on Ry through V(x) = X7(r), if |[x| =r)
AGE: ;J?;e(’”) = ArfR() %‘7(?)]71%(0,
By (200), we can estimate ﬁe(Ro) < C/log(R/a). From (196), we also recall that

Fr(r) < fr(Ro) + CRAg < C/log(R/a)

for any r < Rp. We conclude therefore that

. 1 O PO

Tl = [ @55 = 57 fats)

Ar [T C r ~

- A rdr+7rlog(R/a)/0 drrV(r)
log(Ro/e) _  C

2 log(R/a) ~ log(R/a)

<——+C|V
_log(R/a)+ Vi
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