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Abstract
This paper deals with the renormalization of symmetric bimodal maps with low smoothness.
We prove the existence of the renormalization fixed point in the space C1+Lip symmetric
bimodal maps. Moreover, we show that the topological entropy of the renormalization oper-
ator defined on the space of C1+Lip symmetric bimodal maps is infinite. Further we prove
the existence of a continuum of fixed points of renormalization. Consequently, this proves
the non-rigidity of the renormalization of symmetric bimodal maps.

Keywords Renormalization fixed point · Symmetric bimodal maps · Low smoothness ·
Non-rigidity

Mathematics Subject Classification 37E05 · 37E20

1 Introduction

Renormalization is a technique to analyze maps having the property that the first return
map to a small part of the phase space resembles the original map itself. Period doubling
renormalization operator was introduced by Feigenbaum [1,2] and byCoullet and Tresser [3],
to study asymptotic small scale geometry of the attractor of one dimensional systems which
are at the transition from simple to chaotic dynamics. Renormalization is a method to study
microscopic geometrical properties of attractors. The geometric rigidity of the attractors is
the center of attention in one dimensional theory. The smoothness of the maps plays a crucial
role for rigidity. From the last four decades, a lot of mathematical theory have been developed
for the renormalization theory in low-dimensional dynamics. Especially, Sullivan [4] showed
the convergence of renormalizations. Moreover, all limits of renormalization are quadratic-
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like maps with a definite modulus. Hu [5] proved that the real polynomial map having the
periodic points of all power of 2 is infinitely renormalizable. Further, McMullen [6] proved
the exponential convergence towards the limit set of renormalization. Also, Martens [7]
showed that the renormalization operator acting on the space of smooth unimodal maps with
critical exponent greater than one, has periodic points of any combinatorial type. Lyubich
considered the renormalization with bounded combinatorics in [8]. Then, the hyperbolicity
of the renormalization fixed point in the space of C2+α (α > 0) unimodal maps, was shown
by Davie [9]. Using the results of [8]; de Faria et al. [10] extended to more general types of
renormalization in the spaceCr , provided r ≥ 2+α withα close to one. Later, Chandramouli
et al. [11], proved that the period doubling renormalization converges to the analytic generic
fixed point proving it to be globally unique in a class C2+|·| which is bigger than C2+α (for
any positive α ≤ 1). Furthermore, they showed that the uniqueness is lost below C2 space
and other asymptotic behavior encountered. Recently, Kozlovski and van Strien [12] proved
the existence of a period doubling infinitely renormalizable asymmetric unimodal map with
non universal scaling laws.

In the context of circle diffeomorphisms, Herman [13] proved the rigidity result, using real
variable techniques. Yoccoz [14] proved the other fundamental rigidity results by using con-
formal surgery, where Herman’s theorem holds in the real-analytic category. Further, Khanin
and Sinai [15] gave a proof of Herman’s theorem which is based on the thermodynamic
formalism and ergodic properties for the corresponding random variables. Later, Yampolsky
[16] proved the rigidity of circle map with a critical point. Furthermore, the rigidity theory
for circle maps with break type singularities have been developed by Khanin et al. [17–20],
Cunha and Smania [21], Akhadkulov et al. [22]. In the context of interval maps, the rigidity
phenomena is understood for C2+α (α > 0) smooth maps. Further, de Melo and Pinto [23]
proved the rigidity of C2 infinitely renormalizable unimodal maps with bounded combinato-
rial type. The measure-theoretical properties of real family of unimodal maps are studied by
Lyubich et al. [24] proved that almost any real quadratic map has either an attracting cycle or
an absolutely continuous invariant measure. Further, Avila et al. [25] extended these result
for any non-trivial real analytic family of quasiquadratic maps. Bruin et al. [26] showed that
almost every unicritical polynomial with even critical order greater than or equal to 2, admits
a physical measure, which is either supported on an attracting periodic orbit, or is absolutely
continuous, or is supported on the postcritical set. Further, Moreira and Smania [27] showed
the rigidity of infinitely renormalizable Fibonacci unimodal maps with even critical order
and having negative Schwarzian derivative. Bruin and Todd [28] proved the existence of wild
attractor for a countably piecewise linear infinitely renormalizable Fibonacci unimodal map
with infinite critical order.

In the context of two dimensional maps, de Carvalho et al. [29] showed the non-rigidity
of Cantor attractors of Hénon-like maps. Further, Hazard et al. [30] discussed the unbounded
geometry of Cantor attractor of strongly dissipative infinitely renormalizable Hénon-likemap
with stationary combinatorics. In case of Lorenzmaps,Martens andWinckler [31,32] studied
the hyperbolicity of Lorenz renormalization and also proved the non-existence of physical
measures for Lorenz maps which are infinitely renormalizable.

With a relatively complete understanding of the period doubling renormalization of uni-
modal maps, recent research in dynamical systems has either focused on more complicated
maps of the real line or other low dimensional maps. Jonker and Rand [33], and van Strien
[34] used renormalization as a natural vehicle to decompose the non-wandering set in a hier-
archical manner, for unimodal maps. The multimodal maps are interesting as generalizations
of unimodal maps, as well as for their applications. For example, in the case of bimodal
maps, they are essential to understand the non-invertible circle maps which have been used
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extensively to model the transitions to chaos in two frequency systems [35]. Mackay and
van Zeijts [36] explained the period doubling renormalization of two parameter families of
bimodal maps in the term of a horseshoe with a Cantor set of two dimensional unstable man-
ifold. Also, they calculated the periodic points of renormalization up to period five. Veitch
[37] presented some work on topological renormalization of C0 bimodal maps with zero
and positive entropy. Further, Smania developed a combinatorial theory for certain kind of
multimodal maps and proved that for the same combinatorial type the renormalizations of
infinitely renormalizable smooth multimodal maps are exponentially close [38,39]. Later,
Smania [40] proved the hyperbolicity of renormalization for real analytic multimodal maps
with bounded combinatorics.

In this work, we focus on the construction of renormalization fixed point for the family
of symmetric bimodal maps with low smoothness (i.e., below C2 space). First, we show that
there exists a sequence of affine pieces which are nested and shrinking down to the critical
points of the bimodal map corresponding to a pair of proper scaling data s∗ = (s∗

l , s∗
r ). This

helps us to show the existence of a fixed point fs∗ of the renormalization operator defined
on the space of piece-wise affine infinitely renormalizable maps, which is denoted by W ,

corresponding to a pair of proper scaling data s∗. This gives us the following result.

Theorem 1 There exists a map fs∗ ∈ W , where s∗ = (s∗
l , s∗

r ) is characterized by

R fs∗ = fs∗ .

In particular, W = { fs∗ }.
Here, the renormalization operator R is a pair of period tripling renormalization operators Rl

and Rr which are defined on piecewise affine period tripling infinitely renormalizable maps
corresponding to a proper scaling data sl and sr , respectively.
The proof of theorem 1 mainly relies on the Propositions 1 and 2 presented in Sect. 2. We
use Mathematica for some computational work to prove these propositions.
In the next Sect. 3, we explain the extension of the renormalization fixed point fs∗ to aC1+Lip

symmetric bimodal map gs∗ . Then, we have the following theorem,

Theorem 2 There exists an infinitely renormalizable C1+Lip symmetric bimodal map gs∗ ,
which is not C2 map, such that

Rgs∗ = gs∗ .

In Sect. 4, we describe the topological entropy of renormalization defined on the space of
C1+Lip symmetric bimodal maps. Then we obtain the following theorem,

Theorem 3 The renormalization operator R acting on the space of C1+Lip symmetric
bimodal maps has unbounded topological entropy.

Furthermore, we discuss the existence of another fixed point of renormalization by consid-
ering the small perturbation on the scaling data. Then, we get the following result,

Theorem 4 There exists a continuum of fixed points of the renormalization operator acting
on C1+Lip symmetric bimodal maps.

Consequently, this result leads to the non-rigidity of the Cantor attractors of infinitely renor-
malizable symmetric bimodal maps, whose smoothness is below C2.
We recall some basic definitions. Let I = [0, 1] be a closed interval.
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A point c ∈ I is said to be a critical point of a C1 map u : I → I if Du(c) = 0.
The critical point c is called non-flat critical point of order k if u is Ck+1 in a neighborhood
of c and Du(c) = D2u(c) = · · · = Dk−1u(c) = 0 and Dku(c) �= 0.
Note that Dku(c) stands for kth−derivative of u at c.
A unimodal map u : I → I , which is a C1 map having a unique non-flat critical point c,
is called period tripling renormalizable map if there exists a proper subinterval J ⊂ I with
c ∈ J such that
(1) J , u(J ) and u2(J ) are pairwise disjoint,
(2) u3(J ) ⊂ J .

Then u3 : J → J is called a pre-renormalization of u.
Where, un denotes n fold composition of u with itself.
LetU be the collection of unimodal maps andU∞(⊂ U ) be the collection of period tripling
infinitely renormalizable unimodal maps.
An interval map f is piece-wise monotone if there exists a partition of I into finitely many
subintervals on each of which the restriction of f is continuous and strictly monotonic.
A map f is called a bimodal map if three is the minimal number of such subintervals.

Definition 1 Let f : I → I be a map with two subsets Jl and Jr such that Jl
o ∩ J

o
r = ∅.

If f |Jl and f |Jr are unimodal maps which are concave up and concave down respectively,
their join, denoted by f |Jl ⊕ f |Jr , is a bimodal map whose graph is obtained by joining(
max(Jl), f (max(Jl))

)
and

(
min(Jr ), f (min(Jr ))

)
by a C1+Lip curve.

The notation I
o stands for the interior of I .

Definition 2 A bimodal map b : I → I , is a C1 map having two critical points cl and cr ,
which is said to be renormalizable if there exists two disjoint intervals Il containing cl and
Ir containing cr such that

(i) bi (Il) ∩ b j (Il) = ∅, for each i �= j and i, j ∈ {0, 1, 2},
bi (Ir ) ∩ b j (Ir ) = ∅, for each i �= j and i, j ∈ {0, 1, 2},

(ii) b3(Il) ⊂ Il and b3(Ir ) ⊂ Ir ,
(iii) The unimodal maps b̂l : [0, b(0)] → [0, b(0)] and b̂r : [b(1), 1] → [b(1), 1] are

joined to generate a bimodal map b̂l ⊕ b̂r . The unimodal maps b̂l and b̂r are defined as

b̂l(x) = h−1
1 b3h1(x)

and

b̂r (x) = h−1
2 b3h2(x)

where h1 : [0, b(0)] → Il and h2 : [b(1), 1] → Ir are the affine orientation reversing
homeomorphisms.

The renormalization of a bimodal map is illustrated in Fig. 1.
In the next section, we construct the renormalization operator defined on the space of

piece-wise affine maps which are infinitely renormalizable maps.

2 Piece-Wise Affine Renormalizable Maps

A symmetric bimodal map b : [0, 1] → [0, 1] of the form b(x) = a3x3 + a2x2 + a1x + a0,
for a3 < 0, is a C1 map with the following conditions
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Fig. 1 Renormalization of a bimodal map

– b(0) = 1 − b(1),
– b( 12 ) = 1

2 ,

– let cl and cr be the two critical points of b(x) , then b(cl) = 0 and b(cr ) = 1.

Let us consider a one parameter family of symmetric bimodal maps Bc : [0, 1] → [0, 1]
which are increasing on the interval between the critical points and decreasing elsewhere.
then, we obtained a family of bimodal maps as

Bc(x) =
{
1 − 1−6c+9c2−4c3+6cx−6c2x−3x2+2x3

(1−2c)3
, if c ∈ [

0, 1
4

]

1 − 4c3−3c2+6cx−6c2x−3x2+2x3

(2c−1)3
, if c ∈ [ 3

4 , 1
]

≡
{
bc(x), if c ∈ [

0, 1
4

]

b̃c(x), if c ∈ [ 3
4 , 1

] (1)

Note that the bimodal maps bc and b̃c are identical maps.
Let us define an open set

Δ3 =
{

(s0, s1, s2) ∈ R
3 : s0, s1, s2 > 0,

2∑

i=0

si < 1

}

.

Each element (s0, s1, s2) of Δ3 is called a scaling tri-factor. A pair of scaling tri-factors
(s0,l , s1,l , s2,l) and (s0,r , s1,r , s2,r ) induces two sets of affine maps (F0,l , F1,l , F2,l) and
(F0,r , F1,r , F2,r ) respectively. For each i = 0, 1, 2,

Fi,l : IL = [0, bc(0)] −→ IL
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are defined as

F0,l(t) = bc(0) − s0,l · t,
F1,l(t) = b2c (0) − s1,l · t,
F2,l(t) = s2,l · t

and

Fi,r : IR = [b̃c(1), 1] −→ IR

are defined as

F0,r (t) = b̃c(1) + s0,r · (1 − t),

F1,r (t) = b̃2c (1) + s1,r · (1 − t),

F2,r (t) = 1 − s2,r · (1 − t).

Note that IL
o ∩ IR

o = φ, for c ∈ [0, 3−√
3

6 ].
The functions sl : N → Δ3 and sr : N → Δ3 are said to be a scaling data. We set scaling
tri-factors
sl(n) = (s0,l(n), s1,l(n), s2,l(n)) ∈ Δ3 and sr (n) = (s0,r (n), s1,r (n), s2,r (n)) ∈ Δ3,

so that sl(n) and sr (n) induce the triplets of affine maps (F0,l(n)(t), F1,l(n)(t), F2,l(n)(t))
and (F0,r (n)(t), F1,r (n)(t), F2,r (n)(t)) as described above.
For i = 0, 1, 2, let us define the intervals

I ni,l = F1,l(1) ◦ F1,l(2) ◦ F1,l(3) ◦ ..... ◦ F1,l(n − 1) ◦ Fi,l(n)([0, bc(0)]).
Also,

I ni,r = F1,r (1) ◦ F1,r (2) ◦ F1,r (3) ◦ ..... ◦ F1,r (n − 1) ◦ Fi,r (n)([b̃c(1), 1]).
Definition 3 A scaling data s j ≡ {s j (n)}, for j = l, r , is said to be proper if, for each n ∈ N,

d(s j (n), ∂Δ3) ≥ ε, for some ε > 0.

Where d(s j (n), ∂Δ3) stands for the Euclidean distance between s j (n) and the closest bound-
ary point of Δ3.

Apair of proper scaling data sl : N → Δ3 and sr : N → Δ3,which is denoted by s = (sl , sr ),
induce the sets Dsl = ⋃

n≥1
(I n0,l ∪ I n2,l) and Dsr = ⋃

n≥1
(I n0,r ∪ I n2,r ), respectively. Consider a

map

fs : Dsl ∪ Dsr → [0, 1]
defined as

fs(x) =
{
fsl (x), if x ∈ Dsl
fsr (x), if x ∈ Dsr

where fsl |I n0,l and fsl |I n2,l are the affine extensions of bc|∂ I n0,l and bc|∂ I n2,l respectively. Similarly,
fsr |I n0,r and fsr |I n2,r are the affine extensions of bc|∂ I n0,r and bc|∂ I n2,r respectively. These affine
extensions are shown in Fig. 2.
The end points of the intervals at each level are labeled by

y0 = 0, z0 = bc(0), I 01,l = IL = [0, bc(0)]
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I2,l
1 I0,l

1

I2,r
1I0,r

1

bc

Fig. 2 Piece-wise affine extension

and for n ≥ 1

xn = ∂ I n0,l\∂ I n−1
1,l

y2n−1 = max{∂ I 2n−1
1,l }

y2n = min{∂ I 2n1,l }
z2n−1 = min{∂ I 2n−1

1,l }
z2n = max{∂ I 2n1,l }
wn = ∂ I n2,l\∂ I n−1

1,l ,

where ∂ I stands for the boundary of I . These points are illustrated in Fig. 3.
Also, the end points of the intervals at each level are labeled by

z′0 = b̃c(1), y′
0 = 1, I 01,r = IR = [b̃c(1), 1]

and for n ≥ 1

x ′
n = ∂ I n0,r\∂ I n−1

1,r

y′
2n−1 = min{∂ I 2n−1

1,r }
y′
2n = max{∂ I 2n1,r }

z′2n−1 = max{∂ I 2n−1
1,r }

z′2n = min{∂ I 2n1,r }
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Fig. 3 Formation of interval I n−1
1,l into three sub-intervals I n2,l , I

n
1,l and I n0,l

Fig. 4 Formation of interval I n−1
1,r into three sub-intervals I n0,r , I

n
1,r and I n2,r

w′
n = ∂ I n2,r\∂ I n−1

1,r .

These points are illustrated in Fig. 4.

Definition 4 For a given pair of proper scaling data sl , sr : N → Δ3, a map fs is said to be
infinitely renormalizable if for n ≥ 1,

1(i) [0, fsl (yn)] is the maximal domain containing 0 on which f 3
n−1

sl is defined affinely,

[ f 2sl (yn), fsl (0)] is the maximal domain containing fsl (0) on which f 3
n−2

sl is defined
affinely,

(ii) [ fsr (y′
n), 1] is the maximal domain containing 1 on which f 3

n−1
sr is defined affinely

and [ fsr (1), f 2sr (y
′
n)] is the maximal domain containing fsr (1) on which f 3

n−2
sr is

defined affinely,
2(i) f 3

n−1
sl ([0, fsl (yn)]) = I n1,l ,

(ii) f 3
n−2

sl ([ f 2sl (yn), fsl (0)]) = I n1,l ,

(iii) f 3
n−1

sr ([ fsr (y′
n), 1]) = I n1,r ,

(iv) f 3
n−2

sr ([ fsr (1), f 2sr (y
′
n)]) = I n1,r .

Define W = { fs : fs is infinitely renormalizable map}.
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Fig. 5 The combinatorics: a
corresponding to fsl ,
(I n1,l → I n2,l → I n0,l → I n1,l ) and
b corresponding to fsr ,
(I n1,r → I n2,r → I n0,r → I n1,r )

Further using Definition 4, we write Wl = { fsl : fsl satisfies 1(i), 2(i) and 2(ii)}
and Wr = { fsr : fsr satisfies 1(ii), 2(iii) and 2(iv)}.
Note that Wl and Wr be the collection of the piece-wise affine period tripling infinitely
renormalizable maps fsl on IL and fsr on IR, respectively.
The combinatorics for renormalization of fsl and fsr are shown in the following Fig. 5a, b.

2.1 Renormalization on IL = [0, bc(0)]

Let fsl ∈ Wl be given by the proper scaling data sl : N → Δ3 and define

Ĩ n1,l = [b2c (yn), bc(0)] = [ f 2sl (yn), fsl (0)],
and

Î n1,l = [0, bc(yn)] = [0, fsl (yn)].
Let

hsl ,n : [0, bc(0)] → I n1,l

be defined by

hsl ,n = F1,l(1) ◦ F1,l(2) ◦ F1,l(3) ◦ ..... ◦ F1,l(n)

Furthermore, let

h̃sl ,n : [0, bc(0)] → Ĩ n1,l and ĥsl ,n : [0, bc(0)] → Î n1,l

be the affine orientation preserving homeomorphisms. Then define

Rl
n fsl : h−1

sl ,n(Dsl ∩ I n1,l) → [0, bc(0)]
by

Rl
n fsl (x) =

⎧
⎨

⎩

Rl−
n fsl (x), if x ∈ h−1

sl ,n( ∪
m≥n+1

Im0,l)

Rl+
n fsl (x), if x ∈ h−1

sl ,n( ∪
m≥n+1

Im2,l)

where,

Rl−
n fsl : h−1

sl ,n( ∪
m≥n+1

Im0,l) → [0, bc(0)]
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Fig. 6 Illustration of operators Rl−n and Rl+n

and

Rl+
n fsl : h−1

sl ,n( ∪
m≥n+1

Im2,l) → [0, bc(0)]

are defined by

Rl−
n fsl (x) = h̃−1

sl ,n ◦ f 2sl ◦ hsl ,n(x)

Rl+
n fsl (x) = ĥ−1

sl ,n ◦ fsl ◦ hsl ,n(x),

which are illustrated in Fig. 6.
Let σ : (Δ3)N → (Δ3)N be the shift map defined as

σ(sl(1)sl(2)sl(3)sl(4)....) = (sl(2)sl(3)sl(4)....),

where sl(i) ∈ Δ3 for all i ∈ N.

Note that the operator Rl
n normalize the affine pieces f 2sl ( ∪

m≥n+1
Im0,l) and fsl ( ∪

m≥n+1
Im2,l) to

IL with the help of affine homeomorphism h̃−1
sl ,n and ĥ−1

sl ,n, respectively.
This implies, Rl

n fsl is a piecewise affine map associated with the scaling data
(sl(n + 1)sl(n + 2)sl(n + 3) . . .). Thus,

Rl
n fsl = fsl (n+1)sl (n+2)sl (n+3)....

The above explanation leads the following lemma.

Lemma 1 Let sl : N → Δ3 be proper scaling data such that fsl is infinitely renormalizable.
Then

Rl
n fsl = fσ n(sl ).

��
Let fsl be infinitely renormalization, then for n ≥ 0, we have

f 3
n

sl : Dsl ∩ I n1,l → I n1,l

is well defined.
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Fig. 7 Length of intervals

Define the renormalization Rl : Wl → Wl by

Rl fsl = h−1
sl ,1

◦ f 3sl ◦ hsl ,1.

The maps f 3
n−2

sl : Ĩ n1,l → I n1,l and f 3
n−1

sl : Î n1,l → I n1,l are the affine homeomorphisms
whenever fsl ∈ Wl .
One can observe that, for each n ∈ N, ∪

m≥n+1
Im0,l ⊂ I n1,l and ∪

m≥n+1
Im2,l ⊂ I n1,l .

By the definition of Rl
n, the operator Rl

n is just normalizing the affine pieces, which are
contained in I n1,l , to IL . Also, I n1,l are the renormalization intervals corresponding to nth

renormalization operator (Rl)n . Then, we have the following lemma,

Lemma 2 We have (Rl)n fsl : Dσ n(sl ) → [0, bc(0)] and (Rl)n fsl = Rl
n fsl . ��

Using Lemmas 1 and 2, now we are in a position to state the following proposition:

Proposition 1 There exists a map fs∗l ∈ Wl , where s∗
l is characterized by

Rl fs∗l = fs∗l .

Proof Consider sl : N → Δ3 be proper scaling data such that fsl is an infinitely renormal-
izable. Let cn be the critical point of fσ n(sl ). Then
we have the following scaling ratios which are illustrated in Fig. 7

s0,l(n) = bcn (0) − b4cn (0)

bcn (0)
(2)

s1,l(n) = b2cn (0) − b5cn (0)

bcn (0)
(3)

s2,l(n) = b3cn (0)

bcn (0)
(4)

cn+1 = b2cn (0) − cn
s1,l(n)

≡ R(cn). (5)

Since (s0,l(n), s1,l(n), s2,l(n)) ∈ Δ3, this implies the following conditions

s0,l(n), s1,l(n), s2,l(n) > 0 (6)

s0,l(n) + s1,l(n) + s2,l(n) < 1 (7)

As the intervals I ni,l , for i = 0, 1, 2, are mutually disjoint, we denote the gap ratios as
gn0,l and gn1,l which are in between I n0,l & I n1,l and I n1,l & I n2,l respectively. The gap ratios are
defined as, for n ∈ N,

gn0,l = b4cn (0) − b2cn (0)

bcn (0)
≡ G0,l(cn) > 0 (8)
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(a) (b)

Fig. 8 a and b shows the graph of S0,l (c), and S1,l (c) respectively

(a) (b)

Fig. 9 a and b shows the graph of S2,l (c), and (S0,l + S1,l + S2,l )(c) respectively

gn1,l = b5cn (0) − b3cn (0)

bcn (0)
≡ G1,l(cn) > 0 (9)

0 < cn <
3 − √

3

6
(10)

We use Mathematica for solving the Eqs. (2), (3) and (4), then we get the expressions for
s0,l(n), s1,l(n) and s2,l(n).

Let si,l(n) ≡ Si,l(cn) for i = 0, 1, 2. The graphs of Si,l(c) are shown in Figs. 8a, b and 9a.
Note that the conditions (6), (8) and (9) give the condition (7)

0 <

2∑

i=0

si,l(n) < 1.

The conditions (6) together with (8) to (10) define the feasible domain Fl
d is to be:

Fl
d =

{
c ∈

(

0,
3 − √

3

6

)

: Si,l(c) > 0 for i = 0, 1, 2,G0,l(c) > 0,G1,l(c) > 0
}
. (11)
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(a) (b)

Fig. 10 The graph ofR : Fl
d → R and the diagonal R(c) = c

To compute the feasible domain Fl
d , we need to find subinterval(s) of

(
0, 3−√

3
6

)
which

satisfies the conditions of (11). By using Mathematica software, we employ the following
command to obtain the feasible domain

N[Reduce[
{
S0,l (c) > 0,S1,l(c) > 0, S2,l (c) > 0,G0,l (c) > 0,G1,l (c) > 0, 0 < c <

3 − √
3

6

}
, c]].

This yields:

Fl
d = (0.188816..., 0.194271...) ∪ (0.194271..., 0.199413...) ≡ Fl

d1 ∪ Fl
d2 .

From the Eq. (5), the graphs of R(c) are plotted in the sub-domains Fl
d1

and Fl
d2

of Fl
d

which are shown in Fig. 10.
The map R : Fl

d → R is expanding in the neighborhood of fixed point c∗
l which is

illustrated in Fig. 10b. By Mathematica computations, we get an unstable fixed points c∗
l =

0.196693... in Fl
d such that

R(c∗
l ) = c∗

l

corresponds to an infinitely renormalizable maps fs∗l . We observe that the map fsl ∗ corre-
sponding to c∗

l has the following property

{c∗
l } =

⋂

n≥1

I n1,l .

In other words, consider the scaling data sl∗ : N → Δ3 with

sl
∗(n) = (s∗

0,l(n), s∗
1,l(n), s∗

2,l(n))

=
⎛

⎝
bc∗

l
(0) − b4c∗

l
(0)

bc∗
l
(0)

,
b2c∗

l
(0) − b5c∗

l
(0)

bc∗
l
(0)

,
b3c∗

l
(0)

bc∗
l
(0)

⎞

⎠ .

Then σ(s∗
l ) = s∗

l and using Lemma 1 we have

Rl fs∗l = fs∗l .

��
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2.2 Renormalization on IR = [b̃c(1), 1]

In Sect. 2.1, the bimodal map bc(x) has two critical points c ∈ IL and 1 − c ∈ IR and we
define the piece-wise renormalization on IL . In similar fashion, to define the renormalization
on IR with c ∈ IR , from Eq. 1, we consider

b̃c(x) = 1 − 4c3 − 3c2 + 6cx − 6c2x − 3x2 + 2x3

(2c − 1)3

where x ∈ [0, 1] and c ∈ [ 34 , 1].
Note that IL

o ∩ IR
o = φ, for c ∈ [ 3+

√
3

6 , 1].
Let fsr ∈ Wr be given by the proper scaling data sr : N → Δ3 and define

Ĩ n1,r = [b̃c(1), b̃2c (y′
n)] = [ fsr (1), f 2sr (y

′
n)],

and

Î n1,r = [b̃c(y′
n), 1] = [ fsr (y′

n), 1].
Let

hsr ,n : [b̃c(1), 1] → I n1,r

be defined by

hsr ,n = F1,r (1) ◦ F1,r (2) ◦ F1,r (3) ◦ ..... ◦ F1,r (n).

Furthermore, let

h̃sr ,n : [b̃c(1), 1] → Ĩ n1,r and ĥsr ,n : [b̃c(1), 1] → Î n1,r

be the affine orientation preserving homeomorphisms. Then define

Rr
n fsr : h−1

sr ,n(Dsr ∩ I n1,r ) → [b̃c(1), 1]
by

Rr
n fsr (x) =

⎧
⎨

⎩

Rr−
n fsr (x), if x ∈ h−1

sr ,n( ∪
m≥n+1

Im0,r )

Rr+
n fsr (x), if x ∈ h−1

sr ,n( ∪
m≥n+1

Im2,r )

where,

Rr−
n fsr : h−1

sr ,n( ∪
m≥n+1

Im0,r ) → [b̃c(1), 1]

and

Rr+
n fsr : h−1

sr ,n( ∪
m≥n+1

I n2,r ) → [b̃c(1), 1]

are defined by

Rr−
n fsr (x) = h̃−1

sr ,n ◦ f 2sr ◦ hsr ,n(x)

Rr+
n fsr (x) = ĥ−1

sr ,n ◦ fsr ◦ hsr ,n(x),

which are illustrated in Fig. 11.
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Fig. 11 Illustration of operators Rr−n and Rr+n

Let σ : (Δ3)N → (Δ3)N be the shift map which is defined as

σ(sr (1)sr (2)sr (3)sr (4)....) = (sr (2)sr (3)sr (4)....),

where sr (i) ∈ Δ3 for all i ∈ N.

Lemma 3 Let sr : N → Δ3 be proper scaling data such that fsr is infinitely renormalizable.
Then

Rr
n fsr = fσ n(sr ).

��
Let fsr be infinitely renormalization, then for n ≥ 0, we have

f 3
n

sr : Dsr ∩ I n1,r → I n1,r

is well defined.
Define the renormalization Rr : Wr → Wr by

Rr fsr = h−1
sr ,1

◦ f 3sr ◦ hsr ,1.

The maps f 3
n−2

sr : Ĩ n1,r → I n1,r and f 3
n−1

sr : Î n1,r → I n1,r are the affine homeomorphisms
whenever fsr ∈ Wr . Then we have:

Lemma 4 We have (Rr )n fsr : Dσ n(sr ) → [b̃c(1), 1] and (Rr )n fsr = Rr
n fsr . ��

From the above Lemmas 3 and 4, consequently we get

Proposition 2 There exists a map fs∗r ∈ Wr , where s∗
r is characterized by

Rr fs∗r = fs∗r .

Proof Consider sr : N → Δ3 be proper scaling data such that fsr is an infinitely renormal-
izable. Let cn be the critical point of fσ n(sr ). Then
from Fig. 12, we have the following scaling ratios

s0,r (n) = b̃4cn (1) − b̃cn (1)

1 − b̃cn (1)
(12)
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Fig. 12 Length of intervals

(a) (b)

Fig. 13 The graph ofR : Fr
d → R and the diagonalR(c) = c

s1,r (n) = b̃5cn (1) − b̃2cn (1)

1 − b̃cn (1)
(13)

s2,r (n) = 1 − b̃3cn (1)

1 − b̃cn (1)
(14)

cn+1 = 1 − cn − b̃2cn (1)

s1,r (n)
≡ R(cn). (15)

Use the same argument as was given in Sect. 2.1, one can compute feasible domain Fr
d .

Finally, we get

Fr
d = (0.800587..., 0.805729...) ∪ (0.805729..., 0.811184...) ≡ Fr

d1 ∪ Fr
d2 .

From the Eq. (15), the graphs of R(c) are plotted in the sub-domains Fr
d1

and Fr
d2

of Fr
d

which are shown in Fig. 13.
The map R : Fr

d → R is expanding in the neighborhood of fixed point c∗
r which is

illustrated in Fig. 13b. By Mathematica computations, we get an unstable fixed points c∗
r =

0.803307... in Fr
d such that

R(c∗
r ) = c∗

r

corresponds to an infinitely renormalizable maps fs∗r . We observe that the map fsr ∗ corre-
sponding to c∗

r has the following property

{c∗
r } =

⋂

n≥1

I n1,r .

In other words, consider the scaling data sr ∗ : N → Δ3 with

sr
∗(n) = (s∗

0,r (n), s∗
1,r (n), s∗

2,r (n))
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=
(
b̃4c∗

r
(1) − b̃c∗

r
(1)

1 − b̃c∗
r
(1)

,
b̃5c∗

r
(1) − b̃2c∗

r
(1)

1 − b̃c∗
r
(1)

,
1 − b̃3c∗

r
(1)

1 − b̃c∗
r
(1)

)

.

Then σ(s∗
r ) = s∗

r and using Lemma 3 we have

Rr fs∗r = fs∗r .

��
For a given pair of proper scaling data s = (sl , sr ), we defined a map

fs : Dsl ∪ Dsr → [0, 1]
as

fs(x) =
{
fsl (x), if x ∈ Dsl
fsr (x), if x ∈ Dsr

Then, the renormalization of fs is defined as

R fs(x) =
{
Rl fsl (x), if x ∈ Dsl
Rr fsr (x), if x ∈ Dsr

From Propositions 1 and 2, we conclude that the period tripling infinitely renormalizable
maps fs∗l and fs∗r are fixed points of Rl and Rr corresponding to the proper scaling data s∗

l
and s∗

r , respectively. Then, for a given pair of scaling data s∗ = (s∗
l , s∗

r ), we have

R fs∗(x) =
{
Rl fs∗l (x), if x ∈ Ds∗l
Rr fs∗r (x), if x ∈ Ds∗r

=
{
fs∗l (x), if x ∈ Ds∗l
fs∗r (x), if x ∈ Ds∗r

= fs∗(x)

This will give us the following theorem,

Theorem 1 There exists a map fs∗ ∈ W , where s∗ = (s∗
l , s∗

r ) is characterized by

R fs∗ = fs∗ .

In particular, W = { fs∗ }.
Remark 1 The constructed map fs∗ with a pair of proper scaling data s∗ = (s∗

l , s∗
r ) holds the

following conditions,

(i) s∗
2,l ≤ (s∗

1,l)
2

(ii) s∗
2,r ≤ (s∗

1,r )
2

Note that for i ∈ {0, 1, 2}, the scaling ratios si,l(n) are the expressions in the terms of cn
which are described in Eqs. (2)–(4). Therefore, one can easily compute s∗

0,l , s
∗
1,l and s∗

2,l by
substituting cn = c∗

l in the respective expressions. Then,

s∗
2,l = s2,l(n)

∣∣
cn=c∗

l
≤

(
s1,l(n)

∣∣
cn=c∗

l

)2 = (
s∗
1,l

)2
.

Similarly,

s∗
2,r = s2,r (n)

∣∣
cn=c∗

r
≤

(
s1,r (n)

∣∣
cn=c∗

r

)2 = (
s∗
1,r

)2
.
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Remark 2 The invariant Cantor set of the map fs∗ , namely Λs∗ , is next in complexity to the
invariant doubling Cantor set, namely Λσ ∗ , of piece-wise affine period doubling infinitely
renormalizable map fσ ∗ [11] in the following sense,

(i) like the both Cantor sets Λs∗ and Λσ ∗ , on each scale and everywhere the same scaling
ratio s∗ and σ ∗ are used respectively,

(ii) but unlike the doubling Cantor set Λσ ∗ , there are now a pair of three different ratios at
each scale corresponding to s∗.

Furthermore, the geometry of the invariant Cantor set of fs∗ is different from the geometry
of the invariant Cantor set of piece-wise affine period tripling renormalizable map because
the Cantor set of fs∗ has 2−copy of Cantor set of [41].

3 C1+Lip Extension of fs∗

In Sect. 2, we have constructed a piece-wise affine infinitely renormalizable map fs∗ corre-
sponding to the pair of scaling data s∗ = (s∗

l , s∗
r ). Let us define a pair of scaling functions

Sl : [0, bc∗
l
(0)]2 → [0, bc∗

l
(0)]2

Sr : [b̃c∗
r
(1), 1]2 → [b̃c∗

r
(1), 1]2

as

Sl

(
x
y

)
=

(
b2c∗

l
(0) − s∗

1,l · x
s∗
2,l · y

)

; Sr

(
x
y

)
=

(
b̃2c∗

r
(1) + s∗

1,r · (1 − x)
1 − s∗

2,r · (1 − y)

)

.

LetG be the graph of gs∗ which is an extension of fs∗ where fs∗ : Ds∗l ∪Ds∗r → [0, 1].Let
G1

l andG
2
l are the graphs of gs∗ |[y1, z0] which is anC1+Lip extension of fs∗ on Ds∗l ∩[y1, z0]

and gs∗ |[y0, z1] which is an C1+Lip extension of fs∗ on Ds∗l ∩ [y0, z1] respectively. Also, G1
r

and G2
r are the graphs of gs∗ |[z′0, y′

1] which is an C1+Lip extension of fs∗ on Ds∗r ∩ [z′0, y′
1]

and gs∗ |[z′1, y′
0] which is an C1+Lip extension of fs∗ on Ds∗r ∩ [z′1, y′

0] respectively which

are shown in Fig. 14. Also, note that G1
r and G2

r are the reflections of G
1
l and G2

l across the
point

( 1
2 ,

1
2

)
respectively. Define

Gl = ∪n≥0S
n
l (G1

l ∪ G2
l ) and Gr = ∪n≥0S

n
r (G1

r ∪ G2
r ).

Then, Gl is the graph of a unimodal map gs∗l which extends fs∗l and Gr is the graph of a
unimodal map gs∗r which extends fs∗r . Consequently, G is the graph of gs∗ = gs∗l ⊕ gs∗r . We

claim that gs∗ is a C1+Lip symmetric bimodal map.
Let B0

l = [0, bc∗
l
(0)] × [0, bc∗

l
(0)] and B0

r = [b̃c∗
r
(1), 1] × [b̃c∗

r
(1), 1].

For n ∈ N, define

Bn
l = Snl (B0

l ) and Bn
r = Snr (B0

r )

as

Bn
l =

{ [zn, yn] × [0, ŷn], if n is odd
[yn, zn] × [0, ŷn], if n is even

and

Bn
r =

{
[y′

n, z′n] × [ŷ′
n, 1], if n is odd

[z′n, y′
n] × [ŷ′

n, 1], if n is even.
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Fig. 14 Extension of fs∗

Let pnl and pnr be the points on the graph of the bimodal map bc∗
l
(x) and bc∗

r
(x) respectively.

For all n ∈ N, pnl and pnr are defined as

pnl =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
y n+1

2

ŷ n+1
2

)

, if n is odd

(
z n
2

ẑ n
2

)
, if n is even

pnr =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
y′
n+1
2

ŷ′ n+1
2

)

, if n is odd

(
z′n
2

ẑ′ n
2

)

, if n is even

where ŷn = bc∗
l
(yn), ẑn = bc∗

l
(zn), ŷ′

n = b̃c∗
r
(y′

n) and ẑ′n = b̃c∗
r
(z′n).

Then the above construction will lead to following proposition,

Proposition 3 G is the graph of gs∗ which is a C1 extension of fs∗ .

Proof Since G1
l and G2

l are the graph of fs∗l |[y1,z0] and fs∗l |[y0,z1], respectively, and G1
r and

G2
r are the graph of fs∗r |[z′0,y′

1] and fs∗r |[z′1,y′
0], respectively, we obtain G2n+1

l = Snl (G1
l ) and

G2n+2
l = Snl (G2

l ) for each n ∈ N. Note that Gn
l is the graph of a C1 function defined

on [z n−1
2

, y n+1
2

] if n ∈ 4N − 1,

on [z n
2
, y n

2 −1] if n ∈ 4N,

on [y n+1
2

, z n−1
2

] if n ∈ 4N + 1,

and on [y n
2 −1, z n

2
] if n ∈ 4N + 2.
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Also, we have G2n+1
r = Snr (G1

r ) and G2n+2
r = Snr (G2

r ) for each n ∈ N. Note that Gn
r is the

graph of a C1 function defined

on [y′
n+1
2

, z′n−1
2

] if n ∈ 4N − 1,

on [y′
n
2 −1, z′n

2
] if n ∈ 4N,

on [z′n−1
2

, y′
n+1
2

] if n ∈ 4N + 1,

and on [z′n
2
, y′

n
2 −1] if n ∈ 4N + 2.

To prove the proposition, we have to check continuous differentiability at the points pnl and
pnr . Consider the neighborhoods (y1 − ε, y1 + ε) around y1 and (z1 − ε, z1 + ε) around z1,
the slopes are given by an affine pieces of fs∗l on the subintervals (y1−ε, y1) and (z1, z1+ε)

and the slopes are given by the chosen C1 extension on (y1, y1 + ε) and (z1 − ε, z1). This
implies, G1

l and G2
l are C

1 at p1l and p2l , respectively.
Let γ1 ⊂ Gl be the graph over the interval (y1 − ε, y1 + ε) and γ2 ⊂ Gl be the graph over
the interval (z1 − ε, z1 + ε),

then the graph Gl locally around pnl is equal to

⎧
⎨

⎩
S

n−1
2

l (γ1) if n is odd

S
n−2
2

l (γ2) if n is even
. This implies, for

n ∈ N, G2n−1
l is C1 at p2n−1

l and G2n
l is C1 at p2nl .

Hence Gl is a graph of a C1 function on [0, bc∗
l
(0)] \ {c∗

l }.
We note that the horizontal contraction of Sl is smaller than the vertical contraction. This
implies that the slope of Gn

l tends to zero when n is large. Therefore, Gl is the graph of a C1

function gs∗l on [0, bc∗
l
(0)].

In similar way, one can prove that Gr is the graph of a C1 function gs∗r on [b̃c∗
r
(1), 1].

Therefore, G = Gl ⊕ Gr is the graph of a C1 bimodal map gs∗ = gs∗l ⊕ gs∗r which is a C1

extension of fs∗ . ��

Proposition 4 Let gs∗ be the function whose graph is G then gs∗ is a C1+Lip symmetric
bimodal map.

Proof As the function gs∗ is a C1 extension of fs∗ . We have to show that, for i ∈ {l, r}, Gn
i

is the graph of a C1+Lip function

gns∗i
: Dom(Gn

i ) → [0, 1]

with an uniform Lipschitz bound.
That is, for n ≥ 1,

Lip((gn+1
s∗i

)′) ≤ Lip((gns∗i
)′)

let us assume that gns∗l
is C1+Lip with Lipschitz constant λn for its derivatives. We show that

λn+1 ≤ λn .

For given

(
u
v

)
on the graph of gns∗l

, there is

(
ũ
ṽ

)
= Sl

(
u
v

)
on the graph of gn+1

s∗l
, this

implies

gn+1
s∗l

(ũ) = s∗
2,l · gns∗l (u)
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Since u =
b2
c∗l

(0)−ũ

s∗1,l
, we have

gn+1
s∗l

(ũ) = s∗
2,l · gns∗l

⎛

⎝
b2c∗

l
(0) − ũ

s∗
1,l

⎞

⎠

Differentiate both sides with respect to ũ, we get

(
gn+1
s∗l

)′
(ũ) = − s∗

2,l

s∗
1,l

·
(
gns∗l

)′
⎛

⎝
b2c∗

l
(0) − ũ

s∗
1,l

⎞

⎠

Therefore,

∣
∣
∣
∣
(
gn+1
s∗l

)′
(ũ1) −

(
gn+1
s∗l

)′
(ũ2)

∣
∣
∣
∣ =

∣
∣
∣
∣
∣
s∗
2,l

s∗
1,l

∣
∣
∣
∣
∣
·
∣
∣
∣
∣
∣
∣

(
gns∗l

)′
⎛

⎝
b2c∗

l
(0) − ũ1

s∗
1,l

⎞

⎠ −
(
gns∗l

)′
⎛

⎝
b2c∗

l
(0) − ũ2

s∗
1,l

⎞

⎠

∣
∣
∣
∣
∣
∣

≤ s∗
2,l

(s∗
1,l)

2 · λ
(
gns∗l

)′ |ũ1 − ũ2|

From Remark 1, we have (s∗
1,l)

2 ≥ s∗
2,l . Then,

λ(gn+1
s∗l

)′ ≤ λ(gns∗l
)′ ≤ λ(g1s∗l

)′.

Similarly, one can show that

λ(gn+1
s∗r )′ ≤ λ(gns∗r )

′ ≤ λ(g1s∗r )
′.

Therefore, choose λ = max{λ(g1s∗l
)′, λ(g1s∗r )

′} is the uniform Lipschitz bound. This com-

pletes the proof. ��
Note that for a given pair of proper scaling data s∗ = (s∗

l , s∗
r ), the piece-wise affine map

fs∗ is infinitely renormalizable and gs∗ is a C1+Lip extension of fs∗ . This implies gs∗ is also
renormalizable map. Further, we observe that Rgs∗ is an extension of R fs∗ . Therefore Rgs∗
is renormalizable. Hence, gs∗ is infinitely renormalizable map which is not a C2 map. Then
we have the following theorem,

Theorem 2 There exists an infinitely renormalizable C1+Lip symmetric bimodal map gs∗
such that

Rgs∗ = gs∗ .

��

4 Topological Entropy of Renormalization

In this section, we calculate the topological entropy of the renormalization operator defined
on the space of C1+Lip bimodal maps.
Let us consider three pairs of C1+Lip maps φi : [0, z1] ∪ [y1, bc∗

l
(0)] → [0, bc∗

l
(0)] and

ψi : [b̃c∗
r
(1), y′

1] ∪ [z′1, 1] → [b̃c∗
r
(1), 1], for i = 0, 1, 2, which extend fs∗ . Because of

symmetricity, ψi (x) = 1 − φi (1 − x). For a sequence α = {αn}n≥1 ∈ Σ3,
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where Σ3 = {{xn}n≥1 : xn ∈ {0, 1, 2}} is called full 3-Shift.
Now define

Gn
l (α) = Snl (graph φαn ) and Gn

r (α) = Snr (graph ψαn ),

we have

Gl(α) =
⋃

n≥1

Gn
l (α) and Gr (α) =

⋃

n≥1

Gn
r (α).

Therefore, we conclude that G(α) = Gl(α) ⊕ Gr (α) is the graph of a C1+Lip bimodal map
bα by using the same facts of Sect. 3.
The shift map σ : Σ3 → Σ3 is defined as

σ(α1α2α3 . . .) = (α2α3α4 . . .).

Proposition 5 The restricted maps b3α : [y1, z1] → [y1, z1] and b3α : [y′
1, z′1] → [y′

1, z′1]
are the unimodal maps for all α ∈ Σ3. In particular, bα is a renormalizable map and
Rbα = bσ(α).

Proof We know that bα : [y1, z1] → I 12,l is a unimodal and onto, bα : I 12,l → I 10,l is onto

and affine and also bα : I 10,l → [y1, z1] is onto and affine. Therefore b3α is a unimodal map

on [y1, z1]. Analogously, b3α is a unimodal map on [y′
1, z′1]. The above construction implies

Rbα = bσ(α).

��

This gives us the following theorem.

Theorem 3 The renormalization operator R acting on the space of C1+Lip symmetric
bimodal maps has unbounded topological entropy.

Proof From the above construction, we conclude that α �−→ bα ∈ C1+Lip is injective.
The domain of R contains two copies, namely Λ1 and Λ2, of the full 3-shift. As topolog-
ical entropy htop is an invariant of topological conjugacy. Hence htop( R|Λ1∪Λ2) > ln 3.
In fact, if we choose n different pairs of C1+Lip maps, say, φ0, φ1, φ2, . . . φn−1 and
ψ0, ψ1, ψ2, . . . ψn−1, which extends fs∗ , then it will be embedded two copies of the
full n − shift in the domain of R. Hence, the topological entropy of R on C1+Lip symmetric
bimodal maps is unbounded. ��

5 An � Perturbation of the Scaling Data

In this section, we use an ε perturbation on the construction of the scaling data as presented
in Sect. 2, to obtain the following theorem

Theorem 4 There exists a continuum of fixed points of the renormalization operator acting
on C1+Lip symmetric bimodal maps.
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Proof Consider an ε variation on scaling data and we modify the construction which is
described in Sect. 2.

Let us define the neighborhoods Nl
ε and Nr

ε about the respective points (b3c (0), b4c (0))
and (b3c (1), b4c (1)) as

Nl
ε(b

3
c (0), b4c (0)) = {(b3c (0), ε · b4c (0)) : ε > 0 and ε close to 1}

Nr
ε (b3c (1), b4c (1)) = {(b3c (1), ε · b4c (1)) : ε > 0 and ε close to 1}

(i). The perturbed scaling data on I l0, then the scaling ratios are defined as

s2,l(c, ε) = b3c (0)

bc(0)

s0,l(c, ε) = bc(0) − εb4c (0)

bc(0)

s1,l(c, ε) = b2c (0) − bc(εb4c (0))

bc(0)
,

where c ∈ (0, 3−√
3

6 ). Also, we define

R(c, ε) = b2c (0) − c

s1,l(c, ε)
.

From Sect. 2.1, we know that the map R which is defined in Eq. 5, has unique fixed point
c∗. Consequently, for a given ε close to 1, R(c, ε) has only one unstable fixed point, namely
c∗
ε . Therefore, we consider the perturbed scaling data s∗

l,ε : N → Δ3 with

s∗
l,ε =

(
bc∗

ε
(0) − εb4c∗

ε
(0)

bc∗
ε
(0)

,
b2c∗

ε
(0) − bc∗

ε
(εb4c∗

ε
(0))

bc∗
ε
(0)

,
b3c∗

ε
(0)

bc∗
ε
(0)

)

.

Then σ(s∗
l,ε) = s∗

l,ε and using Lemma 1, we have

Rl fs∗l,ε = fs∗l,ε .

(ii). Considering the perturbed scaling data on I r0 , one has the scaling data s∗
r ,ε : N → Δ3

with

s∗
r ,ε =

(
εb4c∗

ε
(1) − bc∗

ε
(1)

1 − bc∗
ε
(1)

,
bc∗

ε
(εb4c∗

ε
(1)) − b2c∗

ε
(1)

1 − bc∗
ε
(1)

,
1 − b3c∗

ε
(1)

1 − bc∗
ε
(1)

)

.

Then σ(s∗
r ,ε) = s∗

r ,ε and using Lemma 3, we have

Rr fs∗r,ε = fs∗r,ε .

Moreover, fs∗l,ε and fs∗r,ε are the piece-wise affinemapswhich are infinitely renormalizable.
For a given pair of proper scaling data s∗

ε = (s∗
l,ε , s∗

r ,ε), we have

R fs∗ε = fs∗ε .

Nowwe use similar extension described in Sect. 3, then we get gs∗ε is theC
1+Lip extension of

fs∗ε . This implies that gs∗ε is a renormalizable map. As Rgs∗ε is an extension of R fs∗ε .Therefore
Rgs∗ε is renormalizable.Hence, for each ε close to 1, gs∗ε is a fixed point of the renormalization.
This proves the existence of a continuum of fixed points of the renormalization. ��
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Remark 3 In particular, for two different perturbed scaling data sε∗
1
and sε∗

2
, one can construct

two infinitely renormalizable maps gsε∗1
and gsε∗2

. Therefore, the respective Cantor attractors

will have different scaling ratios. Consequently, it shows the non-rigidity for symmetric
bimodal maps, whose smoothness is C1+Lip .

6 Conclusions

In this paper, we have investigated the existence of fixed point of the renormalization operator
which is defined on the space of symmetric bimodal maps with low smoothness. For a given
pair of proper scaling data s∗ = (s∗

l , s∗
r ), we have first constructed the piece-wise affine

infinitely renormalizable map fs∗ which is the only fixed point of the renormalization. We
observe that the geometry of invariant Cantor set is more complex than the geometry of the
Cantor set of piece-wise affine period doubling renormalizable map [11]. Further, we have
extended this fixed point fs∗ to a C1+Lip symmetric bimodal map. Moreover, we proved
that the renormalization operator acting on the space of C1+Lip symmetric bimodal maps
has infinite topological entropy. Finally, we proved the existence a continuum of fixed points
of renormalization by considering a small perturbation on the scaling data. Consequently,
it showed the non-rigidity of the Cantor attractors of infinitely renormalizable symmetric
bimodal maps with low smoothness.
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