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Abstract
WeconsiderKac’s 1D N -particle systemcoupled to an ideal thermostat at a fixed temperature,
introduced by Bonetto, Loss, and Vaidyanathan in 2014. We obtain a propagation of chaos
result for this system, with an explicit and uniform-in-time rate of order N−1/3 in terms of the
2-Wasserstein metric squared. We also show well-posedness and equilibration for the limit
kinetic equation in the space of probability measures. The proofs use a coupling argument
previously introduced by Cortez and Fontbona in 2016.

Keywords Kinetic theory of gases · Kac model · Thermostated Kac model · Propagation of
chaos · Coupling methods

1 Introduction andMain Result

1.1 Thermostated Kac Particle System

We are interested in Kac’s 1D particle system, subjected to interactions against particles
taken from an ideal external thermostat, as studied for instance in [4,22]. It can be described
as follows: consider N particles characterized by their one-dimensional velocities, subjected
to two types of random interactions:
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Kac collisions: at rate λN , randomly select two particles in the system and update their
velocities v, v∗ ∈ R according to the rule(

v

v∗

)
�→

(
v′
v′∗

)
:=

(
v cos θ − v∗ sin θ

v sin θ + v∗ cos θ

)
, (1)

where θ ∈ [0, 2π) is selected uniformly at random. This rule preserves the energy:
v2 + v2∗ = (v′)2 + (v′∗)2.
Thermostat interactions: at rateμN , randomly select a particle in the system and update
its velocity v ∈ R according to the rule

v �→ v cos θ − w sin θ, (2)

where θ is again selected uniformly at random on [0, 2π), and w is sampled with the
Gaussian density γ (w) = (2πT )−1/2e−w2/2T . This can be seen as an interaction against
a particle taken from an ideal thermostat, that is, from an infinite reservoir at thermal
equilibrium with temperature T > 0.

Here λ > 0, μ > 0 are given fixed constants representing the rate of Kac and thermostat
collisions, respectively. The initial velocities of the N particles are chosen according to some
prescribed symmetric distribution f N

0 on R
N , and all previous random choices are made

independently. These rules unambiguously specify the law of the particle system as an R
N -

valued pure-jump continuous-time Markov process, whose state at time t ≥ 0 is denoted
Vt = (V 1

t , . . . , V N
t ), and we also write f N

t = Law(Vt ) for its symmetric distribution. For
simplicity, in our notation we omit the dependence on N in the particle system Vt .

Kac’s original model [17], corresponding to the case μ = 0, represents the evolution of
a large number of indistinguishable particles that exchange energies via random collisions
in a one dimensional caricature of a gas, as a simplification of the more realistic spatially
homogeneous Boltzmann equation. The form of the collision rule (1) implies that the average
energy 1

N

∑
i (V i

t )2 is preserved a.s., and one typically assumes that the initial average energy
is a.s. equal to 1. Thus, f N

t is supported on the sphere SN = {v ∈ R
N : ∑

i (v
i )2 = N } for

all t ≥ 0, and the dynamics has σ N , the uniform measure on SN , as the unique stationary
distribution. Kac worked with initial conditions f N

0 having a density in L2(SN , σ N ), for
whichwenowknow that f N

t equilibrates exponentially fast in the L2 norm,with rates uniform
in N , see [5,16]. However, the L2 norm is a crude upper bound for the L1 norm; moreover,
the L2 norm of typical initial distributions f N

0 with a near-product structure (specifically,
chaotic sequences, see below) grows exponentially with N , which means that one has to wait
a time proportional to N in order for the L2 bound to start providing evidence of convergence.

Thus, one looks for alternative ways to quantify equilibration, such as convergence in
relative entropy. The relative entropy of near-product measures grows linearly (and not expo-
nentially) with N , which is a crucial advantage over the L2 norm. The usual approach is
to control the entropy production, in order to obtain an exponential rate of equilibration in
relative entropy. Unfortunately, there exist sequences of initial distributions for which the
entropy production degenerates as N → ∞, as shown in [12]. It is worth noting, however,
that the sequence constructed in [12] is physically unlikely, in the sense that f N

0 gives half
the total energy of the system to a small fraction of the particles. This raises the question of
whether there is a smaller, but still rich, class of initial conditions for which one can have
good control on the entropy production. We refer the reader to [7] for more details about Kac
model and equilibration in relative entropy.

Picking up the challenge of choosing good (physical) initial conditions, and in order
to avoid the badly behaved initial distributions for which entropy production degenerates,
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Uniform Propagation of Chaos... Page 3 of 17 28

Bonetto et al. [4] introduced themodel (1)-(2), called the thermostated Kac particle system, to
describe a system inwhich all but a fewparticles are at equilibrium. This thermostated particle
system no longer preserves the energy, so f N

t is supported on the whole space RN , and the
equilibrium distribution is the N -dimensional Gaussian with density γ ⊗N (v) = ∏

i γ (vi ).
In this case, the system approaches equilibrium in relative entropy exponentially fast, with
rates uniform in the number of particles, see [4, Theorem 3]. Later, in [3], the use of the ideal
thermostat (2) was justified by approximating it with a finite but large reservoir of particles
at equilibrium in a quantitative way.

1.2 Propagation of Chaos

Besides the long-time behaviour of the particle system, one can also study convergence of
f N
t as N → ∞. Notice however that this is not an easy task, because even if we consider

particles whose velocities are independent at t = 0, the collisions amongst them will destroy
this independence for later times. Nevertheless, for the thermostated Kac system, one expects
the correlations between particles to become weaker as N grows. The following concept
formalizes this idea of asymptotic independence:

Definition 1 (chaos) For each N ∈ N, let f N be a symmetric probability measure on R
N .

The collection ( f N )N∈N is said to be chaotic with respect to some given probability measure
f on R, if for all k ∈ N, the marginal distribution of f N on the first k variables converges in
distribution, as N → ∞, to the tensor product measure f ⊗k . That is: for every k ∈ N and
every bounded and continuous function φ : Rk → R, it holds

lim
N→∞

∫
RN

φ(v1, . . . , vk) f N (dv) =
∫
Rk

φ(v1, . . . , vk) f (dv1) · · · f (dvk).

For Kac’s model, that is, when μ = 0, we know that if the sequence ( f N
0 )N∈N is chaotic

to some probability measure f0 on R, then for all t ≥ 0 the sequence ( f N
t )N∈N will also

be chaotic to some ft ; this property is known as propagation of chaos. The limit ft is the
solution to the so-called Boltzmann–Kac equation, which reads

d ft

dt
(v) = 2λ

∫
R

∫ 2π

0
[ ft (v

′) ft (v
′∗) − ft (v) ft (v∗)] dθ

2π
dv∗, (3)

in the case where f0, and thus every ft , has a density. This was first shown by Kac [17] in the
special case where f N

t has a density in L2(SN , σ N ). The solution to (3) also preserves the
initial energy, i.e.,

∫
v2 ft (dv) = ∫

v2 f0(dv) = 1 for all t ≥ 0. It is straightforward to verify
that the Gaussian density with energy 1 is a stationary distribution of the equation, and it is
known that the solution converges to it, see for instance [15,17].

When we introduce the thermostat to Kac’s original model, propagation of chaos still
holds, as shown in [[4], Theorem 5], and the limit density satisfies

d ft

dt
(v) = 2λ

∫
R

∫ 2π

0
[ ft (v

′) ft (v
′∗) − ft (v) ft (v∗)] dθ

2π
dv∗

+ μ

∫
R

∫ 2π

0
[ ft (v

′)γ (v′∗) − ft (v)γ (v∗)] dθ

2π
dv∗,

(4)

which we refer to as the thermostated Boltzmann–Kac equation, or simply the kinetic equa-
tion. As with the particle system, the solution to (4) does not preserve the initial energy,
and its equilibrium distribution is γ , the Gaussian density with energy T . When the initial
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condition f0 has a density with finite relative entropy, it follows from [[4], Propostition 15]
that there is exponential convergence to equilibrium in relative entropy. In Definition 3 we
will provide a notion of weak solution for (4), which will allow us to work with probability
measures instead of densities. Using this notion, we give an existence and uniqueness result
in Theorem 5.

Wemention that, starting fromKac’s work [17], propagation of chaos has been studied for
other related kinetic models, most notably the spatially homogeneous Boltzmann equation,
see for instance [11,14,18,19] and the references therein. Propagation of chaos has also been
studied for similar models involving thermostats; for example, the authors in [2,6] consider
the Gaussian isokinetic thermostat, which is used to keep the total energy of the system fixed.

1.3 Main Result

Chaoticity, and thus propagation of chaos, can be made quantitative. For Kac’s model this
was done in [9] using Wasserstein distances, defined below, and providing explicit conver-
gence rates in N which are uniform in time. Similar quantitative results for the spatially
homogeneous Boltzmann equation can be found for instance in [11,18].

The goal of the present article is to strengthen the propagation of chaos result for the
thermostated Kac model in [4], by making it quantitative in N with rates that are uniform in
time. To quantify chaos we will use the following metric: given f , g probability measures
on R

k , their 2-Wasserstein distance is given by

W2( f , g) =
(
inf
X,Y

E

[
1

k

k∑
i=1

(Xi − Y i )2

])1/2

,

where the infimum is taken over all pairs of random vectors X = (X1, . . . , Y k) and Y =
(Y 1, . . . , Y k) such that Law(X) = f and Law(Y) = g. This defines a distance in the space
of probability measures with finite secondmoment. The infimum is always achieved by some
(X,Y), and such a pair is called an optimal coupling; see [23] for details.

We will use the following characterization of chaoticity, see for instance [19]: a sequence
( f N )N∈N is f -chaotic if and only if for a sequence of random vectors X on R

N with
Law(X) = f N , it holds that the sequence of random empirical measures

X̄:= 1

N

N∑
i=1

δXi

almost surely converges to the constant probability measure f . We can now state our main
result.

Theorem 2 (uniform propagation of chaos) Assume that
∫ |v|r f0(dv) < ∞ for some r > 4.

Let (Vt )t≥0 be the thermostated Kac N-particle system described by (1)-(2), and let ( ft )t≥0

be the unique weak solution of (4). Then there exists a constant C depending only on λ, μ,
T , r , and

∫ |v|r f0(dv), such that for all t ≥ 0 we have:

E[W 2
2 (V̄t , ft )] ≤ 4e− μ

2 t W 2
2 ( f N

0 , f ⊗N
0 ) + C

N 1/3 . (5)

We remark that in this result ( f N
0 )N∈N can be any family of symmetric initial distribu-

tions; thus, Theorem 2 provides a uniform-in-time propagation of chaos rate of order N−1/3

whenever W 2
2 ( f N

0 , f ⊗N
0 ) converges to 0 at the same rate or faster. For instance, one can
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simply take f N
0 = f ⊗N

0 , so the first term in (5) vanishes; another common choice for f N
0

is the one described in [7], where the authors construct a chaotic sequence by conditioning
f ⊗N
0 to the Kac sphere SN ; quantitative rates of chaoticity in W2 for this kind of construction

can be found in [8].
The rate N−1/3 is not so far from the optimal rate N−1/2, valid for the convergence of the

empirical measure of an N -tuple of i.i.d. variables towards their common law, with the same
metric as in (5); see [13, Theorem 1]. We remark that if one only assumes

∫ |v|r f0(dv) < ∞
for some 2 < r < 4, we can still deduce (5), but with a slower chaos rate of order N−η(r) for
some 0 < η(r) < 1/3. We also note that the value μ/2, corresponding to the rate of decay of
the initial condition term in (5) (see also the contraction estimates given in Lemmas 7 and 9
below), coincides with the spectral gap of the generator of the particle system, and with the
bound on the entropy production obtained in [4]; see [22] for the optimality of this bound.

The proof of Theorem 2 is based on a coupling argument developed in [10] and later used
in [9] to prove uniform propagation of chaos for Kac’s original model. This argument makes
use of a probabilistic object called the Boltzmann process, which is a stochastic process
(Zt )t≥0 satisfying Law(Zt ) = ft for all t ≥ 0. More specifically, we will construct our
particle system Vt = (V 1

t , . . . , V N
t ) using a Poisson point measure, and couple it with a

collection Zt = (Z1
t , . . . , Z N

t ) of Boltzmann processes, in a way that the two remain close
on expectation. Some adaptations are required in order to use this technique. For instance, we
will need to introduce an additional Poisson pointmeasure to represent thermostat interactions
in the particle system. Also, whereas Kac’s original model is known to have useful properties
like well-posedness, propagation of moments, and convergence to equilibrium (which the
argument of [9,10] requires), for the thermostatedKacmodel of the present paperwewill need
to prove these properties, or adapt previously known results. For instance, see Theorem 5 for
well-posedness, Lemma 8 for propagation of moments, and Lemmas 7 and 9 for convergence
to equilibrium in the W2-metric.

The structure of the article is as follows. In Sect. 2 we provide a notion of weak solution
for the thermostated Boltzmann–Kac equation (4), valid for collections ( ft )t≥0 of probability
measures, and we then prove a well-posedness result for this notion. In Sect. 3 we specify
the coupling construction mentioned above and we prove Theorem 2. Along the way, we will
use this construction to prove some interesting results, such as the equilibration in W2 for the
particle system in Lemma 7, and an analogous result for the kinetic equation in Lemma 9.
Some final comments are given in Sect. 4.

2 Well-Posedness for the Kinetic Equation

In this section, we define a notion of weak solution to (4), and prove its well-posedness. We
will not require each ft to have a density; instead, it will be an element of the space M of
bounded non-negative Borel measures on R metrized by total variation ‖ · ‖. We will see
that, if f0 is a probability measure, then ft will also be a probability measure for all t > 0.
Similarly, if f0 has a density, so will ft .

For convenience, let us introduce the mapping B : M × M → M, given by

∫
R

φ(x)B[ν1, ν2](dx) =
∫
R

∫
R

ν1(dx)ν1(dy)

∫ 2π

0
φ(x cos θ + y sin θ)

dθ

2π

for all bounded and continuous function φ. Notice that when ν1 and ν2 have densities g1 and
g2 with respect to the Lebesgue measure, then B[ν1, ν2], also denoted by B[g1, g2], satisfies
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B[g1, g2](v) =
∫ 2π

0

∫
R

g1(v
′)g2(v′∗)dv∗

dθ

2π
.

We note that (4) is equivalent to

d ft

dt
= 2λ(B[ ft , ft ] − ft ) + μ(B[ ft , γ ] − ft ).

This motivates the following notion of weak solution:

Definition 3 A function f ∈ C([0,∞),M) is a weak solution to (4) with initial condition
f0 if, for all t ≥ 0, we have

ft = f0 +
∫ t

0
{2λ(B[ fs, fs] − fs) + μ(B[ fs, γ ] − fs)}ds. (6)

We summarize some of the useful properties of the mapping B in the following lemma,
which we state without proof.

Lemma 4 (i) Monotonicity: If ν1, ν2, π1, and π2 in M are such that

ν1(A) ≥ π1(A) and ν2(A) ≥ π2(A) ∀Ameasurable,

then

B[ν1, ν2](A) ≥ B[π1, π2](A), ∀Ameasurable.

(ii) Norm: for all ν1, ν1 ∈ M, it holds

‖B[ν1, ν2]‖ = ‖ν1‖‖ν2‖.
If ν1 and ν2 are bounded, signed, Borel measures, then

‖B[ν1, ν2]‖ ≤ ‖ν1‖‖ν2‖.
(iii) Second moments and arbitrary moments: If ν1 and ν2 in M have finite second moments

e1 and e2 respectively, then∫
R

x2B[ν1, ν2](dx) = e2 + e2
2

.

If ν1 and ν2 have finite r th moments nr and mr for some r > 0, then

∫
R

|x |r B[ν1, ν2](dx) ≤ 2max{ r
2 ,1} nr + mr

2

∫ 2π

0
| cos θ |r dθ

2π
.

We are now ready to state and prove our well-posednes result:

Theorem 5 (well-posedness) For every probability measure f0 ∈ M, there is a unique
solution f to (7). ft is a probability measure for every t. If f0 has a density or a finite r th

moment for some r ≥ 2, then so does ft for all t .

Proof We will use the following equivalent form of (6):

ft = e−(2λ+μ)t f0 +
∫ t

0
e−(2λ+μ)(t−s) (2λB[ fs, fs] + μB[ fs, γ ]) ds. (7)
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We use the iterative construction in [20]. Let f0 be a Borel probability measure on R. Define
the sub-probability measures (un

t )∞n=0 inductively by

u0
t = e−(2λ+μ)t f0,

un+1
t = e−(2λ+μ)t f0 +

∫ t

0
e−(2λ+μ)(t−s) (

μB[un
s , γ ] + 2λB[un

s , un
s ]) ds (8)

Using Lemma 4 we see that un
t is continuous in t for each n, that un

t (R) ≤ 1, and that (un
t )n is

increasing in n. Hence, for each t , (un
t )n converges to some element ut inM and ut (R) ≤ 1.

Note that ut − un
t is a non-negative measure for each t , thus we have convergence in total

variation, since

lim
n→∞ ‖un

t − ut‖ = lim
n→∞ ut (R) − un

t (R) = 0.

This, together with Lemma 4, implies that

lim
n→∞ ‖B[un

t , γ ] − B[ut , γ ]‖ ≤ lim
n→∞ ‖un

t − ut‖ = 0,

and

lim
n→∞ ‖B[un

t , un
t ] − B[ut , ut ]‖ ≤ lim

n→∞ ‖un
t − ut‖(un

t (R) + ut (R)) = 0.

Thus we can take the infinite n limit in (8) and establish that ut solves (7). Being an increasing
limit of continuous functions, u : [0,∞) → M is lower semi-continuous, and thus measur-
able. Since ut (R) ≤ 1, ∀t , u belongs to L∞([0,∞),M). To show that ut is continuous (in
t) we note that it equals

e−(2λ+μ)t f0 + e−(2λ+μ)t
∫ t

0
e(2λ+μ)s (μB[us, γ ] + 2λB[us, us]) ds

and the integrand above is in the Bochner space L1([0, τ ],M) for all τ . This makes ut

continuous. A consequence of this continuity is that: h(t) = ut (R) is differentiable and
satisfies the differential equation

h′(t) = −(2λ + μ)h(t) + μh(t) + 2λh(t)2

Since h(0) = 1, h(t) ≡ 1. Hence, ut is a probabilitymeasure for all t . To show the uniqueness
of ut , let gt ∈ C([0,∞),M) satisfy (7). On one hand, gt ≥ u0

t by definition. And thus, by
induction, gt ≥ un

t a.e. t for all n. By the monotone convergence theorem, we have

gt (A) ≥ ut (A)

for every measurable set A. On the other hand, using Lemma 4, for each t we obtain

∫ t

0
e−(2λ+μ)(t−s)‖(μB[g(s), γ ] + 2λB[gs , gs ])‖ds ≤ μ

√
t

(∫ t

0
‖gs‖2ds

) 1
2

+ 2λ
∫ t

0
‖gs‖2ds

which shows that gt is continuous in t , and just like ut , must be a probability measure for all
t . Thus, ‖gt − ut‖ = gt (R) − ut (R) = 1 − 1 = 0.

To prove the last statement of the theorem, we note that if f0 ∈ L1(R), then un
t ∈ L1(R)

for all R and we use the completeness of L1 under the total variation norm. If f0 has a
finite r th moment for some r > 0, then by Lemma 4 and induction, we see that, for each t ,
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(
∫
R

un
t (dv)|v|r )n is finite, monotone increasing, and bounded above by the solution R(t) to

the following integral equation:

R(t) = e−(2λ+μ)t
∫
R

|v|r f0(dv) + Cr

∫ t

0
e−(2λ+μ)(t−s)(2λ + μ

2
)R(s)ds + Cr

∫
R

|w|r γ (dw).

Here Cr = 2max{ r
2 ,1} ∫ 2π

0 | cos θ |r dθ
2π is as in Lemma 4. R(t) is finite due to Gronwall’s

inequality. The monotone convergence theorem implies that R(t) controls the r th moment of
ft . ��
It is straightforward to verify that, if

∫
R

v2 f0(dv) < ∞, then we have
∫
R

v2 ft (dv) =
(∫

R

v2 f0(dv)

)
e− 1

2μt + T (1 − e− 1
2μt ). (9)

Remark 6 The uniqueness of the solution to (6) holds in the larger space L2
loc([0,∞),M),

provided we identify functions ft that agree t-a.s.

3 Coupling Construction

3.1 Particle System

We provide an explicit construction of the particle system using an SDE, following [10]. To
this end, for fixed N ∈ N, let R(dt, dθ, dξ, dζ ) be a Poisson point measure on [0,∞) ×
[0, 2π) × [0, N )2 with intensity

Nλdt
dθ

2π

dξdζ1{i(ξ)�=i(ζ )}
N (N − 1)

= λdtdθdξdζ1{i(ξ)�=i(ζ )}
2π(N − 1)

,

where i is the function that associates to a variable ξ ∈ [0, N ) the discrete index i(ξ) =
�ξ�+1 ∈ {1, . . . , N }. In words: at rate Nλ, the measureR selects collision times t ≥ 0, and
for each such time, it independently samples a parameter θ uniformly at random on [0, 2π),
and a pair (ξ, ζ ) ∈ [0, N )2 such that i(ξ) �= i(ζ ), also uniformly. The pair (i(ξ), i(ζ ))

provides the indices of the particles involved in Kac-type collisions. The fact that we use
continuous variables ξ, ζ ∈ [0, N ), instead of discrete indices in {1, . . . , N }, will be crucial
to define our coupling with a collection of Boltzmann processes.

Let Q1(dt, dθ, dw), . . . ,QN (dt, dθ, dw) be a collection of independent Poisson point
measures on [0,∞)×[0, 2π)×R, also independent ofR, eachhaving intensityμdt dθ

2π γ (dw).
Finally, let V0 = (V 1

0 , . . . , V N
0 ) be an exchangeable collection of random variables with

Law(V0) = f N
0 , independent of everything else.

The particle system Vt = (V 1
t , . . . , V N

t ) is defined as the unique jump-by-jump solution
of the SDE

dVt =
∫ 2π

0

∫
[0,N )2

N∑
i, j=1,i �= j

[ai j (Vt− , θ) − Vt−]1{i(ξ)=i,i(ζ )= j}R(dt, dθ, dξ, dζ )

+
N∑

i=1

∫ 2π

0

∫
R

[bi (Vt− , θ, w) − Vt−]Qi (dt, dθ, dw)

(10)
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that starts at V0. Here, for v ∈ R
N , the vectors ai j (v, θ) ∈ R

N and bi (v, θ, w) ∈ R
N are

defined as

ai j (v, θ)k =

⎧⎪⎨
⎪⎩

vi cos θ − v j sin θ ifk = i,

vi sin θ + v j cos θ ifk = j,

vk otherwise,

bi (v, θ, w)k =
{

vi cos θ − w sin θ ifk = i,

vk otherwise.

For any i = 1, . . . , N , from (10) it follows that particle V i
t satisfies the SDE

dV i
t =

∫ 2π

0

∫ N

0
[V i

t− cos θ − V i(ξ)

t− sin θ − V i
t−]Pi (dt, dθ, dξ)

+
∫ 2π

0

∫
R

[V i
t− cos θ − w sin θ − V i

t−]Qi (dt, dθ, dw),

(11)

where Pi is defined as

Pi (dt, dθ, dξ) = R(dt, dθ, [i − 1, i), dξ) + R(dt,−dθ, dξ, [i − 1, i)),

and where we use−dθ to transform sin θ into− sin θ . Clearly, Pi is a Poisson point measure
on [0,∞) × [0, 2π) × [0, N ) with intensity

2λdt
dθ

2π

dξ1{i(ξ)�=i}
N − 1

.

Asmentioned earlier, f N
t = Law(Vt ) converges exponentially fast to theGaussian density

γ ⊗N in relative entropy, as shown in [4, Theorem 3]. Similarly, the following result provides
equilibration in W2, which does not require f N

t to have a density:

Lemma 7 (contraction and equilibration for the particle system) Let f N
t and f̃ N

t be the
laws of the thermostated Kac N-particle systems starting from (possibly different) symmetric
initial distributions f N

0 and f̃ N
0 , respectively. Then

W 2
2 ( f N

t , f̃ N
t ) ≤ e− μ

2 t W 2
2 ( f N

0 , f̃ N
0 ).

Consequently, taking f̃ N
0 as the stationary distribution γ ⊗N , gives

W 2
2 ( f N

t , γ ⊗N ) ≤ e− μ
2 t W 2

2 ( f N
0 , γ ⊗N ).

Proof Let (Vt )t≥0 and (Ṽt )t≥0 be the solutions to the SDE (10) with respect to the same
Poisson point measuresR,Q1, . . . ,QN , but starting from initial conditions (V0, Ṽ0) which
we take as an optimal coupling between f N

0 and f̃ N
0 . Call h(t) = E[(V 1

t − Ṽ 1
t )2], then

W 2
2 ( f N

t , f̃ N
t ) ≤ E[ 1

N

∑
i (V i

t − Ṽ i
t )2] = h(t) by exchangeability, with equality at t = 0.

Thus, it suffices to study h(t). Since both V 1
t and Ṽ 1

t satisfy (11) with i = 1, when computing
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28 Page 10 of 17 R. Cortez, H. Tossounian

the increments of (V 1
t − Ṽ 1

t )2 the terms w sin θ cancel, thus obtaining

h′(t) = 2λE
∫ 2π

0

∫ N

1

[
(V 1

t cos θ − V i(ξ)
t sin θ − Ṽ 1

t cos θ + Ṽ i(ξ)
t sin θ)2

−(V 1
t − Ṽ 1

t )2
] dθdξ

2π(N − 1)

+ μE

∫ 2π

0

∫
R

[
(V 1

t cos θ − Ṽ 1
t cos θ)2 − (V 1

t − Ṽ 1
t )2

] dθγ (dw)

2π

= 2λE
∫ N

1

[
−1

2
(V 1

t − Ṽ 1
t )2 + 1

2
(V i(ξ)

t − Ṽ i(ξ)
t )2

]
dξ

N − 1
− μ

2
h(t), (12)

where we used that
∫ 2π
0 cos2 θ dθ

2π = 1
2 = ∫ 2π

0 sin2 θ dθ
2π and

∫ 2π
0 cos θ sin θ dθ

2π = 0. Notice
that

E

∫ N

1
(V i(ξ)

t − Ṽ i(ξ)
t )2

dξ

N − 1
= E

1

N − 1

N∑
i=2

(V i
t − Ṽ i

t )2 = h(t),

thus the first term in (12) vanishes, which then gives h′(t) = −μ
2 h(t). The desired bound

follows. ��

3.2 Coupling with Boltzmann Processes

For a given probability measure f0, let ( ft )t≥0 be the unique weak solution of (4) given
by Theorem 5. We will now construct a stochastic process (Zt )t≥0, called the Boltzmann
process, such that Law(Zt ) = ft for all t ≥ 0. This process is the probabilistic counterpart
of (4), and it represents the trajectory of a single particle immersed in the infinite population.
It was first introduced by Tanaka [21] in the context of the Boltzmann equation for Maxwell
molecules.

Consider a Poisson point measure P(dt, dθ, dz) on [0,∞) × [0, 2π) × R with inten-
sity 2λdt dθ

2π ft (dz), and an independent Poisson point measure Q(dt, dθ, dw) on [0,∞) ×
[0, 2π) × R with intensity μdt dθ

2π γ (dw). Consider also a random variable Z0 with law f0,
independent of P andQ. The process Zt is defined as the unique solution, starting from Z0,
to the stochastic differential equation

d Zt =
∫ 2π

0

∫
R

[Zt− cos θ − z sin θ − Zt−]P(dt, dθ, dz)

+
∫ 2π

0

∫
R

[Zt− cos θ − w sin θ − Zt−]Q(dt, dθ, dw).

(13)

Strong existence and uniqueness of solutions for this SDE is straightforward, since the rates
of P and Q are finite on bounded time intervals. To show that Law(Zt ) = ft , the argument
is classical: one first shows that �t :=Law(Zt ) solves

�t = f0 +
∫ t

0
{2λ(B[�s, fs] − �s) + μ(B[�s , γ ] − �s)}ds,

which is a linearized version of (6). This equation has a unique solution in the space
C([0,∞),M) because the mapping ν �→ B[ν, ft ] is non-expanding in total variation for all
t . Since ft is a solution of this linearized version, we must have that �t = ft .
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Since Law(Zt ) = ft , we can thus use the Boltzmann process as a tool to prove properties
of the solution of the thermostated Boltzmann–Kac equation (4). For instance, we have the
following lemma, which will be needed later to prove our uniform-in-time propagation of
chaos result.

Lemma 8 (propagation of moments) Let ( ft )t≥0 be the weak solution to (4). Let r ≥ 2, and
assume that

∫
R

|v|r f0(dv) < ∞. Then supt≥0

∫
R

|v|r ft (dv) < ∞.

Proof The case r = 2 follows from (9), so we assume r > 2. Let (Zt )t≥0 be the Boltzmann
process, i.e., the solution to (13). Leth(t) = E|Zt |r = ∫

R
|v|r ft (dv).Weknow fromTheorem

5 that h(t) < ∞ for all t . Then h(t) satisfies

h′(t) = 2λE
∫ 2π

0

dθ

2π

∫
R

ft (dz)
(|Zt− cos θ − z sin θ |r − |Zt |r

)

+ μE

∫ 2π

0

dθ

2π

∫
R

γ (dw)
(|Zt− cos θ − w sin θ |r − |Zt |r

)
.

Note that E|Zt |r−1 ≤ h(t)1−1/r and E|Zt | ≤ max{T ,
∫
R

v2 ft (dv)}1/2, thanks to (9) and
Jensen’s inequality. Using the inequality (a + b)r ≤ ar + br + 2r−1(abr−1 + ar−1b) valid
for a, b ≥ 0, we thus obtain

h′(t) ≤ −C1h(t) + C2 + C3h(t)1−1/r , (14)

where

C1 = 2λ

(
1 − 2

∫ 2π

0
| cos θ |r dθ

2π

)
+ μ

(
1 −

∫ 2π

0
| cos θ |r dθ

2π

)
> 0,

and C2, C3 > 0 are constants depending on λ, μ, r , T ,
∫
R

v2 ft (dv), and some moments of
γ of order at most r . The statement follows from (14). ��

The Boltzmann process (13) is particularly useful in coupling arguments, as the next result
shows. It provides contraction for the thermostated Boltzmann–Kac equation in W2-distance:

Lemma 9 (contraction and equilibration for the thermostated Boltzmann–Kac equation) Let
ft , f̃t be the weak solutions to (4) starting from some possibly different probability measures
f0, f̃0. Then

W 2
2 ( ft , f̃t ) ≤ e− μ

2 t W 2
2 ( f0, f̃0).

Consequently, taking f0 = γ , gives

W 2
2 ( ft , γ ) ≤ e− μ

2 t W 2
2 ( f0, γ ).

Proof For all t ≥ 0, let�t be an optimal coupling between ft and f̃t , that is,�t is a probability
measure on R×R such that

∫
(z − z̃)2�t (dz, dz̃) = W 2

2 ( ft , f̃t ). Let S(dt, dθ, dz, dz̃) be a
Poisson point measure on [0,∞) × [0, 2π) ×R×R with intensity 2λdt dθ

2π �t (dz, dz̃), and
define P(dt, dθ, dz) = S(dt, dθ, dz,R) and P̃(dt, dθ, dz̃) = S(dt, dθ,R, dz̃). In words,
P and P̃ are Poisson point measures, with intensities 2λdt dθ

2π ft (dz) and 2λdt dθ
2π f̃t (dz̃)

respectively, which have the same atoms in the t and θ variables, and with optimally-coupled
realizations of ft and f̃t on the z and z̃ variables. Also, let Q(dt, dw) be a Poisson point
measure with intensityμdtγ (dw) that is independent of S, and set Q̃ = Q. Let also (Z0, Z̃0)
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28 Page 12 of 17 R. Cortez, H. Tossounian

be a realization of�0, independent of everything else; in particular we haveE[(Z0− Z̃0)
2] =

W 2
2 ( f0, f̃0).
Let Zt and Z̃t be the solutions to the SDE (13) with respect to (P,Q) and (P̃, Q̃),

respectively, thus Law(Zt ) = ft and Law(Z̃t ) = f̃t . Consequently, we have W 2
2 ( ft , f̃t ) ≤

E[(Zt − Z̃t )
2] =: h(t). Using Itô calculus, we have:

h′(t) = 2λE
∫ 2π

0

∫
R×R

[(Zt cos θ − z sin θ − Z̃t cos θ + z̃ sin θ)2 − (Zt − Z̃t )
2]�t (dz, dz̃)

dθ

2π

+ μE

∫ 2π

0

∫
R

[(Zt cos θ − w sin θ − Z̃t cos θ + w sin θ)2 − (Zt − Z̃t )
2]γ (dw)

dθ

2π

= 2λE
∫ 2π

0

∫
R×R

[(cos2 θ − 1)(Zt − Z̃t )
2 + (z − z̃)2 sin2 θ ] dθ

2π
�t (dz, dz̃) − μ

2
h(t),

where in the last step the cross term vanished because
∫ 2π
0 cos θ sin θdθ = 0. Since

∫
(z −

z̃)2�t (dz, dz̃) = W 2
2 ( ft , f̃t ) ≤ h(t), the integral in the last line is bounded above by 0. We

thus obtain h′(t) ≤ −μ
2 h(t), which yields the result. ��

We now specify the coupling construction that will allow us to prove our main result. We
closely follow [10], see also [9]. The key idea is to define a system Zt = (Z1

t , . . . , Z N
t ) of

Boltzmann processes such that, for each i = 1, . . . , N , the process Zi
t mimics as closely as

possible the dynamics of particle V i
t . Comparing (11) and (13), we see that a way of achieving

this is to define Zi
t as the solution of (11), but replacing V i(ξ)

t− , which is a ξ -realization of the

(random) empirical measure 1
N−1

∑
j �=i δ

V j
t−
, with a ξ -realization of ft . Moreover, we will

do this in an optimal way.
Specifically: we define Zi

t as the unique jump-by-jump solution to

d Zi
t =

∫ 2π

0

∫ N

0
[Zi

t− cos θ − Fi
t (Zt− , ξ) sin θ − Zi

t−]Pi (dt, dθ, dξ)

+
∫ 2π

0

∫
R

[Zi
t− cos θ − w sin θ − Zi

t−]Qi (dt, dθ, dw),

(15)

where we have used the same Poisson point measures Pi and Qi as in (11). Here, Fi is a
measurable function [0,∞) × R

N × [0, N ) � (t, z, ξ) �→ Fi
t (z, ξ) ∈ R with the following

property: for any t ≥ 0, z ∈ R
N , and any random variable U uniformly distributed on the

set [0, N )\[i − 1, i), the pair (zi(U ), Fi
t (z, U )) is an optimal coupling between the empirical

measure z̄i := 1
N−1

∑
j �=i δz j and ft . In other words,

∫ N

0

(
zi(ξ) − Fi

t (z, ξ)
)2 dξ1{i(ξ)�=i}

N − 1
= W 2

2 (z̄i , ft ). (16)

(The values of Fi
t (z, ξ) for ξ ∈ [i − 1, 1) are irrelevant). We refer the reader to [10, Lemma

3] for a proof of existence of such a function. The same result also ensures that Fi
t satisfies

the following: for any exchangeable random vector X in R
N , and any measurable function

φ, one has for j �= i

E

∫ j

j−1
φ(Fi

t (X, ξ))dξ =
∫
R

φ(v) ft (dv). (17)
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We take an initial condition Z0 = (Z1
0, . . . , Z N

0 ) with distribution f ⊗N
0 and optimally

coupled to V0, thus

E[(V 1
0 − Z1

0)
2] = E

[
1

N

N∑
i=1

(V i
0 − Zi

0)
2

]
= W 2

2 ( f N
0 , f ⊗N

0 ), (18)

by exchangeability. We have thus defined a collection Zt = (Z1
t , . . . , Z N

t ), where each Zi
t is

a Boltzmann process by construction; in particular, we have Law(Zi
t ) = ft . However, notice

that Zi
t and Z j

t have a simultaneous jump whenever V i
t and V j

t undergo a Kac collision,

which implies that Zi
t and Z j

t are not independent. In order for this construction to be useful,
one needs to prove that these Boltzmann processes become asymptotically independent as
N → ∞, as is done in [9,10]. This is the content of the following lemma, which moreover
provides explicit rates in N , uniformly on time:

Lemma 10 (decoupling of Boltzmann processes) There exists a constant C < ∞ depending
only on λ, μ, T , and

∫
v2 f0(dv), such that for all fixed k ∈ N we have for all t ≥ 0:

W 2
2

(
Law(Z1

t , . . . , Zk
t ), f ⊗k

t

)2 ≤ Ck

N
.

Proof The argument is the same as in [10, Lemma6] and [9, Lemma3], sowe only provide the
main steps of the proof here. The idea is to again use a coupling argument: for fixed k ≤ N , we
will define k independent Boltzmann processes Z̃1

t , . . . , Z̃ k
t that remain close to Z1

t , . . . , Zk
t

on expectation. To achieve this, each Z̃ i
t will use the same randomness that defines Zi

t (i.e.,

the SDE (15)), except when Zi
t has a simultaneous jump with Z j

t for some j ∈ {1, . . . , k}, in
which case either Z̃ i

t or Z̃ j
t will not jump. To compensate for the missing jumps, we will use

an additional independent source of randomness to define new jumps. Since on expectation
this occurs only a proportion k/N of the jumps of the collection Z1

t , . . . , Zk
t , this construction

will give the desired estimate.
To this end, let R̃ be an independent copy of the Poisson point measure R introduced at

the beginning of Sect. 3.1, and for i = 1, . . . , k, define

P̃i (dt, dθ, dξ) = R(dt, dθ, [i − 1, i), dξ)

+ R(dt,−dθ, dξ, [i − 1, i))1[k,N )(ξ)

+ R̃(dt,−dθ, dξ, [i − 1, i))1[0,k)(ξ),

which is a Poisson point measure with intensity 2λdtdθdξ1{i(ξ)�=i}/[2π(N − 1)], just as
Pi . Note that the Poisson measures P̃1, . . . , P̃k are independent by construction. Mimicking
(15), we define Z̃ i

t as the solution, starting from Z̃ i
0 = Zi

0, to the SDE

d Z̃ i
t =

∫ 2π

0

∫ N

0
[Z̃ i

t− cos θ − Fi
t (Zt− , ξ) sin θ − Z̃ i

t−]P̃i (dt, dθ, dξ)

+
∫ 2π

0

∫
R

[Z̃ i
t− cos θ − w sin θ − Z̃ i

t−]Qi (dt, dθ, dw).

(19)

It is clear that Z̃1
t , . . . , Z̃ k

t is an exchangeable collection of Boltzmann processes. Moreover,
using the independence of P̃1, . . . , P̃k and the fact that Fi

t (z, ξ) has distribution ft for any
z ∈ R

N and any ξ uniformly distributed on [0, N )\[i −1, i), one can prove that the processes
Z̃1

t , . . . , Z̃ k
t are independent. For a full proof of this fact in a very similar setting, we refer

the reader to [10, Lemma 6].
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Call h(t):=E[(Z1
t − Z̃1

t )2]. By exchangeability, we have

W 2
2

(
Law(Z1

t , . . . , Zk
t ), f ⊗k

t

)
≤ E

[
1

k

k∑
i=1

(Zi
t − Z̃ i

t )
2

]
= h(t),

thus it suffices to obtain the desired estimate for h(t). From (15) and (19), using Itô calculus,
we obtain:

h′(t) = E

∫ 2π

0

∫ N

0
�1

[R(dt, dθ, [0, 1), dξ) + R(dt,−dθ, dξ, [0, 1))1[k,N )(ξ)
]

+ E

∫ 2π

0

∫ N

0
�2R(dt,−dθ, dξ, [0, 1))1[0,k)(ξ)

+ E

∫ 2π

0

∫ N

0
�3R̃(dt,−dθ, dξ, [0, 1))1[0,k)(ξ)

+ E

∫ 2π

0

∫
R

�4Q1(dt, dθ, dw),

(20)

where �1 corresponds to the increment of (Z1
t − Z̃1

t )2 when Z1
t and Z̃1

t have a simultaneous
Kac-type jump, �2 is the increment when only Z1

t jumps, �3 is the increment when only Z̃1
t

jumps, and �4 is the increment when there is a thermostat interaction.
Thanks to the indicator 1[0,k)(ξ), the fact that �2 and �3 involve only second-order prod-

ucts of ft -distributed variables, using (17), and recalling that (9) implies that
∫

v2 ft (dv) ≤
max

{∫
v2 f0(dv), T

}
, we deduce that the second and third terms in (20) are bounded above

by Ck
N . On the other hand, since the term Fi

t (Zt− , ξ) appears in both (15) and (19), it will
cancel out in �1; more specifically, we have

�1 =
[

Z1
t− cos θ − F1

t (Zt− , ξ) sin θ − Z̃1
t− cos θ + F1

t (Zt− , ξ) sin θ
]2 − (Z1

t− − Z̃1
t−)2

= −(1 − cos2 θ)(Z1
t− − Z̃1

t−)2 ≤ 0.

Similarly, it can be easily seen that �4 = −(1 − cos2 θ)(Z1
t− − Z̃1

t−)2, then the last term in
(20) is equal to −μ

2 h(t). Thus, simply discarding the term �11[k,N )(ξ) ≤ 0 in the first line
of (20), we deduce that

h′(t) ≤ −E

∫ 2π

0

∫ N

1
(1 − cos2 θ)(Z1

t − Z̃1
t )2

2λdθdξ

2π(N − 1)
+ Ck

N
− μ

2
h(t)

= −(λ + μ/2)h(t) + Ck

N
.

Thus h′(t) + (λ + μ
2 )h(t) ≤ Ck

N . Since h(0) = 0, the desired bound follows from the last

inequality by multiplying by e(λ+ μ
2 )t and integrating. ��

Wenowwant to obtain an estimate for the decoupling property of the system of Boltzmann
processes in terms of E[W 2

2 (Z̄t , ft )]; this is the content of Lemma 11 below. To this end, we
will need to recall two results.

For a probability measure ν on R and for any k ∈ N, we will let εk(ν) be given by

εk(ν) = E[W 2
2 (X̄, ν)]

where X = (X1, . . . , Xk) is a collection of i.i.d. variables with law ν. The first result, see
[13, Theorem 1], provides rates of convergence for εk(ν): if ν has a finite r th moment for
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some r > 4, then there is a constant Cr that depends only on r such that

εk(ν) ≤ Cr
∫ |x |rν(dx)

k1/2
. (21)

The second result,which is a special case of [10,Lemma7], states that ifX is any exchangeable
random vector on R

N and ν is any probability measure on R, then there is a constant C
depending only on the second moments of X1 and ν such that for any k ≤ N we have:

1

2
E[W 2

2 (X̄, ν)] ≤ W 2
2 (Law(X1, . . . , Xk), ν⊗k) + εk(ν) + C

k

N
. (22)

We are now ready to state and prove:

Lemma 11 Assume that
∫
R

f0(dv)|v|r < ∞ for some r > 4. Then there is a constant C
depending only on λ, μ, T , r , and

∫
R

f0(dv)|v|r , such that for all t ≥ 0 we have

E[W 2
2 (Z̄t , ft )] ≤ C

N 1/3 .

Moreover, this bound also holds if we replace Z̄t by Z̄i
t = 1

N−1

∑
j �=i δ

Z j
t
.

Proof For k ≤ N , (22) applied to ν = ft and X = Zt gives:

1

2
E[W 2

2 (Z̄t , ft )] ≤ W 2
2 (Law(Z1

t , . . . , Zk
t ), f ⊗k

t ) + εk( ft ) + C
k

N

≤ C
k

N
+ εk( ft ) + C

k

N
,

where in the last step we used Lemma 10. The finite initial r th moment hypothesis, together
with Lemma 8, implies that

sup
t≥0

∫
R

|v|r ft (dv) < ∞.

Thus, from (21), we obtain εk( ft ) ≤ C/k1/2 for all t ≥ 0 (since r > 4). Taking k ∼ N 2/3

gives the result. The estimate for Z̄i
t is deduced similarly, taking X = (Z j

t ) j �=i in (22). ��
We now prove Theorem 2.

Proof Call h(t) = E[(V 1
t − Z1

t )2]. Using Lemma 11 and exchangeability, we obtain

E[W 2
2 (V̄t , ft )] ≤ 2E[W 2

2 (V̄t , Z̄t )] + 2E[W 2
2 (Z̄t , ft )]

≤ 2E

[
1

N

N∑
i=1

(V i
t − Zi

t )
2

]
+ C

N 1/3

= 2h(t) + C

N 1/3 .

Thus, it suffices to prove that h(t) ≤ 2e− μ
2 t h(0)+ C N−1/3, because h(0) = W 2

2 ( f N
0 , f ⊗N

0 )

thanks to (18).
We thus study the evolution of h(t). We have

h′(t) = SK
t + ST

t .

Here SK
t corresponds to the Kac interactions coming from the Pi terms in (11) and (15), and

ST
t corresponds to the thermostat interactions coming from the Qi terms. For brevity, let us
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call V i
t = V i(ξ)

t , Z i
t = Z i(ξ)

t , and F1
t = F1

t (Zt− , ξ). We now study each of SK
t and ST

t . For

the Kac term Sk
t , we recall that the intensity of P1(dt, dθ, dξ) is

2λdtdθdξ1{i(ξ)�=1}
2π(N−1) . Thus from

(11) and (15), using Itô calculus, for SK
t we obtain:

SK
t = E

∫ 2π

0

∫ N

1

[(
V 1

t cos θ − V i
t sin θ − Z1

t cos θ + F1
t sin θ

)2 − (V 1
t − Z1

t )2
]

2λdθdξ

2π(N − 1)

= E

∫ 2π

0

∫ N

1

[
(V 1

t − Z1
t )2(cos2 θ − 1) + (V i

t − F1
t )2 sin2 θ

] 2λdθdξ

2π(N − 1)

= 2λ

[
−1

2
h(t) + 1

2
E

∫ N

1
(V i

t − F1
t )2

dξ

N − 1

]
, (23)

where in the second equality the cross-term vanished since
∫ 2π
0 cos θ sin θdθ = 0. We now

control the positive term in (23) by subtracting and then adding Z i
t inside the square. Set

a(t) to be E
∫ N
1 (Z i

t − F1
t )2

dξ
N−1 , thus a(t) = E[W 2

2 (Z̄1
t , ft )] thanks to (16). Also note that

E
∫ N
1 (V i

t − Z i
t )
2 dξ

N−1 = 1
N−1

∑N
i=2 E(V j

t − Z j
t )2 which equals h(t) by exchangeability.

Therefore, we have

E

∫ N

1
(V i

t − F1
t )2

dξ

N − 1
= h(t) + a(t) + 2E

∫ N

1
(V i

t − Z i
t )(Z i

t − F1
t )

dξ

N − 1

≤ h(t) + a(t) + 2h(t)1/2a(t)1/2,

where we have used the Cauchy–Schwarz inequality. Plugging this into (23) gives

SK
t ≤ λa(t) + 2λh(t)1/2a(t)1/2.

Next, for the thermostat term ST
t , we recall that the intensity of Q1(dt, dθ, dw) is

μdt dθ
2π γ (dw). Thus, again from (11) and (15), we have for ST

t :

ST
t = μE

∫
R

∫ 2π

0

[
(V 1

t cos θ − w sin θ − Z1
t cos θ + w sin θ)2 − (V 1

t − Z1
t )2

] dθ

2π
γ (dw)

= −μ

2
h(t).

Joining the bounds for SK
t and ST

t , we see that

h′(t) ≤ −μ

2
h(t) + λa(t) + 2λh(t)1/2a(t)1/2. (24)

Lemma 11 showed that a(t) ≤ C/N 1/3. Thus, the Theorem follows from (24) by aGronwall-
type inequality (see for example [1, Lemma 4.1.8]). ��

4 Conclusion

In this work we showed that the thermostated Kac N -particle system propagates chaos uni-
formly in time, at a polynomial rate of order N−1/3 in terms of the 2-Wasserstein metric
squared, improving the propagation of chaos result in [4]. This illustrates that the coupling
method in [10] can be adapted to include thermostats. We also used coupling arguments to
deduce equilibration estimates for both the particle system and the kinetic equation.

Weplan on developing this couplingmethod further to aKac-typemodelwhere, in addition
to the particle collisions (1) and the thermostat interactions (2), the system has an energy
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restoring mechanism that pushes the total energy of the system to its initial value after each
interaction with the thermostat. This is the subject of future research.

Acknowledgements We would like to thank Federico Bonetto and Joaquin Fontbona for fruitful discussions
during our work.

References

1. Ambrosio, L., Gigli, N., Savaré, G.: Gradient Flows in Metric Spaces and in the Space of Probability
measures. Lectures in Mathematics, 2nd edn. ETH Zürich, Basel (2008)

2. Bonetto, F., Carlen, E.A., Esposito, R., Lebowitz, J.L., Marra, R.: Propagation of chaos for a thermostated
kinetic model. J. Stat. Phys. 154(1–2), 265–285 (2014)

3. Bonetto, F., Loss, M., Vaidyanathan, R.: The Kac model coupled to a thermostat. J. Stat. Phys. 156(4),
647–667 (2014)

4. Bonetto, F., Loss, M., Tossounian, H., Vaidyanathan, R.: Uniform approximation of a Maxwellian ther-
mostat by finite reservoirs. Commun. Math. Phys. 351(1), 311–339 (2017)

5. Carlen, E., Carvalho,M.C., Loss, M.:Many-body aspects of approach to equilibrium. In: Journées “Équa-
tions aux Dérivées Partielles” (La Chapelle sur Erdre, 2000), pp. Exp. No. XI, 12. University of Nantes,
Nantes (2000)

6. Carlen, E.A., Carvalho, M.C., Le Roux, J., Loss, M., Villani, C.: Entropy and chaos in the Kac model.
Kinet. Relat. Models 3(1), 85–122 (2010)

7. Carlen, E., Mustafa, D., Wennberg, B.: Propagation of chaos for the thermostatted Kac master equation.
J. Stat. Phys. 158(6), 1341–1378 (2015)

8. Carrapatoso, K.: Quantitative and qualitative Kac’s chaos on the Boltzmann’s sphere. Ann. Inst. Henri
Poincaré Probab. Stat. 51(3), 993–1039 (2015)

9. Cortez, R.: Uniform propagation of chaos for Kac’s 1D particle system. J. Stat. Phys. 165(6), 1102–1113
(2016)

10. Cortez, R., Fontbona, J.: Quantitative propagation of chaos for generalized Kac particle systems. Ann.
Appl. Probab. 26(2), 892–916 (2016)

11. Cortez, R., Fontbona, J.: Quantitative uniform propagation of chaos for Maxwell molecules. Commun.
Math. Phys. 357(3), 913–941 (2018)

12. Einav, A.: On Villani’s conjecture concerning entropy production for the Kac master equation. Kinet.
Relat. Models 4(2), 479–497 (2011)

13. Fournier, N., Guillin, A.: On the rate of convergence in Wasserstein distance of the empirical measure.
Probab. Theory Relat. Fields 162(3–4), 707–738 (2015)

14. Graham, C., Méléard, S.: Stochastic particle approximations for generalized Boltzmann models and
convergence estimates. Ann. Probab. 25(1), 115–132 (1997)

15. Hauray, M.: Uniform contractivity in Wasserstein metric for the original 1D Kac’s model. J. Stat. Phys.
162(6), 1566–1570 (2016)

16. Janvresse, E.: Spectral gap for Kac’s model of Boltzmann equation. Ann. Probab. 29(1), 288–304 (2001)
17. Kac, M.: Foundations of kinetic theory. In: Proceedings of the Third Berkeley Symposium on Mathe-

matical Statistics and Probability, 1954–1955, vol. III, pp. 171–197, Berkeley and Los Angeles (1956).
University of California Press, California

18. Mischler, S., Mouhot, C.: Kac’s program in kinetic theory. Invent. Math. 193(1), 1–147 (2013)
19. Sznitman, A.-S.: Topics in propagation of chaos. In: École d’Été de Probabilités de Saint-Flour XIX—

1989, volume 1464 of Lecture Notes in Mathematics. pp. 165–251. Springer, Berlin (1991)
20. Tanaka, S.: An extension of Wild’s sum for solving certain non-linear equation of measures. Proc. Jpn.

Acad. 44, 884–889 (1968)
21. Tanaka, H.: On the uniqueness of Markov process associated with the Boltzmann equation of Maxwellian

molecules. In: Proceedings of the International Symposium on Stochastic Differential Equations (Res.
Inst. Math. Sci., Kyoto University, Kyoto, 1976), pp 409–425. Wiley, New York (1978)

22. Tossounian, H., Vaidyanathan, R.: Partially thermostated Kac model. J. Math. Phys. 56(8), 083301 (2015)
23. Villani, C.: Optimal Transport, Old and New. Grundlehren der Mathematischen Wissenschaften [Funda-

mental Principles of Mathematical Sciences], vol. 338. Springer, Berlin (2009)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123


	Uniform Propagation of Chaos for the Thermostated Kac Model
	Abstract
	1 Introduction and Main Result
	1.1 Thermostated Kac Particle System
	1.2 Propagation of Chaos
	1.3 Main Result

	2 Well-Posedness for the Kinetic Equation
	3 Coupling Construction
	3.1 Particle System
	3.2 Coupling with Boltzmann Processes

	4 Conclusion
	Acknowledgements
	References




