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Abstract
In this paper, we present new estimates for the entropy dissipation of the Landau–Fermi–
Dirac equation (with hard or moderately soft potentials) in terms of a weighted relative
Fisher information adapted to this equation. Such estimates are used for studying the large
time behaviour of the equation, as well as for providing new a priori estimates (in the soft
potential case). An important feature of such estimates is that they are uniform with respect
to the quantum parameter. Consequently, the same estimations are recovered for the classical
limit, that is the Landau equation.
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1 Introduction

Entropy production estimates have been significantly used in recent years for the study of
partial differential equations. Such estimates arise in many contexts for different purposes:

• Entropy estimates contribute to new a priori estimates. This is the case in the kinetic
theory of gases where the famous H -Theorem of Boltzmann is the cornerstone in many
studies on the topic and one of the essential bricks in the construction of Di Perna- Lions
renormalized solutions [26]. That entropy yields new natural a priori estimates is also
well-understood in the study of other equations, and the Boltzmann entropy

∫
f log f

appeared in this context in the fundamental work [32] on parabolic equations. We refer
the reader to [28] for an overview of entropy methods for diffusive equations.

• Entropy production estimates also arise naturally in the study of long time behaviour of
solutions to evolution problems. Indeed, entropy acts in this case as a natural Lyapunov
functional which brings the system towards its equilibrium state (which is a minimizer
of the entropy) through some LaSalle’s invariance principle. In this context, functional
inequalities linking the entropy to the entropy production are a fundamental tool to
quantify the rate of convergence. In the study of kinetic theory, this has been understood
since the celebrated Cercignani’s conjecture for Boltzmann equation [16,25,36] and the
pioneering works [10,11]. Such ideas have been applied efficiently also in various other
frameworks, for the study of reaction-diffusion systems [21], parabolic equations [14],
coagulation and fragmentation processes [1,9] and in various problems in mathematical
biology [31,33], just to mention a few.

In the kinetic framework, entropy and entropy production have been thoroughly studied
for the Boltzmann equation [24,36] as well as for the Landau equation. This latter equation
arises in the modelling of plasma and can also be derived from the Boltzmann equation in the
so-called grazing collision limit. For this model, the equivalent of Cercignani’s conjecture
was proven to hold first in the special case of the so-called Maxwell molecules in [23],
together with weaker versions of the functional inequality linking the entropy to its entropy
production for hard potentials. This kind of functional inequalities has been then extended
to cover the physically relevant case of Coulomb interactions in [13] using techniques from
[18].

In a recent contribution [5], the entropy method has been applied to the study of the
long time behaviour of solutions to the Landau–Fermi–Dirac equation with hard potentials.
Some non optimal functional inequalities linking the entropy production to the associated
entropy have been obtained therein which, when combined with a careful spectral analysis,
yield an optimal (exponential) rate of convergence to equilibrium. It is the purpose of this
paper to provide a systematic study of the entropy and entropy production functional for the
spatially homogeneous Landau–Fermi–Dirac equation, extending the results obtained in [5]
and complementing them with a study of the soft potentials case. The results of the present
contribution in that context will then be applied to the long-time behaviour of solutions to
the Landau–Fermi–Dirac equation with moderately soft potentials in the forthcoming work
[6].

1.1 TheModel

The Landau–Fermi–Dirac (LFD) equation models the time evolution of a particle gas sat-
isfying Pauli’s exclusion principle in the Landau’s grazing limit regime and reads, in the
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homogeneous setting, as

∂t f (t, v) = Qε( f )(t, v), (t, v) ∈ (0,∞) × R
3 , f (0) = fin , (1.1)

where the collision operator is given by amodification of the Landau operator which includes
Pauli’s exclusion principle:

Qε( f )(v) = ∇v ·
∫

R3
�(v − v∗)�(v − v∗)

{
f∗(1 − ε f∗)∇ f − f (1 − ε f )∇ f ∗

}
dv∗ .

We use here the standard shorthand f = f (t, v) and f∗ = f (t, v∗). The matrix-valued
function z �→ �(z) denotes the orthogonal projection on (Rz)⊥,

�i j (z) = δi j − zi z j

|z|2 , 1 ≤ i, j ≤ 3 ,

and�(z) = |z|2+γ is the kinetic potential. The choice�(z) = |z|2+γ corresponds to inverse
power law potentials. We point out that the Pauli exclusion principle implies that a solution
to (1.1) must satisfy the a priori bound

0 ≤ f (t, v) ≤ ε−1, (1.2)

where the quantum parameter

ε := (2π�)3

m3β
> 0

depends on the reduced Planck constant � ≈ 1.054 × 10−34m2kg s−1, the mass m, and the
statistical weight β of the particles species, see [17, Chapter 17]. Recall that the statistical
weight is the number of independent quantum states in which the particle can have the same
internal energy. For example, for electrons, β = 2 corresponding to the two possible electron
spin values. In the case of electronsm ≈ 9.1×10−31 kg, and therefore,ε ≈ 1.93×10−10 � 1.
The parameter ε encapsulates the quantum effects of themodel, the case ε = 0 corresponding
to the classical Landau equation as studied in [23].

The above equation shares many properties with the classical Landau equation, corre-
sponding to non quantum particles:

∂t f = Q0( f ) = ∇v ·
∫

R3
�(v − v∗)�(v − v∗)

{
f∗∇ f − f ∇ f ∗

}
dv∗ , (1.3)

which corresponds to the case ε = 0.As mentioned earlier, Eq. (1.3) is a fundamental model
of kinetic theory for plasmas and received considerable attention in the past decades, cf. for
example [12,13,22,23].

Up to our knowledge, themathematical study of (1.1) has been restricted to the case of hard
potentials (or Maxwell molecules) only, i.e. for γ ∈ [0, 1]. We refer to [5,7] for a discussion
of the model, its physical relevance and the properties of the solutions for γ ∈ [0, 1]. We
point out here that the study of the Cauchy problem for (1.1) has been performed in [7], and
the careful study of the steady states is given in [8]. In a recent contribution [5], three of the
authors of the present paper discussed both the regularity and the long time asymptotics of
the solution to (1.1). The analysis of (1.1) for moderately soft potentials, corresponding to
−2 < γ < 0, has been initiated by the authors of the present paper in [6].

123



10 Page 4 of 27 R. Alonso et al.

1.2 The Role of Entropy

In the classical context (corresponding to ε = 0), the Boltzmann entropy

H( f ) =
∫

R3
f log f dv

is a Lyapunov functional for (1.3), i.e.

d

dt
H( f (t)) ≤ 0 for t ≥ 0,

if f (t) is a suitable solution to (1.3). Moreover, given any constant u ∈ R
3, under the

constraints
∫

R3
f (v)dv = 	,

∫

R3
f (v) |v − u|2dv ≤ 3	 E, f ≥ 0, (1.4)

the functional H( f ) reaches its unique minimum if f is the Maxwellian distribution

M(v) := 	

(2π E)
3
2

exp

(

−|v − u|2
2E

)

, v ∈ R
3,

for which the above constraints are satisfied with equality sign. Of course, such aMaxwellian
distribution is the only solution to

Q0(M) = 0,

satisfying (1.4) with equality sign.
In the quantum case, for ε > 0, one introduces the Fermi–Dirac entropy:

Sε( f ) = −1

ε

∫

R3

[
ε f log(ε f ) + (1 − ε f ) log(1 − ε f )

]
dv , (1.5)

i.e. Sε( f ) = −ε−1 (H(ε f ) + H(1 − ε f )), well-defined for any 0 ≤ f ≤ ε−1. One can
then show that −Sε( f ) is a Lyapunov function for (1.1), i.e.

− d

dt
Sε( f (t)) =: −Dε( f (t)) ≤ 0

for any suitable solution to (1.1). For ε ≥ 0, the entropy production associated to the above
Landau–Fermi–Dirac operator is defined as

Dε(g) := 1

2

∫

R3×R3
�(v − v∗)�ε[g](v, v∗)dvdv∗ , �(z) = |z|γ+2 , (1.6)

for any smooth function 0 < g < ε−1, with

�ε[g](v, v∗)

= �(v − v∗)
(
g∗(1 − εg∗)∇g − g(1 − εg)∇g∗

)
( ∇g

g(1 − εg)
− ∇g∗

g∗(1 − εg∗)

)

,

= gg∗(1 − εg)(1 − εg∗)
∣
∣
∣
∣�(v − v∗)

( ∇g

g(1 − εg)
− ∇g∗

g∗(1 − εg∗)

)∣∣
∣
∣

2

≥ 0 .

(1.7)

In contrast towhat happens in the classical case, here the steady solutions to (1.1) satisfying
(1.4) are of two different kinds: first, Qε(Mε) = 0 if Mε is the following Fermi–Dirac
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statistics:

Mε(v) := aε exp(−bε|v − u|2)
1 + ε aε exp(−bε|v − u|2) = Mε

1 + ε Mε
, (1.8)

where the parameters aε, bε are semi-explicit and tuned so that Mε satisfies (1.4) with
equality sign. Second, the distribution

Fε(v) = ε−11B(u,R)(v), (1.9)

where B(u, R) is the open ball in R
3 centered at u with explicit radius R :=

(
3	ε

|S2|
) 1

3

, also

satisfies Qε(Fε) = 0 and (1.4) (for ε small enough), where |S2| is the volume of the unit
sphere. Such a degenerate stationary state, referred to as saturated Fermi–Dirac distribution,
can occur for very cold gases, where an explicit condition on the gas temperature can be
found. Notice that, under the additional constraints:

0 ≤ f ≤ ε−1,
∣
∣{v ∈ R

3 ; 0 < f (v) < ε−1}∣∣ = 0,

the Fermi–Dirac statistics is the unique stationary state (see [8]). It is also a minimizer of the
functional −Sε( f ).

The coexistence of these two kinds of steady solutions has important consequences on
the long time behaviour of solutions to (1.1). Indeed, as long as finite energy solutions are
not saturated, only the Fermi–Dirac statistics (1.8) are possible limit points for the solution
to (1.1); yet, if the initial datum happens to be very close to the degenerate state (1.9), one
expects the convergence to be slowed down by such equilibrium regimes. To illustrate this,
let us summarize some of the results of our contribution [5] dealing with γ ∈ (0, 1].
Theorem 1.1 Consider 0 < γ ≤ 1 and 0 ≤ f0 ∈ L1

sγ (R3) with sγ = max{ 3γ2 + 2, 4 − γ }
satisfying (1.11), and let f = f (t, v) be a weak solution to (1.1) as constructed in [7]. Then,

(1) limt→∞ ‖ f (t) − Mε‖L1
2

= 0 where Mε is the Fermi–Dirac statistics with same mass,
energy and momentum as f0.

(2) If moreover f ∈ L2
k(R

3) for k large enough (explicit), then there exists ε‡ ∈ (0, 1) such
that for any ε ∈ (0, ε‡),

‖ f (t) − Mε‖L1
2

≤ C exp(−λεt), ∀ t ≥ 0 , (1.10)

where λε > 0 is explicit, and C > 0.

Here above and in all the sequel,

L1
s (R

3) := { f ∈ L1(R3) ; ms( f ) < ∞},
L2

s (R
3) :=

{

f ; ‖ f ‖2L2
s

:=
∫

R3
| f (v)|2〈v〉2sdv < ∞

}

, s ∈ R

with

ms( f ) :=
∫

R3
〈v〉s | f (v)|dv, 〈v〉 := (

1 + |v|2)
1
2 , s ∈ R.

The optimal convergence given in (1.10) is based upon a careful spectral analysis of the
linearized Landau–Fermi–Dirac operator around Mε, and λε > 0 is its spectral gap. The
condition on the quantum parameter ε ∈ (0, ε‡) is interpreted as a non-saturation condition
of the dynamics (and not as a smallness condition). Indeed, if we call εsat the limiting
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quantum parameter that saturates the initial data, the results in [5] are valid in the range
0 < ε‡ < c εsat for some explicit universal c < 1. Although convergence to Fermi–Dirac
statistics still happens up to ε‡ < εsat, it is an open problem to prove such convergence with
explicit rates.

The main scope of the present paper is to provide a direct approach to the trend to equi-
librium for the evolution of the Landau–Fermi–Dirac dynamic where the convergence is
obtained in terms of the relative entropy only. This requires sharp functional estimates.
Let us introduce the relative Fermi–Dirac entropy defined, for any nonnegative f , g ∈
L1
2(R

3) with 0 ≤ f ≤ ε−1 and 0 ≤ g ≤ ε−1, by

Hε( f |g) = −Sε( f ) + Sε(g).

The definition is similar to the usual Boltzmann relative entropy

H0( f |g) = H( f ) − H(g) =
∫

R3
f log f dv −

∫

R3
g log g dv,

defined for nonnegative f , g ∈ L1(R3)with
∫
R3 f (v)dv = ∫

R3 g(v)dv, and used in particular
in the study of (1.3).

1.3 Main Results

Before stating the main results of the present contribution, we introduce the baseline class of
functions to which the initial distribution fin is associated to:

Definition 1.2 Fix ε0 > 0 and a nonnegative fin ∈ L1
2(R

3) satisfying

0 < ‖ fin‖∞ =: ε−1
0 < ∞ and S0 := Sε0( fin) > 0, |H( fin)| < ∞. (1.11)

For any ε ∈ [0, ε0], we say that f ∈ Yε( fin) if f ∈ L1
2(R

3) satisfies 0 ≤ f ≤ ε−1,

∫

R3
f (v)

⎛

⎝
1
v

|v|2

⎞

⎠ dv =
∫

R3
fin(v)

⎛

⎝
1
v

|v|2

⎞

⎠ dv =:
⎛

⎝
	in

	inuin

3	inEin + 	in|uin|2

⎞

⎠ , (1.12)

and Sε( f ) ≥ Sε( fin).

Remark 1.3 The definition above can be naturally extended to cover the case ε = 0. Of course
for this case we also assume ε0 = 0 and replace (1.11) simply with

fin ∈ L1
2(R

3), |H( fin)| < ∞,

and we say that f ∈ Y0( fin) if f ∈ L1
2(R

3) is nonnegative and satisfies (1.12) together with
H( f ) ≤ H( fin).

Up to replacing f with

f̃ (v) = E
3
2
in

	in
f
(√

Einv + uin

)
, v ∈ R

3

there is no loss in generality in assuming

	in = Ein = 1, uin = 0. (1.13)

This assumption will be made in all the sequel and Mε will always denote the Fermi–
Dirac statistics corresponding to this normalization. We point out that the constants in the
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various statements in the sequel all depend on ‖ fin‖L1
2
and, as such, would differ if another

choice of normalisation is made. Solutions to the Landau–Fermi–Dirac (also called LFD)
equation constructed in [7] are known to belong (for all t ≥ 0) to the class Yε( fin) if the
initial datum fin satisfies conditions (1.11)–(1.12). This is the reason why we focus on the
study of the entropy production functional Dε(g) for functions g belonging to such a class.
More specifically, fin will always be assumed to satisfy (1.11)–(1.12).

The analysis developed in this manuscript allows us to revisit the contribution of [5],
devoted to hard potentials, and to improve it in several aspects. More precisely, we provide
a new entropy–entropy production estimate based on works of the third author which allows
to strengthen and simplify several results given in [5]. Namely, we prove the following
inequality.

Theorem 1.4 Assume that g belongs to the class Yε( fin) together with the normalization
(1.13) and assume moreover that there exists κ0 > 0 such that

inf
v∈R3

(1 − εg(v)) ≥ κ0. (1.14)

Then for γ ≥ 0,

Dε(g) ≥ 2λ(g)

[

bε − 12ε2

κ4
0

max(‖g‖2∞, ‖Mε‖2∞)

]

Hε(g|Mε),

where λ(g) > 0 is given by

1

λ(g)
:= 510

e3γ
κ2
0

max(1, Bγ ) max
(
1,m2+γ (g)

)
Iγ (g) , (1.15)

with

Iγ (g) = sup
v∈R3

〈v〉γ
∫

R3
g(w)|w − v|−γ 〈w〉2dw,

and

1

Bγ

:= min
i = j

inf
σ∈S1

∫

R3

∣
∣
∣
∣σ1

vi

〈v〉 − σ2
v j

〈v〉
∣
∣
∣
∣

2

g(v)dv,
1

eγ

:= min
i

1

3

∫

R3
g(v) v2i dv .

Recall that Mε and bε were introduced in (1.8).

The condition (1.14) is needed here to rule out the possibility that g be too close to the
degenerate state (1.9). We already point out that solutions f (t, v) to LFD Eq. (1.1) satisfy
(1.14) as soon as t > 0. We refer to [5,6] for the proof of this fact in the range γ ∈ (−2, 0]
and γ ∈ (0, 1] respectively, under some conditions on ε < εsat. In fact, κ0 is uniform w.r.t.
time when t ≥ t0 > 0.

It is noteworthy to observe that Theorem 1.4 is valid in the classical case ε = 0 with
g ∈ Y0( fin) (as described in Remark 1.3). In this case, assumption (1.14) is clearly satisfied
and b0 = 1

2 . This yields the following novel version of the results in [23], which can be seen
as a variant of Cercignani’s conjecture for the Landau equation with true hard potentials (this
result could alternatively be obtained using the logarithmic Sobolev inequality of Gross [28,
Chapter 2] and Proposition 4 extracted from [20]):
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Corollary 1.5 Assume that g ∈ Y0( fin) together with the normalization (1.13). The Landau
entropy production

D0(g) = 1

2

∫

R6
|v − v∗|γ+2 gg∗ |�(v − v∗) (∇ log g − ∇ log g∗)|2 dvdv∗

satisfies, for γ ≥ 0,

D0(g) ≥ λ(g)

∫

R3
g(v) log

g(v)

M0(v)
dv, M0(v) = (2π)−

3
2 exp

(

−|v|2
2

)

,

where λ(g) > 0 is given by (1.15).

For suitable solutions to Landau equation one deduces then the following corollary, which
improves the entropic convergence obtained in [23]:

Corollary 1.6 Let γ ∈ [0, 1]. Consider 0 ≤ fin ∈ L1
2+δ(R

3), with δ > 0, satisfying (1.11)
in the case ε = 0 = ε0 together with the normalization (1.12)–(1.13). Let f = f (t, v) be
a weak solution to the Landau equation (1.3) as constructed in [22]. Then, for any t0 > 0,
there exists some explicit μ > 0 such that

H0( f (t)|M) ≤ H0( fin|M) exp (−μ(t − t0)) , ∀t > t0.

Proof We give here a sketch of the proof which illustrates the interest of deriving functional
inequalities like those of Theorem 1.4. If f (t, ·) is a solution to (1.3) as constructed in [22],
then

d

dt
H0( f (t)|M) = −D0( f (t)), ∀t > 0

so that, according to Corollary 1.5, we deduce that

d

dt
H0( f (t)|M) ≤ −λ( f (t))H0( f (t)|M), ∀t > 0.

One can then prove easily (see Sect. 4 for details) that, for any t0 > 0,

inf
t≥t0

λ( f (t)) ≥ μ > 0,

from which the conclusion follows by a simple application of Gronwall Lemma and the fact
that H0( f (t0)|M) ≤ H0( fin|M). ��

The above line of reasoning canbe still implemented for theLFDequation and an important
consequence of Theorem 1.4 is the following improvement of the convergence result stated
in Theorem 1.1.

Theorem 1.7 Let γ ∈ (0, 1]. Consider 0 ≤ fin ∈ L1
sγ (R3), with sγ = max

{ 3γ
2 + 2, 4− γ

}
,

satisfying (1.11) together with the normalization (1.12)–(1.13). Let f = f (t, v) be a weak
solution to the LFD equation as constructed in [7]. Then, for any t0 > 0, there exists
ε† ∈ (0, ε0) and μ > 0 (depending only on t0 and H( fin)), such that

Hε( f (t)|Mε) ≤ Hε( fin|Mε) exp (−μ (t − t0)) , ∀ε ∈ (0, ε†), t > t0.

It is worth noticing that the convergence here is an entropic convergence which, of course,
implies a convergence in L1

2 thanks to the following Csiszar–Kullback inequality for Fermi–
Dirac relative entropy obtained in [30, Theorem 3]:

‖ f − Mε‖2L1 ≤ 2Hε( f |Mε), (1.16)
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for all 0 ≤ f ≤ 1
ε
with

∫

R3
f (v)

⎛

⎝
1
v

|v|2

⎞

⎠ dv =
⎛

⎝
1
0
3

⎞

⎠ .

As mentioned earlier, we aim to provide a systematic study of the entropy production
which in particular applies also to the study of soft potentials. For such soft potentials, the
entropy estimate provides some fundamental a priori estimate on solutions to (1.1). We refer
the reader to the recent contribution [20]where this question is described in detail for solutions
to the Landau equation (1.3) for Coulomb interactions. In this context, our main result can
be formulated as follows:

Theorem 1.8 Let 0 ≤ fin ∈ L1
2(R

3) be fixed, and satisfy (1.11) together with the normaliza-
tion (1.12)–(1.13). Assume that γ < 0 and ε ∈ (0, ε0]. Then, there exists a positive constant
C0(γ ) depending only on H( fin) and on γ such that

∫

R3

∣
∣
∣∇
√

g(v)

∣
∣
∣
2 〈v〉γ dv ≤ C0(γ ) (1 + Dε(g)) , ∀ε ∈ (0, ε0], ∀g ∈ Yε( fin).

A similar result is known to hold for Landau equation (i.e. ε = 0), and is a consequence
of more general functional inequalities for the entropy production D0, see [18,19]. In the
quantum case, the situation is very similar, and Theorem 1.8 is a consequence of a more
general functional inequality (see Proposition 2.2).

1.4 Organization of the Paper

In Sect. 2, we present the twomain functional inequalities satisfied by the entropy production
Dε. In particular the complete proof of Theorem 1.8 is presented. The method is inspired
by the results of [18,20]. In Sect. 3, the links of the functional inequalities obtained in Sect.
2 and the relative entropy Hε( f |Mε) are described. We give the full proof of Theorem
1.4 which is valid for hard (and Maxwell molecules) potentials γ ≥ 0. We briefly explain
how such estimates can be used to the study of the LFD equation (1.1) for soft potentials
γ < 0, anticipating the results obtained in [6]. We finally apply Theorem 1.4 to the long time
behaviour and get Theorem 1.7, extending the results of [5], in Sect. 4.

2 Two Kinds of Functional Inequalities for Entropy Production

We provide in this section the two main functional inequalities associated to the entropy
production Dε( f ). Before doing so, we recall the following result, see [5, Lemmas 2.3, 2.4].

Lemma 2.1 Let 0 ≤ fin ∈ L1
2(R

3) be fixed and bounded satisfying (1.11). Then, for any
ε ∈ (0, ε0], the following holds:

(1) For any f ∈ Yε( fin), it holds that

inf
0<ε≤ε0

∫

|v|≤R( fin)
f (1 − ε f ) dv ≥ η( fin) > 0 , (2.1)

for some R( fin) > 0 and η( fin) depending only on H( fin) but not on ε.
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(2) For any δ > 0 there exists η∗(δ) > 0 depending only on H( fin) such that for any
f ∈ Yε( fin), and any measurable set A ⊂ R

3,

|A| ≤ η∗(δ) �⇒
∫

A
f (1 − ε f ) dv ≤ δ. (2.2)

2.1 Entropy Production Aiming to Regularity

We now aim to provide a control of the regularity of the solution f (t) to (1.1) by the entropy
production in the spirit of [18,19]. We first observe that we can easily adapt the computations
of [19, Theorem 2] (which actually work also in the case γ > 0) and prove the following
functional inequality where, for any s ∈ R and any function f = f (v) and χ = χ(r)

(r ≥ 0), we set

Gs(χ, f ) =
∫

R3
χ
( 1
2 |v|2) f (v)〈v〉sdv.

Proposition 2.2 (Functional inequality) Let g = g(v), M = M(v) ≥ 0 and φ = φ(r) be
given nonnegative functions with 0 ≤ g ≤ ε−1. Write

F = g(1 − ε g), h = log g − log(1 − εg). (2.3)

Then, for any γ ∈ R and any i, j = 1, 2, 3, i = j ,

�φ,i, j (F)2
∫

R3
F(v) |∂i h(v)|2 M(v)dv

≤ 36G2(φ, F)4
(

G2(1, F M)

[

3G2
1(φ, g) + 8G2

2(|φ′|, g)

]

+ 2Jγ (φ, M)Dε(g)

)

,

where

Jγ (φ, M) = sup
v∈R3

M(v)

∫

R3
φ2 ( 1

2 |w|2) F(w)〈w〉2|v − w|−γ dw,

and

�φ,i, j (F) = Det

⎛

⎝
∫

R3
φ
( 1
2 |w|2) F(w)

⎛

⎝
1 wi w j

wi w2
i w jwi

w j wiw j w2
j

⎞

⎠ dw

⎞

⎠ .

One deduces then our main result in this context (Theorem 1.8) in this way:

Proof of Theorem 1.8 Remember that γ < 0. Let us fix ε ∈ (0, ε0] and g ∈ Yε( fin). Notice
then that

∫

R3
f (v)〈v〉2dv = 	in (1 + 3Ein) = 4,

under assumptions (1.12)–(1.13). We apply Proposition 2.2 with

M(v) = (1 − ε g(v))〈v〉γ , φ(r) = (1 + 2r)
γ
4 .
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One has

G2(φ, F) =
∫

R3
〈v〉2+ γ

2 F(v)dv ≤ 4,

G2(1, F M) =
∫

R3
〈v〉2+γ (1 − εg(v))2g(v)dv ≤ 4,

G2
2(|φ′|, g) = γ 2

4

(∫

R3
〈v〉 γ

2 g(v)dv

)2

≤ γ 2

4
,

and

G2
1(φ, g) =

(∫

R3
〈v〉1+ γ

2 g(v)dv

)2

≤
(∫

R3
〈v〉g(v)dv

)2

≤ 4,

by Cauchy–Schwarz inequality. Moreover, there is some explicit Cγ > 0 such that,

|v − w|−γ ≤ Cγ 〈v〉−γ 〈w〉−γ , ∀v,w ∈ R
3,

so that

Jγ (φ, M) ≤ Cγ sup
v

(1 − ε g(v))〈v〉γ
∫

R3
〈w〉γ F(w)〈w〉2〈v〉−γ 〈w〉−γ dw,

resulting in

Jγ (φ, M) ≤ Cγ

∫

R3
F(w)〈w〉2dw ≤ 4Cγ .

Finally,

∫

R3
F(v) |∂i h(v)|2 M(v)dv =

∫

R3

|∂i g(v)|2
g(v)

〈v〉γ dv = 4
∫

R3

∣
∣
∣∂i

√
g(v)

∣
∣
∣
2 〈v〉γ dv.

Therefore, with such a choice of φ and M , we get (for all i = j)

�φ,i, j (F)2
∫

R3

∣
∣
∣∂i

√
g(v)

∣
∣
∣
2 〈v〉γ dv ≤ 9 · 45

(

12 + 2γ 2 + 2CγDε(g)

)

. (2.4)

It remains to find a lower bound for �φ,i, j (F). One can write

�φ,i, j (F) = Det

⎛

⎝
�1, 1� �1, wi � �w j , 1�
�wi , 1� �wi , wi � �wi , w j �

�w j , 1� �wi , w j � �w j , w j �

⎞

⎠ ,

where �·, ·� denotes the inner product on L2(R3, φ( 12 | · |2)Fdw). Thus, �φ,i, j (F) is the
determinant of a Gram matrix and as such,

�φ,i, j (F)
1
3 ≥ inf

σ∈S2

∫

R3
φ
( 1
2 |w|2) F(w)

∣
∣σ1 + σ2 wi + σ3 w j

∣
∣2 dw,
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10 Page 12 of 27 R. Alonso et al.

since the right-hand side is less than any eigenvalue of the matrix. Recall that we picked
φ(z) = (1 + 2z)γ /4. For any σ = (σ1, σ2, σ3) ∈ S

2, one has, for all τ > 0, R > 0,
∫

R3
φ
( 1
2 |w|2) F(w)

∣
∣σ1 + σ2 wi + σ3 w j

∣
∣2 dw

≥ τ 2
∫

BR

〈w〉 γ
2 F(w)1{|σ1+σ2 wi +σ3 w j |≥τ}dw

≥ τ 2(1 + R2)
γ
4

∫

BR

F(w)1{|σ1+σ2 wi +σ3 w j |≥τ}dw

= τ 2(1 + R2)
γ
4

(∫

BR

F(w)dw −
∫

BR

F(w)1{|σ1+σ2 wi +σ3 w j |≤τ}dw
)

,

where BR = {w ∈ R
3 ; |w| ≤ R}. Thus

�φ,i, j (F)
1
3 ≥ τ 2(1 + R2)

γ
4

∫

BR

g(w)(1 − ε g(w))dw

−τ 2(1 + R2)
γ
4 sup

σ∈S2

∫

BR

g(w)(1 − ε g(w))1{|σ1+σ2 wi +σ3 w j |≤τ}dw. (2.5)

With the notations of Lemma 2.1, let now consider δ > 0, to be fixed later. Arguing as in
[19, p. 141], we can find τ = τR,δ > 0 small enough such that

|AτR,δ
∩ BR | ≤ η∗(δ) ∀σ ∈ S

2,

where, for any σ ∈ S
2, we introduced the set Aτ = {∣∣σ1 + σ2 wi + σ3 w j

∣
∣ ≤ τ

}
. Then,

thanks to Lemma 2.1 (2),

�φ,i, j (F)
1
3 ≥ τ 2R,δ(1 + R2)

γ
4

∫

BR

g(w)(1 − ε g(w))dw − τ 2R,δ(1 + R2)
γ
4 δ.

Selecting R = R( fin) given by Lemma 2.1 (1), and using the quantity η( fin) > 0
appearing in this lemma,

�φ,i, j (F)
1
3 ≥ τ 2R( fin),δ(1 + R( fin)

2)
γ
4 (η( fin) − δ) .

We pick then δ = 1
2η( fin), and get that �φ,i, j (F) is bounded below by some strictly

positive constant depending only on H( fin). We conclude then thanks to (2.4). ��
Remark 2.3 Whenever −3 ≤ γ ≤ 0, for an initial datum fin satisfying assumptions (1.11)
and (1.12), any suitable solution f (t, ·) to Landau–Fermi–Dirac equation (as constructed for
instance in [6] in the case −2 < γ ≤ 0) will then satisfy
∫ t2

t1
dt
∫

R3

∣
∣
∣∇v

√
f (t, v)

∣
∣
∣
2 〈v〉γ dv ≤ C0(γ )

∫ t2

t1
(1 + Dε( f (t))) dt, 0 < t1 < t2 .

Since

− d

dt
Sε( f (t)) = −Dε( f (t)),

one deduces then that
∫ t2

t1
dt
∫

R3

∣
∣
∣∇v

(
〈v〉 γ

2
√

f (t, v)
)∣∣
∣
2
dv ≤ C̃0(1 + t2 − t1), ∀0 < t1 < t2.
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Notice that a different proof of such inequalities is obtained in [6] for −2 < γ < 0.
Using the Sobolev embedding ‖u‖L6 � ‖∇u‖L2 with u = 〈v〉γ /2√ f (t, ·). The above

regularity estimate translates easily into an estimate for the weighted norm ‖〈·〉γ f (t, ·)‖L3 .
It is also possible to deduce (for some p > 1) L p

t L p
v bounds for the solution to (1.1) (see [6]

for details).

2.2 Entropy Production Aiming to Long-Time Behaviour

We will consider in all this Section a function fin satisfying (1.11)–(1.12) and (1.13) and a
function g belonging to the classYε( fin), ε ∈ (0, ε0] (or g ∈ Y0( fin) in the case ε = 0 = ε0,
see Remark 1.3).

Without loss of generality (it amounts to the use of a rotation of R
3), we also assume that

∫

R3
g(v) vi v j dv = 0, i = j . (2.6)

Noticing that, for any z, y ∈ R
3,

〈|z|2�(z)y, y〉 = |z|2|y|2 − 〈z, y〉2 = 1

2

∑

i, j

|zi y j − z j yi |2 = 1

2

∑

i = j

|zi y j − z j yi |2,

we have, with z = v − v∗ and y = ∇ϕ − ∇ϕ∗,

Dε(g) = 1

4

∑

i j

∫

R3×R3
F F∗ |v − w|γ ∣∣qi j (v,w)

∣
∣2 dvdw, (2.7)

where F = g(1 − ε g) and

qi j (v,w) = (v − w)i
(
∂ j h(v) − ∂ j h(w)

)− (v − w) j (∂i h(v) − ∂i h(w)) .

Notice that

q(v,w) = (v − w) × (∇h(v) − ∇h(w)
)
.

We have clearly

qi j (v,w) = [v × ∇h(v)]i j − vi∂ j h(w) + v j∂i h(w)

−wi∂ j h(v) + w j∂i h(v) + [
w × ∇h(w)

]
i j . (2.8)

Integrating qi j (v,w) against g(w) and using (1.12), one has

Ni j := Ni j (v) =
∫

qi j (v,w) g(w) dw = [
v × ∇h

]
i j = vi∂ j h(v) − v j∂i h(v), (2.9)

while, integrating qi j (v,w) against g(w)wi , one obtains

Mi j := Mi j (v) =
∫

qi j (v,w) g(w)wi dw = −ai ∂ j h(v) + K v j − L j , (2.10)

where

ai :=
∫

R3
g(v) v2i dv; K = Kε = 1

ε

∫

R3
log(1 − ε g(v)) dv;

L j := L j,ε = 1

ε

∫

R3
log(1 − ε g(v)) v j dv. (2.11)
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10 Page 14 of 27 R. Alonso et al.

Remark 2.4 Notice that, under the additional assumption that infv(1 − εg(v)) ≥ κ0 (see
(1.14) hereafter),
∫

R3
| log(1 − εg(v))|dv ≤ − 1

κ0

∫

R3
(1 − εg(v)) log(1 − εg(v))dv ≤ ε

κ0
Sε(g) < ∞,

which makes K well-defined. Moreover, K < 0 with limε→0 Kε = − ∫
R3 g(v)dv = −1.

One actually can check that

K (g) =
∫

R3
wi∂i h(w)g(w)dw, ∀i = 1, 2, 3.

In particular, since ∇Mε(v) = −2bεv Mε(v)(1 − εMε(v)), one has

K := K (Mε) = −2bε

∫

R3
Mε(v)v2i dv = −2bε ∀i = 1, 2, 3,

since the energy ofMε is equal to 3 and, because of radial symmetry, the directional energies
all coincide.

Remark 2.5 Finally, notice that
∫

R3
qi j (v,w)g(w)w jdw = a j∂i h(v) − Kvi + Li = −M ji . (2.12)

We begin with the following basic observation:

Lemma 2.6 Besides the above assumption, we assume that g satisfies (1.14) for some κ0 > 0.
Then, for any γ ∈ R and any i = j ,

κ2
0

∫

R3
|Mi j |2g(v)〈v〉γ dv ≤ 4 I (2)

γ (g)Dε(g),

and

κ2
0

∫

R3
|Ni j |2g(v)〈v〉γ dv ≤ 4 I (0)

γ (g)Dε(g),

where, for any s ≥ 0,

I (s)
γ (g) := sup

v∈R3
〈v〉γ

∫

R3
|v − w|−γ g(w)|w|sdw.

Proof From Cauchy–Schwarz inequality, we infer that

|Mi j |2 ≤
(∫

R3
|qi j (v,w)|2g(w)|v − w|γ dw

) (∫

R3
|v − w|−γ g(w)w2

i dw

)

,

so that
∫

R3
g(v)|Mi j |2〈v〉γ dv ≤ sup

v∈R3

(

〈v〉γ
∫

R3
|v − w|−γ g(w)w2

i dw

)

×
∫

R3×R3
|qi j (v,w)|2|v − w|γ g(v)g(w)dvdw.

The last integral is bounded from above by 4κ−2
0 Dε(g) according to (1.14), whereas the

first integral is obviously bounded by I (2)
γ (g), whence the result. The proof for Ni j is identical.

��
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Remark 2.7 Notice that, for γ > 0, I (s)
γ (g) < ∞ as soon as v �→ |v|s g(v) is smooth enough

whereas for γ < 0, using that |v − w|−γ ≤ max(1, 2−γ−1) 〈v〉−γ 〈w〉−γ for any v,w ∈ R
3,

one sees that

I (s)
γ ≤ max(1, 2−γ−1)ms−γ (g), s ≥ 0.

Notice that (2.10) can be written as

∂ j h(v) − Kv j = K

(
1

ai
− 1

)

v j − Mi j

ai
− L j

ai
,

so that

1

3

∣
∣∂ j h(v) − Kv j

∣
∣2 ≤ K 2

∣
∣
∣
∣1 − 1

ai

∣
∣
∣
∣

2

v2j + M2
i j

a2
i

+ L2
j

a2
i

,

and integrating against g(v)〈v〉γ , we obtain
1

3

∫

R3

∣
∣∂ j h(v) − Kv j

∣
∣2g(v)〈v〉γ dv

≤ K 2
∣
∣
∣
∣1 − 1

ai

∣
∣
∣
∣

2 ∫

R3
g(v)v2j 〈v〉γ dv +

∫

R3

M2
i j

a2
i

g(v)〈v〉γ dv

+ L2
j

a2
i

∫

R3
g(v)〈v〉γ dv, (2.13)

which holds for any 1 ≤ i = j ≤ 3, and any γ ∈ R. We need to estimate the various terms
in the right-hand side of this expression. We begin with the following:

Lemma 2.8 With the above notations, for any γ ∈ R, we have

K 2
∣
∣
∣
∣1 − 1

ai

∣
∣
∣
∣

2

≤ 4

9
max

(
a2

j

Ak,γ

; a2
k

A j,γ

)∫

R3

[
M2

ik

a2
i

+ M2
jk

a2
j

+ M2
k j

a2
k

+ M2
i j

a2
i

]

×g(v)〈v〉min(γ,0)dv, (2.14)

where, for � = 1, 2, 3,

A�,γ :=
⎧
⎨

⎩

inf
σ∈S1

∫

R3
(σ1v� − σ2)

2 g(v)〈v〉γ dv if γ < 0,

1
3a� if γ ≥ 0.

(2.15)

Proof Using (2.10) for i, j, k all distinct, we see that
(
1

ai
− 1

ak

)

(K v j − L j ) = Mi j

ai
− Mkj

ak
. (2.16)

Taking the square of (2.16) and integrating against g(v)〈v〉min(γ,0), we get
∣
∣
∣
∣
1

ai
− 1

ak

∣
∣
∣
∣

2 ∫

R3

(
Kv j − L j

)2
g(v)〈v〉min(γ,0)dv

≤ 2

a2
i

∫

R3
M2

i j g(v)〈v〉min(γ,0)dv + 2

a2
k

∫

R3
M2

k j g(v)〈v〉min(γ,0)dv. (2.17)
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10 Page 16 of 27 R. Alonso et al.

One observes then easily, by a homogeneity argument, that if γ < 0, then
∫

R3

(
Kv j − L j

)2
g(v)〈v〉γ dv ≥

(
K 2 + L2

j

)
inf

σ∈S1

∫

R3

(
σ1v j − σ2

)2
g(v)〈v〉γ dv,

whereas, using (1.12), we have
∫

R3

(
Kv j − L j

)2
g(v)dv = (a j K 2 + L2

j ) ≥ 1

3
(K 2 + L2

j ) a j ,

since 0 ≤ a j ≤ 3. This shows that
∫

R3

(
Kv j − L j

)2
g(v)〈v〉min(γ,0)dv ≥ (K 2 + L2

j ) A j,γ , ∀ j = 1, 2, 3, γ ∈ R,

so that (2.17) reads

A j,γ

2

∣
∣
∣
∣
1

ai
− 1

ak

∣
∣
∣
∣

2 (
K 2 + L2

j

)
≤ 1

a2
i

∫

R3
M2

i j g(v)〈v〉min(γ,0)dv

+ 1

a2
k

∫

R3
M2

k j g(v)〈v〉min(γ,0)dv. (2.18)

Remembering that a1 + a2 + a3 = 3, which can be rewritten (for i, j, k all distinct)

1 − 1

ai
= a j

3

(
1

a j
− 1

ai

)

+ ak

3

(
1

ak
− 1

ai

)

, (2.19)

we get first that

K 2
∣
∣
∣
∣1 − 1

ai

∣
∣
∣
∣

2

≤ 2

9

(

a2
j K 2

∣
∣
∣
∣
1

a j
− 1

ai

∣
∣
∣
∣

2

+ a2
k K 2

∣
∣
∣
∣
1

ak
− 1

ai

∣
∣
∣
∣

2
)

,

whereas (2.18) implies

a2
j K 2

∣
∣
∣
∣
1

a j
− 1

ai

∣
∣
∣
∣

2

≤ 2
a2

j

Ak,γ

∫

R3

[
M2

ik

a2
i

+ M2
jk

a2
j

]

g(v)〈v〉min(γ,0)dv, (2.20)

and

a2
k K 2

∣
∣
∣
∣
1

ak
− 1

ai

∣
∣
∣
∣

2

≤ 2
a2

k

A j,γ

∫

R3

[
M2

i j

a2
i

+ M2
k j

a2
k

]

g(v)〈v〉min(γ,0)dv,

which result in (2.14). ��
We also get the following lemma:

Lemma 2.9 For any γ ∈ R, we set Aγ = max

(

1,
3

min� A�,γ

)

and

B−1
i j = inf

σ∈S1

∫

R3

∣
∣σ1vi − σ2v j

∣
∣2 g(v)〈v〉−2+min(γ,0)dv i = j . (2.21)

One has, for all distinct i, j, k ∈ {1, 2, 3}
L2

j

a2
i

+ L2
i

a2
j

≤ 4Bi j

(∫

R3
N 2

i j g(v)〈v〉min(γ,0)dv

+2Aγ

∫

R3

[
M2

ik

a2
i

+ M2
jk

a2
j

+ M2
j i

a2
j

+ M2
i j

a2
i

]

g(v)〈v〉min(γ,0)dv

)

.
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Proof One observes that, inserting (2.10) in (2.9), we get

Li

a j
v j − L j

ai
vi = Ni j + Mi j

ai
vi − M ji

a j
v j +

(
1

a j
− 1

ai

)

Kviv j .

Integrating the square of this identity against g(v)〈v〉min(γ,0)−2, we obtain

1

4

∫

R3
g(v)

∣
∣
∣
∣

Li

a j
v j − L j

ai
vi

∣
∣
∣
∣

2

〈v〉−2+min(γ,0)dv

≤
∫

R3
N 2

i j g(v)〈v〉min(γ−2,−2)dv

+
∫

R3

(
M2

i j

a2
i

v2i + M2
j i

a2
j

v2j

)

g(v)〈v〉min(γ−2,−2)dv

+
(
1

ai
− 1

a j

)2

K 2
∫

R3
g(v)v2i v2j 〈v〉min(γ−2,−2)dv.

Clearly, by a homogeneity argument, the left-hand-side is bigger than

1

4

(
L2

j

a2
i

+ L2
i

a2
j

)

B−1
i j ,

whereas, using the bound v2i 〈v〉min(γ−2,−2) ≤ 1 and the fact that
∫

R3
g(v)v2i v2j 〈v〉min(γ−2,−2)dv ≤

∫

R3
g(v)|v|2dv = 3,

we obtain the bound

1

4

(
L2

j

a2
i

+ L2
i

a2
j

)

B−1
i j ≤

∫

R3
N 2

i j g(v)〈v〉min(γ−2,−2)dv

+
∫

R3

(
M2

i j

a2
i

+ M2
j i

a2
j

)

g(v)〈v〉min(γ,0)dv + 3K 2
(
1

ai
− 1

a j

)2

≤
∫

R3
N 2

i j g(v)〈v〉min(γ,0)dv +
∫

R3

(
M2

i j

a2
i

+ M2
j i

a2
j

)

g(v)〈v〉min(γ,0)dv

+ 6

Ak,γ

∫

R3

[
M2

ik

a2
i

+ M2
jk

a2
j

]

g(v)〈v〉min(γ,0)dv,

wherewe used (2.20) to estimate the last term.Weobtain the desired result using the definition
of Aγ . ��
Remark 2.10 Arguing exactly as in [13, Proof of Proposition 5, Estimate of S f , pp. 395–396],
one can prove easily that, when

∫

R3
g(v) |log g(v)| dv ≤ H̄ , γ < 0, (2.22)

there exist c0 > 0 depending on H̄ and c1 > 0 such that

B−1
i j ≥ c0 exp

(−c1 H̄
)

.
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In the same way, for γ < 0, and any σ ∈ S
1,

∫

R3
g(v)|σ1v� − σ2|2〈v〉γ dv ≥ 〈R〉γ

∫

CR

g(v)dv, R > 0,

where CR := {v ∈ R
3 , |v| ≤ R , |σ1v� − σ2| ≥ 1}. Then,

A�,γ ≥ 〈R〉γ
(

1 −
∫

|v|>R
g(v)dv − sup

σ∈S1

∫

|σ1v�−σ2|<1, |v|≤R
g(v)dv

)

≥ 〈R〉γ
(
1

2
−
∫

|v|≤R
g(v)dv

)

, ∀R >
√
6,

since
∫
|v|>R g(v)dv ≤ R−2

∫
|v|>R g(v)|v|2dv ≤ 3

R2 . Now, arguing exactly as in [3, Propo-

sition A.1], under (2.22), there exists C(H̄) > 0 depending only on H̄ such that

A�,γ ≥ C(H̄).

Remark 2.11 Recall (see [5, Proof of Lemma 2.4]) that, if g ∈ Yε( fin) and satisfy the
normalization conditions (1.12)–(1.13) then

H(g) ≤ H( fin) + 	in= H( fin) + 1,

where we recall that H(g) = ∫
R3 g(v) log g(v)dv. Reminding also from [3, Lemma A.1]

that there is some constant c2 > 0 such that
∫

R3
g(v)| log g(v)|dv ≤ H(g) + c2E

3
5
in = H(g) + c2,

we see that, for g ∈ Yε( fin), (2.22) is met with H̄ depending only on H( fin).

We have all in hands to prove the functional inequality.

Proposition 2.12 Let g satisfy (1.12)–(1.13) and (1.14), and γ ∈ R. Then, the following
estimate holds:

F(γ )(g) :=
∫

R3

∣
∣
∣
∣

∇g(v)

g(v)(1 − εg(v))
− Kv

∣
∣
∣
∣

2

g(v)〈v〉γ dv

≤ 170
e2γ Aγ

κ2
0

max(1, Bγ ) max
(
1,m2+γ (g)

)
Iγ (g)Dε(g), (2.23)

where Bγ = maxi = j Bi j , Aγ = max
(
1, 3

min j A j,γ

)
, eγ = 3

mini ai
,

Iγ (g) = sup
v∈R3

〈v〉γ
∫

R3
g(w)|w − v|−γ 〈w〉2dw,

and we recall that K = 1

ε

∫

R3
log(1 − εg)dv, where A j,γ is defined in (2.15), ai is defined

in (2.11), and Bi j is defined in (2.21).

Proof We fix j ∈ {1, 2, 3} and estimate the terms in (2.13) using the previous Lemmas. For
a fixed i = j , we denote for simplicity S1, S2, S3 the first, second and third term on the
right-hand-side of (2.13). One deduces first from (2.14) that

S1 ≤ 4Aγ

3
m2+γ (g)

∫

R3

[
M2

ik

a2
i

+ M2
jk

a2
j

+ M2
k j

a2
k

+ M2
i j

a2
i

]

g(v)〈v〉min(γ,0)dv,
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where we used that a2
k ≤ 9 and 1

Ak,γ
≤ 1

3 Aγ for any k ∈ {1, 2, 3}. According to Lemma 2.6,
one obtains then

S1 ≤ 64 e2γ Aγ

27κ2
0

m2+γ (g)I (2)
γ (g)Dε(g).

Moreover, still using Lemma 2.6,

S2 ≤ 4e2γ
9κ2

0

I (2)
γ (g)Dε(g).

One also has from Lemma 2.9

S3 ≤ 4Bi j mγ (g)

(∫

R3
N 2

i j g(v)〈v〉min(γ,0)dv + 8e2γ Aγ

9
max

i,k

∫

R3
M2

ik g(v)〈v〉min(γ,0)dv

)

,

which, from Lemma 2.6 gives

S3 ≤ 16

κ2
0

Bi j mγ (g)

(

I (0)
γ (g) + 8e2γ Aγ

9
I (2)
γ (g)

)

Dε(g) .

Combining these estimates, summing up over j = 1, 2, 3 and using that 1 ≤ Aγ , 1 ≤ eγ ,

while I (0)
γ (g) + I (2)

γ (g) = Iγ (g), we get
∫

R3

∣
∣∇h(v) − Kv

∣
∣2g(v)〈v〉γ dv

≤
3∑

j=1

∫

R3

∣
∣∂ j h(v) − Kv j

∣
∣2g(v)〈v〉γ dv ≤ 9 (S1 + S2 + S3)

≤ 9
Dε(g)

κ2
0

Iγ (g) e2γ

{
64

27
Aγ m2+γ (g) + 4

9
+ 16 max

i = j
Bi j mγ (g)max

(

e−2
γ ,

8

9
Aγ

) }

≤ 9 Aγ

e2γ
κ2
0

max(1, Bγ ) max(1,m2+γ )Iγ (g)

[
64

27
+ 4

9
+ 16

]

Dε(g)

which yields the desired estimate. ��

3 Link with the Relative Entropy

The results of the previous section presented several functional inequalities for the entropy
production Dε and some weighted Fisher information. Since applications are oriented more
to the study of the long-time behaviour of the solution to (1.1), it is more relevant to link the
entropy production to the Fermi–Dirac relative entropy rather than the Fisher information.
Proposition 2.12 is a first step in this direction since the entropy production Dε(g) controls
some quantity F(γ )(g) (see (2.23)), which has to be interpreted as a weighted relative Fisher
information for h = log g−log(1−εg). To be able to get tractable estimates for the evolution
of the relative entropy Hε(g |Mε), a comparison of such relative Fisher information to
Hε(g |Mε) is needed. We face two difficulties:

(i) First, because of the parameter K , the Fermi–Dirac statistics is not making the weighted
Fisher information vanish. The relative Fisher information which can be related to the

123



10 Page 20 of 27 R. Alonso et al.

Fermi–Dirac entropy is, for function g satisfying (1.12),

F
(γ )
ε (g) =

∫

R3
|∇h(v) + 2bεv|2 g(v)〈v〉min(γ,0)dv, (3.1)

since it is the one which vanishes for g = Mε given by (1.8).
(ii) Second, we need an additional general functional inequality which allows to link the

relative Fisher information to the relative entropy. In the classical framework, such a
link is well-known and is given by the logarithmic Sobolev inequality [28, Chapter 2].

3.1 The Hard Potential (andMaxwell Molecules) Case

In this paragraph, we assume γ ≥ 0. We still consider here functions g in the class Yε( fin)
as in Sect. 2.2. In this case, the weighted relative Fisher information F(γ ) in (2.23) can be
bounded from below by F(0), i.e.

F(γ )(g) ≥ F(0)(g) =
∫

R3
|∇h(v) − Kv|2 g(v)dv,

and inequality (2.23) reads
∫

R3
|∇h(v) − Kv|2 g(v)〈v〉γ dv ≤ F(γ )(g) ≤ λ−1(g)Dε(g), (3.2)

where λ−1(g) is given by (1.15), since Aγ = 3 eγ when γ ≥ 0. Now,

F(0)(g) =
∫

R3
|∇h|2g(v)dv − 2K

∫

R3
(g∇h) · vdv + K 2

∫

R3
g|v|2dv,

where we recall that h is given by (2.3). Using this with the identity g∇h = − 1
ε
∇ log(1−εg)

and the fact that the energy of g is 3, gives
∫

R3
|∇h(v) − Kv|2 g(v)dv =

∫

R3
|∇h|2g(v)dv − 3K 2.

With the notation (3.1), the same considerations give

F (0)
ε (g) =

∫

R3
|∇h|2g(v)dv + 12b2ε + 4bε

∫

R3
g∇h · vdv

=
∫

R3
|∇h|2g(v)dv + 12bε(bε + K ).

Taking this into account, inequality (3.2) reads

λ(g)

(∫

R3
|∇h|2g(v)dv − 3K 2

)

≤ Dε(g),

or equivalently

λ(g)F (0)
ε (g) − 3λ(g) (K + 2bε)

2 ≤ Dε(g). (3.3)

It is known from general results in [14] that F
(0)
ε (g) controls the relative entropy

Hε(g|Mε) (see [15, Eq. (3.21)]). Precisely,

F (0)
ε (g) ≥ 2bεHε(g|Mε). (3.4)

We therefore need to compare (K + 2bε) with Dε(g).
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Lemma 3.1 If g ∈ Yε( fin) satisfies (1.12)–(1.13) and (1.14) and Mε is the associated
Fermi–Dirac statistics,

|K + 2bε| ≤ 2ε

κ2
0

max(‖g‖∞, ‖Mε‖∞)‖g − Mε‖L1 .

Proof One has

K + 2bε = 1

ε

∫

R3

[
log(1 − ε g) − log(1 − εMε) + ε(g − Mε)

]
dv

= 1

ε

∫

R3
[ζ(ε g(v)) − ζ(εMε(v))] dv,

where we introduced the function ζ(x) = log(1 − x) + x , x > 0. Observe that

ζ(x) = −
∫ x

0

x − t

(1 − t)2
dt, ∀x > 0,

so that

ζ(εx) − ζ(εy) = ε2
(

−
∫ x

0

x − t

(1 − ε t)2
dt +

∫ y

0

y − t

(1 − εt)2
dt

)

.

Assuming that min(1 − εx, 1 − εy) ≥ κ0 and, say, x > y, one gets

1

ε
|ζ(εx) − ζ(εy)| = ε

∣
∣
∣
∣

∫ y

0

x − y

(1 − εt)2
dt +

∫ x

y

x − t

(1 − εt)2
dt

∣
∣
∣
∣

≤ ε
x + y

κ2
0

|x − y|,

so that

|K + 2bε| ≤ ε

κ2
0

∫

R3
|g − Mε| (g + Mε)dv,

which gives the result. ��
We deduce from the above the full proof of our main result:

Proof of Theorem 1.4 Combining (3.3) and (3.4) with the previous Lemma, we get

Dε(g) ≥ 2λ(g) bεHε(g|Mε) − 12

κ4
0

ε2λ(g)‖g − Mε‖2L1 max(‖g‖2∞, ‖Mε‖2∞),

which gives the result thanks to Czizar-Kullback inequality (1.16). ��
A crucial point for the long time behaviour of solutions to Landau–Fermi–Dirac equation

is that ‖g‖∞ is independent of ε (in the large time), so that we can take ε sufficiently small
for the coefficient in the theorem to be positive.

3.2 The Soft-Potential Case

The case γ < 0 is difficult due to the weight 〈·〉γ in F(γ )(g). In particular, no functional
inequality in the spirit of (3.4) seems available in this case. In order to exploit the entropy
production Dε(g) to deduce results about the long time behaviour of solutions to (1.1),
a possible route is to adapt the strategy initiated in [35] which consists in looking for an
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interpolation estimate between the entropy dissipation associated to γ < 0 and γ ≥ 0. More
specifically, denoting the entropy production associated to the potential �(z) = |z|s+2 by
D

(s)
ε (g),

D (s)
ε (g) = 1

2

∫

R3×R3
|v − v∗|s+2�ε[g](v, v∗)dvdv∗,

with �ε[g] defined by (1.7), a use of Hölder’s inequality implies that, for 0 ≤ g ≤ ε−1 with
Sε(g) < ∞,

D (0)
ε (g) ≤

(
D

(γ )
ε (g)

) s
s−γ

(
D (s)

ε (g)
)− γ

s−γ
, ∀ γ < 0 ≤ s .

Using Theorem 1.4 for γ = 0, one sees that

D (0)
ε (g) ≥ λ̄ε(g)Hε(g|Mε) ,

for some function λ̄ε(g) which can be chosen to be positive under a smallness assumption
on ε > 0 provided that ‖g‖∞ ≤ C < ε−1 for some positive constant independent of ε.
Assuming such inequality, we deduce that

D
(γ )
ε (g) ≥ λ̄ε(g)1−

γ
s

(
D (s)

ε (g)
)− |γ |

s Hε(g|Mε)
1− γ

s , γ < 0 < s.

In the application to the equation, it is possible to prove that C depends only on mass,
energy, and initial entropy of g. Thus, there exists an explicit ε� > 0 and λ0 > 0 such that

inf{λ̄ε(g) ; ‖g‖∞ ≤ C} ≥ λ0 > 0, ∀ε ∈ (0, ε�].

Therefore, to bound from below D
(γ )
ε (g) by some power of Hε(g|Mε), it suffices to

provide an upper bound for D (s)
ε (g), hopefully independent of ε.

It is not difficult to check that

D (s)
ε (g) ≤ 8

2s/2

κ0
ms+2(g)

∫

R3
〈v〉s+2

∣
∣∇√

g
∣
∣2dv , s ≥ 0. (3.5)

Therefore, establishing an upper bound for D (s)
ε (g) is equivalent to establish an upper

bound for the weighted Fisher information
∫
R3〈v〉s+2

∣
∣∇√

g
∣
∣2dv.

This approach is adopted successfully for the solution to (1.1) in our contribution [6] for
moderate soft potentials γ ∈ (−2, 0). We refer to [6, Sect. 6] for more details, but we can
already point out that several major technical difficulties arise when trying to follow this
approach:

(1) First, one needs to obtain a control of the various terms in Theorem 1.4, i.e. regularity
estimates, moment estimates and related issues. All these quantities depend of course on
the time t , but the a priori estimates turn out to grow moderately with time.

(2) Second and more difficult, one needs to show that the solution f (t, v) to (1.1) satisfies
the lower bound (1.14). Such bounds are derived thanks to a new approach based on a
suitable level set approach inspired by De Giorgi’s method for parabolic equation and
introduced in [2] for the study of Boltzmann equation.

(3) Finally, because of the upper bound (3.5), some upper bound for the Fisher information
with weights has to be established for solution to (1.1). This can be done by adapting
to the Landau–Fermi–Dirac case the recent approach of [4], introduced for both the
Boltzmann and Landau equation.
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4 Application to the Long Time Behaviour of Solutions for Hard
Potentials

In all this Section, we consider hard potentials. We aim here to complement the results
obtained in [5] regarding the long time behaviour of the solutions to (1.1) in that case. We
recall that in reference [5] exponential convergence to equilibrium has been obtained for γ ∈
(0, 1] by combining a non-optimal functional inequality forDε( f (t)) together with a careful
spectral analysis of the linearized equation. Based on the results of the previous section, we
prove that exponential convergence can be deduced directly thanks to the entropy production
appearing in Theorem 1.4 which is an analogue of a proof of Cercignani’s conjecture, refer
to [25], for the Landau–Fermi–Dirac equation.

4.1 Reminders of Known Estimates

We recall that the following results were obtained in [5, Theorem 3.1].

Proposition 4.1 Consider 0 < γ ≤ 1 and 0 ≤ fin ∈ L1
sγ (R3), with sγ = max

{ 3γ
2 + 2, 4 −

γ
}
, satisfying (1.11) together with the normalization (1.12)–(1.13). Let f = f (t, v) be a

weak solution to the LFD equation.
(i) Then, for any s ≥ 0

∫ T

t0

∫

R3
|∇ f (t, v)|2〈v〉s+γ dv dt < +∞ , ∀ T > t0 > 0 .

(ii) There exists some positive constant Ct0 depending on H( fin), s and t0, but not on ε, such
that

∫

R3

(
f (t, v) + f 2(t, v)

) 〈v〉s dv ≤ Ct0 , ∀ s ≥ 0 , t ≥ t0 > 0 . (4.1)

Moreover, if
∫

R3

(
f (0, v) + f 2(0, v)

) 〈v〉s dv < ∞ ,

then t0 = 0 is a valid choice in the estimate (4.1) with a constant depending on such initial
quantity.

We also recall the following pointwise estimates, taken from [5, Corollary 3.7].

Proposition 4.2 Consider 0 ≤ fin ∈ L1
sγ (R3) satisfying (1.11) together with the normaliza-

tion (1.12)–(1.13) and γ ∈ (0, 1]. Then, for any solution f (t) = fε(t) to (1.1), it holds

sup
t≥t0

‖ f (t)‖∞ ≤ C̄t0 , ∀ t0 > 0.

The constant C̄t0 only depends on H( fin) and t0.
Consequently, for any t0 > 0 and κ̄0 ∈ (0, 1), there exists ε� > 0 depending only on κ̄0, t0
and H( fin), such that

inf
v∈R3

(
1 − ε f (t, v)

) ≥ κ̄0, ∀ ε ∈ (0, ε�), t ≥ t0. (4.2)
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4.2 Long Time Behaviour

We first observe that for any g ∈ Yε( fin), the quantity λ(g) is bounded below by a strictly
positive constant depending only onm2+γ (g) and ‖g‖L2

2+γ
. This is a consequence of the two

following lemmas.

Lemma 4.3 Let γ ∈ [0, 1]. For any g ∈ Yε( fin) ∩ L2
2+γ (R3) satisfying the normalization

conditions (1.12)–(1.13), it holds that

Iγ (g) ≤ cγ

(
1 + m2+γ (g) + ‖g‖L2

2+γ

)
, (4.3)

for some cγ > 0 depending only on γ .

Proof For all v ∈ R
3, we split the integration in 〈v〉γ ∫

R3 g(w)|v − w|−γ 〈w〉2dw according

to the regions {|v − w| ≤ |v|
2 } and

{|v − w| ≥ |v|
2 } = {|v − w| ≥ |v|

2 ; |v| ≤ 1} ∪ {|v − w| ≥ |v|
2 ; |v| ≥ 1}

to get

〈v〉γ
∫

R3
g(w)|v − w|−γ 〈w〉2dw ≤ 〈v〉γ

∫

|v|≤2|w|
g(w)|v − w|−γ 〈w〉2 dw

+2
γ
2

∫

R3
g(w)|v − w|−γ 〈w〉2 dw + 〈v〉γ

∫

{|v−w|≥ |v|
2 ; |v|≥1}

g(w)

( |v|
2

)−γ

〈w〉2 dw

≤ 2γ

∫

R3
g(w)|v − w|−γ 〈w〉2+γ dw + 2

γ
2

∫

R3
g(w)|v − w|−γ 〈w〉2dw

+2
3
2 γ

∫

R3
g(w)〈w〉2dw

︸ ︷︷ ︸
=4

.

Each of the first two integrals can be bounded by
∫
R3 g(w)|v − w|−γ 〈w〉2+γ dw since

γ ≥ 0. Therefore, using the rough estimate 2γ + 2
γ
2 ≤ 2γ+1, we end up with

〈v〉γ
∫

R3
g(w)|v − w|−γ 〈w〉2dw ≤ 2

3
2 γ+2 + 2γ+1

∫

|v−w|≥1
g(w) |v − w|−γ 〈w〉2+γ dw

+2γ+1
∫

|v−w|≤1
g(w) |v − w|−γ 〈w〉2+γ dw.

As a consequence,

Iγ (g) ≤ 2γ+1 (2
γ
2 +1 + m2+γ (g)) + 2γ+1

∥
∥g〈·〉2+γ ∗ (| · |−γ 1|·|≤1)

∥
∥

L∞

and the result follows from Young’s convolution inequality since
∫
|v|≤1 |v|−2γ dv < ∞ for

γ ∈ (0, 3
2

)
. ��

We now have the equivalent of the bounds in Remarks 2.10 and 2.11 for γ ∈ [0, 1].
Lemma 4.4 Let γ ∈ [0, 1]. For any g ∈ Yε( fin) ∩ L2(R3), it holds that

1

Bγ

:= min
i = j

inf
σ∈S1

∫

R3

∣
∣
∣
∣σ1

vi

〈v〉 − σ2
v j

〈v〉
∣
∣
∣
∣

2

g(v)dv,
1

eγ

= min
i

1

3

∫

R3
g(v) v2i dv (4.4)

are bounded below by a strictly positive constant depending only on ‖g‖L2 .
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Proof We observe first that

1

eγ

≥ min
i

1

3

∫

R3
g(v)

∣
∣
∣
∣

vi

〈v〉
∣
∣
∣
∣

2

dv,

so that it is sufficient to bound below 1
Bγ

.

Then for all τ ≥ 0 and σ ∈ S
1, with the notations of Lemma 2.1 (1),

∫

R3

∣
∣
∣
∣σ1

vi

〈v〉 − σ2
v j

〈v〉
∣
∣
∣
∣

2

g(v)dv ≥ τ 2
∫

R3
1{∣∣
∣σ1

vi〈v〉 −σ2
v j
〈v〉
∣
∣
∣≥τ

} g(v)dv

≥ τ 2
{∫

|v|≤R( fin)
g(v) dv −

∫

|v|≤R( fin)
1{∣∣
∣σ1

vi〈v〉 −σ2
v j
〈v〉
∣
∣
∣≤τ

} g(v)dv

}

≥ τ 2

{

η( fin) − ‖g‖L2

∣
∣
∣
∣B(0, R( fin)) ∩

{

v ∈ R
3,

∣
∣
∣
∣σ1

vi

〈v〉 − σ2
v j

〈v〉
∣
∣
∣
∣ ≤ τ

}∣∣
∣
∣

1/2
}

.

This last quantity is bounded below by a strictly positive constant, uniformly with respect
to σ and i = j , when τ is small enough. ��

In that case, Theorem 1.4 can be improved as following:

Corollary 4.5 Assume that γ ∈ [0, 1] and g ∈ Yε( fin)∩L2
2+γ (R3) satisfies the normalization

conditions (1.12)–(1.13). Then, there exists a positive constant C0[g] > 0 depending only
on κ0 and some (upper bounds on) m2+γ (g) and ‖g‖L2

2+γ
, such that

Dε(g) ≥ C0[g]
[

bε − 12ε2

κ4
0

max(‖g‖2∞, ‖Mε‖2∞)

]

Hε(g|Mε).

Proof The proof is a simple application of Theorem 1.4 once we notice that, thanks to the two
previous Lemmas, it is possible to bound λ(g) from below by a positive constant depending
on κ0, ‖g‖L2

2+γ
and m2+γ (g). ��

We now are in a position to give a direct proof of the exponential decay of the relative
entropy drastically improving [5, Theorem 6.10].

Proof of Theorem 1.7 The proof is a simple combination ofCorollary 4.5 togetherwith Propo-
sitions 4.1 and 4.2. Namely, for t0 > 0 and κ̄0 > 0, the solution f (t) to (1.1) satisfies the
lower bound (4.2) for any t > t0 and any ε ∈ (0, ε�). Moreover, according to Proposition 4.1,
supt≥t0 m2+γ ( f (t)) ≤ Ct0 and supt≥t0 ‖ f (t)‖L2

2+γ
≤ Ct0 . Consequently, with the notations

of Corollary 4.5, one has

inf
t≥t0

C0[ f (t)] =: ν > 0.

Now, using again Proposition 4.2, supt≥t0 ‖ f (t)‖L∞ ≤ C̄t0 . Moreover, according to [5,

Lemma A.1], we know that bε > 1
8 for any ε ≤ ε = ( 2

5

) 5
2 (18π)

3
2 and there is a universal

numerical constant c0 > 0 such that supε∈(0,ε) ‖Mε‖∞ ≤ c01 , one can choose ε† ∈ (0, ε)

such that, say,

1

8
− 12ε2

κ̄4
0

max
(
C̄2

t0 , c20
)

>
1

16
, ∀ε ∈ (0, ε†).

1 Namely, ‖Mε‖L∞ ≤ aε ≤ 5
3

(
5

18π

) 3
2 for any ε ≤ ε according to [5, Lemma A.1].
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Setting now μ := 1
16ν, one deduces from Corollary (4.5) that

Dε( f (t)) ≥ μHε( f (t)|Mε) ∀t ≥ t0.

Recall now that

d

dt
Hε( f (t)|Mε) = −Dε( f (t)), ∀t ≥ 0,

so that we deduce after integration that

Hε( f (t)|Mε) ≤ Hε( f (t0)|Mε) exp (−μ(t − t0)) , ∀t ≥ t0,

and the result follows since Hε( ft0 |Mε) ≤ Hε( fin|Mε). ��
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