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Abstract
This paper explores the predictability of a Bak–Tang–Wiesenfeld isotropic sandpile on a self-
similar lattice, introducing an algorithm which predicts the occurrence of target events when
the stress in the system crosses a critical level. The model exhibits the self-organized critical
dynamics characterized by the power-law segment of the size-frequency event distribution
extended up to the sizes ∼ Lβ , β = log3 5, where L is the lattice length. We establish
numerically that there are large events which are observed only in a super-critical state and,
therefore, predicted efficiently. Their sizes fill in the interval with the left endpoint scaled as
Lα and located to the right from the power-law segment: α ≈ 2.24 > β. The right endpoint
scaled as L3 represents the largest event in the model. The mechanism of predictability
observed with isotropic sandpiles is shown here for the first time.

Keywords Isotropic sandpiles · Predictability · Scaling · Error diagram

1 Introduction

Self-organized criticality (SOC) is prescribed to various observed systems and processes
[21,37]. A system is said to be self-organized and critical if its stationary state is attained
without parameter tuning and is characterized by power-laws. The first model with SOC
was defined by Bak, Tang, and Wiesenfeld [3]. They introduced a mechanism (the BTW
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mechanism) which balances two multi-scale processes: a constant slow loading and a quick
stress-release.Thismechanismwas constructedon a square lattice, each cell ofwhich contains
grains of sand. A constant slow loading of sand into randomly chosen cells makes them
unstablewhen a threshold is passed.As soon as a cell becomes unstable it topples, transmitting
grains to neighboring cells. The transmission continues while the unstable cells exist. The
whole, and sometimes long, process of the transmissions, which continues between two
successive additions of grains, is called an event or an avalanche. The stress-release is defined
by dissipation at the boundary of the lattice: unstable boundary cells transmit some of their
grains out of the lattice. An analogue of the construction with the sandpile gave birth to the
title of the model.

TheBTWmechanism can be implemented in variousways. The choice of the transmission
rules and the definition of neighbors determine the model specification. The above definition
of SOC, obviously, is not rigorous and, as far as we know, has not yet been fully formalized
mathematically (but fully accepted by the researchers). TheBTWmodel and its generalization
to any Abelian sandpiles (where the order the unstable cells topple in does not affect the
system dynamics) have been proved to possess a stationary state [7]. However, the stationary
state belongs to an abstract space (of measures defined on operators which transform the
configurations of the stable cells from one to another) which is not linked to the grains
explicitly. In spite of the existence of a fixed point (in an appropriate abstract space) the
total amount of sand in the lattice fluctuates with time. The corresponding fluctuations are
of interest in various applications.

The distribution of model avalanches with respect to their size has a power-law segment
that turns to a more rapid decay in the domain of extreme events [4]. The value of the power-
law exponent determines the universality class of the model. It has been shown that there
are only two universality classes among a broad set of the isotropic specifications of the
BTW mechanism [4]. The class depends on whether the transmission of the grains from the
unstable cells is deterministic or random [19,22].

Scale invariance, seen through the (truncated) power-law distributions, characterizesmany
real-life systems and processes. Examples include the distribution of earthquakes [12], for-
est fires [18], financial crashes [20], solar flares [1], sunspot groups [32], natural language
[11], armed conflicts [28], and other quantities [36]. SOC is associated with at least some of
these examples [37]. In contrast to the discussed BTW-like models, the observed power-law
exponents vary from sample to sample. The BTW mechanism together with other artificial
systems generating SOC are applied to model the above real-life processes. Evidently, the
transmission of the grains does not replicate these processes. When sandpiles, or other sim-
ulation models, are used in applications, the design of the specification has to follow the
observable system in a plausible way. Then the adequacy of the model is estimated through
the reproduction of the regularities established by real systems. Thus, the existence of only
a few universality classes limits the area of the applicability of the BTWmechanism defined
on the square lattice. When the adjustment of the exponent is desired, one constructs the
BTW mechanism on graphs or self-similar structures [5,6,8,16,31]. The topology of these
structures affects the relevance of the model. For instance, the usage of self-similar objects
without “holes” is more natural when seismic processes are investigated.

As the sequence of events in sandpile models exhibits properties found in earthquakes
and solar flares, scholars have attempted to apply synthetic regularities to forecast the corre-
sponding extremes [13,35]. The comparative analysis of the specific prediction algorithms
in various models of earthquakes gives evidence that the BTW model, in contrast to other
models, fails the forecasting tests [26]. Other authors, see e.g. [2], agree with the general
unpredictability of the BTWmodel, arguing that the size of the forthcoming large avalanche
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is impossible to forecast. Based on this, Geller et al. [10] declared the unpredictability of large
earthquakes. The unpredictability of the BTW model is unexpected, as the sequence of the
events ruled by the BTW mechanism is characterized by the correlation of numerous quan-
tities [17,27]. Shapoval and Shnirman [29,30] established that large events are predictable in
the BTWmodel. They introduced precursors of large events: a general increase in sand grains
in the lattice and a high concentration of active areas in the lattice, i.e., where the number
of grains is large. Garber et al. [9] also predicted large events in the BTW model but used
only information regarding the size of consecutive events without any internal characteris-
tics of the system. The both groups of authors deal with relatively small lattices. Efficiently
predicted avalanches are located to the right of the scale-invariant part of the size-frequency
event distribution. This property corresponds to a more general conclusion regarding the
growth in the prediction efficiency with the size of the forecasting events, which holds for
synthetic and real processes [14,25].

The number of the cells along the lattice side represent the characteristic size L of the
system. The right boundary of the power-law segment of the size-frequency event follows a
power-law function of L . Other scaling laws are also observed; e.g., the size of the largest
avalanche is scaled as L3. The scaling of predictable events in the BTW model has not yet
been revealed. We note that one should design the models with finite and, likely, moderate
L for astrophysical and seismic applications.

This paper proposes a theory which explains somewhat controversial claims regarding the
predictability of BTW-like models and agrees with the general results on the predictability
of extremes in complex systems. In our framework, the prediction is explored with several
lattices in order to relate the prediction to the lattice length. This idea is natural in statistical
physics when one studies regularities which are universal with respect to system size. We
choose the model introduced by Shapoval and Shnirman [31] who constructed the BTW
mechanism on a self-similar lattice by defining the load of each cell proportionally to its
area. Such loading corresponds to the multi-scale heterogeneity of a seismic region [33], in
contrast to that in the original BTW model. Motivated by the analysis of predictability as a
property of models, rather than by the search for the best forecasting algorithm, we introduce
the total stress in the system as a precursor of large events. This is a well-known precursor
used in real-life processes when extremes are characterized by an activation scenario and
a growth in activity precedes large stress releases. The efficiency of prediction algorithms
is estimated with the Molchan diagram which incorporates statistical type I and II errors
[23,24].

The rest of the paper is organized in the following way. The model is defined in Sect. 2.
Section 3 introduces a general approach to the evaluation of the prediction efficiency. Section4
contains the main results of the paper, specifying and evaluating our prediction algorithm.
Section 5 concludes.

2 Model

The description of the model follows paper Shapoval and Shnirman [31]. It is repeated here
for the sake of completeness.
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Fig. 1 Divisible (in white) and
indivisible (in grey) cells that
appear when an
L/3k−1 × L/3k−1-square is split
into 9 smaller squares of size
L/3k × L/3k

2.1 Self-similar Lattice

We define a self-similar lattice that consists of cells of different sizes. The smallest cells
determine the unit of measurements. The (linear) length of the lattice is L = 3n , where n is
the depth of self-similarity realized in the computations. At the thermodynamic limit, n tends
to+∞. The self-similar lattice is definedwith a recursive algorithm. At the beginning, a large
single square with length L is divided into 9 identical squares. The four corner cells (shown
in grey in Fig. 1) are indivisible during the further construction of the lattice. The other five
cells are divisible. All the divisible cells of the length L/3 are split into 9 identical squares.
At the kth step of the recursion, all divisible cells of the size L/3k−1 are split into 9 identical
squares. The corner cells are called indivisible whereas the other cells are divisible. When
the recursion is applied n − 1 times, the smallest squares are L/3n × L/3n = 1 × 1. They
are indivisible too. The constructed self-similar lattice is denoted by Ĉn,L . The indivisible
squares are the cells of the lattice. Let Ck,L be the indivisible cells constructed at the step
k − 1. Then Ĉn,L = ∪n−1

k=1Ck,L .

2.2 Configurations

We assume that the cells c ∈ Ĉn,L are numbered in an arbitrary way; I is the number of the
cells. Two cells are called neighbours if they share an edge, or part of an edge. The threshold
Hi of the cell ci is defined as the number of the neighbours of the cell ci in our lattice which
is folded into a torus by gluing the opposite edges. The folding into a torus is used only for
the definition of the thresholds. Let N (ci ) be the set that consists of the neighbours of the
cell ci ; |N (ci )| denotes the number of these neighbours. Then Hi = |N (ci )| if ci is an inner
cell of the lattice. The inequality Hi > |N (ci )| holds for the boundary cells, Fig. 2.

For any i = 1 . . . , I the cell ci contains hi ∈ Z grains. The cell ci is stable if hi < Hi .
The numbers hi , i = 1 . . . , I , constitute a configuration. A configuration is called stable if
hi < Hi for all i = 1, . . . , I .

2.3 Dynamics

The dynamics of the configurations caused by falling of the grains and their redistribution
over the lattice is defined as in the original paper by Bak et al. [3] (the difference is in
the geometry of the lattice, not in the mechanism generating the dynamics). The initial
configuration corresponds to the empty lattice: hi = 0 for all i = 1, . . . , I . Clearly, it is
stable.

At each time moment a current stable configuration is transformed into another one in the
following way. Initially, a cell ci is chosen at random. The probability P of choosing the cell
ci is proportional to the area of the cell. Formally, if ci ∈ Cr ,L then P ∼ 3−2r . A grain falls
on the chosen cell:
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Fig. 2 Self-similar lattice Ĉ3,L .
The thresholds are written inside
the cells

hi −→ hi + 1.

If hi is still less than Hi then a stable configuration is obtained and a new time moment starts.
If hi = Hi , then the stability of the configuration is violated. Then the sandpile in the cell

ci topples and the grains are transferred to the neighbouring cells equally:

hi → hi − Hi (1)

h j → h j + 1, ∀ j : c j ∈ N (ci ) (2)

The transfer defined by (1) and (2) conserves the total number of grains in the lattice
when an inner cell topples. If at least one neighbour of the toppled cell becomes unstable, the
transfers continue. In other words, the rules (1) and (2) are applied while there are unstable
cells ci in the lattice. The subsequent transfers occurred during a single time moment are
called an avalanche. The size of the avalanche is the number of the cells that become unstable
during the avalanche. Each cell is counted as many times as it becomes unstable. Each
avalanche is finite because the transfers at the boundary are dissipative. We note that the
stable configuration occurred after the avalanche does not depend on the order of toppling
(because the order in which any two unstable cells topple does not affect the configuration).
This property is called Abelian.

2.4 Power-Law Distribution of Avalanches

The size-frequency probability distribution of avalanches is known to follow a truncated
power-law 1/sγ with the exponent γ = 2−2/β, where β = log3 5 is the similarity exponent
of the lattice [31]. We denote fL(s) as the fraction of the avalanches with the size s, s =
1, 2, . . ., and display the dependence fL(s) on s for several values of the lattice length L in
Fig. 3a. The right end of the power-law segment and the tail located to the right are badly
observed with the chosen axes. Therefore, we turn from fL(s) to the function FL(s) which
gathers the avalanches into bins whose length is constant in a logarithmic scale:

FL(s) =
∑

σ∈[s/Δs,sΔs)

fL(σ ), (3)
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Fig. 3 The size-frequency distribution of avalanches shownwith (a) the empirical density fL (s) (following the
power-law L−γ ) and (b) zoomed “integrated” density FL (s) obtained through fL (s)-binning over the intervals
[s/Δs, sΔs) of constant logarithmic bins (which increases the power-law exponent by 1);β = log3 5 ≈ 1.465,
γ = 2 − 2/β, Δs = 1.495

where 1.495 is assigned to Δs. The choice of bin length is performed in order to improve
the visibility of the graphs and is never used for any estimates. Note that the focus on FL(s)
instead on fL(s) increases the exponent of the power-law from −γ to −γ + 1, as it follows
from the integration:

∫ sΔs

s/Δs
σ−γσ−γσ−γ dσ =

{
1

1−γ

(
(Δs)1−γ − (Δs)γ−1

) · s1−γs1−γs1−γ , if γ 	= 1,

2 lnΔs · s0s0s0, if γ = 1.

The scaling s → s/Lβ combines the upper boundary of the power-law segment, Fig. 3b.

3 The Evaluation of the Prediction Algorithms

The efficiency of the prediction algorithms based on different mechanisms is comparable
when they output the same quantities. Following Molchan [24], we consider the fail-to-
predict rate ν and the alarm rate τ as such quantities. Namely, let E be the sequence of events
that occur within the time interval [t0, t1]. A part E∗ of them is the subject of the prediction.
The selection into E∗ is based on the physical properties of interest, such as energy released
during large earthquakes. For example, one can be interested in the prediction of extreme
events or specific events that follow the extremes.1 The events from E∗ are called target events.
The prediction algorithms are designed to predict the time of their occurrence. We require
the output of any prediction algorithm to be the set of the time intervals, in which the target
events are expected. One can say that an alarm is switched on for the time intervals selected
by the prediction algorithm. Avoiding a new term, each interval itself can also be referred to
as an alarm. Each alarm [tb, te] ⊂ [t0, t1] is switched on in advance. Let T be the set of all
alarms. Then an event from E∗ is called predicted if it occurs at a timemoment that belongs to
T . Otherwise, the event is unpredicted. The fail-to-predict rate ν is defined as the number of

1 In earthquake prediction theory, researchers aim to predict the main shocks and the aftershocks.

123



Predictability and Scaling in a BTW Sandpile… Page 7 of 15 14

unpredicted events in E∗ divided by the number of all events in E∗. Further, τ is the fraction
of the alarms in the whole considered time interval: τ = ∑

[tb,te]∈T (tb − te)/(t1 − t0). The
fail-to-predict and alarm rates correspond to the statistical errors of types I and II respectively.

By thismoment, the pair (ν, τ ) characterises any prediction algorithm Awhich is designed
to predict the target events from E∗ ⊂ E occurred within the considered time interval [t0, t1].
Nowweare going to evaluate the efficiency of the algorithms, following algorithms, following
[23,24]. Consider two elementary algorithms. The first algorithm always switches the alarm
on. Then T = [t0, t1], ν = 0, τ = 1. The second algorithm always switches the alarm off.
Then T = ∅, ν = 1, τ = 0. A random switching of the alarms on and off leads to the pairs
(ν, τ ) such that ν + τ ≈ 1. The equality is exact if the quantities ν and τ are rigorously
defined in probabilistic terms (see, Molchan [24]). We note that if an algorithm A with the
alarms T results in some (ν, τ ) then the algorithm Ā setting the alarms [t0, t1] \ T produces
the outcome (1− ν, 1− τ). Therefore, we reduce the consideration of all possible prediction
outcomes from [0, 1]×[0, 1] to the triangle that is located below the diagonal ν+τ = 1 in the
(ν, τ )-space. Then an algorithm A = A(ν, τ ) is clearly more efficient than another algorithm
A′(ν′, τ ′) if ν < ν′ and τ < τ ′. However, the case of the algorithms differently ordered
with respect to the two rates requires the definition of the efficiency comparison. There are
numerousways to define a goal function g(ν, τ )which ismonotone increasingwith respect to
their variables. As in [24], we pick g(ν, τ ) = ν+τ and say that the algorithm A(ν, τ ) is more
efficient than A′(ν′, τ ′) if ν + τ < ν′ + τ ′. The values ε = ν + τ and 1− ε are respectively
called the loss and the efficiency of the algorithm A(ν, τ ). Then 1 − ε = (1 − ν) − τ is
interpreted as the proportion of the target events characterized by non-random prediction.

We insist that the evaluation of the prediction algorithms in terms of the rates ν and τ

is performed with just the outcome but not the mechanism of the algorithms. Therefore,
arbitrary algorithms are comparable. We only add that the adjustment of any algorithm and
the computation of the rates must be performed with different samples.

4 Prediction Efficiency in theModel

4.1 Adjustment of the Algorithm

In this section we construct an algorithm that predicts when large events occur in our model.
This algorithm switches alarms on when the total number of grains on the lattice exceeds a
critical value. Each alarm is set for a fixed-length time interval. However the alarm can be
prolonged if the surplus of grains can be detected when the alarm is on. Alarm is switched off
early if the target event occurs. As a result, the number of subsequent time moments when
the alarm is on, in general, differs.

Here are the details of the algorithm. By definition, the target events E∗ in our model are
the avalanches whose size s is greater than some level S∗ (whereas the set E consists of all
observed avalanches). In other words, the avalanches with the sizes from the half-bounded
interval (S∗,+∞) form the set of the target events. The left endpoint S∗ of the interval is
a parameter of the prediction problem that has to affect the efficiency of the algorithm. Let
Q(t) = ∑

i∈I hi (t) be the number of grains on the whole lattice when a grain has been added
and there has been a possible sand redistribution at time t .

Then we introduce two parameters of the algorithm: the threshold Q∗ of the sand on the
lattice and the duration T ∗ of the alarms. The algorithm switches an alarm on for the interval
[t+1, t+T ∗] at the timemoment t if Q(t) > Q∗. In other words, t ′ ∈ T if and only if there is
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Fig. 4 The Molchan diagram: the
implicit dependence of the error
rate on the alarm rate, given the
alarm length T ∗ = 3 and variable
total number Q∗ of the grains on
the lattice (written next to the
points). The blue dot is obtained
with the parameters adjusted with
the training sample

the timemoment t ∈ [t ′−T ∗, t ′−1] such that Q(t) > Q∗. From this definition it follows that
the alarm can continue when the functional Q(t) leaves the critical zone Q > Q∗. The alarm
[t+1, t+T ∗] can be prolonged at some t ′′ ∈ [t+1, t+T ∗] for the interval (t+T ∗, t ′′ +T ∗]
if Q(t ′′) > Q∗. The prolongation occurs as many times as the inequality Q(t) > Q∗ holds
and the alarm is on. The alarm [t + 1, t + T ∗] is terminated at some t ′′′ ∈ [t + 1, t + T ∗] if
the target event occurs at t ′′′.

Our algorithm is fully defined by the parameters Q∗ and T ∗. Therefore, the output of
the algorithm, which is the pair (ν, τ ) = (ν(Q∗, T ∗), τ (Q∗, T ∗)) of the rates, is also fully
defined by these parameters when the catalogue is fixed. Initially, the algorithm is applied to
a training set of model events. Scanning a (broad part of the) two-dimensional space of the
parameters, we select and fix such values T ∗ and Q∗ that minimize ν(Q∗, T ∗) + τ(Q∗, T ∗)
in the training set. Then the algorithm with these parameters T ∗ and Q∗ is applied to another
time series to find the prediction efficiency.

4.2 Prediction Efficiency

The adjustment of the parameter Q∗ is illustrated for the largest avalanches (their number is
93) occurred on the 35 ×35 lattice in Fig. 4. This is so called Molchan diagram2 that exhibits
the two errors of the prediction algorithm as a function of the parameters. The adjustment
leads us to Q∗ = 15260, which corresponds to the prediction loss in ν + τ ≈ 0.35 obtained
with the training set. We admit that a better efficiency can be achieved with another choice
of the parameters. However, it is likely that our result is close to the optimal one. When the
parameter Q∗, the number of the grains on the lattice, decreases, the prediction loss ν + τ

drops, then attains its minimum (which is close to 0.35), and, later on, increases. Typically,
the minimum of ν + τ is attained when ν and τ take close values. Therefore, min{ν, τ } can
be considered as another measure of the prediction loss. Furthermore, we will focus on ν + τ

as the quality of the prediction outcome.
In Fig. 5, we illustrate the efficiency of the prediction algorithm applied to L × L lattices

and various left endpoints S∗ of the target event sizes. This figure starts at the left at sizes that
correspond to the existence of the prediction, i. e., the loss function ε = ν + τ significantly
deviates from 1. These sizes are located to the right of the power-law segment of the size-
frequency avalanche distribution displayed in Fig. 3a. Associating extremes with the fast

2 Another name is error diagram.
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Fig. 5 The loss ε of the prediction algorithm as a function of the left endpoint S∗ of the target event sizes for
the train (yellow) and test (red) catalogues and four lattices, which differ in the length L . The number of target
events observed with several computations is written next to the corresponding point. The 0.95 error bars are
shown by black vertical segments for selected outputs; the dashed lines are defined by (7)

decay of the size-frequency relationship at the right, one can claim that our algorithm is
efficient only for extremes.

According to the definition of the loss function ε, it exhibits the inefficiency of the predic-
tion. The better the prediction is, the smaller the values of ε is observed. Red curves of Fig. 5
imply that for any given L , the efficiency of the prediction increases with growth in the size
of target events. A linear function rather accurately follows the increment in efficiency with
the growth of S∗ observed for L = 34 and L = 35. On one hand, a turn to a faster drop at
the right observed with L = 35 may be an artifact caused by relatively small number of the
target events (50 and 39 for the last two points at the left in Fig. 5b). On the other hand, this
number is not too small. Anyway, we argue that the improvement of the efficiency observed
through drop in ε is not worse than linear.

The most efficient prediction in ν ≈ 0.09 and τ ≈ 0.09 is attained with L = 34. The
simulation of the 35 × 35 lattice results in the loss of 0.29 and 0.35 recorded for the first two
points at the right in Fig. 5b. The efficiency in ε = 0.3 requires much longer catalogues for
L ≥ 36 than we are able to generate in a reasonable time. The sum of the errors crosses 0.6
if L = 36 and just shows up the efficiency (ε ∈ [0.75, 0.8]) if L = 37.

We also display the loss function obtained with the training time series (yellow curves
in Fig. 5). While the number of target events is large, the loss functions computed with the
training and testing time series almost coincide. The two curves expectedly start deviating
when the time series contain hundreds of target events. Nevertheless, their patterns follow
each other in the domain where the values of the functions are clearly different. Such an
agreement evidences in favour of the reliability of the estimated prediction efficiency.
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Fig. 6 The critical threshold Q∗ = Q∗(S∗) adjusted for the predictions of the events with the size s > S∗
and L = 35; the efficiency of these predictions are in Fig. 5b

The difference between the loss obtained with the training and the testing catalogues gives
an estimate of the level of uncertainty in the prediction results. Other estimates are obtained
with the error bars constructed as if the prediction loss ε were the probability of success in
the Bernulli trials (0.95-quantile is chosen in the illustration in Fig. 5d). The error bars agree
with the distance between the yellow and red curves in Fig. 5.

We recall that the threshold Q∗, the upward cross of which launches the alarms, is adjusted
with the training set tominimize the loss function. These optimized values of the threshold Q∗
slowly rise with the growth in the left endpoint of the target events, Fig. 6. The approximation
of this steady growth by a linear function may worth further analysis. As a function of L ,
the threshold follows a general scaling Q∗ ∼ Lβ observed for the number of grains (this
statement is not supported by a figure). The adjusted duration of the alarm is 1 for a majority
of the values of S∗, but it starts slowly rising for the extremes.

4.3 The Relationship Between the Left Endpoint of the Target-Event Size and the
Lattice Length

We solve the equation ε(S∗, L) = const for several values of the constant and represent the
solutions denoted as S∗,ε(L) and shown in Fig. 5. A power function

S∗,ε(L) ≈ CεL
α, (4)

with the same exponent α is used to fit all points we obtained with different ε. A general
relationship between L and S∗,ε(L)) remains open since small values of ε are not attained
with our computer experiments.

The size of avalanches scaled as Lα , α ≈ 2.24, is larger than the right endpoint of the
power-law segment scaled as Lβ , β = log3 5. Therefore, the left endpoint S∗,ε of the size
of the target events, predictable with a positive efficiency 1 − ε, is located on the tail of the
size-frequency probability distribution, Fig. 8.

Nowwe return to Figs. 5 and combine the prediction efficiencies found for different lattice
lengths (and the testing time series) into a single graph by using the normalization (4). The
normalized endpoint s∗,ε(L) of the target events is

s∗,ε(L) = S∗,ε(L)/Lα. (5)
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Fig. 7 The left endpoint S∗,ε(L)

of the sizes of the target events as
a function of the lattice length L ,
given several values of the loss ε

Fig. 8 The full size-frequency distribution of avalanches shown with the “integrated” density FL (s) including
the part marked by the rectangles of the corresponding color that highlights the target events predicted with
ε ∈ [0.1, 0.8] (and shown in Fig. 5) in order to show their location. (The left upper and right lower corners
of each rectangle (S∗,0.8(L), FL (S∗,0.8(L))) and (S∗,0.1(L), FL (S∗,0.1(L))) respectively, indicate the left
endpoints of the size of the target events which are predicted with the loss 0.8 and 0.1 respectively. The
rectangle itself is for illustrative purpose only.)

According to Fig. 9, the normalization collapses the efficiency curves in the intersection of
their domains. The curves are likely to attain a universal pattern with respect to the lattice
length. This is expressed by a function which relates the normalized left endpoint of the target
event sizes to the prediction efficiency.

We conjecture that the collapsed part of the graph in Fig. 5 is linear (as in Fig. 9):

s∗,ε(L) ≈ −K1ε + K2 (6)

with the following estimates of the constants: K1 ≈ 0.42, K2 ≈ 0.37.Thefit (6) is constructed
with all points of Fig. 9 except the points characterized by the largest S∗,ε(L) for each L .

Equations (5) and (6) lead to the following conjecture regarding the universal dependence
of the prediction efficiency on the lattice length and the left endpoint of the target events:

ε(S∗, L) = K2

K1
− S∗

K1Lα
. (7)

The graph constructed with Eq. (7) is shown in Fig. 5 with dashed lines.
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Fig. 9 The normalized left endpoint s∗,ε(L) = S∗,ε(L)/Lα of the target event sizes as a function of the
prediction loss ε for given values of L . The linear approximation (shifted to make it visible) is dashed

The substitution of 0 for ε into (7) gives an estimate of the left endpoint of the target events
which are predicted with the absolute efficiency (ε = 0):

S∗,0 = K2L
α ≈ 0.37Lα.

The extrapolation of the pattern (6) towards ε = 0 gives only an estimate regarding the most
efficient prediction, which requires additional numerical or theoretical justifications.

The scaling exponent α ≈ 2.24 is located between the exponents β = log3 5 ≈ 1.465 and
3 representing the scaling of the upper bound of the power-law segment in the size-frequency
distribution and the size of the largest avalanche respectively. The scaling L3 for the largest
avalanche in the model (hi = Hi − 1 for all i , and a new grain falls into the center of the
lattice) is obtained numerically and not discussed here.

5 Conclusion

This paper examines the predictability of extreme events in a BTW sandpile on a self-similar
lattice. We design and evaluate an algorithm which predicts the occurrence of extreme events
in advance by switching alarms on when the total number of grains on the lattice exceeds
a threshold, Sect. 4.1. This condition indicates that the system has become overloaded and,
as a result, super-critical. Overloading as the precursor of stress-release is frequently used
when predicting the occurrence of extreme events [15].

Following Molchan [23], the efficiency of a prediction algorithm is defined with the fail-
to-predict and alarm rates ν and τ , which are inferred from type I and II statistical errors,
Sect. 3. The most efficient prediction obtained numerically in the model is characterized by
ν ≈ τ ≈ 0.09: 91% of the target events are predicted whereas the alarm continues 9% of the
time. As far as we know, such an effective prediction algorithm has never been designed for
BTW-like sandpiles.

The efficiency of the prediction depends on the system length and the size of the target
events. For any given lattice, larger events are better predicted, Fig. 5. The target events which
admit efficient prediction are larger than the upper bound of scale-free avalanches, Fig. 8.
This statement reconciles the general conclusions regarding the unpredictability of sandpiles
[2,10,26] with specific examples of predictability in related systems [14,34]. Unpredictability
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is related to scale-free avalanches, whereas efficient predictions are constructed for extreme
events. We note that the predictability frontier found by our specific algorithmmay generally
be shifted to the domain of smaller avalanches, if another algorithm is designed (as in Garber
et al. [9] for a BTW sandpile).

The quantitative analysis of the prediction is performed with the sum of the rates ε =
ν + τ called the prediction loss. Smaller values of ε indicate more effective predictions. The
conjecture (7), confirmed by Fig. 9, relates the loss ε to the system length L and the left
endpoint S∗ of the size of the target events: ε ≈ 0.88 − S∗/(0.42Lα).

We argue that the avalanches of sizeCLα with α = 2.24 are marginal: smaller avalanches
are unpredictable with our algorithm, whereas larger avalanches are fully predictable. The
quality of the prediction algorithm changes from absolute inefficiency to full efficiency at
the avalanches of size CLα , Fig. 7. The level of efficiency depends on the constant C .

On the first sight, the prediction of extreme avalanches seems to be doable if one knows
everything about the system. In particular, large events are very unlikely to occur when the
number of grains in the lattice is small. Furthermore, the largest avalanches (with the size of
∼ L3) are expected only when the lattice is filled with the grains almost fully. Our results go
far beyond these naive statements (which have never been quantified for sandpiles). We build
the prediction algorithm on the level of stress accumulated by the system, which is the main
quantity regulating the criticality. This algorithm predicts large avalanches with the absolute
efficiency. Their size is located between∼ Lα and∼ L3, thus, filling the interval of the sizes.
In other words, extreme events that admit an efficient prediction by our algorithm are rare,
as they do not belong to the scale-free segment of the size-frequency relationship. However,
the set of these extremes is not too thick, as their lower bound is located quite far from the
size of the largest avalanche on the lattice.

To conclude, we exploit the level of criticality, represented by the total number of grains
in the lattice, to predict the occurrence of large avalanches. When the system becomes super-
critical a large avalanche is expected, but its exact size may be impossible to estimate. Earlier,
researchers were tempted to interpret such uncertainty as unpredictability. However, we draw
the opposite conclusion when establishing that the extremes, the size of which are scaled as
Lα , occur only in a super-critical state. This property opens the door for the construction
of efficient prediction algorithms and, in particular, allows us to forecast the occurrence of
large avalanches based on the level of stress in the system. The detailed links between the
geometry of the system, the self-similarity of oscillations around the critical point, and the
prediction efficiency are worth further study. The predictability of real systems may depend
on system geometry represented by the self-similarity exponent as well as the total stress
accumulated by the system. If geometry does affect predictability, then the prediction of
strong earthquakes should vary from region to region, as (geological) faults are characterized
by different fractal geometry.
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