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Abstract
Dynamical systems with ε small random perturbations appear in both continuous mechanical
motions and discrete stochastic chemical kinetics. The present work provides a detailed anal-
ysis of the central limit theorem (CLT), with a time-inhomogeneous Gaussian process, near
a deterministic limit cycle in R

n . Based on respectively the theory of random perturbations
of dynamical systems and the WKB approximation that codes the large deviations principle
(LDP), results are developed in parallel from both standpoints of stochastic trajectories and
transition probability density and their relations are elucidated. We show rigorously the cor-
respondence between the local Gaussian fluctuations and the curvature of the large deviation
rate function near its infimum, connecting the CLT and the LDP of diffusion processes. We
study uniform asymptotic behavior of stochastic limit cycles through the interchange of limits
of time t → ∞ and ε → 0. Three further characterizations of stochastic limit cycle oscilla-
tors are obtained: (i) An approximation of the probability flux near the cycle; (ii) Two special
features of the vector field for the cyclic motion; (iii) A local entropy balance equation along
the cycle with clear physical meanings. Lastly and different from the standard treatment,
the origin of the ε in the theory is justified by a novel scaling hypothesis via constructing a
sequence of stochastic differential equations.
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1 Introduction

Newtonian mechanics represents the world in terms of featureless point masses with their
positions and momenta. In contrast, classical chemical kinetics represents the world in terms
of the number densities of interacting populations of individual molecules, each with a large
internal degrees of freedom, as chemical species. What is possibly an appropriate represen-
tation for complex biological systems and processes? To answer this question, it is necessary
to to give a more precise meaning to the too widely used term “complex” [1]. Let us consider
one class of complex systems, the living biological cells in terms of a biochemical kinetic
description. In this paradigm, a complex system consists of many interacting sub-populations
of individuals with stochastic state transitions; the system as a whole actively exchanges
matters, energy, or information with its environment [2]. One sees a remarkable resemblance
between this kinetic description of cells and many other biological systems with complex
“individuals”. In fact, the biochemist’s perspective captures a repeated hierarchical structure
of the complex world: An ecological system is a community of various biological organism; a
human body consists of over 30 trillion cells; and a cell involves a large number of interacting
non-living biopolymers. This view echos the philosophy of P. W. Anderson’s hierarchical
structure of science [3].

While the “stochasticity” in chemical kinetics mainly originates from internal states of
individual macromolecules, uncertainties in mechanical motions in biology, such as protein
motor proteins in axonal transport and hemodynamics of cardiovascular systems, are chiefly
a consequence of coarse graining: A highly complex many-body systems can be represented
by simple statistical laws. One of the best examples of this is Kramers’ rate theory for barrier
crossing between two basins, which condenses a very complex dynamics into a simple expo-
nentially distributed time with a single parameter. A problem becomes simple if we focus
on the emergent behavior of an assembly of a large numbers of atoms at the macroscopic
scale with a much longer time scale. Indeed, experimentalists would find that the macro-
molecular movement obeys simple laws under certain approximations, for example Fick’s
law. The bridge between complexity and simplicity is uncertainty and its statistics. This is
the fundamental idea of the theory of Brownian motion [4].

1.1 Stochastic Models of Complex Systems

As can be seen from the above discussion, both representations have their own values for
complex systems. Once we choose one of them to describe a system of interest, then the
following question is what mathematical model we should adopt. In stochastic chemical
kinetics, there is a success of the well-established scaling hypothesis in the continuous-time
non-negative integer valuedMarkov jump process [5]. Consider a continuous stirred chemical
reaction vessel of volume V , in which the numbers of molecules of various species nV (t) is
a Markov jump process that can be described by a master equation

∂P(nV , t)

∂t
=
∑

r

[W (nV − r, r)P(nV − r, t) − W (nV , r)P(nV , t)] , (1.1)

whereW (nV , r) is the transition probability per unit time from nV ,nV + r, and both nV and
r are q-dimensional vectors. As the system’s size V → ∞, nV (t) follows the law of large
number, V−1nV (t) → c(t), the concentration of q species.

123



Stochastic Limit-Cycle Oscillations... Page 3 of 33 47

With a proper scaling by the size V and the assumption that W and P are smooth enough
functions, we can take the Kramers-Moyal expansion of the master equation (1.1) [6–8]

ε
∂ p(x, t)

∂t
=
∑

k

(
1

k!
)(

ε
∂

∂x

)k

[αk(x)p(x, t)] , (1.2)

where ε = 1/V , x = nV /V , p(x, t) = V P(nV , t), and k = (k1, k2, · · · , kq),
∑

k =∑
kq · · ·∑k2

∑
k1 , k! = ∏

i (ki !), and αk(x) = ∑
r(
∏

i r
ki
i )w(x, r), w(x, r) = W (X, r)/V .

The solutions of the differential equation (1.2) with the infinite terms represents the exact
time-dependent probability density of the scaled number of population nV /V . Then a natural
question arises: couldwe obtain a corresponding diffusion process from this infinite order dif-
ferential equation? The truth is that we can only get a “local diffusion process approximation”
for the scaled Markov jump process due to the following reason.

A commonmethod to attack Eq. (1.2) is by truncating the higher order terms to the second
order of ε to obtain a Fokker-Planck equation (FPE). However, van Kampen [9] pointed out
that this method may fail if nV (t) has large sizes of jumps. A concrete example was provided
in the work [10]: There exists an inconsistency between the stationary solutions of Kramers-
Moyal FPE and the original master equation for the Schlögl’s model of a chemical reaction
system which has bistable steady states. The reason for the failure of Kramers-Moyal FPE
is that we are only able to observe either the deterministic behavior of the process at the
scale of the law of large number or the Gaussian fluctuations at the scale of the central limit
theorem; however, there is no one scale to obtain both. To keep the first two order terms of the
Kramers-Moyal expansion simultaneously to represent a diffusion process at a single scale
is incorrect. Therefore, van Kampen [9] suggested the Ω expansion which allows us to get a
deterministic trajectory as ε → 0 and a local approximation near the deterministic trajectory
at the scale O(

√
ε) separately.

In the present work, we focus on the continuous representation of complex systems. We
always start with random perturbations of dynamical systems represented by a sequence of
stochastic differential equations (SDEs) parameterized by a small parameter ε

dXε(t) = b(Xε)dt + [2εD] 1
2 dB(t), (1.3)

where Xε ∈ R
n , b : Rn → R

n stands for a drift function, the R
n × R

n diffusion matrix
D is constant and positive semidefinite symmetric, and B is the standard n-dimensional
Brownian motion. This Langevin type equation is widely applicable for complex systems
related to mechanics, and it gives us a clear picture of the entire dynamics including the drift
and diffusion at one scale. Furthermore, by the rigorous mathematical theory of semigroup
[11], every diffusion process represented by a SDE has a unique FPE to characterize the
corresponding transition probability density pε(x, t)

∂ pε

∂t
= −∇ · J[pε], J[pε] ≡ b(x)pε − εD∇ pε. (1.4)

This line of reasoning to relate diffusion processes and FPEs has no ambiguity unlike the
Kramers–Moyal FPEs.

1.2 Random Perturbations of Diffusion Processes

Our analysis of random perturbations of diffusion processes is by expansion in powers of
ε for the sequence of SDEs (1.3), which follows the work of Freidlin and Wentzell [12].
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As ε → 0, the sequence of SDEs converges to an ordinary differential equation (ODE)
of the emergent deterministic trajectory by the Law of large number (LLN). To shift the
sequence of SDEs to its deterministic trajectory with normalization by the scale O(

√
ε),

the rescaled sequence of SDEs converges to a time-inhomogeneous Gaussian process by the
central limit theorem (CLT). For rare events in O(1), they have the probability asymptotic
to zero exponentially fast by the Large deviation principe (LDP). In comparison to Freidlin
and Wentzell, there is another celebrated theory for the LDP by Donsker and Varadhan [13–
16]. The main difference between them is that the Freidlin-Wentzell theory is about large
deviations from a deterministic trajectory by small noise but the Donsker-Varadhan theory
is regarding large deviations of certain process expectations for large time with the ergodic
theorem.

In the present paper, we provide a trajectory-based proof for an emergent time-
inhomogeneous Gaussian process inRn near a deterministic trajectory under the CLT, which
follows the proof for the particular case of R1 in the Freidlin-Wentzell’s textbook [12] (The
idea of proof for Rn was suggested in the book but without details) and we further obtain
a Lyapunov differential equation for the covariance of this Gaussian process. In the field of
statistical physics, this Lyapunov differential equation was mentioned in the works [9,17,18].
However, all of those previous works were based on the small noise expansion of the asso-
ciated FPEs and each approach has some limitations: In [9,18], the dynamics was restricted
to one dimension; In [17], the dynamics was for elementary processes in chemical reactions.
Our approach for the Lyapunov differential equation is trajectory-based without transferring
the original SDE problem to the problem of perturbations of partial differential equations
(PDEs) and it is applicable for rather general multi-dimensional diffusion processes.

In contradistinction to the Freidlin-Wentzell theory and the Donsker-Varadhan theory,
which are both from the standpoint of trajectories of systems, there is another approach of
the LDP based on the PDEs: A logarithmic transformation to the differential generator of
diffusion processes was proposed by Fleming in 1978 [19] then the PDE-based approach was
applied to the LDP through solving the Hamilton–Jacobian equations (HJEs) by Evans and
Ishii [20] and others. Feng and Kurtz [21] generalized this approach by refining techniques
on the viscosity solutions of HJEs so that the scope of applications of it is compatible with the
Freidlin-Wentzell theory and theDonsker-Varadhan theory. This rigorousmathematical PDE-
based approach is corresponding to theWKBmethod of solving FPEs, which was introduced
early by theoretical physicists [22,23]. In the present work, our analysis of stochastic limit
cycles is carried out in parallel with both the small random perturbations of SDEs and the
WKB approximation of the corresponding transition probability density, which can regarded
as an example of a link between the trajectory-based and the PDE-based methods. The
contradistinction provides a more comprehensive portrayal of the stochastic limit cycle.

1.3 Time-Inhomogeneous Gaussian Processes from aTransient State to an Invariant
Set

By relating those two methods, one of the important results obtained in this paper is the
correspondence between the local Gaussian fluctuations along a deterministic path, limit cyle
or not, and the curvarture of the leading order term in the WKB method near its infimum.
In the early works, the connection between the CLT and the LDP of random processes can
be found in the analysis of action functional for Gaussian random processes [12] and the
LDP for the empirical measures of centered stationary Gaussian processes [24,25], in which
the former follows the Friedlin-Wentzell theory and the later follows the Donsker-Varadhan
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theory. In the present paper, our work on the analysis of the CLT and the LDP of nonlinear
systemswith stochastic limit cycles, from a transient state to infinite time limit on an invariant
set, are beyond those theories.

Globally, from the standpoint of probability, the existence of stationary distribution in the
whole space for a stochastic stable limit cycle has been proved by Holland [26]. With the
WKBmethod, characterizations of the stationary large deviation rate function near the cycle
were studied in the previous work [27–31]. Locally, from the standpoint of trajectories, the
dynamics is attracted to an invariant set but still capable of escaping from the set due to the
multi-dimensional fluctuations except the part tangential to the cycle. In the long run, the
Gaussian fluctuations along the direction tangential to the cycle is eventually smeared out and
the rest of fluctuations in the hyperplane perpendicular to the cycle are outward and damped
out by the dissipation toward the limit cycle [32].

In this paper, equipped with the Lyapunov equation for the covariance of the time-
inhomogeneous Gaussian process, we characterize the fluctuations along the limit cycle
by asymptotic analysis. Via a careful study of the interchange of limits of time t → ∞ and
ε → 0, with a coordinate transformation and dimension reduction on the cycle, we show
that the Lyapunov equation becomes a n − 1 × n − 1 periodic Riccati differential equation
[33–36] and the solution of equation is a positive definite matrix. We further characterize the
curvature of large deviation rate function on the limit cycle by the correspondence between
the covariance matrix and the curvature established in our theory.

The importance of stochastic limit cycle oscillations in physics was emphasized by Keizer
[17] and vanKampen [9]. In their books, specific exampleswith careful studieswere provided
but a general analysis was missing. Our analysis by both the trajectory-based and probability-
based methods, from a transient state to an invariant set, helps us to paint a clear picture of
dynamics in different scopes of space and time.Additionally, the presentwork can be regarded
as an extension of the linear approximation theory of a stochastic nonlinear system with a
fixed point as the steady state, which can be found in [37–39], to an invariant set in Rn .

Furthermore, we want to point out that stochastic limit cycles have been widely studied
and applied to biological systems in two different scenarios: (1) the finite fluctuation results
[40–45] and (2) the zero noise limit with the WKB large deviation [43,46–48]. Our work
includes the following new results beyond the scopes of those two: First, we apply CLT to
describe the local fluctuations around the deterministic trajectory. It provides us a new scope
to investigate the limiting behavior of finite noise dynamics around its most probable path,
and this scale is different from the scale of WKB large deviation. Second, for the WKB
method, we include not only the large-deviation rate function but also the prefactor, which is
the next order to the leading order of the large-deviation rate function. In the present work,
we show that the prefactor plays an important role in stochastic limit cycles since the leading
order term vanishes on the deterministic trajectory of limit cycles.

1.4 Organization of the Paper

In Sect. 2, we start with a rather general small-noise diffusion process represented by a
sequence of non-linear multidimentional SDEs. Based on both the trajectory-based approach
and the WKB method, key lemmas regarding the time-inhomogeneous Gaussain processes
and a link to the large deviation rate function are provided. In Sect. 3, we apply the lemmas to
stochastic limit cycle oscillators. This approach is distinct to the previous works [27–29]: (i)
The works [27,28] are regarding fluctuations of limit cycles in chemical systems (The former
[27] focused on analysis of a stationary FPE and the later [28] applied the WKB method
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directly to a master equation.); (ii) The work [29] focused on the case of one-dimensional
motion on a circle. In Sect. 4, we introduce the scaling hypothesis of diffusion processes
to construct a sequence of dynamics parameterized by ε. This scaling hypothesis not only
serves as an useful mathematical tool of asymptotic analysis but also a scientific theory to
justify the origin of ε.

2 Preliminaries

As we mentioned in Sect. 1, both discrete chemical kinetics and continuous mechanical
motions successfully depict complex systems via introducing uncertainty. Based on the
probability theory, the former is conventionally characterized by Markov jump processes
(continuous-time and discrete-state) with the corresponding transition probability captured
by master equations, and the later is popularly described by diffusion processes (continuous-
time and continuous-state) with SDEs. By introducing a parameter of the size of systems, at
proper scales, both representations have their corresponding FPEs of the transition probabil-
ity density and the HJEs of the large deviation rate function. In the present work, based on
the continuous representation, we follow the direction SDE–FPE–HJE in a sequence.

2.1 Expansion in Powers of a Small Parameter for Diffusion Processes

Let us start from a sequence of SDEs defined in Eq. (1.3)

dXε(t) = b(Xε)dt + [2εD] 1
2 dB(t), (2.1)

and by the LLN, it converges to the following ordinary differential equation (ODE) as ε → 0

dx(t) = b(x)dt . (2.2)

Let x̂(t) be the solution of this ODE with a given initial condition x̂(0) = x̂0.
We shall note that a direct application of small noise expansions for the process (2.1) by

Xε(t) = ∑n
i=0 εiXi (t) may fail for certain types of drift functions b [18]. Therefore, we

need to expand Xε(t) with a proper scale: By the scale of the CLT, we can define a random
process Zε(t) near the deterministic trajectory x̂(t)

Zε(t) ≡ Xε(t) − x̂(t)√
ε

(2.3)

and substitute Eqs. (2.3) into (2.1), we can derive that

dXε(t) = dx̂(t) + √
εdZε(t) = b(Xε)dt + [2εD] 1

2 dB(t) + O(ε)

⇒ dXε(t) = dx̂(t) + √
εdZε(t) = (

b(x̂) + √
εA(x̂)Zε

)
dt + [2εD] 1

2 dB(t) + O(ε)

⇒ dZε(t) = A(x̂)Zεdt + [2D] 1
2 dB(t) + O(

√
ε),

(2.4)
whereA(x̂(t)) is the Jacobian matrix of b(x) evaluated at x = x̂(t). We then follow the usual
approach [12] of perturbation theory to obtain an expansion in powers of the small parameter√

ε

Zε(t) = Z(t) + √
εZ(1)(t) +· · · + √

ε
kZ(k)(t) +· · · . (2.5)
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Apply the expansion of Zε(t) in Eq. (2.5) to its SDE in Eq. (2.4), we can obtain a SDE for
the zeroth approximation of Zε(t)

dZ(t) = A(x̂)Zdt + [2D] 1
2 dB(t). (2.6)

The following lemma is about the solution of Z(t):

Lemma 2.1 If each element of the Jacobian matrix A(x̂(t)) is continuous for all t ≥ 0, then
for every t > 0, Z(t) is a Gaussian random variable Z(t) ∼ N (μ(t),�(t)) with

dμ(t)

dt
= A(x̂)μ, μ(0) = μ̂0, (2.7)

d�(t)

dt
= A(x̂)� + �A(x̂)T + 2D, �(0) = �̂0, (2.8)

where μ0 and �0 are given initial conditions.

Proof Under the assumption that each element of A(x̂(t)) is continuous for all t ≥ 0, there
exits a fundamental matrix M(t) ∈ R

n × R
n satisfied the linear homogenous ordinary dif-

ferential equation

dM(t) = A(x̂)Mdt for all t > 0. (2.9)

Let Z0 be the given initial condition for the dynamics (2.6), we can verify the equation

Z(t) = M(t)

(
Z0 +

∫ t

0
M−1(s)[2D] 1

2 dB(s)

)
for all t > 0, (2.10)

by differentiating the both sides of it with the Itô lemma and Eqs. (2.6) and (2.9) as follows

d

[
M(t)

(
Z0 +

∫ t

0
M−1(s)[2D] 1

2 dB(s)

)]

= Md

(
Z0 +

∫ t

0
M−1[2D] 1

2 dB
)

+ dM
(
Z0 +

∫ t

0
M−1[2D] 1

2 dB
)

+ dMd

(
Z0 +

∫ t

0
M−1[2D] 1

2 dB
)

= [2D] 1
2 dB + A(x̂)MdtM−1Z + A(x̂)MdtM−1[2D] 1

2 dB

= [2D] 1
2 dB + A(x̂)MM−1Zdt

= dZ(t).

By Eq. (2.10), for any constant vector a ∈ R
n , we have that

aTZ(t) = aTM(t)

(
Z0 +

∫ t

0
M−1(s)[2D] 1

2 dB(s)

)
=

n∑

i=1

∫ t

0
fi (s)dBi (s), (2.11)

where Bi ∈ R
1 is a collection independent and identically distributed random variables from

the standard Brownian motion B = (B1, B2, · · · , Bn), and fi : R1 → R
1 is a collection

of deterministic functions. Therefore, aTZ(t) has to be a one-dimensional Gaussian random
variable since it is a linear combination of a collection of independent one-dimensional
Gaussian random variables. Furthermore, by [49], using the moment generating functions,
arbitrary linear combinations of the random vectorZ(t) being an univariate Gaussian random
variable implies that Z(t) is a multivariate Gaussian random variable.
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Next, we want to find expressions of the mean and the covariance of Z(t) for every t . By
the property of the standard Brownian motion, given a matrix F(t) which is independent of
B, we have that

E

[∫ t

0
F(s)dB(s)

]
= 0, for all t ≥ 0. (2.12)

With (2.10) and (2.12), the first and second moment of Z(t) should satisfy

E[Z(t)] = M(t)Z0

E[Z(t)Z(t)T ] = E

[
M(t)

(
Z0 +

∫ t

0
M−1[2D] 1

2 dB
)(

Z0 +
∫ t

0
M−1[2D] 1

2 dB
)T

M(t)T
]

= M(t)Z0ZT
0 M(t)T + M(t)E

[(∫ t

0
M−1[2D] 1

2 dB
)(∫ t

0
M−1[2D] 1

2 dB
)T
]
M(t)T

= M(t)Z0ZT
0 M(t)T + 2M(t)

(∫ t

0
M−1(s)DM−T (s)ds

)
M(t)T , (2.13)

where we applied the Itô isometry to the last equation. Since μ(t) = E[Z(t)] = M(t)Z0,

and �(t) = E[Z(t)Z(t)T ] − E[Z(t)]E[Z(t)T ] = 2M(t)
(∫ t

0 M
−1(s)DM−T (s)ds

)
M(t)T ,

by taking derivatives of them with respect to time, we thus obtain dynamics ofμ(t) and �(t)
as follows

dμ(t)

dt
= A(x̂)μ, μ(0) = μ̂0, (2.14)

d�(t)

dt
= A(x̂)� + �A(x̂)T + 2D, �(0) = �̂0, (2.15)

where μ̂0 and �̂0 are given initial conditions.

By Lemma 2.1, we obtained a time-inhomogeneous Gaussian process from a multi-
dimensional nonlinear diffusion process at the scale of the CLT with the covariance captured
by the Lyapunov differential equation (2.15). Additionally, this lemma can be applied to
solve the FPE

∂ pε

∂t
= −∇ · J[pε], J[pε] ≡ b(x)pε − εD∇ pε (2.16)

with certain boundary conditions. Since the function b is nonlinear and multi-dimensional,
this type of PDE problemsmay not be easy to solve directly. Under certain conditions [12,50],
the diffusion process (2.1) is associated with this FPE. By expanding the solution of the FPE
(2.16) and the diffusion process (2.1) respectively

pε(x, t) = 1√
ε
p̂ε(z, t) and p̂ε(z, t) = p̂0(z, t) +

∞∑

n=1

(
√

ε)n p̂n(z, t), (2.17)

Zε(t) = Xε(t) − x̂(t)√
ε

and Zε(t) = Z(t) +
∞∑

n=1

(
√

ε)nZ(n)(t), (2.18)

we can check that p̂0(z, t) is the probability density of Z(t). Following from Lemma 2.1, we
thus obtain an approximation solution of the FPE by having the dynamics of the mean and
covariance of Z(t). To transform the FPE problem into the problem of a diffusion process,
the above example is an application of Lemma 2.1 to attack a complicated boundary value
problem.
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2.2 Approximations by the Asymptotic Theory Akin to theWKB

In Sect. 1.1, we pointed out that using the Kramers-Moyal Fokker-Planck equation for a
mater equation may fail in some cases. Instead, the deterministic behavior and the local
fluctuation of a jump Markov process can be obtained by the Ω expansion with respect
to two different scales. In addition to the Ω expansion, another approach by the WKB
approximation has been applied to give a full analysis of master equations [8,22,28,51]. In
thismethod, theWKBansatz is assumed for the solution of theKramers-Moyal expansion of a
master equation without truncating higher-order terms, so this method has no problem unlike
the Kramers-Moyal Fokker-Planck equation. As the success of the WKB approximation of
master equations forMarkov jump processes, thismethod has also been used to the associated
Fokker-Planck equations of diffusion processes [23,52]. Here we want to link our trajectory-
based approach in Sect. 2.1 to the probability-based approach by the WKB approximation.

Recall that the path behaviors of the diffusion process is described by the n-dimensional
SDE (2.1)

dXε(t) = b(Xε)dt + √
2εDdBt . (2.19)

In order to link the SDE (2.19) to the WKB ansatz, we need to find its probability-density
representation by a FPE. From Eqs. (2.16) to (2.18), we have illustrated a way to convert a
PDE problem to a SDE problem; on the other hand, by the semigroup approaches [11,50],
we can also convert a SDE problem to a PDE problem. Under certain conditions [50], the
original SDE problem can be characterized by the solution of the FPE

∂ pε

∂t
= −∇ · J[pε], J[pε] ≡ b(x)pε − εD∇ pε. (2.20)

We shall note that, as ε → 0, the FPE reduces to a first-order differential equation so
the perturbation of the solution pε follows the singular perturbation theory. To attack this
singular perturbation problem, we adopt an asymptotic series of pε with a proper scaled
variable z = (x − x̂)/

√
ε,

pε(x, t) = 1√
ε
p̂ε(z, t) and p̂ε(z, t) =

∞∑

n=0

(
√

ε)n p̂n(z, t). (2.21)

In parallel, there is another complete asymptotic theory for the solution of FPE akin to the
WKB ansatz [22,23]

pε(x, t) = a(ε, t) exp

[
−1

ε

∞∑

n=0

φn(x, t)εn
]

, (2.22)

where a(ε, t) is a normalization factor. The expansion (2.22) with the series ε−1φ0 + φ1 +
εφ2 + · · · was justified by the extensive property of pε(x, t), i.e. it keeps the form (2.22) as
time evolves [22].

We will connect those two types of expansions in Lemma 2.4. To prove the lemma, we
first give two useful lemmas on the asymptotic evaluation of various integrals [53]. All the
proofs can be found in Appendix 1.
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Lemma 2.2 For sufficiently smooth scalar functions f (x) and h(x), x ∈ R
n,

∫

Rn
f (x)e−h(x)/εdx =

√
2πε

det[∇∇h(x∗)]e
− h(x∗)

ε

[
f (x∗) + εη(x∗) + O

(
ε2
)]

, (2.23)

∫

Rn
f (x)e−h(x)/εdx

∫

Rn
e−h(x)/εdx

= f (x∗) + ε

⎡

⎣ f ′′
i j (x

∗)Ξi j

2
− f ′

i (x
∗)h′′′

jk
(x
∗)Ξ

1
2
iμΞ

1
2
jνΞ

1
2
kρΞ

1
2

κΘμνρκ

6

⎤

⎦+ O(ε2),

(2.24)

as ε → 0, in which Einstein’s summation rule is adopted, x∗ is the global minimum of h(x),
and

η(x∗) = f ′′
i j (x

∗)Ξi j

2
−
[
f ′
i (x

∗)h′′′
jk
(x

∗)
6

+ f (x∗)h′′′′
i jk
(x

∗)
24

]
Ξ

1
2
iμΞ

1
2
jνΞ

1
2
kρΞ

1
2

κΘμνρκ

+ f (x∗)[h′′′
i jk(x

∗)]2
72

Ξ
− 1

2
iμ Ξ

− 1
2

iμ′ Ξ
− 1

2
jν Ξ

− 1
2

jν′ Ξ
− 1

2
kρ Ξ

− 1
2

kρ′ Λμμ′νν′ρρ′ . (2.25)

The covariance matrix Ξ = [∇∇h(x∗)
]−1

, and the multi-indexed Θi jk
 and Λμμ′νν′ρρ′ are

Θμνρκ =
∫

Rn

yμyν yρ yκ
(
2π
)n/2 exp

[
−yT y

2

]
dy, (2.26)

Λμμ′νν′ρρ′ =
∫

Rn

yμyμ′ yν yν′ yρ yρ′
(
2π
)n/2 exp

[
−yT y

2

]
dy. (2.27)

By Lemma 2.2, we can obtain the following lemma, which is very useful in the integrals
with respect to a probability density approximated by the WKB method.

Lemma 2.3 For sufficiently smooth functions f (x), g(x), and h(x), x ∈ R
n,

∫

Rn
f (x)g(x)e− h(x)

ε dx
∫

Rn
g(x)e− h(x)

ε dx

= f (x∗) + ε

⎡

⎣ f ′
i (x

∗)(log g)′i (x∗)Ξi j + f ′′
i j (x

∗)Ξi j

2
− f ′

i (x
∗)h′′′

jk
(x
∗)Ξ

1
2
iμΞ

1
2
jνΞ

1
2
kρΞ

1
2


κΘμνρκ

6

⎤

⎦

+O(ε2), (2.28)

as ε → 0, in which Einstein’s summation rule is adopted, x∗ is the global minimum of h(x),

123



Stochastic Limit-Cycle Oscillations... Page 11 of 33 47

Now, we are ready to relate the two kinds of asymptotic series. Recall that the two expan-
sions are

p̂ε(z, t) =
∞∑

n=0

(
√

ε)n p̂n(z, t), (2.29)

pε(x, t) = a(ε, t) exp

[
−1

ε

∞∑

n=0

φn(x, t)εn
]

, (2.30)

where z = (x − x̂) and pε(x, t) = p̂ε(z, t)/
√

ε. Since we will focus on the first two orders
in the WKB approximation, we specifically denote that φ0 := ϕ and φ1 := lnω. These two
functions have particular meanings: ϕ is known as the large deviation rate function [12,54],
and ω is known as the prefactor [23,29], or the phase space factor [9], or degeneracy in the
classical statistical mechanical terminology [52].

Recall that the time-dependent matrix�(t) in Lemma 2.1 is the covariance matrix of Z(t)
and we have checked thatZ(t) has the density p̂0(z, t). Therefore, for�(t), it has the formula
�i j (t) = ∫

Rn zi z j p̂0(z, t)dz, for 1 ≤ i ≤ n, 1 ≤ i ≤ n. Here we further define a time
dependent first moment vector m(t) with respect to p̂1(x, t) by mi (t) = ∫

Rn zi p̂1(z, t)dz,
for 1 ≤ i ≤ n. Note that the functions p̂0 and p̂1 are given in the expansion (2.29). Under
this framework, �(t) and m(t) must satisfy the differential equations

d�(t)

dt
= A(x̂(t))� + �A(x̂(t))T + 2D, �(0) = �̂0, (2.31)

dm(t)

dt
= A(x̂(t)) + H(x̂(t))�, m(0) = m̂0, (2.32)

in which the initial conditions �̂0 and m̂0 are given by the distribution ofXε(0). For example,
if the initial probability density ofXε(0) is purely Gaussian, then p̂1(z, 0) = 0 for all z hence
m̂0 = 0. Furthermore, A(x) is the Jacobian matrix of b(x), and H(x) is a rank 3 tensor with
Hi (x) being the Hessian matrix of bi (x), 1 ≤ i ≤ n. Eq. (2.31) of �(t) is from Lemma 2.1,
and Eq. (2.32) can be verified by plugging the expansion (2.29) into the the Fokker-Planck
equation (2.20) and using integration by parts.

Based on the above setup, �(t), m(t) are related to the expansion (2.29) and ϕ(x, t),
ω(x, t) are related to the expansion (2.30), then we have the following lemma for their
correspondence. Recall that x̂(t) is the emergent deterministic trajectory of the diffusion
process Xε(t) as ε → 0.

Lemma 2.4 �(t), m(t), ϕ(x̂(t), t), and ω(x̂(t), t) must satisfy the equations

�(t) = [∇∇ϕ(x̂(t), t)
]−1

, (2.33)

m(t) = [∇∇ϕ(x̂(t), t)
]−1 ∇ logω(x̂(t), t) − 1

6
∇∇∇ϕ(x̂(t), t)Θ, (2.34)

where
(∇∇∇ϕ(x, t)Θ

)
i = ∑

jklμνκρ ϕ′′′
jk
(x, t)Ξ

1
2
iμΞ

1
2
jνΞ

1
2
kρΞ

1
2

κΘμνρκ ,Ξ = [∇∇ϕ(x, t)]−1,

and Θ is defined by Eq. (2.26) in Lemma 2.2.

Proof By the change of variable z = (x − x̂)/
√

ε, we have the following two equations
∫

(
√

εz)(
√

εz)T p̂ε(z, t)dz =
∫

(x − x̂)(x − x̂)T pε(x, t)dx, (2.35)
∫

(
√

εz) p̂ε(z, t)dz =
∫

(x − x̂)pε(x, t)dx. (2.36)
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Plug the expansion (2.29) into the left side of (2.35), by Lemma 2.1, the left side of (2.35)
becomes

ε�(t) + o(ε). (2.37)

For a fixed t , the point x = x̂(t) on the deterministic trajectory is the global minimum of
ϕ(x, t). Therefore, to plug the expansion (2.30) into the right side of (2.35), by Lemma 2.3,
we have

ε
[∇∇ϕ(x̂(t), t)

]−1 + o(ε). (2.38)

With Eqs. (2.37) and (2.38), we thus obtain

�(t) = [∇∇ϕ(x̂(t), t)
]−1

. (2.39)

By a similar approach, applying Lemma 2.1 to the left side of (2.36) and Lemma 2.3 to the
right side of it, we have that

m(t) = [∇∇ϕ(x̂(t), t)
]−1 ∇ lnω(x̂(t), t) − 1

6
∇∇∇ϕ(x̂(t), t)Θ. (2.40)

The leading order ϕ(x, t) of the time-dependent WBK ansatz (2.22) is known as a time-
dependent large deviation rate function. Our work (Lemma 2.4) relates the curvature of
the time-dependent large deviation rate function near its infimum with the local Gaussian
fluctuations of diffusion processes. In the case of independent and identically distributed
(i.i.d.) random variables sampling, the inverse of the curvature of large deviation rate function
equivalent to the variance of each random variable is one of the important properties of the
rate function [55,56]. Equation (2.33) in Lemma 2.4 can be regarded as an extension of
this property to the case of random processes. The Freidlin-Wentzell theory [12] gives a
clear definition of the large deviation rate function of random processes. From the trajectory
standpoint, the action functional is defined as [12]

S0,t (ξ) = 1

4

∫ t

0
[ξ̇s − b(ξs)]D−1[ξ̇s − b(ξs)]ds, (2.41)

where ξ is the set of all smooth paths of the process (2.1) on the interval [0, t]. Then the
time-dependent large deviation rate function is the minimum of action among the set of ξ

ϕ(x, t) = min
ξ0=x0,ξt=x

S0,t (ξ), (2.42)

in which x0 and x are the initial and end conditions of the process, respectively.
By Eqs. (2.41) and (2.42), ϕ(x, t) is no longer just a mathematical concept of the leading

order term of the logarithmic asymptotics of probability densities. Borrowing the concept
from classical mechanics, the integrand in the integral (2.41) is called the Lagrangian of the
action and there is a corresponding Hamiltonian of the system defined by the Legendre dual
of the Lagrangian [57]

H(ξ,p) = b(ξ) · p + Dp · p. (2.43)

Furthermore, based on the Hamiltonian given in Eq. (2.43), the large deviation rate function
has to satisfy the Hamilton–Jacobi equation

∂ϕ(x, t)
∂t

= −H(x,∇ϕ). (2.44)
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Finding solutions of theHamilton–Jacobi equation (2.44) is still an open problem. ByLemma
2.4, with the dynamics of �(t) in Eq. (2.31) and m(t) in Eq. (2.32), if the solution of the
prefactor ω(x, t) is given, e.g., an uniform prefactor, then we can derive the dynamics of
∇∇ϕ(x̂(t), t) and ∇∇∇ϕ(x̂(t), t). These results can help us approximate the solution of the
HJE near its infimum: by the multivariable Taylor’s expansion, for ‖x − x̂‖ < δ, we have a
third order approximation

ϕ(x, t) = 1

2

[
(x − x̂(t)) · ∇]2 ϕ(x̂(t), t) + 1

6

[
(x − x̂(t)) · ∇]3 ϕ(x̂(t), t) + o(δ3), (2.45)

and the first two terms on the right side can be numerically solved with the dynamics of
∇∇ϕ(x̂(t), t) and ∇∇∇ϕ(x̂(t), t) obtained by our theory.

To summarize the novelty and the significance of Lemma 2.4 in the following three points:

1. We show rigorously that the covariancematrix of the local time-inhomogeneousGaussian
process near a deterministic trajectory is equivalent to the inverse of the curvature of the
time-dependent large deviation rate function near its infimum.

2. By having the dynamics of ∇∇ϕ(x̂(t), t) and ∇∇∇ϕ(x̂(t), t) from the lemma, we can
obtain a third-order approximation of the solution of the HJE (2.44) near its infimum.

3. For analyzing a stochastic stable limit cycle in the next section, with the Lyapunov differ-
ential equation of �(t) (2.31) and the equation �(t) = [∇∇ϕ(x̂(t), t)

]−1 in the lemma,
we can further study the asymptotic behaviors of the time-inhomogeneious Gaussian
process from a transient state to an invariant set, and relate this result to the previous
works [28–31] on the curvature of the stationary large deviation rate function near a limit
cycle.

3 Main Results of Stochastic Limit-Cycle Oscillations

In this section, we focus on nonlinear stochastic complex systems having stable limit cycles
at the macroscopic scale. In chapter XIII. 7 of the textbook by van Kampen [9], the author
proposed two examples of stochastic systems with stable limit cycles: one is dynamics of the
Brusselator in the chemical reaction and the other one is the generalized Ginzburg–Landau
equation in statistical mechanics. The model of the former started from a master equation
for the Markov jump process and the later began with a SDE for the diffusion process.
More examples of stochastic chemical kinetics with limit cycle oscillators were thoroughly
discussed in the previous works [27,28]. In contradistinction to stochastic chemical kinetics,
our work follows the idea of the second example in the van Kampen’s book along the line
of the continuous representation of complex systems: we start with a randomly perturbed
diffusion process satisfied the sequence of SDEs (2.1). Recall it has the form

dXε(t) = b(Xε)dt + [2εD] 1
2 dB(t). (3.1)

In this section,we assumeD is positive definite in particular. Furthermore, there is an emergent
deterministic dynamics as ε → 0,

dx(t) = b(x)dt, (3.2)

and the solution x̂(t) of this ODE (3.2) with initial condition x̂(0) has a invariant solution as
a stable limit cycle Γ . Recall that the corresponding FPE of Eq. (3.1) is

∂ pε

∂t
= −∇ · J[pε], J[pε] ≡ b(x)pε − εD∇ pε. (3.3)

123



47 Page 14 of 33 Y.-C. Cheng, H. Qian

To analyze stochastic limit cycles defined by Eqs. (3.1)–(3.3) requires asymptotic analysis
involving two limits (ε → 0 and t → ∞). Therefore, in the first part of Sect. 3.1, we provide
a brief review of the previous work on asymptotic analysis of Eqs. (3.4) and (3.5). We shall
note that Eq. (3.4) is a HJE for ϕ(x, t) and Eq. (3.5) is a continuity equation for ω(x, t). This
pair of equations was known in the previous work by applying WKB method to the semi-
classical limit of Schrödinger equations [58,59]. In the second part of Sect. 3.1, we show a
new result for stochastic limit cycles (Theorem 3.1) by asymptotic analysis of Lemmas 2.1
and 2.4 from a finite time to the infinite time limit.

3.1 The Process Asymptotic to a Time-Invariant Set

In Sect. 2.2, we relate the time-dependent large deviation rate function and the prefactor in
the WKB method with the stochastic trajectories of randomly perturbed dynamics systems.
By this correspondence, we further inspect asymptotic behaviors of the time-dependent large
deviation rate function and the prefactor as time goes to infinity. By plugging theWKB ansatz
(2.22) into the FPE (2.20) with equating likeorder terms, we obtain two partial differential
equations of ϕ(x.t) and ω(x, t) respectively,

∂ϕ(x, t)
∂t

= −∇ϕ(x, t) · γ (x, t) (3.4)

∂ω(x, t)
∂t

= −∇ · (γ (x, t)ω(x, t)) − D∇ϕ(x, t) · ∇ω(x, t), (3.5)

where γ (x, t) = D∇ϕ(x, t) + b(x). We will later discuss the meaning of γ (x, t), which is
closely related the concept of probability flux and the Onsager’s thermodynamic force.

Let us start from analysis of the solution of ϕ(x, t) in Eq. (3.4), which is a Hamilton–
Jacobi equation. The HJE derived in this place by equating the leading order term in the
time-dependentWKB ansatz is the same one obtained in the previous derivation (Eqs. (2.42)–
(2.44)) by minimizing of action among all possible smooth paths. However, when we further
analyze time-invariant solutions of this HJE, we shall notice an essential difference between
the WKB-type method and the trajectory-based method, which is due to the interchange of
limits of t and ε.

Following the idea of WKB anstaz (2.22) for the time-dependent probability density, if
the invariant probability exists, it could be written as the asymptotic form

πε(x) = â(ε) exp

[
−1

ε
ϕ̂(x) + lnω(x) + O(ε)

]
(3.6)

and it is equivalent to say that

ϕ̂(x) = − lim
ε→0

lim
t→∞ ln pε(x, t |x0, 0), (3.7)

where ϕ̂ is independent of the initial condition x0 and is well-defined in the whole space Rn .
On the other hand, from the standpoints of trajectories, the quasipotential of the system is
defined by

ϕ(x; x f ) := inf
t>0

inf
ξ

{S0,t (ξ) : ξ0 = x f , ξt = x}, (3.8)

where x f is a fixed point of the deterministic dynamics x̂′ = b(x̂). This definition extends the
definition ofminimizing the action (2.42) from a fixed t to all t > 0 and it has a corresponding
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probabilistic representation [57]

ϕ(x; x f ) = − lim
t→∞ lim

ε→0
ln pε(x, t |x f , 0). (3.9)

The quasipotential (3.8) is one of the invariant solutions of the HJE (3.4) [12]. It may
contain non-differential parts since the HJE can have a non-smooth solution after a certain
finite time by studying the characteristics of it [60].We shall emphasize that the twopotentials,
ϕ̂(x) and ϕ(x; x f ), have the same shape only in the domain (denoted by D) where ϕ̂(x) >

ϕ̂(x f ) and ϕ̂(x) is continuously differentiable with ∇ϕ̂(x) �= 0 by the Freidlin-Wentzell
uniqueness theorem of the orthogonal decomposition of the drift function b [12]. Since the
quasipotential ϕ(x; x f ) is defined strictly by the trajectories of dynamics in Eq. (3.8), to
equate ϕ̂(x) and ϕ(x; x f ) on D, we can justify the leading order term of the WKB “ansatz”
(3.6) for the invariant probability at least onD. Analogously, x f can be extended from a fixed
point to a invariant set, so the above statement is also true for the systems with a stable limit
cycle [12]. In the following work, we will restrict our analysis of dynamics contained in D
and assumeD is compact, and use one brief notation ϕ(x) to represent both of the potentials.

Based on the above justification of the time-invariant WKB ansatz (2.22), we can plug it
into the stationary FPE (3.3) to get the system satisfied three equations [52]

b(x) = −D∇ϕ(x) + γ (x), (3.10)

∇ϕ(x) · γ (x) = 0, (3.11)

∇ · (ω(x)γ (x)) = −∇ϕ(x) · D∇ω(x). (3.12)

Note that the vector field b(x) represents deterministic dynamics and can be decomposed to
two terms ∇ϕ(x) ⊥ γ (x) which is consistent with the FW’s orthogonal decomposition [12].
In comparison to the gradient flow ∇ϕ(x), dynamics following the vector field γ represents
the part of circular motion of b. By the previous works [26,28–32], we have the following
three propositions of ϕ(x):

1. We have justified the leading order term ϕ(x) in the stationary WKB ansatz. But it is
based on the existence of the stationary probability distribution πε. The existence of πε

for stochastic stable limit cycles has been proved in the work of Holland [26].
2. On a limit cycle, ϕ(x) and ∇ϕ(x) are always zero. The landscape of ϕ(x) has a Mexican

hat shape and the bottomof theMexican hat ring characterizes the deterministic trajectory
of the cycle [30]; And the second derivative of ϕ(x) tangential to the cycle is also zero,
which means the Gaussian fluctuations along the direction tangential to the cycle is
eventually smeared out [28,29,32].

3. Along the cycle, the matrix ∇∇ϕ(x) is positive semi-definite [28,31]. Specifically, the
smallest eigenvalue of ∇∇ϕ(x) is zero on the cycle and the corresponding eigenvector
is tangential to the cycle (by the proposition (3.1)). The rest of eigenvalues are positive,
i.e., the Gaussian fluctuations perpendicular to the cycle are outward and damped out by
the dissipation toward the limit cycle.

The above is the setup of ϕ(x, t). Let us continue on analysis of the solution of ω(x, t) in
Eq. (3.5). It can be rearranged as

∂ω(x, t)
∂t

+ ∇ · (b(x)ω(x, t)) = −2D∇ϕ(x, t)∇ω(x, t) − D∇∇ϕ(x, t)ω(x, t), (3.13)

where D∇∇ϕ(x, t) is the the Frobenius product of the matrix D and the matrix ∇∇ϕ(x, t).
We can identify Eq. (3.13) is a continuity equation that describes the transport following the
vector field x̂′ = b(x̂) with a density-dependent sink (source) term on the right hand side.
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Therefore, the solution of Eq. (3.13) gives us a measure of a large number particle system
“without” noise by the Eulerian description of dynamics x̂′ = b(x̂). The original effect of
noise, D, appears in the sink (source) term in this continuity equation of ω. On the other
hand, if we follow the dynamics of x̂′ = b(x̂), we have the dynamics of ω by the Lagrangian
description

dω(x̂(t), t)
dt

= ∂ω(x̂(t), t)
∂t

+ ∇ω(x̂(t), t)
dx̂(t)
dt

= ∇ · b(x)ω(x̂(t), t) − D∇∇ϕ(x̂(t), t)ω(x̂(t), t)

= −∇ · γ (x(t), t)ω(x̂(t), t). (3.14)

To compare Eq. (3.13) with Eq. (3.12), we have that ω(x) in the WKB ansatz (3.6) is one of
invariant solutions of Eq. (3.13). However, in distinction to the HJE of ϕ(x, t), the uniqueness
and the smoothness of invariant solutions of the PDE (3.13) are not discussed in the present
work.

Based on the above setup, we have the following theorem about the curvature of invariant
large deviation rate function ∇∇ϕ(x) and the logarithm of the prefactor lnω(x) along the
dynamics x∗(t) on the limit cycle Γ . For this theorem, we require three assumptions of
regular conditions:

1. The functions ϕ(x, t) and lnω(x, t) are smooth enough with respect to x, and the deriva-
tives uniformly converge on D as t → ∞, in which the compact domain D is defined
above.

2. The drift function b(x) and its Jacobian A(x) are continuous on D.
3. For all t ≥ 0, the covariance matrix �(t) in Lemma 2.4 is nonsingular, i.e, the Gaussian

fluctuations of each direction is nonzero. Therefore, the inverse of Eq. (2.33) in Lemma
2.4 is well-defined: [�(t)]−1 = ∇∇ϕ(x̂(t), t) for all t ≥ 0.

Theorem 3.1 Let x∗(t) be a deterministic trajectory with x∗(0) ∈ Γ ,
[
�∗(t)

]−1 :=
∇∇ϕ(x∗(t)), and ω∗(t) := ω(x∗(t)). For all t > 0,

d
[
�∗(t)

]−1

dt
= − [�∗]−1 A(x∗) − A(x∗)T

[
�∗]−1 − 2

[
�∗]−1 D

[
�∗]−1

, (3.15)

d lnω∗(t)
dt

= −∇ · b(x∗) − D
[
�∗]−1 = −∇ · γ (x∗). (3.16)

Furthermore, the smallest eigenvalues of the matrix
[
�∗(t)

]−1
is zero with the eigenvector

tangential toΓ and the other eigenvalues are positive with the eigenvectors in the hyperplane
perpendicular to Γ .

Proof In this proof, the norm ‖·‖ represents the supremumnorm.By our setup of the diffusion
process (3.1), the macroscopic deterministic trajectory x̂(t), with x̂(0) ∈ D, converges to the
stable limit cycle Γ , so we have

lim
t→∞ min

x∗∈Γ
‖x̂(t) − x∗‖ = 0. (3.17)

By the assumption (3.1) and limt→∞ ϕ(x, t) = ϕ(x) in the setup, we have that

lim
t→∞ ∇∇ϕ(x, t) = ∇∇ϕ(x) uniformly on D. (3.18)
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Therefore, for any ε > 0, there exists T (ε) > 0 such that for every t > T (ε), there is a point
x∗(t) ∈ Γ with its corresponding initial point x∗(0) ∈ Γ and

‖∇∇ϕ(x̂(t), t) − ∇∇ϕ(x∗(t))‖ = O(ε), (3.19)

in which we use the triangle inequality

‖∇∇ϕ(x̂(t), t) − ∇∇ϕ(x∗(t))‖ ≤ ‖∇∇ϕ(x̂(t), t) − ∇∇ϕ(x̂(t))‖ + ‖∇∇ϕ(x̂(t)) − ∇∇ϕ(x∗(t))‖
(3.20)

with Eq. (3.18) for the first term and Eq. (3.17) for the second term on the right side of
the inequality. Apply

[
�∗(t)

]−1 := ∇∇ϕ(x∗(t)) defined in the theorem, and [�(t)]−1 =
∇∇ϕ(x̂(t), t) given in Lemma 2.4 with the assumption (3.1), to Eq. (3.19), we further have
that

∥∥∥
[
�∗(t)

]−1 − [�(t)]−1
∥∥∥ = O(ε). (3.21)

Following the sameapproach for the result (3.21)with the assumption (3.1) that the derivatives
of ϕ uniformly converge on D and the assumption (3.1) that b is continuous on D, we can
also show that

∥∥∥∥∥
d
[
�∗(t)

]−1

dt
− d [�(t)]−1

dt

∥∥∥∥∥ = O(ε). (3.22)

Furthermore, by the Lyapunov equation of �(t) obtained in Lemma 2.1, we have that

d [�(t)]−1

dt
= [�(t)]−1 d [�(t)]

dt
[�(t)]−1 = − [�]−1 A(x̂) − A(x̂)T [�]−1 − 2 [�]−1 D [�]−1 .

(3.23)

By the assumption (3.1) that A is continuous on D, combined with Eqs. (3.21), (3.22) and
(3.23), we can show that

d
[
�∗(t)

]−1

dt
= − [�∗]−1 A(x∗) − A(x∗)T

[
�∗]−1 − 2

[
�∗]−1 D

[
�∗]−1 + O(ε),

(3.24)

in which we use the triangular inequality. Equation (3.24) is true for any ε > 0 and t > T (ε),
and furthermore, the functions

[
�∗(t)

]−1 and A(x∗(t)) are periodic by the definitions, so if
Eq. (3.24) holds for t > T (ε), by the phase shift, it should hold for all t > 0. Then we can
take ε → 0 to obtain

d
[
�∗(t)

]−1

dt
= − [�∗]−1 A(x∗) − A(x∗)T

[
�∗]−1 − 2

[
�∗]−1 D

[
�∗]−1

, (3.25)

for all t > 0 with the initial condition
[
�∗(0)

]−1 = ∇∇ϕ(x∗(0)).
Next, we need to investigate the solution

[
�∗(t)

]−1 given by the ODE (3.25). Let us intro-
duce a coordinate transformation from the Cartesian coordinate to the curvilinear coordinate
around the limit cycle by the change of basis

K(t) = Q(t)−1[�∗(t)]−1Q(t) with Q(t) = [e1(t) e2(t) · · · en(t)] , (3.26)

in which Q(t) is a time-dependent orthonormal basis. In particular, e1(t) = b(x∗)/‖b(x∗‖
is the tangential unit vector on Γ and the span of the rest of vectors {e2(t) · · · en(t)}
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represents the hyperplane perpendicular to Γ . For every fixed time t , Q(t) can be obtain by
the Gram–Schmidt process and Q(t) is known as the Frenet frame. By the proposition (3.1),
since ∇∇ϕ(x∗) is always zero on the direction tangential to Γ , e1(t) is in the nullspace of
∇∇ϕ(x∗) for all t . With the fact

[
�∗(t)

]−1 := ∇∇ϕ(x∗(t)) is symmetric, for all 1 ≤ i ≤ n
and 1 ≤ j ≤ n, we have that

[K(t)]i1 = ei (t)T [�∗(t)]−1e1(t) ≡ 0 and [K(t)]1 j = e1(t)T [�∗(t)]−1e j (t) ≡ 0,
(3.27)

thus the matrix K(t) has both zero first column and zero first row. Therefore, we can define
a submatrix K̃(t) by deleting the first column and the first row of K(t), equipped with Eq.
(3.24), we will obtain a n − 1 by n − 1 system of differential equations

dK̃(t)

dt
= −K̃(t)

[
Ã(x∗) − S̃(t)

]
−
[
Ã(x∗) − S̃(t)

]T
K̃(t) − 2K̃(t)D̃K̃(t), (3.28)

in which the symbol ∼ on top of each matrix represents the restriction of the original matrix
in the hyperplane perpendicular to Γ and the additional term S̃(t), S = Q−1(t)Q̇(t), is from
the coordinate transformation.We can identify that Eq. (3.28) is a periodic Riccati differential
equation. Under the assumptions that Γ is a stable limit cycle and D̃ is definite positive (the
later follows from the definite positive D in the setup (3.1)), the solution of the periodic
Riccati differential equation (3.28) has to be positive definite and periodic with the same
period of the limit cycle. Mathematical analysis of this type of periodic Riccati differential
equations can be found in the works [33–36] and a comprehensive numerical analysis with
several examples was provided in the work [31].

The proof for Eq. (3.16) of lnω∗(t) follows the proof for Eq. (3.15) of
[
�∗(t)

]−1. Apply
the same asymptotic analysis (Eqs. (3.17)–(3.25)) to the dynamics ofω(x̂(t), t) in Eq. (3.14),
we can show that lnω∗ satisfies

d lnω∗(t)
dt

= ∇ · b(x∗) − D∇∇ϕ(x∗) = −∇ · γ (x∗), (3.29)

for all t > 0 with the initial condition lnω∗(0) = lnω(x∗(0)).

To the best of our knowledge, the asymptotic analysis from Eqs. (3.17) to (3.25) is the first
work rigorously shows the Lyapunov differential equation (3.25) for the curvature of large
deviation rate function near a deterministic trajectory from a transient state to an invariant
set. Additionally, by analyzing the solution given by the Lyapunov differential equation with
the coordinate transformation, we confirm that the solution

[
�∗(t)

]−1 is consistent with the
features of ∇∇ϕ(x) on Γ in the proposition (3.1) from the previous work. We will apply
Theorem 3.1 to further obtain three characterizations of stochastic limit cycles: (i) probability
flux near the cycle (Sect. 3.2); (ii) two special features of γ on the limit cycle (Sect. 3.3); (iii)
a local entropy balance equation on the cycle (Sect. 3.4).

3.2 Probability Flux of Near a Limit Cycle

Recall that the vector field γ is defined by the orthogonal decomposition of the drift b in Eqs.
(3.10) and (3.11), which characterizes the direction of circular motion of the deterministic
dynamics x̂′ = b(x̂). In addition to the orthogonal decomposition of the drift b, γ can be
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derived from the probability flux J[pε(x, t)] defined in the FPE (3.3):

γ ε(x, t) := J[pε(x, t)]
pε(x, t)

= b(x) − εD∇ ln pε(x, t), (3.30)

and take ε → 0 before t → ∞, we have that

lim
t→∞ lim

ε→0
γ ε(x, t) = lim

t→∞ γ (x, t) = γ (x), (3.31)

in which γ (x, t) is the same one defined in the HJE (3.4). For the stationary probability flux
J[πε(x)],

γ ε(x) := J[πε(x)]
πε(x)

= b(x) − εD∇ ln πε(x), (3.32)

which is corresponding to the reverse order of limits

lim
ε→0

lim
t→∞ γ ε(x, t) = lim

ε→0
γ ε(x) = γ (x). (3.33)

Note that γ ε(x) has been recognized as Onsager’s thermodynamics force [61] or “local
velocity” of the probability flux. Here we don’t need to worry about the orders of limits if
we just focus on the domain D based on our discussion in Sect. 3.1.

Recall that A(x) is the Jacobian matrix of b(x) and
[
�∗]−1 = ∇∇ϕ(x∗(t)). By the above

setup, we have the following theorem for γ ε(x) and the stationary probability flux J[πε(x)]
near Γ .

Theorem 3.2 For x∗ ∈ Γ and ‖x − x∗‖ = O(
√

ε),

γ ε(x) := J[πε(x)]
πε(x)

=
[
b(x∗) +

(
A(x∗) + D

[
�∗]−1

)
(x − x∗)

]
+ O(ε), (3.34)

where D
[
�∗]−1

is the Frobenius product, and
[
�∗]−1

satisfies the equation

d
[
�∗(t)

]−1

dt
= − [�∗]−1 A(x∗) − A(x∗)T

[
�∗]−1 − 2

[
�∗]−1 D

[
�∗]−1

. (3.35)

Proof We first approximate ∇ ln πε(x) near Γ , in which πε has the WKB expansion in Eq.
(3.6). Let ‖x − x∗‖ = O(

√
ε),

∇ ln πε(x) = ∇
(
lnω(x) − ϕ(x)

ε

)
+ O(ε)

= ∇
(
lnω(x) − (x − x∗)T∇∇ϕ(x∗)(x − x∗)

2ε

)
+ O(1)

= −∇∇ϕ(x∗)(x − x∗)
ε

+ O(1), (3.36)

where we use ϕ(x∗) ≡ 0 and ∇ϕ(x∗) ≡ 0. Apply the approximation (3.36) to Eq. (3.32), we
can further approximate γ ε(x) around Γ

γ ε(x) := J[πε(x)]
πε(x)

= b(x) − εD∇ ln πε(x)

= b(x∗) +
(
A(x∗) + D

[
�∗]−1

)
(x − x∗) + O(ε). (3.37)

The dynamics (3.35) is from Eq. (3.15) in Theorem 3.1.
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Remark 3.1 In the particular case of linear dynamics x̂′ = Ax̂ (A is a constant n × n matrix)
with a stable fixed point x∗ = 0, the stationary probability flux J has the formula [39]

J[πε(x)] = π−1
ε (x)

[(
A + D�−1) x

]
, (3.38)

where�−1 satisfies�−1A+AT�−1+2�−1D�−1 = 0. To compare Eqs. (3.34) with (3.38),
Theorem 3.2 can be regarded as a local linear approximation of the stationary probability
flux near each point x∗ on the limit cycle. This new result extends the case from a fix point
to an invariant set.

3.3 Two Features of � on the Limit Cycle

By Theorem 3.2, we have an approximate the probability flux near Γ , and furthermore, by
the stationary FPE (3.3), there is another important property of the probability flux

∇ · J[πε(x)] = 0, for all x ∈ R
n . (3.39)

Since this property holds in the whole space, we can apply it to an arbitrary neighborhood
of the limit cycle. Having this property, we will obtain two special features of γ on the limit
cycle in this section.

The derivation of the system of equations (3.10)–(3.12) in the work [52] was by plugging
the WKB ansatz (3.6) into the stationary FPE and equating like-order terms of

∇ · (πε(x)γ ε(x)) = ∇ · J[πε(x)] = 0, for all x ∈ R
n . (3.40)

Applying Eq. (3.12) in the system of equations to Γ , we obtain the first feature of γ on Γ

∇ · (ω(x)γ (x)) = −∇ϕ(x) · D∇ω(x) = 0 for all x ∈ Γ , (3.41)

where we use ∇ϕ(x) ≡ 0 for x ∈ Γ . We can recognize that the divergence-free stationary
probability flux inRn is the key to get Eq. (3.40) so that we can further obtain the divergence-
freeω(x)γ (x)on the limit cycle inEq. (3.41).With a similar approach, not only the divergence
of ω(x)γ (x), we can also obtain the second feature, ||ω(x)γ (x)||, on the limit cycle via the
following theorem:

Theorem 3.3 Let 1/v(x) be the product of the nonzero eigenvalues of the matrix ∇∇ϕ(x).
Then

√
v(x) × ||ω(x)γ (x)|| (3.42)

is constant on the limit cycle Γ . Furthermore, let gε(x) be the marginal density of πε(x) on
the limit cycle Γ , then for x ∈ Γ ,

gε(x) = ω(x)
√

v(x)∫
Γ

ω(y)
√

v(y)dy
+ O(ε), (3.43)

and there exists a constant K such that gε(x)||γ (x)|| = K + O(ε).

From the preceding discussion in Sect. 3.1, since ϕ(x) is constant on Γ , the eigenvector
of ∇∇ϕ(x) corresponding to the only one zero eigenvalue is tangential to Γ . Therefore, v(x)
in Theorem 3.3 defined on Γ represents the scaled variance in the hyperplane perpendicular
to Γ (Recall that this hyperplane is defined by the span of the vectors e2, · · · , en in the
coordinate transformation (3.26)). By Eq. (3.41), we have that ω(x)γ (x) is divergence-free
on the limit cycle. By Theorem 3.3, we further have that ||ω(x)γ (x)|| is reciprocal to the
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scaled standard deviation perpendicular to the limit cycle. The later was mentioned in the
previous work [28]. In the present work, we provide a mathematical proof in Appendix 2.
The idea of proof is by using the Gauss’s theorem for a tube around the limit cycle. Since the
Gauss’s theorem can only be applied to a small but finite tube, the divergence for the Gauss’s
theorem we use in the proof is ∇ · (γ ε(x)πε(x)) = ∇ · J[πε(x)] = 0, which holds for an
arbitrary neighborhood of Γ .

3.4 A Local Entropy Balance Equation on the Limit Cycle

On the limit cycle, we have derived the local Gaussian fluctuations of dynamics represented
by the covariance �∗(t) which follows the periodic Lyanupov equation (3.15) in Theorem
3.1. In general, the entropy of a Gaussian distribution p with a covariance � is

S = −
∫

p(x) ln p(x)dx = 1

2
ln [2πdet(�)] . (3.44)

Therefore, in nonlinear stochastic systems, the “local” entropy (denoted by Sl ) due to the
local Gaussian fluctuations has the rate defined by

dSl(t)

dt
:= 1

2

d ln det(�∗(t))
dt

. (3.45)

By the property that the determinant of a matrix equals to the product of its eigenvalues, the
local rate of entropy change (3.45) has an equivalent definition,

dSl(t)

dt
:= −1

2

d
(∑n

k=1 ln λ∗
k(t)

)

dt
, (3.46)

where λ∗
k(t), 1 ≤ k ≤ n are the eigenvalues of

[
�∗(t)

]−1. Note that 1/v(x∗(t)) defined in
Theorem 3.3 equals to the product of all nonzero eigenvalues λ∗

2(t) · · · λ∗
n(t) of the matrix[

�∗(t)
]−1.

By the above setup, we have the following theorem of a local entropy balance equation
on the limit cycle Γ with three equivalent expressions.

Theorem 3.4 For x∗(t) ∈ Γ , by the definition (3.45) of the local rate of entropy change,
there exists a local entropy balance equation with three equivalent expressions,

dSl(t)

dt
= ∇ · γ (x∗(t)), (3.47)

= −d lnω(x∗(t))
dt

, (3.48)

= d ln||γ (x∗(t))||
dt

+ 1

2

d ln v(x∗(t))
dt

. (3.49)

Proof By Eq. (3.45), with the dynamics of
[
�∗(t)

]−1 (3.15), we can obtain

dSl(t)

dt
= ∇ · b(x∗) + D

[
�∗]−1 = ∇ · γ (x∗), (3.50)

whereD
[
�∗]−1 is theFrobenius product of thematrixD and thematrix

[
�∗]−1. Furthermore,

by Eq. (3.16) for the prefactor ω, we can link Eq. (3.50) to the dynamics of ω,

dSl(t)

dt
= −d lnω(x∗(t))

dt
. (3.51)
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So far, we have proved the first two expressions (3.47) and (3.48). The following proof is
for the third expression (3.49): By Theorem 3.1, we know the smallest eigenvalue λ∗

1(t) ≡ 0
with its eigenvector tangential to the limit cycle. Therefore, the first term on the right side of
Eq. (3.46) requires a further analysis since

d ln λ∗
1(t)

dt
= 1

λ∗
1(t)

dλ∗
1(t)

dt
= ∞ × 0. (3.52)

To find an explicit formula of (3.52), we can use

d
(
γ T (x∗(t))

[
�∗(t)

]−1
γ (x∗(t))

)

dt
= 0, for all t > 0, (3.53)

since
[
�∗(t)

]−1
γ (x∗(t)) ≡ 0 by Theorem 3.1. By rearranging Eq. (3.53), we find a formula

of Eq. (3.52),

d ln λ∗
1(t)

dt
= −2

d ln ‖γ (x∗(t))‖
dt

, (3.54)

where we use that λ∗
1(t) is the eigenvalue of

[
�∗(t)

]−1 with respect to the eigenvector
γ (x∗(t)). Therefore, by Eqs. (3.46) and (3.54), and with the definition of 1/v(x∗(t)) :=∏n

k=2 λ∗
k(t), the local rate of entropy change on Γ has another expression

dSl(t)

dt
= d ln||γ (x∗(t))||

dt
+ 1

2

d ln v(x∗(t))
dt

. (3.55)

Each expression has a clear physical meaning:

1. The first expression (3.47): The divergence of a vector field characterizes the volume
change of the flow following this vector field. Therefore, the local entropy change can
be considered as a consequence of volume-expanding (entropy-increasing) or volume-
contracting (entropy-decreasing) of the circular flow x∗(t)′ = γ (x∗). This expression of
the entropy balance is corresponding to the microscopic entropy production rate given
by a large number particle system without noise [62,63].

2. The second expression (3.48): Let us compare the rate of free energy change [29] (the

free energy is defined by the relative entropy F(t) = ∫
Rn p(x, t) log

(
p(x,t)
π(x)

)
dx) with

the local rate of entropy change on the limit cycle Γ :

dF(t)

dt
= dϕ(x∗(t))

dt
≡ 0, (3.56)

dSl(t)

dt
= −d lnω(x∗(t))

dt
. (3.57)

The former follows the change of the large-deviation rate function ϕ(x) on the determin-
istic trajectory, which is always zero on the limit cycle due to constant ϕ(x∗(t)); The later
follows the change of − lnω(x∗(t)), where the prefactor ω(x) is known as “degeneracy”
in the classical statistical mechanical terminology [52], which is not constant on the limit
cycle in general.

3. The third expression (3.49): The local entropy balance equation can be decomposed into
two parts

dSl(t)

dt
= d ln||γ (x∗(t))||

dt︸ ︷︷ ︸
dissipative part

+ 1

2

d ln v(x∗(t))
dt︸ ︷︷ ︸

fluctuation part

. (3.58)
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The first part is yielded by the change of speed on the limit cycle, which is determined
from the deterministic path of the dissipative dynamics x∗(t)′ = γ (x∗); The second
part is constituted by the change of the Gaussian fluctuations perpendicular to Γ . The
fluctuation-dissipation theory of nonequilibrium systems by Keizer [17] elucidated the
relation between the fluctuations of a time-inhomogeneous Gaussian process and the
associated dissipative deterministic path. Following this theory,Eq. (3.58) canbe regarded
as a fluctuation-dissipation decomposition of the local entropy balance equation on the
limit cycle.

Remark 3.2 By integrating the second expression (3.48), when the system reaches its steady
state, we have an equation of local entropy near the limit cycle,

Sl(t) = − lnω(x∗(t)) + C, (3.59)

for some constant C . By the equation of entropy (3.59), we know that in the long run, the
entropy of system measured near the limit cycle in the scope of the CLT should be periodic
with the same period of the cycle. On the other hand, the global entropy in the total system
has to be constant in the long run because of the existence of stationary distribution.

Remark 3.3 By the equivalence of the expressions (3.48) and (3.49) in Theorem 3.4, we have
an alternative proof for the constant

√
v(x) × ||ω(x)γ (x)|| on the limit cycle Γ in Theorem

3.3.

4 Related Issue: The Scaling Hypothesis of Diffusion Processes

As the success of thewell-established scaling hypothesis in the continuous-time non-negative
integer valuedMarkov population process nV (t) (it has a law of large number as the system’s
size V → ∞ : V−1nV (t) → c(t), the concentration of all the species [5]), we shall justify
the origin of ε in (3.1) with physical interpretations more than just a mathematical tool.

Let us begin with a diffusion process Y(τ ) ∈ R
n satisfied the following SDE

dY(τ ) = g(Y)dτ + [2D(Y)] 1
2 dB(τ ), (4.1)

where g : Rn → R
n stands for the drift of the process, D : Rn → R

n × R
n is the diffusion

matrix, andB(τ ) is the standard n-dimensional Brownianmotion. Through choosing different
scales, X = Y/α, t = τ/β, the SDE (4.1) can be rescaled as

dX(t) = β

α
g(αX)dt +

√
β

α
[2D(αX)] 1

2 dB(t). (4.2)

We assume a space-time structure β = ξ(α) by a function ξ : R → R, and define a small
parameter ε

ε := ξ(α)/α2 (4.3)

with an implicit solution α∗(ε) of Eq. (4.3). Under this framework, the scaled SDE (4.2)
becomes a sequence of SDEs parameterized by ε

dX(t) = bε(X)dt + [2εDε(X)] 1
2 dB(t), (4.4)

where

bε(x) := ξ(α∗(ε))
α∗(ε)

g
(
α∗(ε)x

)
and Dε(x) := D

(
α∗(ε)x

)
. (4.5)
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In order to observe an emergent phenomenon as ε → 0, we require certain conditions (i)
limε→0 bε(x) = b(x) exists. (ii) limε→0 Dε(x) = D(x) exists. (iii) The convergence of
random processes solved of the SDEs (4.4) in different modes exists [12]. Then the limit
gives us an emergent deterministic dynamics dx(t)/dt = b(x) as ε → 0.

In connection to classical overdamped mechanical motions in a viscous fluid, Eq. (4.4) is
widely called a Langevin equation, and in this case the small parameter ε has been identified
as related to temperature of the system as well as the “scale” under which the mechanical
motion is being observed [9]. In reality, the limit of ε being zero should be interpreted as
particle motions in a “continuous medium at finite temperature” rather than “temperature
asymptotic to zero”. We follow this physical intuition and so called scaling hypothesis [64]
for the origin of ε. The following discussion offers an insight into the connection between our
scaling hypothesis for diffusion processes and the scaling hypothesis for statistical physics
of fields.

The space-time structure defined by the function ξ is rather general. To illustrate our
hypothesis, we focus on a specific space-time structure β = αk and thus the small parameter
is defined as ε := αk−2. In this example, when k < 2, deterministic dynamics emerges
at the macroscopic scale (α → ∞); when k > 2, deterministic dynamics emerges at the
microscopic scale (α → 0). The choice of k depends on the property of the underlying drift
function g and the diffusion functionD. Given g(x) = cxn , c is a constant, andD is a constant
matrix, then the sequence of SDEs (4.4) becomes

dX(t) = ε
k−1+n
k−1 cXndt + [2εD] 1

2 dB(t). (4.6)

In order to fulfill the conditions of convergence, in this example, the order of space-time
structure k must be determined by the order of the underlying drift function n, i.e., k = 1−n.
Hence, the scaled drift function becomes ε-independentwhile the diffusion term is asymptotic
to zero as ε → 0, which gives rise to an emergent deterministic dynamics dx(t) = cxndt .
In other words, as a scientific theory, when we are able to observe deterministic dynamics
dx(t) = cxndt in a “macroscopic” experiment, with an underlying stochastic dynamics
having the drift function g(x) = cxn , n > −1, this experiment must be running by the right
space-time structure β = α1−n .

In addition to the scale of space, by the space-time relation β = α1−n , for the macroscopic
emergent deterministic dynamics (α → ∞), there is a corresponding scale of time for
emergent laws: As−1 < n < 1, the deterministic dynamics emerges in a long-time limit; As
n > 1, it emerges in a short-time limit. So emergent dynamics could be observed at different
combinations of space-time scales, which are determined by n. This scaling exponent is
given by the drift function g of the underlying diffusion process. Therefore, in our scaling
hypothesis for diffusion processes, experimental observation of a power law for the space-
time structure is determined by the underlying physics. So we name it scaling hypothesis,
which upholds the principle of scaling hypothesis for statistical physics of fields [64].

Here we want to introduce two types of celebrated theories which inspired our scaling
hypothesis and point out what the new results we can provide beyond those theories:

1. As we mentioned in Sect. 1.2, the sequence of SDEs (4.4) has been carefully studied in
the text random perturbations of dynamical systems by Freidlin and Wentzell [12]. Our
scaling hypothesis gives ε a physical meaning which was unclear.

2. The Kurtz’s first theorem [5] showed that the ODE model is an emergent model under
the infinite volume limit of the discrete Markov chain model; And the Kurtz’s second
theorem [65] about the CLT for Markov chains is a generalization of a simple random
walk for Donsker’s invariance principle [66]. The main distinction between our scaling
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hypothesis and the scaling used in theKurtz’s theorems is that the former is for a sequence
of scaled stochastic differential equations but the later is for a sequence of the sum over
a scaled Markov chain.

5 Discussions and Applications

In Sect. 2, we provided two preliminaries, Eq. (2.8) in Lemma 2.1 and Eq. (2.33) in Lemma
2.4: The former gives us the dynamics of the covariance of a time-inhomogeneous Gaussian
process and the later characterizes the local curvature of the time-dependent large deviation
function near it infimum. They both have a nice property that the existence of stationary
probability is not required, so it helps us understand transient behaviors of the systems whose
stationary probability may not exist. For example, if a system has unstable macroscopic
deterministic dynamics, we can still compute its transient local Gaussian fluctuations and
curvature of the rate function near the deterministic trajectory.

In Sect. 3, by asymptotic analysis, we characterized the dynamics near a stable limit
cycle, and we found that the prefactor ω in the WKB ansatz plays an important role, which
can be seen in Theorem 3.3 and Theorem 3.4. In contradistinction to the well-established
theories [20,21] of the HJE (3.4) for the large deviation rate function ϕ, to the best of our
knowledge, sophisticatedmathematical analysis of the PDE (3.14) forωmight bemissing and
it is worthy of attention in the future. For applications, the local entropy balance equation
in Theorem 3.4 can help us seek a better understanding of thermodynamic behaviors of
stochastic biological oscillators, e.g., (i) mammalian cell cycles under external noises [30],
(ii) a modified Morris–Lecar conductance-based model of a neuron driven by extrinsic noise
[67], and (iii) Rosenzweig-MacArthur model for predator-prey interactions with the effect
of stochasticity [68].

In Sect. 4, the scaling hypothesis as a scientific theory, it allows us to apply the treatment
to mathematical models of the complex systems whose “noise” does not have a clear origin
as classical overdamped mechanical motions in a viscous fluid described by the Langevin
equation. For example, the hypothesis could be used to the models of mechanical motions in
biology with noise due to coarse graining. In addition to the justification of small parameter
ε itself, this hypothesis may give us a clarification of the origin of ε-dependent drift function
b. It is known that there are two types of integrals for SDEs:

dX(t) = bI (X)dt + [2εD(X)] 1
2 dB(t) (Itô interpretation), (5.1)

dX(t) = bS(X)dt + [2εD(X)] 1
2 ◦ dB(t) (Stratonovich interpretation). (5.2)

The former is commonly used in mathematical analysis and financial mathematics and the
later is mostly applied in physics and engineering. Note that

bI (x) = bS(x) + ε∇ · D(x). (5.3)

Follow the scaling hypothesis, the existence of the extra ε-order term in Eq. (5.3) could be
a corollary of the existence of higher-order terms in the underlying drift function before
scaling. This hypothesis provides us a link between the two types of integral. It might help
us to unravel the mystery of Itô - Stratonovich dilemma [9,18,69] in the future.
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Appendix

Proofs of Lemmas 2.2 and 2.3

Proof of Lemma 2.2

Proof For the special case of x ∈ R, Θ = 3, Λ = 15, and Ξ = [h′′(x∗)]−1. Then Eq. (2.25)

η(x∗) = f ′′(x∗)
2h′′(x)

−
[
f ′(x∗)h′′′(x∗)
2[h′′(x∗)]2 + f (x∗)h′′′′(x∗)

8[h′′(x∗)]2
]

+ 5 f (x∗)[h′′′(x∗)]2
24[h′′′(x∗)]3 .

This result can be found on P. 273 of [53], Eq. (6.4.35).
For the general case,

∫

Rn
f (x)e− h(x)

ε dx

=
∫

Rn

[
f (x∗) + (x − x∗) · ∇ f (x∗) + (x − x∗)T∇∇ f (x∗)(x − x∗)

2
+ . . .

]

× exp

[
− h(x∗)

ε
− (x − x∗)i h′′

i j (x
∗)(x − x∗) j

2ε
− h′′′

i jk(x
∗)(x − x∗)i (x − x∗) j (x − x∗)k

6ε

− h′′′′
i jk
(x

∗)(x − x∗)i (x − x∗) j (x − x∗)k(x − x∗)

24ε

+ · · ·
]
dx

= e− h(x∗)
ε

∫

RN

[
f (x∗) + (x − x∗) · ∇ f (x∗) + (x − x∗)T∇∇ f (x∗)(x − x∗)

2
+ . . .

]

×
[
1 − h′′′

i jk(x
∗)

6ε
(x − x∗)i (x − x∗) j (x − x∗)k − h′′′′

i jk
(x
∗)

24ε
(x − x∗)i (x − x∗) j

× (x − x∗)k(x − x∗)
 +
[
h′′′
i jk(x

∗)(x − x∗)i (x − x∗) j (x − x∗)k
]2

72ε2
+ · · ·

⎤

⎦

×e− (x−x∗)T ∇∇h(x∗)(x−x∗)
2ε dx

= e− h(x∗)
ε

∫

Rn
e− (x−x∗)T ∇∇h(x∗)(x−x∗)

2ε
[
f (x∗) + (x − x∗) · ∇ f (x∗)

+ (x − x∗)T∇∇ f (x∗)(x − x∗)
2

− f (x∗)h′′′
i jk(x

∗)
6ε

(x − x∗)i (x − x∗) j (x − x∗)k

−
(

f ′
i (x

∗)h′′′
jk
(x

∗)
6ε

+ f (x∗)h′′′′
i jk
(x

∗)
24ε

)
(x − x∗)i (x − x∗) j (x − x∗)k(x − x∗)


+ f (x∗)[h′′′
i jk(x

∗)(x − x∗)i (x − x∗) j (x − x∗)k ]2
72ε2

+ · · ·
]
dx

=
√

(2πε)N

det
[∇∇h(x∗)

] e− h(x∗)
ε

{
f (x∗) + ε f ′′

i j (x
∗)

2
Ξi j (x∗)
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−ε

[
f ′
i (x

∗)h′′′
jk
(x

∗)
6

+ f (x∗)h′′′′
i jk
(x

∗)
24

]
Ξ

1
2
iμΞ

1
2
jνΞ

1
2
kρΞ

1
2


κΘμνρκ

+ ε

(
f (x∗)[h′′′

i jk(x
∗)]2

72

)
Ξ

− 1
2

iμ Ξ
− 1

2
iμ′ Ξ

− 1
2

jν Ξ
− 1

2
jν′ Ξ

− 1
2

kρ Ξ
− 1

2
kρ′ Λμμ′νν′ρρ′ + · · ·

}
. (6.1)

A multivariate normal distribution with covariance matrix Ξ , which is positive definite

thus Ξ = Ξ
1
2 Ξ

T
2 [70], has

1
[(
2πε

)N det
(
Ξ
)] 1

2

∫

Rn
f ′′
i j (0)xi x j exp

[
− 1

2ε
xTΞ−1x

]
dx

= εΞ
1
2
iνΞ

1
2
jμ f ′′

i j (0)

(2π)N/2

∫

Rn
yν yμ exp

[
−yT y

2

]
dy = ε f ′′

i j (0)Ξi j ,

the Frobenius product of the Hessian matrix and covariant matrix Ξ ,

[(
2πε

)n det
(
Ξ
)]− 1

2
∫

Rn
f ′′′
i jk(0)xi x j xk exp

[
− 1

2ε
xTΞx

]
dx = 0,

[(
2πε

)n det
(
Ξ
)]− 1

2
∫

Rn
f ′′′′
i jk
(0)xi x j xk x
 exp

[
− 1

2ε
xTΞx

]
dx

= ε2 f ′′′′
i jk
(0)Ξ

1
2
iμΞ

1
2
jνΞ

1
2
kρΞ

1
2

κΘμνρκ ,

[(
2πε

)n det
(
�
)]− 1

2
∫

Rn
f ′′′
i jk(0)x

2
i x

2
j x

2
k exp

[
− 1

2ε
xTΞx

]
dx

= ε3
(
2π
)− n

2 f ′′′
i jk(0)Ξ

− 1
2

iμ Ξ
− 1

2
iμ′ Ξ

− 1
2

jν Ξ
− 1

2
jν′ Ξ

− 1
2

kρ Ξ
− 1

2
kρ′

∫

Rn
yμyμ′ yν yν′ yρ yρ′ exp

[
−yT y

2

]
dx

= ε3 f ′′′
i jk(0)Ξ

− 1
2

iμ Ξ
− 1

2
iμ′ Ξ

− 1
2

jν Ξ
− 1

2
jν′ Ξ

− 1
2

kρ Ξ
− 1

2
kρ′ Λμμ′νν′ρρ′ .

Applying (2.23) to both numerator and denominator of the lhs of (2.24),

f (x∗) + ε

⎧
⎪⎨

⎪⎩

f ′′
i j (x

∗)Ξi j

2 −
[

f ′
i (x

∗)h′′′
jk
(x

∗)
6 + fα(x∗)h′′′′

i jk
(x
∗)

24

]
Ξ

1
2
iμΞ

1
2
jνΞ

1
2
kρΞ

1
2

κΘμνρκ

+ f (x∗)[h′′′
i jk (x

∗)]2
72 Ξ

− 1
2

iμ Ξ
− 1

2
iμ′ Ξ

− 1
2

jν Ξ
− 1

2
jν′ Ξ

− 1
2

kρ Ξ
− 1

2
kρ′ Λμμ′νν′ρρ′

⎫
⎪⎬

⎪⎭
+ O(ε2)

1 + ε

⎧
⎪⎨

⎪⎩

−
[
h′′′′
i jk
(x

∗)
24

]
Ξ

1
2
iμΞ

1
2
jνΞ

1
2
kρΞ

1
2

κΘμνρκ

+[h′′′
i jk (x

∗)]2
72 Ξ

− 1
2

iμ Ξ
− 1

2
iμ′ Ξ

− 1
2

jν Ξ
− 1

2
jν′ Ξ

− 1
2

kρ Ξ
− 1

2
kρ′ Λμμ′νν′ρρ′

⎫
⎪⎬

⎪⎭
+ O(ε2)

= f (x∗) + ε

⎡

⎣ f ′′
i j (x

∗)Ξi j

2
− f ′

i (x
∗)h′′′

jk
(x
∗)Ξ

1
2
iμΞ

1
2
jνΞ

1
2
kρΞ

1
2

κΘμνρκ

6

⎤

⎦+ O(ε2).

Proof of Lemma 2.3

We only provide the proof for the case x ∈ R
1, which is denoted by x . For higher dimensions,

results are the same by using the notations from Lemma 2.2.
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Proof Let the global minimum of [h(x)−ε ln g(x)] be at x̃∗ = x∗+Δx(ε). Clearly,Δx → 0
as ε → 0. In fact,

[
h′(x) − ε

(
g′(x)
g(x)

)]

x=x∗+Δx
= 0,

h′(x∗) + h′′(x∗)Δx − ε

(
g′(x∗)
g(x∗)

)
= 0,

Δx = ε

(
g′(x∗)

g(x∗)h′′(x∗)

)
+ O

(
ε2
)
.

Now we apply the Eq. (2.24) in Lemma 2.2:
∫ ∞

−∞
f (x)g(x)e− h(x)

ε dx
∫ ∞

−∞
g(x)e− h(x)

ε dx
=

∫ ∞

−∞
f (x)e− h(x)−ε ln g(x)

ε dx
∫ ∞

−∞
e− h(x)−ε ln g(x)

ε dx

= f (x̃∗) + ε

[
f ′′(x̃∗)
2h′′(x̃∗)

− f ′(x̃∗)h′′′(x̃∗)
2[h′′(x̃∗)]2

]
+ O(ε2),

= f (x∗) + ε

(
f ′(x∗)g′(x∗)
g(x∗)h′′(x∗)︸ ︷︷ ︸

f ′(x∗)Δx due to g(x)

+ f ′′(x∗)
2h′′(x∗)︸ ︷︷ ︸
due to f (x)

− f ′(x∗)h′′′(x∗)
2[h′′(x∗)]2

)

︸ ︷︷ ︸
due to non-quadratic h(x)

+O(ε2). (6.2)

For the terms on the order of ε, replacing x̃∗ by x∗ only affects the order ε2 term.

Proof of Lemma 6.1

Here we provide an additional Lemma, which is not used in the present work, but it is useful
for related fields.

Lemma 6.1
∫ ∞

−∞
f 2(x)g(x)e− h(x)

ε dx
∫ ∞

−∞
g(x)e− h(x)

ε dx
−

⎡

⎢⎢⎣

∫ ∞

−∞
f (x)g(x)e− h(x)

ε dx
∫ ∞

−∞
g(x)e− h(x)

ε dx

⎤

⎥⎥⎦

2

= ε

(
f ′2(x∗)
h′′(x∗)

)
+O

(
ε2
)
. (6.3)

Proof
∫ ∞

−∞
f 2(x)g(x)e− h(x)

ε dx
∫ ∞

−∞
g(x)e− h(x)

ε dx
−

⎡

⎢⎢⎣

∫ ∞

−∞
f (x)g(x)e− h(x)

ε dx
∫ ∞

−∞
g(x)e− h(x)

ε dx

⎤

⎥⎥⎦

2

= ε

(
2 f (x∗) f ′(x∗)g′(x∗)

g(x∗)h′′(x∗)
+ 2 f ′2(x∗) + 2 f (x∗) f ′′(x∗)

2h′′(x∗)
− 2 f (x∗) f ′(x∗)h′′′(x∗)

2[h′′(x∗)]2
)

−2ε f (x∗)
(

f ′(x∗)g′(x∗)
g(x∗)h′′(x∗)

+ f ′′(x∗)
2h′′(x∗)

− f ′(x∗)h′′′(x∗)
2[h′′(x∗)]2

)
+ O

(
ε2
)

= ε

(
f ′2(x∗)
h′′(x∗)

)
+ O

(
ε2
)
. (6.4)
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Proof of Theorem 3.3

Proof Given x1 ∈ Γ , let P1 be a plane containing x1 and perpendicular to the vector γ (x1).
Given another point x2 ∈ Γ , letP2 be a plane perpendicular to the vector γ (x2). Let S1 ⊂ P1

and S2 ⊂ P2 be compact sets such that

max
x,y∈S1

||x − y|| = max
x,y∈S2

||x − y|| = δ > 0. (6.5)

We then can define a tube Φ(δ) with two side boundaries S1 and S2 and Γ ⊂ Φ(δ).
Recall that γ ε(x) = πε(x)−1J[πε(x)]. By the stationary Fokker-Planck equation, we have

that

∇ · (γ ε(x)πε(x)) = 0, for all x ∈ R
n . (6.6)

Furthermore, by the Gauss’s theorem,

∫

S

(
γ ε(x)πε(x) · n)dS =

∫

V

(∇ · (γ ε(x)πε(x)
)
dV = 0, (6.7)

where S in the surface of Φ(δ), n is the outward normal vector to S, and V is the volume of
Φ(δ).

For the left hand side of Eq. (6.7), it can be written as a sum of three terms

∫

S

(
γ ε(x)πε(x) · n)dS =

∫

S1

(
γ ε(x)πε(x) · n)dS1 +

∫

S2

(
γ ε(x)πε(x) · n)dS2

+
∫

S3

(
γ ε(x)πε(x) · n)dS3, (6.8)

in which S3 is the lateral surface of Φ(δ) and S3 ∩ Γ = ∅.
For every y ∈ Γ , we denote Sy := Φ(δ) ∩ Py, Py is the plane perpendicular to γ (y). By

Lemma 2.2,

∫
Sy

f (x)e
−ϕ(x)

ε dSy
∫
Sy

e
−ϕ(x)

ε dSy
= f (y) + O(ε), (6.9)

for any continuous and bounded function f : Rn → R. Furthermore, by the definition of
function v in Lemma 3.3, we can approximate the ratio of two integrals

∫
Sy

e
−ϕ(x)

ε dSy
∫
S1

e
−ϕ(x)

ε dS1
=

√
2πεv(y)e

−ϕ(y)
ε

√
2πεv(x)e

−ϕ(x1)

ε

+ O(ε) =
√

v(y)√
v(x1)

+ O(ε), (6.10)

in which we use Laplace’s method in the first equality and ϕ ≡ 0 on Γ in the second equality.
To choose f (x) = ω(x) for Eq. (6.9), combined with the result of (6.10), we can obtain

∫
Sy

ω(x)e
−ϕ(x)

ε dSy
∫
S1

e
−ϕ(x)

ε dS1
= ω(y)

√
v(y)√

v(x1)
+ O(ε). (6.11)
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Since the function e− ϕ(x)
ε is concentrated near Γ , we can further approximate the normaliza-

tion factor
∫
Rn ω(x)e

−ϕ(x)
ε dx as follows

∫
Rn ω(x)e

−ϕ(x)
ε dx

∫
S1

e
−ϕ(x)

ε dS1
=
∫
Γ

∫
Sy

ω(x)e
−ϕ(x)

ε dSydy
∫
S1

e
−ϕ(x)

ε dS1
+ O(ε). (6.12)

By (6.11) and (6.12), we have that
∫
Rn ω(x)e

−ϕ(x)
ε dx

∫
S1

e
−ϕ(x)

ε dS1
=
∫
Γ

ω(y)
√

v(y)dy√
v(x1)

+ O(ε). (6.13)

By the WKB expansion of πε in Eq. (3.6), with Eq. (6.13), the first term on the right hand
side of Eq. (6.8) can be written as

∫

S1

(
γ ε(x)πε(x) · n)dS1 =

∫
S1

(
γ ε(x) · n)ω(x)e

−ϕ(x)
ε dS1

∫
Rn ω(x)e

−ϕ(x)
ε dx

=
( √

v(x1)∫
Γ

ω(y)
√

v(y)dy

)⎛

⎝
∫
S1

(
γ ε(x) · n)ω(x)e

−ϕ(x)
ε dS1

∫
S1

e
−ϕ(x)

ε dS1

⎞

⎠+ O(ε).

(6.14)

Note that γ ε(x) → γ (x). Without loss of generality, we assume that γ (x1) is inflow and
γ (x2) is outflow of Φ(δ). To choose f (x) = (

γ ε(x) · n)ω(x) for Eq. (6.9), combined with
Eq. (6.14), we then obtain

∫

S1

(
γ ε(x)πε(x) · n)dS1 → −C

√
v(x1)ω(x1)||γ (x1)|| as ε → 0, (6.15)

in which the constant C = 1/
∫
Γ

ω(y)
√

v(y)dy. By the same approach, the second term on
the right hand side of Eq. (6.8) has a convergence

∫

S2

(
γ ε(x)πε(x) · n)dS2 → C

√
v(x2)ω(x2)||γ (x2)|| as ε → 0. (6.16)

Since S3 ∩ Γ = ∅, the third term
∫

S3

(
γ ε(x)πε(x) · n)dS3 → 0 as ε → 0. (6.17)

To apply the results (6.15), (6.16), and (6.17) to the equations (6.7) and (6.8), we can show
that

∣∣∣C
√

v(x1)ω(x1)||γ (x1)|| − C
√

v(x2)ω(x2)||γ (x2)||
∣∣∣ = 0. (6.18)

Since Eq. (6.18) holds for every pair of two points on Γ ,
√

v(x)ω(x)||γ (x)|| is constant on
Γ .

For x ∈ Γ , the marginal density can be approximated by

gε(x) =
∫
Rn\Γ ω(y)e

−ϕ(y)
ε dy

∫
Rn ω(y)e

−ϕ(y)
ε dy

=
∫
Sx

ω(y)e
−ϕ(y)

ε dSx
∫
Rn ω(y)e

−ϕ(y)
ε dy

+ O(ε) = ω(x)
√

v(x)∫
Γ

ω(y)
√

v(y)dy
+ O(ε),

(6.19)
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which follows the steps from Eqs. (6.9) to (6.14) with choosing γ ε(x) · n = 1. Furthermore,
since

√
v(x)ω(x)||γ (x)|| is constant on Γ , with the result (6.19), there exists a constant K

such that

gε(x)||γ (x)|| = K + O(ε). (6.20)
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