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Abstract
We discuss the combined effects of overdamped motion in a quenched random potential
and diffusion, in one dimension, in the limit where the diffusion coefficient is small. Our
analysis considers the statistics of themeanfirst-passage time T (x) to reach position x , arising
from different realisations of the random potential. Specifically, we contrast the median
T̄ (x), which is an informative description of the typical course of the motion, with the
expectation value 〈T (x)〉, which is dominated by rare events where there is an exceptionally
high barrier to diffusion. We show that at relatively short times the median T̄ (x) is explained
by a ‘flooding’ model, where T (x) is predominantly determined by the highest barriers
which are encountered before reaching position x . These highest barriers are quantified
using methods of extreme value statistics.

Keywords Diffusion · Ornstein-Uhlenbeck process

1 Introduction

There are many situations where particles move under the combined influence of thermal
diffusion and a static (or quenched) random potential [1]. The particles might be electrons,
holes or excitons diffusing in a disorderedmetallic or semiconductor sample [2], ormolecules
diffusing in a complex environment such as the cytoplasm of a eukaryotic cell [3]. Some
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significant aspects of the state of knowledge of this problem are surprisingly under-developed,
and in this work we present new results on the simplest version of this problem, in one
dimension, where the equation of motion is

ẋ = −dV

dx
+ √

2D η(t) . (1)

Here V (x) is a random potential, D is the diffusion coefficient, and η(t) is a white noise
signal with statistics defined by

〈η(t)〉 = 0 , 〈η(t)η(t ′)〉 = δ(t − t ′) (2)

(〈·〉denotes expectation value throughout).Weassume thatV (x) is a smooth random function,
defined by its statistical properties, which are stationary in x , and independent of the temporal
white noise η(t). The one and two-point statistics of this potential are

〈V (x)〉 = 0 , 〈V (x)V (x ′)〉 = C(x − x ′) . (3)

The correlation functionC(Δx) is assumed to be smooth and to decay rapidly as |Δx | → ∞.
We also assume that the tails of the distribution of V are characterised by a large-deviation
‘rate’ (or ‘entropy’) function J (V ), so that when |V | is large, the probability density function
of V is approximated by

PV ∼ exp[−J (V )] (4)

where throughout we shall use PX to denote the probability density function (PDF) of a
random variable X . If PV is a Gaussian distribution, then the entropy function is quadratic,
J (V ) ∼ V 2/2C(0).

A cluster of particles which is released from x = 0 at time t = 0 are considered to evolve
under different realisations of the temporal noise η(t), with the potential V (x) frozen. We
use the term dispersion of the particles in a statistical sense, which may be described by
specifying the probability density p(x, t) of x at a given time t . This probability density
function (PDF) is a functional of the potential V (x), and we wish to understand averages
over the function V (x). It has been proposed that the behaviour of this system is diffusive
(in a sense which will be made well-defined in Sect. 2.1 below). When V (x) has a Gaussian
distribution, Zwanzig [4] gave an elegant argument which implies that the effective diffusion
coefficient vanishes very rapidly as D → 0:

Deff ∼ D exp

[
−C(0)

D2

]
. (5)

An earlier work by De Gennes [5] proposes a similar expression.We discuss the origin of this
result, and present a generalisation of it to non-Gaussian distributions, in Sect. 2. When D is
small, this estimate for the diffusion coefficient depends upon rare events where the potential
is unusually large, and it is very difficult to verify equation (5) numerically. In addition,
numerical experiments show that at relatively early times, the model exhibits subdiffusive
behaviour and it has been suggested that there is a regime of anomalous diffusion, in the sense
that 〈x2〉 ∼ tα , with 0 < α < 1 [6–8]. It is desirable to achieve an analytical understanding
of the sub-diffusive behaviour which is observed in numerical simulations of (1).

We should mention that there are also exact results [9–11] on a closely related model
(motion in a quenched velocity field, which is not the derivative of a potential with a well-
defined probability distribution) showing that 〈x2〉 ∼ (ln t)4. This ‘Sinai diffusion’ process is
fundamentally different, because the particle becomes trapped in successively deeperminima
of the potential, fromwhich it takes ever increasing time intervals to escape. The Sinai model
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has been extended to consider a periodised randompotential, so that the long-time dynamics is
diffusive: in this case it is found [12] that the diffusion coefficient has a very broad probability
distribution, and these studies have inspired other works on dispersion in the presence of
traps, of which [13] is a recent example. Another related problem is the motion of a quantum
particle in a statistically homogeneous random potential which exhibits even slower spatial
dispersion: it may be completely localised [14], and in one or two dimensions localisation is
almost certain [15,16]: see [17] for a review.

Very little can be deduced from the equation of motion (1) directly. Because the equation
of motion contains random elements, we must characterise the solution statistically. We
could try to estimate the probability distribution p(x, t) of position x at a given value of time
t , and hence compute the variance 〈x2〉. We shall adopt an alternative approach, however,
considering the statistics of the mean time T taken for first passage of a marker at distance
x from the starting point (averaging with respect to the noise, η(t)). We will argue that,
while equation (5) and its generalisation to non-Gaussian distributions describes the long-
time asymptote of the spatial dispersion of particles, the diffusive behaviour only emerges at
very long times. At intermediate times, the dynamics of typical realisations is not diffusive.
We show that it is determined by the time taken to diffuse across the largest potential barrier
which must be traversed to reach position x . The diffusion process is able to traverse a barrier
of height ΔV after a characteristic time T ∼ exp(ΔV /D) [18], and as time increases the
height of the barriers which can be breached, leading to ‘flooding’ of the region beyond,
increases. According to this picture, the dispersion distance x is determined by a problem
in extreme value statistics: how large must x be before we reach a barrier of height ΔV ≈
D ln t? Figure 4(b) from our numerical results in Sect. 5 gives a graphic illustration of this
flooding process in action. The figure plots T (x) against x on a logarithmic scale, for a fixed
realisation of the potential. As T increases, the region which is accessible increases in steps,
corresponding to potential barriers becoming penetrable as the time is increased.

Zwanzig’s calculation [4] considers a double-average of the first-passage time: if T (x)
is the time for first passage of x , averaged over the noise η, Zwanzig considers the mean
value 〈T (x)〉 averaged over the realisations of the potential. We argue that this approach
does not give a reliable indication of the typical motion because the mean is dominated by
realisations where T (x) is unusually large, as a consequence of an unusually large potential
barrier. Hence, we propose to characterise the dispersion by evaluating the median T̄ (x)
(that is, the value of T (x)which is exceeded for exactly half of the realisations of V (x)). The
median is, by definition, a good description of a typical realisation. We show that the median
T̄ (with respect to different realisations of the potential V (x)) of the mean-first-passage-time
(averaged over η(t)) satisfies

ln
( x
x̃

)
∼ J (D ln T̄ /2) (6)

where x̃ is a lengthscale which characterises the typical distance between extrema of the
potential. In the case where the potential has a Gaussian distribution, this implies that the
dispersion is subdiffusive, satisfying

ln
( x
x̃

)
∼ D2(ln T̄ )2

8C(0)
(7)

which is quite distinct from the usual anomalous diffusion behaviour, characterised by power-
laws such as 〈x2〉 ∼ tα . After a sufficiently long time, the dynamics becomes diffusive, with
a diffusion coefficient given by (5).
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Our arguments will depend upon making estimates of sums of the form

SN =
N∑
j=1

exp( f j/ε) (8)

where f j are independent identically distributed (i.i.d.) random variables, and ε is a small
parameter, which we identify with the diffusion coefficient D. We refer to SN as ‘extreme-
weighted sums’, because the largest values of f j make a dominant contribution to SN as
ε → 0. In Sect. 2 we show how the mean-first-passage time is related to sums like (8), and in
Sect. 3 we analyse some of their statistics, which are used in Sect. 4 to justify our principle
result, equation (6). Section 5 describes our numerical investigations, and Sect. 6 summarises
our findings.

2 TheMean First Passage Time

Our discussion of the dynamics of (1) will focus on the mean first passage problem: what
is the mean time T (x) at which a particle released from the origin reaches position x . First
passage problems are discussed comprehensively in the book by Redner [19]. The result
that we require can be found in multiple sources: it is based on the method introduced by
Pontryagin et al. [20] and has been applied in several contexts, for example in [21] to describe
self-diffusion of ions in a polyelectrolyte solution. The key formula, equation (9) below, was
already applied to equation (1) by Zwanzig [4].

In this section we first quote the general formula for the mean first passage time T (x), as
a functional of the potential V (x). In order to simplify the discussion, we consider the case
where there is a reflecting barrier at the origin, x = 0. If particles are released at x0 = 0, the
mean first passage time to reach position x is given by (see, e.g., [22])

T (x) = 1

D

∫ x

0
dy exp[V (y)/D]

∫ y

0
dz exp[−V (z)/D] (9)

where the averaging is with respect to realisations of the noise η(t) in the equation of motion
(1), with V (x) frozen, so that T (x) is a functional of V (x).

We then (Sect. 2.1) discuss the result obtained by Zwanzig [4] for the expectation value
〈T (x)〉 (averaged with respect to realisations of V (x)). Zwanzig gave the result for a potential
with Gaussian fluctuations, which we extend to the case of a general form for the large-
deviation entropy function (as defined by equation (4)). The result obtained by Zwanzig
suggests that the dispersion is diffusive, with a diffusion coefficient Deff which vanishes in
a highly singular fashion as D → 0. We shall argue that this result is a consequence of the
expectation value of T (x) being dominated by very rare large excursions of the potential
V (x), and that for typical realisations of the potential the dispersion is much more rapid than
the value of 〈T (x)〉 suggests. This requires a more delicate analysis of the structure of the
integrals in the expression for T (x), equation (9). In Sect. 2.2, we discuss how these integrals
may be approximated by sums, analogous to (8), in the limit as D → 0.
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2.1 Expression for ExpectationValue of Mean First Passage Time

Wecanmake an additional average of (9),with respect to different realisations of the potential,
which leads to

〈T (x)〉 = 1

D

∫ x

0
dy

∫ y

0
dz

〈
exp

[
V (y) − V (z)

D

] 〉

∼ x2

2D
〈exp(−V /D)〉〈exp(V /D)〉 (10)

where in the second line we consider the leading order behaviour as x → ∞ (where most
of the contribution to the double integral is from values of x and y which are separated by a
distance which is much larger than the correlation length of the potential, so that V (x) and
V (y) can be treated as independent random variables). If the motion were simple diffusion,
withV = 0, equation (9)would evaluate immediately to 〈T 〉 = x2/2D, so that it is reasonable
to identify x2/2〈T 〉 as the effective diffusion coefficient. Hence, assuming that the PDF of
V (x) is symmetric between V and −V , we have

Deff = D[〈exp(V /D)〉]2 . (11)

The mean first passage time T (x) must have a very broad distribution. It might be difficult
to extract the diffusion coefficient from time series (see discussion in [23]) and it might be
questioned whether the motion really is diffusive. In this regard, we note that the central limit
theorem is applicable to the quantity T (x) obtained by equation (9) in the limit as x → ∞, so
that x2/2T (x) does approach a limit, which we identify as the effective diffusion coefficient.

WhenD is small, 〈exp(V /D)〉 is dominatedby the tail of thePDFofV , and this expectation
value is obtained using the Laplace method [24] which utilises the fact that as ε → 0 the
integral of exp[ f (x)/ε] is well approximated using the Taylor series of f about its maximum.
Using this approach, we obtain

〈exp(V /D)〉 =
∫ ∞

−∞
dV PV exp(V /D)

∼
∫ ∞

−∞
dV exp[V /D − J (V )]

∼
√

2π

J ′′(V ∗)
exp[V ∗/D − J (V ∗)] (12)

where V ∗ is the stationary point of the exponent, satisfying

DJ ′(V ∗) = 1 . (13)

(We assume that PV has a faster than exponential decay, so that V −DJ (V ) has amaximum.)
From this we obtain

Deff ∼ DJ ′′(V ∗)
2π

exp

[
2J (V ∗) − 2V ∗

D

]
. (14)

In the Gaussian case, where

J (V ) = V 2

2C(0)
+ 1

2
ln(2πC(0)) (15)

equation (14) agrees with (5).
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2.2 Summation Approximations

In order to understand the implications of equation (9), we should consider the behaviour of
the integral

S(x) =
∫ x

0
dy exp[−V (y)/D] (16)

in the limit as D → 0. When D is small this quantity may be estimated (using the Laplace
method to capture the contribution from each of the minima of the potential):

S(x) ∼
N∑
j=1

√
2πD

V ′′−
j

exp(−V−
j /D) ≡

N∑
j=1

exp[−Ṽ−
j /D] (17)

where V−
j are the values of the N minima between 0 and x , occurring at positions x−

j , and
where we have defined

Ṽ−
j = V−

j − D

2
ln

(
2πD

|V ′′−
j |

)
. (18)

Note that

T (x) = 1

D

∫ x

0
dy exp[V (y)/D]S(y) (19)

and consider how to estimate T (x) in the limit as D → 0. Note that S(y) is determined by the
values of the minima of V (y) in the interval [0, y], jumping by an amount exp[−Ṽ−

j /D] at
x−
j . Similarly, if V+

j are local maxima of V (x), occurring at positions x+
j , then T (x) jumps at

local maxima. The evolution of S(x) and T (x) are therefore determined by a pair of coupled
maps:

S → S′ = S + exp[−Ṽ−
j /D] (at minima x−

j )

T → T ′ = T + 1
D exp[Ṽ+

j /D]S (at succeeding maximum x+
j )

(20)

where we have defined again Ṽ+
j = V+

j + D
2 ln

(
2πD
|V ′′+|

)
. These equations are difficult to

analyse in the general case, but in the next section we discuss an approach which can be used
to treat the limit where D is small.

3 Statistics of Extreme-Weighted Sums

This section draws on extreme value statistics. We refer the reader to [25–27] for an intro-
duction to extreme value statistics and applications in statistical mechanics, and we mention
[28] as an example of recent work which uses extreme value statistics as a tool to analyse
stochastic models for dispersion.We have seen that when D is small the integrals defining the
mean first passage time are approximated by sums over extrema of the potential, as described
by equation (17). Accordingly, we study properties of random sums of the form

SN =
N∑
j=1

exp( f j/ε) (21)
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where ε is a small parameter and where the f j are random numbers drawn from a probability
distribution function Pf . We also define the complementary cumulative distribution function
(tail distribution) describing the probability for f j being greater than f as Q( f ). In the case
where f has a Gaussian distribution, Eq. (21) is a sum of log-normal distributed random
variables. There is some earlier literature on these sums which shows very little overlap with
our results, see [29] and references therein, also [30], which discusses a phase transition that
arises in a limiting case.

We also consider sums of the form

TN =
N∑

n=1

exp(gn/ε)Sn (22)

where g j are i.i.d. random numbers drawn from the same distribution as the f j . Equations
(21) and (22) are models for the summation which approximate the integrals S(x) and T (x)
defined by equations (16) and (19), respectively, where we have assumed that the potential
V has a symmetric distribution. In the context of our analysis of T (x), the random variables
f j and g j are identified with extrema of the potential, −V̂−

j and +V̂+
j respectively. The sum

(21) is, however, also an object which is of interest in its own right (with broader applications,
such as those considered in [29,30]). When ε is sufficiently small, these sums are determined
by the largest values of f j and g j , and for this reason we shall refer to SN and TN as
extreme-weighted sums.

In this section we find it convenient to write the tail distribution function for f in the form

Q( f ) = exp[−J ( f )] (23)

where J ( f ) is a large deviation rate function (note that this is defined in terms of the
cumulative probability function, as opposed to the definition based upon probability density
used in equation (4)).

We are interested in the asymptotic behaviour of statistics of the sums SN and TN for small
ε and large N . The sums vary wildly in magnitude and the mean is dominated by the tail of
the distribution of f . Unless N is sufficiently large, values of f j which determine the mean
are unlikely to be sampled. This suggests that it will be useful to characterise the distribution
of the SN by the median, rather than the mean. We denote the median of a quantity X by X̄
and its expectation by 〈X〉.

We consider an estimate of the median of SN in some detail in Sect. 3.1, leading to a
quite precise formula, equation (42). However, the sum TN is a model for the mean first
passage time. Extending the approach, which yields equation (42), to encompass the more
complex structure of the TN sum would be very cumbersome. Accordingly, in Sect. 3.2 we
simplify equation (42) by confining our attention to its leading-order behaviour as ε → 0 and
N → ∞, and extending these asymptotic formulae to describe the median of the TN . Our
estimate for the median of TN is contained in equations (50) and (51), which are expressed
in terms of logarithmic variables defined in (43).

3.1 Estimate of Median of SN

The sum SN may be well approximated by its largest term, which is

sN = exp( f̂ /ε) (24)
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where f̂ is the largest of the N realisations, f j , with index j = ĵ . We write

SN ≡ exp[ f̂ /ε]F ≡ sN F (25)

where

F = 1 +
N∑
j=1
j �= ĵ

exp[−( f̂ − f j )/ε] . (26)

If F is close to unity, we can estimate S̄N by s̄N . Let us first estimate s̄N and return to consider
F later. Note that

s̄N = exp( ¯̂f /ε) ≡ exp( f †/ε) (27)

where we have defined f † = ¯̂f as the median of the largest value of N samples from the
distribution of f . The value of f † is determined by requiring that the probability that N
samples of f are all less than f † is equal to one half. This condition is:

[
1 − Q( f †)

]N = 1

2
. (28)

When N 
 1, this is determined by the tails of the distribution, where Q( f ) is approximated
using (23):

exp
[−N exp[−J ( f †)]] = 1

2
(29)

so that f † satisfies

ln N − ln ln 2 = J ( f †) . (30)

An important special case is where f has a Gaussian distribution, so that in the case where
〈 f 〉 = 0 and 〈 f 2〉 = 1,

Q( f ) = 1√
2π

∫ ∞

f
dx exp(−x2/2) ∼ 1√

2π f
exp(− f 2/2) (31)

implying that

J ( f ) = f 2

2
+ ln f + ln (2π)

2
(32)

so that

f †
2

2
+ ln f † = ln N − ln ln 2 − ln (2π)

2
. (33)

In the limit where N is extremely large, we can approximate f † by

f † ∼ √
2 ln N (34)

and consequently the median of s̄N is approximated by

s̄N ∼ exp

(√
2 ln N

ε

)
. (35)
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Next consider how to estimate the quantity F in equation (25), when ε � 1. When N 
 1,
either F is close to unity or else it is the sum of a large number of terms which make a
comparable contribution. The value of F depends upon f̂ . The f j which contribute to F are
i.i.d. random variables, each with a PDF which is the same as that of the general f j , except
that there is an upper cutoff at f̂ : the adjustment of the normalisation due to the loss of the
tail, f > f̂ , can be neglected. Consider the PDF of f written as

Pf = exp[−J ( f )] (36)

where J ( f ) is a large deviation rate function. The expectation value of F is then obtained as
follows

exp( f̂ /ε)[〈F〉 − 1] = (N − 1)
∫ f̂

−∞
d f P f exp( f /ε)

∼ N
∫ f̂

−∞
d f exp[ f /ε − J ( f )]

∼ N exp[ f ∗/ε − J ( f ∗)]√
J ′′( f ∗)/2

∫ √
J ′′( f ∗)/2( f̂ − f ∗)

−∞
dy exp(−y2) (37)

where f ∗ satisfies

ε J ′( f ∗) = 1 . (38)

Noting that

〈SN 〉 = N 〈exp( f /ε)〉 ∼ √
2π

N exp[ f ∗/ε − J ( f ∗)]√
J ′′( f ∗)

(39)

we have

exp( f̂ /ε)[〈F〉 − 1] ∼ 〈SN 〉1
2

[
1 + erf

(√
J ′′( f ∗)

2
( f̂ − f ∗)

)]
. (40)

Hence, we obtain a rather simple approximation for SN , depending upon the extreme value
f̂ of the sample of N realisations of the f j :

SN ∼ exp( f̂ /ε) + 〈SN 〉1
2

[
1 + erf

(√
J ′′( f ∗)

2
( f̂ − f ∗)

)]
. (41)

The median of SN is therefore approximated by

S̄N ∼ exp( f †/ε) + 〈SN 〉1
2

[
1 + erf

(√
J ′′( f ∗)

2
( f † − f ∗)

)]
(42)

where f † is the solution of equation (33).

3.2 Interpretation and Generalisation to TN

We shall see that equation (42) gives a quite precise approximation for the median S̄N , but
it is not immediately clear when either of the two terms is dominant. In order to clarify the
structure of equation (42), we consider an approximate form of the equation determining f †,
and transform to logarithmic variables. As well as leading to a transparent understanding
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of equation (42), this facilitates making an estimate for T̄N in the limit where ε � 1 and
N 
 1. We define

η = ln N , σ = ln S̄N , τ = ln T̄N . (43)

Note that η and τ are logarithmic measures of, respectively, distance and time, so that a plot
of η versus τ gives information about the dispersion due to the dynamics.

Let us consider the limit where the first term in (42), exp[ f †/ε], is dominant. Note that
the condition (33), determining the extreme value of a set of N samples, can be approx-
imated by the requirement that the PDF of f is approximately equal to 1/N . That is
1 ∼ N exp[−J ( f †)]. For the purposes of considering the N → ∞ and ε → 0 limit,
we can therefore approximate f † by a solution of the equation

J ( f †) = η . (44)

If the second term in equation (42) is negligible, as might be expected when f † − f ∗ � 0,
equations (43) and (44) then yield a simple implicit equation for σ :

η = J (εσ ) . (45)

If f †− f ∗ 
 0, and if the second term in (42) is dominant, then S̄N ∼ 〈SN 〉 = N 〈exp( f /ε)〉,
and using the Laplace method [24], following the same approach as for equation (12) we
find

σ = η + f ∗

ε
− J ( f ∗) . (46)

Note the (46) indicates that dσ
dη = 1. Let us compare this with the value of dσ

dη obtained from

(45), which predicts dη
dσ = ε J ′( f ). The approximation (45) therefore becomes sub-dominant

when 1 = ε J ′( f ), which is precisely the equation for f ∗, equation (38). If we define η∗ and
σ ∗ by writing

σ ∗ = f ∗

ε
, η∗ = J (εσ ∗) (47)

then assembling these results and definitions, the relationship between η and σ can be sum-
marised in the following equation

η =
{

J (εσ ) 0 < η < η∗
σ − σ ∗ + η∗ η ≥ η∗ . (48)

Note that η(σ ) and its first derivative are continuous functions. In the foregoing we defined
x̄ as the median of x , but it should be noted that our arguments will lead to equations (46)
and (47) as N → ∞ if S̄N denotes any fixed percentile of SN .

Thus far we have considered the behaviour of η as a function of σ rather than of τ ,
but it is the function η(τ) which describes the dynamics of the dispersion. Consider the
form of the sum TN defined in equation (22). When σ < σ ∗, the value of SN is almost
always determined by f̂ , the largest value of f j , and similarly, one of the factors exp(g j/ε)

corresponding to ĝ, the largest of the g j , will predominate over the others. In one half of
realisations, thosewhere k̂(N ) > ĵ(N ), the largest value of f j contributes to the sumwhich is
multiplied by exp(ĝ/ε), and we have TN ∼ exp(ĝ/ε) exp( f̂ /ε). In cases where ĵ > k̂, TN is
expected to be small in comparison to this estimate. We conclude that TN has a probability of
approximately one quarter to exceed the median of exp[( f̂ + ĝ)/ε]. Note that because f̂ and
ĝ are extreme values of samples on N i.i.d. random variables, their probability distribution
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has a very narrow support [26]. The median of f̂ + ĝ is therefore well approximated by the
sums of the medians, that is by f † + g†. Correspondingly, the median of exp[( f̂ + ĝ)]/ε is
approximated by exp[( f †+g†)/ε]. If we now use the overbar to represent the upper quartile
of the distribution of TN , rather than the median, we have

T̄N ∼ exp(g†/ε) exp( f †/ε) . (49)

Using the assumption that the f j and g j have the same PDF, and noting that S̄N ∼ exp( f †/ε),
we can conclude that T̄N ∼ S̄2N and hence that τ = 2σ . The equation describing the dispersion
as a function of time is therefore

η = J (ετ/2) , τ < τ ∗ (50)

where τ ∗ is determined by the condition that dη/dτ = 1
2 when τ = τ ∗. When τ > τ ∗, we

have T̄N ∼ 〈T 〉 = N 〈exp( f /ε)〉2, implying that

η = J (ετ ∗/2) + τ − τ ∗

2
, τ > τ ∗ . (51)

Equations (50) and (51) are a description of the logarithm of the typical dispersion η as a
function of the logarithm of the time, τ . Usually the function J (V ) has a quadratic behaviour
for small values of V , so that the initial dispersion, described by (50), is sub-diffusive.
The factor of one half in (51) indicates that the long-time limit is diffusive. Writing η2 ∼
τ + ln Deff , we see that the effective diffusion coefficient is

Deff ∼ exp
[
2J (ετ ∗/2) − τ ∗] (52)

which is consistent with (14).
Note that while our arguments considered the medians of the SN and the upper quartile

of the TN , the same reasoning applies for any percentiles of SN or TN .

4 Flooding Dynamics Model for Dispersion

In Sect. 2, we showed that the integrals which are used to compute the mean-first-passage
time may be approximated by sums when D is small. In Sect. 3, we considered the statistics
of these sums, SN and TN , defined by equations (21) and (22) respectively. In terms of the
calculation discussed in Sect. 2, our estimate of T̄N corresponds, for N < N∗, to the value of
T̄ (x) being determined by the difference between the lowest minimum of the potential and
its highest maximum, provided the minimum occurs before the maximum. We can therefore
think of T̄ (x) being determined by a ‘flooding’ model, according to which the probability
density for locating the particle occupies a region which is constrained by a potential barrier
which can trap a particle for time T̄ . As T̄ increases, higher barriers are required.

In terms of the original problem, discussed in Sect. 2, N is the number of extrema of the
potential before we reach position x . The arguments of Sect. 3 imply that the upper quartile of
themean-first-passage time, T̄ (x), satisfies an equation similar to (49).We define logarithmic
variables

η = ln
( x
x̃

)
, τ = ln T̄ (x) (53)

where x̃ is the mean separation of minima of V (x). In terms of these logarithmic variables,
the dispersion is described by

η = J (Dτ/2) . (54)
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η = ln(x/x̃)

τ = ln T̄ (x)

η∗

τ∗

flooding

diffusion

Fig. 1 The dynamics of a typical realisation, characterised by the median T̄ of the mean-first-passage time,
shows a crossover from subdiffusive ‘flooding’ dynamics to slow diffusion

which is valid up to τ ∗, which is defined by the condition

dη

dτ

∣∣∣∣
τ∗

= 1

2
. (55)

Equation (54) is our principal result. It applies to any percentile of the distribution which
remains fixed when we take the limits N → ∞ and ε → 0. When τ is large compared to
τ ∗, equation (54) is replaced by a linear relation, with an effective diffusion coefficient Deff

2η ∼ τ + ln(Deff/D) , Deff ∼ D exp
[
2J (Dτ ∗/2) − τ ∗] . (56)

An important example is the case where V has a Gaussian distribution, so that J ∼
V 2/2C(0). In terms of the diffusion coefficient D, equations (54)-(56) give

η ∼ D2τ 2

8C(0)
τ < τ ∗ = 2C(0)

D2

η ∼ τ

2
− C(0)

2D2 τ > τ ∗ (57)

and using (56) we find Deff ∼ D exp[−C(0)/D2], in agreement with (5). A sketch of the
dependence of η upon τ for the Gaussian case is shown in Fig. 1.

5 Numerical Studies

We performed a variety of numerical investigations, using Gaussian distributed random vari-
ables f j to test the theory of extreme-weighted sums, and a Gaussian random function V (x)
to test the analysis of continuous potentials. In both cases the Gaussian variables had zero
mean and unit variance. In the case of the random potential, we also used a Gaussian for the
correlation function, with a correlation length of order unity:

〈V (x)V (x ′)〉 = exp[−(x − x ′)2/2] . (58)

5.1 Discrete Sums

We characterised the statistics of the discrete sum (8) by making a careful estimate of its
median, equation (42). In order to evaluate equation (42), we need a solution of the implicit
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equation (33), which determines f †. By substituting (34) into (33), we find

f † ≈ √
2 ln N − ln ln N − ln (2π) − 2 ln ln 2 . (59)

The expression for the median approaches that for the mean

SN ∼ N exp

(
1

2ε2

)
(60)

at large values of N when f † exceeds f ∗ = 1/ε.
For very large N and very small ε, the medians of SN and TN are estimated by simplified

expressions, relating σ = ln S̄N and τ = ln T̄N to η = ln N . In the Gaussian case, these
equations (48), (50) and (51) give

σ =
{ √

2η
ε

0 < η < η∗
η − η∗ + σ ∗ η ≥ η∗ (61)

and

τ =
{ √

8η
ε

0 < η < η∗
2(η − η∗) + τ ∗ η > η∗ (62)

where

η∗ = 1

2ε2
, σ ∗ = 1

ε2
, τ ∗ = 2

ε2
. (63)

These equations imply that, in the limit as ε → 0, if we plot y = σ/η∗ as function of
x = η/η∗, the numerical data for S̄N should collapse onto the function

y = f (x) =
{
2
√
x 0 < x < 1

x + 1 x > 1
. (64)

Similarly, y′ = τ/η∗ plotted as a function of x = η/η∗ should collapse to y′ = 2 f (x).
We computed M ∈ {10, 100, 1000} realisations of the sums SN and TN , for ε ∈

{1/3, 1/4, 1/6, 1/8} and N ≤ 105 (except for M = 1000, in which case N ≤ 5 × 104). We
evaluated the sample average, sample median, and the sample upper octile as a function of
N for each value of the sample size M . We also computed the same statistics for TN .

Figure 2 plots ln S̄N , and ln〈SN 〉 as a function of η = ln N , for different sample sizes, for
ε = 1/4 (a) and ε = 1/6 (b). We compare with the theoretical prediction, obtained from
(42) and (59) (for the median) and (60) (for the mean). The agreement with the theory for the
median is excellent. Note that the convergence of the mean value for different sample sizes
is very poor when η < η∗ = 1/2ε2 (this is especially apparent for smaller values of ε).

In figure 3, we plot y = σ/σ ∗ (a) and y′ = τ/τ ∗ (b) as a function of x = η/η∗, for
all of the values of ε in our data set, using the largest sample size (M = 1000) in each
case, comparing with the theoretical scaling function (64). We see convergence towards the
function (64) as ε → 0. In panels (c) and (d), we make the same comparison using the upper
octile rather than the median.

5.2 Continuous Potentials

In the case of a continuous potential, we require the mean separation of maxima or minima,
x̃ , in order to make a comparison with theory. The density D of zeros of V ′(x) may be
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Fig. 2 Plot of ln S̄N and ln〈SN 〉, as a function of η = ln N , for ε = 1/4 (a) and ε = 1/6 (b)

determined by the approach developed by Kac [31] and Rice [32]. If P(V , V ′, V ′′) is the
joint PDF of V (x) and its first two derivatives, evaluated at the same point, we find that

D =
∫ ∞

−∞
dV

∫ ∞

−∞
dV ′′ P(V , 0, V ′′)|V ′′| . (65)

By noting that the vector (V , V ′, V ′′) has amultivariate Gaussian distribution, and expressing
P(V , V ′, V ′′) in terms of the correlation function of the elements of this vector, we obtain
D and hence the separation of minima x̃ for the potential satisfying (58):

2

x̃
≡ D =

√
3

2π
. (66)
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Fig. 3 Plot of σ/η∗ (a) and τ/τ∗ (b) based upon median values, as a function of η/η∗, compared with the
theoretical prediction for the ε → 0 limit, equation (64). In (c) and (d) we show similar plots for the upper
octile
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(a) (b)

Fig. 4 Plots of S(x) (a) and T (x) (b), for one realisation of the smooth random potential, with D = 1/8. The
numerically evaluated integrals (solid curves) are in good agreement with approximations based on sums over
maxima and minima (dashed lines)

First we investigated whether the mean-first passage time can be accurately represented
by sums over maxima and minima of the potential. In figure 4, we compare the numerical
evaluation of the integrals S(x) (a) and T (x) (b), given by Eq. (16) and Eq. (19), respectively,
with the approximations which estimate the integrals using maxima and minima, Eq. (20).

We evaluated the median T̄ (x) and mean 〈T (x)〉 of the mean first passage time T (x) for
1000 realisations of the potential V (x), up to xmax = 104, for D ∈ {1/3, 1/4, 1/5, 1/6, 1/7}.
According to the discussion in Sect. 4, we expect that τ = ln T̄ (x) and η = ln(x/x̃) are
related by η = J (Dτ/2) = D2τ 2/8, up to a maximum value of η, given by η∗ = 1/2D2.
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Fig. 5 Numerical results on the median T̄ (x) of the mean first-passage time to reach x , for different values
of the diffusion coefficient D. We plot D2 ln T̄ (x)/2 as a function of X = 2D2 ln(x/x̃) (where x̃ is the mean
distance betweenmaxima of V (x)). The numerical results converge towards the theoretically predicted scaling
function, equation (64), as D → 0

In figure 5 we plot 2D2 ln T̄ (x) as a function of 2D2 ln(x/x̃) for different values of D, and
compare with the theoretical scaling function, given by equation (64).

6 Conclusions

In his analysis of equation (1), Zwanzig considered the mean-first-passage time T (x), which
is averaged over different noise realisations, to reach displacement x . Computing the averaged
value 〈T (x)〉 over different realisations of the random potential, he showed [4] that 〈T (x)〉 ∼
x2, which is consistent with a diffusive dispersion, with an effective diffusion coefficient
Deff . The effective diffusion coefficient vanishes in a highly singular manner as D → 0,
and numerical studies have suggested that equation (1) exhibits anomalous diffusion [6–8].
It seems evident that the discrepancy between these two pictures of the dynamics results
from the expectation value 〈T (x)〉 being dominated by rare events, where an unusually large
fluctuation of the potential V (x) acts as a barrier to dispersion. The central limit theorem
is applicable to this problem, and at sufficiently large values of x the ratio T (x)/〈T (x)〉 is
expected to approach unity, for almost all realisations of V (x). However, at values of x which
are of practical relevance, most realisations T (x) will be much smaller than 〈T (x)〉.

In order to give a description of the dynamics of (1) which is both empirically usable
and analytically tractable, we considered the median (with respect to different realisations
of the potential) of the mean-first-passage time. In the limit where the diffusion coefficient
D is small, the integrals which appear in the expression for the first passage time, equation
(9), are dominated by maxima and minima of the potential, described by equations (17) and
(20). This observation led us to consider the statistics of sums of exponentials of random
variables, equations (8) and (22). We gave a quite precise estimate, equation (42), for the
median of (8) and also derived simple relations describing the asymptotic behaviour of these
sums, equations (48) and (50).
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It is these expressions which enable us to formulate a concise asymptotic description of
the dynamics of (1) in the limit as D → 0, in terms of the large deviation rate function of the
potential, J (V ). We argued that at very long length scales T̄ (x) approaches the expectation
value 〈T (x)〉, and that the dispersion is diffusive, in accord with the theory of Zwanzig
[4]. On shorter timescales T̄ (x) is determined by a ‘flooding’ model, according to which
the probability density for locating the particle occupies a region which is constrained by
a potential barrier which can trap a particle for time T̄ . As T̄ increases, higher and higher
barriers are required. For a Gaussian distribution of barrier heights, equation (57) implies
that the dispersion is described as subdiffusive, of the form

x ∼ x̃ exp

(
D2(ln T̄ )2

8C(0)

)
(67)

which is distinctively different from the power-law anomalous diffusion which has been
reported by some authors [6–8]. Our numerical investigations of the dynamics of equation
(1) for different values of D, illustrated in figure 5, show a data collapse which is in excellent
agreement with equation (64), verifying (67).
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