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Erdős–Rényi Random Graphs

Arijit Chakrabarty1 · Sukrit Chakraborty1 · Rajat Subhra Hazra1

Received: 27 February 2020 / Accepted: 19 September 2020 / Published online: 26 September 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
In this article, an inhomogeneous Erdős–Rényi random graph on {1, . . . , N } is considered,
where an edge is placed between vertices i and j with probability εN f (i/N , j/N ), for i ≤ j ,
the choice being made independently for each pair. The integral operator I f associated with
the bounded function f is assumed to be symmetric, non-negative definite, and of finite rank
k. We study the edge of the spectrum of the adjacency matrix of such an inhomogeneous
Erdős–Rényi random graph under the assumption that NεN → ∞ sufficiently fast. Although
the bulk of the spectrum of the adjacency matrix, scaled by

√
NεN , is compactly supported,

the kth largest eigenvalue goes to infinity. It turns out that the largest eigenvalue after appro-
priate scaling and centering converges to a Gaussian law, if the largest eigenvalue of I f has
multiplicity 1. If I f has k distinct non-zero eigenvalues, then the joint distribution of the k
largest eigenvalues converge jointly to a multivariate Gaussian law. The first order behaviour
of the eigenvectors is derived as a byproduct of the above results. The results complement
the homogeneous case derived by [18].
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1 Introduction

Given a graph on N vertices, say, {1, . . . , N }, let AN denote the adjacency matrix of the
graph, whose (i, j)th entry is 1 if there is an edge between vertices i and j and 0 otherwise.
Important statistics of the graph are the eigenvalues and eigenvectors of AN which encode
crucial information about the graph. The present article considers the generalization of the
most studied random graph, namely the Erdős–Rényi random graph (ERRG). It is a graph
on N vertices where an edge is present independently with probability εN . The adjacency
matrix of the ERRG is a symmetric matrix with diagonal entries zero, and the entries above
the diagonal are independent and identically distributed Bernoulli random variables with
parameter εN . We consider an inhomogeneous extension of the ERRG where the presence
of an edge between vertices i and j is given by a Bernoulli random variable with parameter
pi, j and these {pi, j : 1 ≤ i < j ≤ N } need not be same. When pi, j are same for all vertices
i and j it shall be referred as (homogeneous) ERRG.

The mathematical foundations of inhomogeneous ERRG where the connection probabil-
ities pi, j come from a discretization of a symmetric, non-negative function f on [0, 1]2 was
initiated in [9]. The said article considered edge probabilities given by

pi, j = 1

N
f

(
i

N
,

j

N

)
.

In that case the average degree is bounded and the phase transition picture on the largest cluster
size was studied in the same article (see also [8,32] for results on inhomogeneous ERRG).
The present article considers a similar set-up where the average degree is unbounded and
studies the properties of eigenvalues of the adjacency matrix. The connection probabilities
are given by

pi, j = εN f

(
i

N
,
j

N

)

with the assumption that

NεN → ∞. (1.1)

Let λ1(AN ) ≥ · · · ≥ λN (AN ) be the eigenvalues of AN . It was shown in [13] (see also
[35] for a graphon approach) that the empirical distribution of the centered adjacency matrix
converges, after scaling with

√
NεN , to a compactly supported measure μ f . When f ≡ 1,

the limiting law μ f turns out to be the semicircle law. Note that f ≡ 1 corresponds to the
(homogeneous) ERRG (see [16,31] also for the homogeneous case). Quantitative estimates
on the largest eigenvalue of the homogeneous case (when NεN � (log N )4) were studied
in [20,34] and it follows from their work that the smallest and second largest eigenvalue
converge to the edge of the support of semicircular law. The results were improved recently
in [7] and the condition on sparsity can be extended to the case NεN � log N (which
is also the connectivity threshold). It was shown that inhomogeneous ERRG also has a
similar behaviour. The largest eigenvalue of inhomogeneous ERRG when NεN 	 log N
was treated in [6]. Under the assumption that N ξ 	 NεN for some ξ ∈ (2/3, 1], it was
proved in [17, Theorem 2.7] that the second largest eigenvalue of the (homogeneous) ERRG
after appropriate centering and scaling converges in distribution to the Tracy–Widom law.
The results were recently improved in [27]. The properties of the largest eigenvector in the
homogeneous case was studied in [1,17,22,27,31].

The scaling limit of the maximum eigenvalue of inhomogenous ERRG also turns out to
be interesting. The fluctuations of the maximum eigenvalue in the homogeneous case were
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studied in [18]. It was proved that

(εN (1 − εN ))−1/2 (λ1(AN ) − E[λ1(AN )]) ⇒ N (0, 2).

The above result was shown under the assumption that

(log N )ξ 	 NεN (1.2)

for some ξ > 8, which is a stronger assumption than (1.1).
It is well known that in the classical case of a (standard) Wigner matrix, the largest

eigenvalue converges to the Tracy–Widom law. We note that there is a different scaling
between the edge and bulk of the spectrum in ERRG. As pointed out before, the bulk is of
the order (NεN )1/2 and the order of the largest eigenvalue is NεN . Letting

WN = AN − E(AN ), (1.3)

where E(AN ) is the entrywise expectation of AN , it is easy to see that

AN = εN11′ + WN ,

where 1 is the N × 1 vector with each entry 1. Since the empirical spectral distribution of
(NεN )−1/2WN converges to semi-circle law, the largest eigenvalue of the same converges to
2 almost surely. As E[AN ] is a rank-one matrix, it turns out that the largest eigenvalue of AN

scales like NεN , which is different from the bulk scaling.
The above behaviour can be treated as a special case of the perturbation of aWignermatrix.

WhenWN is a symmetric randommatrix with independent and identically distributed entries
with mean zero and finite variance σ 2 and the deformation is of the form

MN = WN√
N

+ PN ,

the largest eigenvalue is well-studied. Motivated by the study of adjacency matrix of homo-
geneous ERRG, [20] studied the above deformation with PN = mN−1/211′, m = 0. They
showed that

N−1/2
(

λ1(MN ) − Nm − σ 2

m

)
⇒ N (0, 2σ 2).

Since the bulk of N−1/2MN lies within [−2σ, 2σ ], the largest eigenvalue is detached from
the bulk. In general, when the largest eigenvalue of the perturbation has the same order
as that of the maximum eigenvalue of WN , the problem is more challenging. One of the
seminal results in this direction was obtained in [3]. They exhibited a phase transition in the
behaviour of the largest eigenvalue for complex Wishart matrix, which is now referred to as
the BBP (Baik–Ben Arous–Péché) phase transition. It is roughly as follows. Suppose PN is a
deterministic matrix of rank k with non-trivial eigenvalues θ1 ≥ θ2 · · · ≥ θk > 0. If θi ≤ σ ,
then λi (MN ) → 2σ almost surely, and if θi > σ then

λi → θi + σ 2

θi
, almost surely.

See [2,19] for further extensions. It is clear that when θi > σ the corresponding eigenvalue
lies outside the bulk of the spectrum. The phase transition is also present at the level of
fluctuations around 2σ or θi + σ 2/θi . It is known that under some moment conditions on the
entries of WN (see [11,24,25]), when θi ≤ σ , the fluctuations are governed by the Tracy–
Widom law, and when θi > σ , the limiting distribution is given by the eigenvalues of a
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random matrix of order k. This limiting random matrix depends on the eigenvectors of PN
and also on the entries ofWN . The non-universal nature was pointed out in [11]. For example,
whenWN is a Gaussian orthogonal ensemble and PN = θ111′ then the limit is Gaussian and
if the entries of WN are not from a Gaussian distribution, then the limit is a convolution of
Gaussian and the distribution fromwhich the entries ofWN are sampled. One can find further
details in [3–5,11,12,24,25] and the survey by [29]. The case when the rank k depends on N
was considered in [10,23,26]. Various applications of these results on outliers can be found
in the literature, for example, [14,15,30].

The adjacency matrix of the inhomogeneous ERRG does not fall directly into purview
of the above results, since WN , as in (1.3), is a symmetric matrix, with independent entries
above the diagonal, but the entries have a variance profile, which also depends on the size of
the graph. The inhomogeneity does not allow the use of local laws suitable for semicircle law
in an obvious way. The present article aims at extending the results obtained in [18] for the
case that f is a constant to the case that f is a non-negative, symmetric, bounded, Riemann
integrable function on [0, 1]2 which induces an integral operator of finite rank k, under the
assumption that (1.2) holds. The case k ≥ 2 turns out to be substantially difficult than the
case k = 1 for the following reason. If k = 1, that is,

E(AN ) = uNu
′
N ,

for some N × 1 deterministic column vector uN , then with high probability it holds that

u′
N (λI − WN )−1 uN = 1,

where λ is the largest eigenvalue of AN . The above equation facilitates the asymptotic study
of λ. However, when k ≥ 2, the above equation takes a complicated form. The observation
which provides a way out of this is that λ is also an eigenvalue of a k × k matrix with
high probability; the same is recorded in Lemma 5.2 of Sect. 5. Besides, working with the
eigenvalues of a k×k matrix needs more linear algebraic work when k ≥ 2. For example, the
proof of Lemma 5.8, which is one of the major steps in the proof of a main result, becomes
a tautology when k = 1.

The following results are obtained in the current paper. If the largest eigenvalue of the
integral operator has multiplicity 1, then the largest eigenvalue of the adjacency matrix has
a Gaussian fluctuation. More generally, it is shown that the eigenvalues which correspond
to isolated eigenvalues, which will be defined later, of the induced integral operator jointly
converge to amultivariateGaussian law.Under the assumption that the function f is Lipschitz
continuous, the leading order term in the expansion of the expected value of the isolated
eigenvalues is obtained. Furthermore, under an additional assumption, the inner product of
the eigenvector with the discretized eigenfunction of the integral operator corresponding to
the other eigenvalues is shown to have a Gaussian fluctuation. Some important examples
of such f include the rank-one case, and the stochastic block models. It remains an open
question to see if the (k + 1)th eigenvalue follows a Tracy–Widom type scaling.

The mathematical set-up and the main results of the paper are stated in Sect. 2. Theo-
rem 2.3 shows that of the k largest eigenvalues, the isolated ones, centred by their mean and
appropriately scaled, converge to a multivariate normal distribution. Theorem 2.4 studies the
first and second order of the expectation of the top k isolated eigenvalues. Theorems 2.5 and
2.6 study the behaviour of the eigenvectors corresponding to the top k isolated eigenvalues.
Section 3 contains the special case when f is rank one and the example of stochastic block
models. A few preparatory estimates are noted in Sect. 4, which are used later in the proofs
of the main results, given in Sect. 5. The estimates in Sect. 4 are proved in Appendix.

123



1750 A. Chakrabarty

2 The Set-Up And The Results

Let f : [0, 1] × [0, 1] → [0,∞) be a function which is symmetric, bounded, and Riemann
integrable, that is,

f (x, y) = f (y, x), 0 ≤ x, y ≤ 1, (2.1)

and the set of discontinuities of f in [0, 1] × [0, 1] has Lebesgue measure zero.
The integral operator I f with kernel f is defined from L2[0, 1] to itself by

(
I f (g)

)
(x) =

∫ 1

0
f (x, y)g(y) dy, 0 ≤ x ≤ 1.

Besides the above, we assume that I f is a non-negative definite operator and the range of I f
has a finite dimension.

Under the above assumptions I f turns out to be a compact self-adjoint operator, and from
the spectral theory one obtains θ1 ≥ θ2 ≥ · · · ≥ θk > 0 as the non-zero eigenvalues of
I f (where k is the dimension of the range of I f ), and eigenfunctions ri corresponding to
θi . Therefore, {r1, . . . , rk} is an orthonormal set in L2[0, 1], and by assumption, each ri is
Riemann integrable (see Lemma 6.1 in Appendix). Also, for any g ∈ L2[0, 1] one has

I f (g) =
k∑

i=1

θi 〈 ri , g〉L2[0,1]ri .

Note that this gives

∫ 1

0

(
k∑

i=1

θi ri (x)ri (y)g(y)

)
dy =

∫ 1

0
f (x, y)g(y) dy for almost allx ∈ [0, 1].

Since g is an arbitrary function in L2[0, 1] this immediately gives

f (x, y) =
k∑

i=1

θi ri (x)ri (y), for almost all (x, y) ∈ [0, 1] × [0, 1].

Since the functions on both sides of the above equation are Riemann integrable, the
correspondingRiemann sums are approximately equal, and hence there is no loss of generality
in assuming that the above equality holds for every x and y.

That is, we now assume that

f (x, y) =
k∑

i=1

θi ri (x)ri (y) ≥ 0, for all (x, y) ∈ [0, 1] × [0, 1], (2.2)

where θ1 ≥ · · · ≥ θk > 0 and {r1, . . . , rk} is an orthonormal set in L2[0, 1]. The assumptions
on r1, . . . , rk are listed below for easy reference.
Assumption F1. The functions r1, . . . , rk from [0, 1] to R are bounded and Riemann inte-
grable.
Assumption F2. For each i = 1, . . . , k, ri is Lipschitz, that is,

|ri (x) − ri (y)| ≤ Ki |x − y|,
for some fixed Ki < ∞. This is clearly stronger than Assumption F1, and will be needed in
a few results. A consequence of this assumption is that there exists K such that∣∣ f (x, y) − f (x ′, y′)

∣∣ ≤ K
(|x − x ′| + |y − y′|) , 0 ≤ x, x ′, y, y′ ≤ 1. (2.3)
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Largest Eigenvalue of Inhomogeneous ERRG 1751

Let (εN : N ≥ 1) be a real sequence satisfying

0 < εN ≤
[

sup
0≤x,y≤1

f (x, y)

]−1

, N ≥ 1.

The following will be the bare minimum assumption for all the results.
Assumption E1. For some ξ > 8, fixed once and for all,

lim
N→∞

1

NεN
(log N )ξ = 0,

that is, (1.2) holds. Furthermore,

lim
N→∞ εN = ε∞, (2.4)

for some ε∞ ≥ 0. It’s worth emphasizing that we do not assume that εN necessarily goes to
zero, although that may be the case.

For one result, we shall have tomake a stronger assumption on (εN )which is the following.
Assumption E2. As N → ∞,

N−2/3 	 εN 	 1. (2.5)

For N ≥ 1, let GN be an inhomogeneous Erdős–Rényi graph where an edge is placed
between vertices i and j with probability εN f (i/N , j/N ), for i ≤ j , the choice being made
independently for each pair in {(i, j) : 1 ≤ i ≤ j ≤ N }. Note that we allow self-loops.
Let AN be the adjacency matrix of GN . In other words, AN is an N × N symmetric matrix,
where {AN (i, j) : 1 ≤ i ≤ j ≤ N } is a collection of independent random variable, and

AN (i, j) ∼ Bernoulli

(
εN f

(
i

N
,
j

N

))
, 1 ≤ i ≤ j ≤ N .

A few more notations are needed for stating the main results. For a moment, set θ0 = ∞
and θk+1 = −∞, and define the set of indices i for which θi is isolated as follows:

I = {1 ≤ i ≤ k : θi−1 > θi > θi+1}.
For an N × N real symmetric matrix M , let λ1(M) ≥ · · · ≥ λN (M) denote its eigenvalues,
as mentioned in Sect. 1. Finally, after the following definition, the main results will be stated.

Definition A sequence of events EN occurs with high probability, abbreviated as w.h.p., if

P(Ec
N ) = O

(
e−(log N )η

)
,

for some η > 1. For random variables YN , ZN ,

YN = Ohp(ZN ),

means there exists a deterministic finite constant C such that

|YN | ≤ C |ZN | w.h.p.,
and

YN = ohp(ZN ),

means that for all δ > 0,

|YN | ≤ δ|ZN | w.h.p.
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We shall say

YN = Op(ZN ),

to mean that

lim
x→∞ sup

N≥1
P(|YN | > x |ZN |) = 0,

and

YN = op(ZN ),

to mean that for all δ > 0,

lim
N→∞ P(|YN | > δ|ZN |) = 0.

The reader may note that if ZN = 0 a.s., then “YN = Op(ZN )” and “YN = op(ZN )” are

equivalent to “(Z−1
N YN : N ≥ 1) is stochastically tight” and “Z−1

N YN
P−→ 0”, respectively.

Besides, “YN = Ohp(ZN )” is a much stronger statement than “YN = Op(ZN )”, and so is
“YN = ohp(ZN )” than “YN = op(ZN )”.

In the rest of the paper, the subscript ‘N ’ is dropped from notations like AN , WN , εN
etc. and the ones that will be introduced. The first result is about the first order behaviour of
λi (A).

Theorem 2.1 Under Assumptions E1 and F1, for every 1 ≤ i ≤ k,

λi (A) = Nεθi
(
1 + ohp(1)

)
.

An immediate consequence of the above is that for all 1 ≤ i ≤ k, λi (A) is non-zero w.h.p.
and hence dividing by the same is allowed, as done in the next result. Define

ei =

⎡
⎢⎢⎢⎣
N−1/2ri (1/N )

N−1/2ri (2/N )
...

N−1/2ri (1)

⎤
⎥⎥⎥⎦ , 1 ≤ i ≤ k. (2.6)

The second main result studies the asymptotic behaviour of λi (A), for i ∈ I, after appro-
priate centering and scaling.

Theorem 2.2 Under Assumptions E1 and F1, for every i ∈ I, as N → ∞,

λi (A) = E (λi (A)) + Nθiε

λi (A)
e′
iWei + op(

√
ε),

where W is as defined in (1.3).

The next result is the corollary of the previous two.

Theorem 2.3 Under Assumptions E1 and F1, if I is a non-empty set, then as N → ∞,(
ε−1/2 (λi (A) − E[λi (A)]) : i ∈ I)⇒ (Gi : i ∈ I) , (2.7)

where the right hand side is a multivariate normal random vector in R
|I|, with mean zero

and

Cov(Gi ,G j ) = 2
∫ 1

0

∫ 1

0
ri (x)ri (y)r j (x)r j (y) f (x, y) [1 − ε∞ f (x, y)] dx dy, (2.8)

for all i, j ∈ I.
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Largest Eigenvalue of Inhomogeneous ERRG 1753

For i, j ∈ I, thatW is a symmetric matrix whose upper triangular entries are independent
and zero mean implies that as N → ∞,

Cov
(
e′
iWei , e

′
jWe j

)

∼ 4
∑

1≤k≤l≤N

Cov
(
ei (k)W (k, l)ei (l), e j (k)W (k, l)e j (l)

)

= 4N−2
∑

1≤k≤l≤N

ri

(
k

N

)
ri

(
l

N

)
r j

(
k

N

)
r j

(
l

N

)
ε f

(
k

N
,
l

N

)[
1 − ε f

(
k

N
,
l

N

)]

∼ 4ε
∫ 1

0
dx
∫ 1

x
dy ri (x)ri (y)r j (x)r j (y) f (x, y) [1 − ε∞ f (x, y)]

= 2ε
∫ 1

0

∫ 1

0
ri (x)ri (y)r j (x)r j (y) f (x, y) [1 − ε∞ f (x, y)] dx dy. (2.9)

With the help of the above, it may be checked that the Lindeberg–Lévy central limit theorem
implies that as N → ∞, (

ε−1/2e′
iWei : i ∈ I)⇒ (Gi : i ∈ I), (2.10)

where the right hand side is a zero mean Gaussian vector with covariance given by (2.8).
Therefore, Theorem 2.3 would follow from Theorems 2.1 and 2.2 .

Remark 2.1 If f > 0 a.e. on [0, 1]×[0, 1], then the Krein–Rutman theorem (see Lemma 6.2)
implies that 1 ∈ I, and that r1 > 0 a.e. Thus, in this case, if ε∞ = 0, then

Var(G1) = 2
∫ 1

0

∫ 1

0
r1(x)

2r1(y)
2 f (x, y) dx dy > 0.

Remark 2.2 For a fixed θ > 1, define

f (x, y) = θ1
(
x ∨ y <

1

2

)
+ 1

(
x ∧ y >

1

2

)
, 0 ≤ x, y ≤ 1.

In this case, the integral operator associated with f has exactly two non-zero eigenvalues,
which are θ/2 and 1/2, with corresponding normalized eigenfunctions r1(x) = √

21(x <

1/2) and r2(x) = √
21(x ≥ 1/2), respectively. Let (εN ) satisfy Assumption E1 and suppose

that ε∞ = 0. Theorem 2.3 implies that as N → ∞,(
ε−1/2 (λ1(A) − E[λ1(A)]) , ε−1/2 (λ2(A) − E[λ2(A)]))⇒ (G1,G2) ,

where the right hand side has a bivariate normal distribution with mean zero. Furthermore,
since r1r2 is identically zero, it follows that G1 and G2 are uncorrelated and hence indepen-
dent.

Remark 2.3 That the claim of Theorem 2.3may not hold if i /∈ I is evident from the following
example. As in Remark 2.2, suppose that Assumption E1 holds and that ε∞ = 0. Let

f (x, y) = 1
(
x ∨ y <

1

2

)
+ 1

(
x ∧ y >

1

2

)
, 0 ≤ x, y ≤ 1.

In this case, the integral operator associated with f has exactly one non-zero eigenvalue,
which is 1/2, and that has multiplicity 2, with eigenfunctions r1 and r2 as in Remark 2.2. In
other words, f doesn’t have any simple eigenvalue.
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Theorem 2.3 itself implies that there exists βN ∈ R such that

ε−1/2 (λ1(A) − β) ⇒ G1 ∨ G2,

where G1 and G2 are independent from normal with mean 0. Furthermore,

Var(G1) = 2
∫ 1

0

∫ 1

0
r1(x)

2r1(y)
2 f (x, y) dx dy = 8

∫ 1

0

∫ 1

0
1
(
x ∨ y ≤ 1

2

)
dx dy = 2.

That is,G1 andG2 are i.i.d. from N (0, 2). Hence, there doesn’t exist a centering and a scaling
by which λ1(A) converges weakly to a non-degenerate normal distribution.

The next main result of the paper studies asymptotics of E(λi (A)) for i ∈ I.

Theorem 2.4 Under Assumptions E1 and F2, it holds for all i ∈ I,
E [λi (A)] = λi (B) + O

(√
ε + (Nε)−1) ,

where B is a k × k symmetric deterministic matrix, depending on N, defined by

B( j, l) = √θ jθl Nεe′
j el + θ−2

i

√
θ jθl(Nε)−1E

(
e′
jW

2el
)

, 1 ≤ j, l ≤ k,

and e j and W are as defined in (2.6) and (1.3), respectively.

The next result studies the asymptotic behaviour of the normalized eigenvector corre-
sponding to λi (A), again for isolated vertices i . It is shown that the same is asymptotically
aligned with ei , and hence it is asymptotically orthogonal to e j . Upper bounds on rates of
convergence are obtained.

Theorem 2.5 As in Theorem 2.4, let Assumptions E1 and F2 hold. Then, for a fixed i ∈ I,
lim

N→∞ P (λi (A) is an eigenvalue of multiplicity 1) = 1. (2.11)

If v is the eigenvector, with L2-norm 1, of A corresponding to λi (A), then

e′
iv = 1 + Op

(
(Nε)−1) , (2.12)

that is, Nε(1 − e′
iv) is stochastically tight. When k ≥ 2, it holds that

e′
jv = Op

(
(Nε)−1) , j ∈ {1, . . . , k} \ {i}. (2.13)

The last main result of this paper studies finer fluctuations of (2.13) under an additional
condition.

Theorem 2.6 Let k ≥ 2, i ∈ I and Assumptions E2 and F2 hold. If v is as in Theorem 2.5,
then, for all j ∈ {1, . . . , k} \ {i},

e′
jv = 1

θi − θ j

[
θi

1

λi (A)
e′
iWe j + (Nε)−2 1

θi
E
(
e′
iW

2e j
)]+ op

(
1

N
√

ε

)
.

Remark 2.4 An immediate consequence of Theorem 2.6 is that under Assumption E2., there
exists a deterministic sequence (zN : N ≥ 1) given by

z = 1

(Nε)2θi (θi − θ j )
E
(
e′
iW

2e j
)
,
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Largest Eigenvalue of Inhomogeneous ERRG 1755

such that as N → ∞,

Zi j = N
√

ε
(
e′
jv − z

)
(2.14)

converges weakly to a normal distribution with mean zero, for all i ∈ I and j ∈ {1, . . . , k} \
{i}. Furthermore, the convergence holds jointly for all i and j satisfying the above. This,
along with (2.7), implies that the collection(

Zi j : i ∈ I, j ∈ {1, . . . , k} \ {i}) ∪ (ε−1/2 (λi (A) − E [λi (A)]) : i ∈ I)
converges weakly, as N → ∞, to(

Gi j : i ∈ I, j ∈ {1, . . . , k} \ {i}) ∪ (Gi : i ∈ I)

which is a zero mean Gaussian vector in Rk|I|. The covariance matrix of (Gi ) is as in (2.8),
and Cov(Gi j ,Gi ′ j ′) and Cov(Gi j ,Gi ′) are not hard to calculate by proceeding as in (2.9).

3 Examples and Special Cases

3.1 The Rank One Case

Let us consider the special case of k = 1, that is,

f (x, y) = θr(x)r(y),

for some θ > 0, and a bounded Riemann integrable r : [0, 1] → [0,∞) satisfying∫ 1

0
r(x)2 dx = 1.

In this case, Theorem 2.3 implies that

ε−1/2 (λ1(A) − E (λ1(A))) ⇒ G1,

as N → ∞, where

G1 ∼ N
(
0, σ 2) ,

with

σ 2 = 2θ

(∫ 1

0
r(x)3 dx

)2

− 2θ2ε∞
(∫ 1

0
r(x)4 dx

)2
.

If r is Lipschitz and ε∞ = 0, then the claim of Theorem 2.4 boils down to

E [λ1(A)] = θNεe′
1e1 + (Nεθ)−1E

(
e′
1W

2e1
)+ O

(√
ε + (Nε)−1) , (3.1)

where

e1 = N−1/2 [r(1/N ) r(2/N ) . . . r(1)]′ .

Lipschitz continuity of r implies that

e′
1e1 = 1 + O

(
N−1) ,

and hence (3.1) becomes

E [λ1(A)] = θNε + (Nεθ)−1E
(
e′
1W

2e1
)+ O

(√
ε + (Nε)−1) . (3.2)
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Clearly,

E
(
e′
1W

2e1
)

= 1

N

N∑
i=1

r

(
i

N

)2

E
[
W 2(i, i)

]

= 1

N

N∑
i=1

r

(
i

N

)2 ∑
1≤ j≤N , j =i

ε f

(
i

N
,
j

N

)(
1 − ε f

(
i

N
,
j

N

))

= θεN−1
∑

1≤i = j≤N

r

(
i

N

)3

r

(
j

N

)
+ O

(
N−1ε2

)

= Nθε

∫ 1

0
r(x)3 dx

∫ 1

0
r(y) dy + O(ε).

In conjunction with (3.2) this yields

E [λ1(A)] = θNε +
∫ 1

0
r(x)3 dx

∫ 1

0
r(y) dy + O

(√
ε + (Nε)−1) .

3.2 Stochastic Block Model

Another important example is the stochastic block model, defined as follows. Suppose that

f (x, y) =
k∑

i, j=1

p(i, j)1Bi (x)1Bj (y), 0 ≤ x, y ≤ 1,

where p is a k × k symmetric positive definite matrix, and B1, . . . , Bk are disjoint Borel
subsets of [0, 1] whose boundaries are sets of measure zero, that is, their indicators are
Riemann integrable. We show below how to compute the eigenvalues and eigenfunctions of
I f , the integral operator associated with f .

Let βi denote the Lebesgue measure of Bi , which we assume without loss of generality
to be strictly positive. Rewrite

f (x, y) =
k∑

i, j=1

p̃(i, j)si (x)s j (y),

where

p̃(i, j) = p(i, j)
√

βiβ j , 1 ≤ i, j ≤ k,

and

si = β
−1/2
i 1Bi , 1 ≤ i ≤ k.

Thus, {s1, . . . , sk} is an orthonormal set in L2[0, 1]. Let
p̃ = U ′DU ,

be a spectral decomposition of p̃, where U is a k × k orthogonal matrix, and

D = Diag(θ1, . . . , θk),
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for some θ1 ≥ · · · ≥ θk > 0.
Define functions r1, . . . , rk by⎡

⎢⎣
r1(x)

...

rk(x)

⎤
⎥⎦ = U

⎡
⎢⎣
s1(x)

...

sk(x)

⎤
⎥⎦ , x ∈ [0, 1].

It is easy to see that r1, . . . , rk are orthonormal in L2[0, 1], and for 0 ≤ x, y ≤ 1,

f (x, y) = [s1(x) . . . sk(x)] p̃ [s1(x) . . . sk(x)]
′

= [r1(x) . . . rk(x)]U p̃U ′ [r1(x) . . . rk(x)]
′

=
k∑

i=1

θi ri (x)ri (y).

Thus, θ1, . . . , θk are the eigenvalues of I f , and r1, . . . , rk are the corresponding eigenfunc-
tions.

4 Estimates

In this section, we’ll record a few estimates that will subsequently be used in the proof. Since
their proofs are routine, they are being postponed to Appendix. Let W be as defined in (1.3).
Throughout this section, Assumptions E1 and F1 will be in force.

Lemma 4.1 There exist constants C1, C2 > 0 such that

P
(
‖W‖ ≥ 2

√
MNε + C1(Nε)1/4(log N )ξ/4

)
≤ e−C2(log N )ξ/4

, (4.1)

where M = sup0≤x,y≤1 f (x, y). Consequently,

‖W‖ = Ohp

(√
Nε
)

.

The notations e1 and e2 introduced in the next lemma and used in the subsequent lemmas
should not be confused with e j defined in (2.6). Continuing to suppress ‘N ’ in the subscript,
let

L = [log N ],
where [x] is the largest integer less than or equal to x .

Lemma 4.2 There exists 0 < C1 < ∞ such that if e1 and e2 are N × 1 vectors with each
entry in [−1/

√
N , 1/

√
N ], then∣∣E (e′

1W
ne2
)∣∣ ≤ (C1Nε)n/2, 2 ≤ n ≤ L.

Lemma 4.3 There exists η1 > 1 such that for e1, e2 as in Lemma 4.2, it holds that

max
2≤n≤L

P
(∣∣e′

1W
ne2 − E

(
e′
1W

ne2
)∣∣ > N (n−1)/2εn/2(log N )nξ/4

)

= O
(
e−(log N )η1

)
, (4.2)

where ξ is as in (1.2). In addition,

e′
1We2 = ohp (Nε) . (4.3)
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Lemma 4.4 If e1, e2 are as in Lemma 4.2, then

Var
(
e′
1We2

) = O(ε), (4.4)

and

E
(
e′
1W

3e2
) = O(Nε). (4.5)

5 Proof of theMain Results

This section is devoted to the proof of the main results. The section is split into several
subsections, each containing the proof of one main result, for the ease of reading. Unless
mentioned otherwise, Assumptions E1 and F1. are made.

5.1 Proof of Theorem 2.1

We start with showing that Theorem 2.1 is a corollary of Lemma 4.1. At this point, it should
be clarified that throughout this section, e j will always be as defined in (2.6).

Proof of Theorem 2.1 For a fixed i ∈ {1, . . . , k}, it follows that
|λi (A) − λi (E(A))| ≤ ‖W‖ = Ohp

(
(Nε)1/2

)
,

by Lemma 4.1. In order to complete the proof, it suffices to show that

lim
N→∞(Nε)−1λi (E(A)) = θi ,

which however follows from the observation that (2.2) implies that

E(A) = Nε

k∑
j=1

θ j e j e
′
j . (5.1)

This completes the proof. ��

5.2 Proof of Theorem 2.2

Proceeding towards the proof of Theorem 2.2, let us fix i ∈ I, once and for all, denote
μ = λi (A),

and let V be a k × k real symmetric matrix, depending on N which is suppressed in the
notation, defined by

V ( j, l) =
⎧⎨
⎩
Nε
√

θ jθl e′
j

(
I − 1

μ
W
)−1

el , if ‖W‖ < μ,

0, else,

for all 1 ≤ j, l ≤ k. It should be noted that if ‖W‖ < μ, then I − W/μ is invertible.
The proof of Theorem 2.2, which is the main content of this paper, involves several steps,

and hence it is imperative to sketch the outline of the proof for the reader’s convenience,
which is done below.
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(1) The first major step of the proof is to show that w.h.p., μ exactly equals λi (V ). This is
done in Lemma 5.2. When i = k = 1, the matrix V is a scalar and hence in that case
the equation boils down to μ = V which is a consequence of the resolvent equation.
For higher values of k, the Gershgorin circle theorem is employed for the desired claim.
Therefore, this step is a novelty of the given proof.

(2) The next step in the proof is to write μ as the solution of an equation of the form

μ = λi

(
L∑

n=0

μ−nYn

)
+ Error ,

for suitable matrices Y1, Y2, . . .. This is done in Lemma 5.4.
(3) The third step is to replace Yn by E(Yn) in the equation obtained in the above step, for

n ≥ 2. This is done in Lemma 5.5.
(4) Arguably the most important step in the proof is to obtain an equation of the form

μ = μ̄ + μ−1ζ + Error ,

for some deterministic μ̄ depending on N and random ζ . Once again, this is achieved
from the previous step with the help of the Gershgorin circle theorem and other linear
algebraic tools. This is done in Lemma 5.8.

(5) The final step of the proof is to show that μ̄ of the above step can be replaced by E(μ).

Now let us proceed towards executing the above steps for proving Theorem 2.2. As the
zeroth step, we show that V /Nε converges to Diag(θ1, . . . , θk), that is, the k × k diagonal
matrix with diagonal entries θ1, . . . , θk , w.h.p.

Lemma 5.1 As N → ∞,

V ( j, l) = Nεθ j
(
1( j = l) + ohp(1)

)
, 1 ≤ j, l ≤ k.

Proof For fixed 1 ≤ j, l ≤ k, writing
(
I − 1

μ
W

)−1

= I + Ohp
(
μ−1‖W‖) ,

we get that

V ( j, l) = Nε
√

θ jθl

(
e′
j el + 1

μ
Ohp(‖W‖)

)
.

Since

lim
N→∞ e′

j el = 1( j = l), (5.2)

and

‖W‖ = ohp(μ)

by Lemma 4.1 and Theorem 2.1, the proof follows. ��
The next step, which is one of the main steps in the proof of Theorem 2.2, shows that the

i th eigenvalues of A and V are exactly equal w.h.p.

Lemma 5.2 With high probability,

μ = λi (V ).
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The proof of the above lemma is based on the following fact which is a direct consequence
of the Gershgorin circle theorem; see Theorem 1.6, pg 8 of [33].

Fact 5.1 Suppose that U is an n × n real symmetric matrix. Define

Rl =
∑

1≤ j≤n, j =l

|U ( j, l)|, 1 ≤ l ≤ n.

If for some 1 ≤ m ≤ n it holds that

U (m,m) + Rm < U (l, l) − Rl for all 1 ≤ l ≤ m − 1, (5.3)

and

U (m,m) − Rm > U (l, l) + Rl , for all m + 1 ≤ l ≤ n, (5.4)

then

{
λ1(U ), . . . , λn(U )

} \
⎛
⎝ ⋃

1≤l≤k, l =m

[U (l, l) − Rl ,U (l, l) + Rl ]

⎞
⎠ = {λm(U )

}
.

Remark 5.1 The assumptions (5.3) and (5.4) of Fact 5.1 mean that the Gershgorin disk con-
taining the mth largest eigenvalue is disjoint from any other Gershgorin disk.

Proof of Lemma 5.2 The first step is to show that

μ ∈ {λ1(V ), . . . , λk(V )
}
w.h.p. (5.5)

To that end, fix N ≥ 1 and a sample point for which ‖W‖ < μ. The following calculations
are done for that fixed sample point.

Let v be an eigenvector of A, with norm 1, corresponding to λi (A). That is,

μv = Av = Wv + Nε

k∑
l=1

θl(e
′
lv)el , (5.6)

by (5.1). Since μ > ‖W‖, μI − W is invertible, and hence

v = Nε

k∑
l=1

θl(e
′
lv) (μI − W )−1 el . (5.7)

Fixing j ∈ {1, . . . , k} and premultiplying the above by
√

θ jμe′
j yields

μ
√

θ j (e
′
jv) = Nε

k∑
l=1

√
θ jθl(e

′
lv)e′

j

(
I − 1

μ
W

)−1

el =
k∑

l=1

V ( j, l)
√

θl(e
′
lv).

As the above holds for all 1 ≤ j ≤ k, this means that if

u =
[√

θ1(e
′
1v) . . .

√
θk(e

′
kv)
]′

, (5.8)

then

Vu = μu. (5.9)

Recalling that in the above calculations a sample point is fixed such that ‖W‖ < μ, what we
have shown, in other words, is that a vector u satisfying the above exists w.h.p.

123



Largest Eigenvalue of Inhomogeneous ERRG 1761

In order to complete the proof of (5.5), it suffices to show that u is a non-null vector w.h.p.
To that end, premultiply (5.6) by v′ to obtain that

μ = v′Wv + Nε‖u‖2.
Dividing both sides by Nε and using Lemma 4.1 implies that

‖u‖2 = θi + ohp(1).

Thus, u is a non-null vector w.h.p. From this and (5.9), (5.5) follows.
Lemma 5.1 shows that for all l ∈ {1, . . . , i − 1},⎡

⎣V (i, i) +
∑

1≤ j≤k, j =i

|V (i, j)|
⎤
⎦−

⎡
⎣V (l, l) −

∑
1≤ j≤k, j =l

|V (l, j)|
⎤
⎦

= Nε (θi − θl) (1 + ohp(1)),

as N → ∞. Since i ∈ I, θi − θl < 0, and hence

V (i, i) +
∑

1≤ j≤k, j =i

|V (i, j)| < V (l, l) −
∑

1≤ j≤k, j =l

|V (l, j)| w.h.p.

A similar calculation shows that for l ∈ {i + 1, . . . , k},
V (i, i) −

∑
1≤ j≤k, j =i

|V (i, j)| > V (l, l) +
∑

1≤ j≤k, j =l

|V (l, j)| w.h.p.

In view of (5.5) and Fact 5.1, the proof would follow once it can be shown that for all
l ∈ {1, . . . , k} \ {i},

|μ − V (l, l)| >
∑

1≤ j≤k, j =l

|V (l, j)| w.h.p.

This follows, once again, by dividing both sides by Nε andusingTheorem2.1 andLemma5.1.
This completes the proof. ��

The next step is to write
(
I − 1

μ
W

)−1

=
∞∑
n=0

μ−nWn, (5.10)

which is possible because ‖W‖ < μ. Denote

Z j,l,n = e′
jW

nel , 1 ≤ j, l ≤ k, n ≥ 0,

which should not be confused with Zi j defined in (2.14), and for n ≥ 0, let Yn be a k × k
matrix with

Yn( j, l) = √θ jθl NεZ j,l,n, 1 ≤ j, l ≤ k.

The following bounds will be used several times.

Lemma 5.3 It holds that

E (‖Y1‖) = O
(
Nε3/2

)
,

and

‖Y1‖ = ohp
(
(Nε)2

)
.
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Proof Lemma 4.4 implies that

Var
(
Z j,l,1

) = O(ε), 1 ≤ j, l ≤ k.

Hence,

E‖Y1‖ = O

⎛
⎝Nε

k∑
j,l=1

E|Z j,l,1|
⎞
⎠ = O

⎛
⎝Nε

k∑
j,l=1

√
Var(Z j,l,1)

⎞
⎠ = O

(
Nε3/2

)
,

the equality in the second line using the fact that Z j,l,1 has mean 0. This proves the first
claim. The second claim follows from (4.3) of Lemma 4.3. ��

The next step is to truncate the infinite sum in (5.10) to level L , where L = [log N ] as
defined before.

Lemma 5.4 It holds that

μ = λi

(
L∑

n=0

μ−nYn

)
+ ohp

(√
ε
)
.

Proof From the definition of V , it is immediate that for 1 ≤ j, l ≤ k,

V ( j, l) = Nε
√

θ jθl

∞∑
n=0

μ−ne′
jW

nel 1(‖W‖ < μ),

and hence

V = 1(‖W‖ < μ)

∞∑
n=0

μ−nYn .

For the sake of notational simplicity, let us suppress 1(‖W‖ < μ). Therefore,with the implicit
understanding that the sum is set as zero if ‖W‖ ≥ μ, for the proof it suffices to check that∥∥∥∥∥

∞∑
n=L+1

μ−nYn

∥∥∥∥∥ = ohp(
√

ε). (5.11)

To that end, Theorem 2.1 and Lemma 4.1 imply that∥∥∥∥∥
∞∑

n=L+1

μ−nYn

∥∥∥∥∥ ≤
∞∑

n=L+1

|μ|−n‖Yn‖ = Ohp

(
(Nε)−(L−1)/2

)
.

In order to prove (5.11), it suffices to show that as N → ∞,

− log ε = o ((L − 1) log(Nε)) . (5.12)

To that end, recall (1.2) to argue that

N−1 = o(ε) (5.13)

and

log log N = O(log(Nε)). (5.14)

By (5.13), it follows that

− log ε = O (log N )
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= o (log N log log N )

= o ((L − 1) log(Nε)) ,

the last line using (5.14). Therefore, (5.12) follows, which ensures (5.11), which in turn
completes the proof. ��

In the next step, Yn is replaced by its expectation for n ≥ 2.

Lemma 5.5 It holds that

μ = λi

(
Y0 + μ−1Y1 +

L∑
n=2

μ−nE(Yn)

)
+ ohp

(√
ε
)
.

Proof In view of Theorem 2.1 and Lemma 5.4, all that has to be checked is

L∑
n=2

(Nε)−n‖Yn − E(Yn)‖ = ohp(
√

ε). (5.15)

For that, invoke Lemma 4.3 to claim that

max
2≤n≤L, 1≤ j,l≤k

P
(∣∣Z j,l,n − E(Z j,l,n)

∣∣ > N (n−1)/2εn/2(log N )nξ/4
)

= O
(
e−(log N )η1

)
, (5.16)

where ξ is as in (1.2).
Our next claim is that there exists C2 > 0 such that for N large,⋂

2≤n≤L,1≤ j,l≤k

[∣∣Z j,l,n − E(Z j,l,n)
∣∣ ≤ N (n−1)/2εn/2(log N )nξ/4

]
(5.17)

⊂
[

L∑
n=2

(Nε)−n‖Yn − E(Yn)‖ ≤ C2
√

ε
(
(Nε)−1(log N )ξ

)1/2]
.

To see this, suppose that the event on the left hand side holds. Then, for fixed 1 ≤ j, l ≤ k,
and large N ,

L∑
n=2

(Nε)−n ‖Yn( j, l) − E [Yn( j, l)]‖

≤ θ1Nε

L∑
n=2

(Nε)−n
∣∣Z j,l,n − E

(
Z j,l,n

)∣∣

≤ θ1

∞∑
n=2

(Nε)−(n−1)N (n−1)/2εn/2(log N )nξ/4

= [1 − (Nε)−1/2(log N )ξ/4]−1
θ1

√
ε(Nε)−1/2(log N )ξ/2.

Thus, (5.17) holds for some C2 > 0.
Combining (5.16) and (5.17), it follows that

P

(
L∑

n=2

(Nε)−n‖Yn − E(Yn)‖ > C2
√

ε
(
(Nε)−1(log N )ξ

)1/2)
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= O
(
log Ne−(log N )η1

)

= o
(
e−(log N )(1+η1)/2

)
.

This, with the help of (1.2), establishes (5.15) from which the proof follows. ��
The goal of the next two lemmas is replacing μ by a deterministic quantity in

L∑
n=2

μ−nE(Yn).

Lemma 5.6 For N large, the deterministic equation

x = λi

(
L∑

n=0

x−nE(Yn)

)
, x > 0, (5.18)

has a solution μ̃ such that

0 < lim inf
N→∞ (Nε)−1μ̃ ≤ lim sup

N→∞
(Nε)−1μ̃ < ∞. (5.19)

Proof Define a function

h : (0,∞) → R,

by

h(x) = λi

(
L∑

n=0

x−nE(Yn)

)
.

Our first claim is that for any fixed x > 0,

lim
N→∞(Nε)−1h (xNε) = θi . (5.20)

To that end, observe that since E(Y1) = 0,

h (xNε) = λi

(
E(Y0) +

L∑
n=2

(xNε)−nE(Yn)

)
.

Recalling that

Y0( j, l) = Nε
√

θ jθl e
′
j el , 1 ≤ j, l ≤ k,

it follows by (5.2) that

lim
N→∞(Nε)−1E(Y0) = Diag(θ1, . . . , θk). (5.21)

Lemma 4.2 implies that

E(Z j,l,n) ≤ (O(Nε))n/2 ,

uniformly for 2 ≤ n ≤ L , and hence there exists 0 < C3 < ∞ with

‖E(Yn)‖ ≤ (C3Nε)n/2+1, 2 ≤ n ≤ L. (5.22)
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Therefore,

∥∥∥∥∥
L∑

n=2

(xNε)−nE(Yn)

∥∥∥∥∥ ≤
∞∑
n=2

(xNε)−n(C3Nε)n/2+1 → C2
3 x

−2,

as N → ∞. With the help of (5.21), this implies that

lim
N→∞(Nε)−1

(
L∑

n=0

(xNε)−nE(Yn)

)
= Diag(θ1, . . . , θk),

and hence (5.20) follows. It follows that for a fixed 0 < δ < θi .

lim
N→∞(Nε)−1 [Nε(θi + δ) − h ((θi + δ)Nε)] = δ,

and thus, for large N ,

Nε(θi + δ) > h ((θi + δ)Nε) .

Similarly, again for large N ,

Nε(θi − δ) < h ((θi − δ)Nε) .

Hence, for N large, (5.18) has a solution μ̃ in [(Nε)(θi − δ), (Nε)(θi + δ)], which trivially
satisfies (5.19). Hence the proof. ��

Lemma 5.7 If μ̃ is as in Lemma 5.6, then

μ − μ̃ = Ohp
(
(Nε)−1‖Y1‖ + √

ε
)
.

Proof Lemmas 5.5 and 5.6 imply that

|μ − μ̃|

=
∣∣∣∣∣λi
(
Y0 + μ−1Y1 +

L∑
n=2

μ−nE(Yn)

)
− λi

(
L∑

n=0

μ̃−nE(Yn)

)∣∣∣∣∣+ ohp(
√

ε)

≤ ‖μ−1Y1‖ + |μ − μ̃|
L∑

n=2

μ−nμ̃−n‖E(Yn)‖
n−1∑
j=0

μ j μ̃n−1− j + ohp(
√

ε)

= |μ − μ̃|
L∑

n=2

μ−nμ̃−n‖E(Yn)‖
n−1∑
j=0

μ j μ̃n−1− j + Ohp
(
(Nε)−1‖Y1‖ + √

ε
)
.

Thus,

|μ − μ̃|
⎡
⎣1 −

L∑
n=2

μ−nμ̃−n‖E(Yn)‖
n−1∑
j=0

μ j μ̃n−1− j

⎤
⎦ ≤ Ohp

(
(Nε)−1‖Y1‖ + √

ε
)
.(5.23)

Equations (5.19) and (5.22) imply that
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∣∣∣∣∣∣
L∑

n=2

μ−nμ̃−n‖E(Yn)‖
n−1∑
j=0

μ j μ̃n−1− j

∣∣∣∣∣∣ = Ohp

( ∞∑
n=2

n(Nε)−(n+1)(C3Nε)n/2+1

)

= Ohp
(
(Nε)−1)

= ohp(1), N → ∞. (5.24)

This completes the proof with the help of (5.23). ��
The next lemma is arguably the most important step in the proof of Theorem 2.2, the other

major step being Lemma 5.2.

Lemma 5.8 There exists a deterministic μ̄, which depends on N, such that

μ = μ̄ + μ−1Y1(i, i) + ohp
(
(Nε)−1‖Y1‖ + √

ε
)
.

Proof Define a k × k deterministic matrix

X =
L∑

n=0

μ̃−nE(Yn),

which, as usual, depends on N . Lemma 5.7 and (5.24) imply that
∥∥∥∥∥X −

L∑
n=0

μ−nE(Yn)

∥∥∥∥∥ ≤ |μ − μ̃|
L∑

n=2

μ−nμ̃−n‖E(Yn)‖
n−1∑
j=0

μ j μ̃n−1− j

= ohp (|μ − μ̃|)
= ohp

(
(Nε)−1‖Y1‖ + √

ε
)
.

By Lemma 5.5 it follows that

μ = λi
(
μ−1Y1 + X

)+ ohp
(
(Nε)−1‖Y1‖ + √

ε
)
. (5.25)

Let

H = X + μ−1Y1 − (X(i, i) + μ−1Y1(i, i)
)
I ,

M = X − X(i, i)I ,

and

μ̄ = λi (X).

Clearly,

λi
(
μ−1Y1 + X

) = X(i, i) + μ−1Y1(i, i) + λi (H) = μ̄ − λi (M) + μ−1Y1(i, i) + λi (H).

Thus, the proof would follow with the aid of (5.25) if it can be shown that

λi (H) − λi (M) = ohp
(
(Nε)−1‖Y1‖

)
. (5.26)

If k = 1, then i = 1 and hence H = M = 0. Thus, the above is a tautology in that case.
Therefore, assume without loss of generality that k ≥ 2.

Proceeding towards proving (5.26) when k ≥ 2, set

U1 = (Nε)−1M, (5.27)
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and

U2 = (Nε)−1H . (5.28)

The main idea in the proof of (5.26) is to observe that the eigenvector ofU1 corresponding
to λi (U1) is same as that of M corresponding to λi (M), and likewise for U2 and X . Hence,
the first step is to use this to get a bound on the differences between the eigenvectors in terms
of ‖U1 −U2‖.

An important observation that will be used later is that

‖U1 −U2‖ = Ohp
(
(Nε)−2‖Y1‖

)
. (5.29)

The second claim of Lemma 5.3 implies that the right hand side above is ohp(1). The same
implies that for m = 1, 2 and 1 ≤ j, l ≤ k,

Um( j, l) = (θ j − θi )1( j = l) + ohp(1), N → ∞. (5.30)

In other words, as N → ∞, U1 and U2 converge to Diag(θ1 − θi , . . . , θk − θi ) w.h.p.
Therefore,

λi (Um) = ohp(1), m = 1, 2. (5.31)

Let Ũm , for m = 1, 2, be the (k − 1) × (k − 1) matrix (recall that k ≥ 2) obtained by
deleting the i th row and the i th column ofUm , and let ũm be the (k − 1) × 1 vector obtained
from the i th column ofUm by deleting its i th entry. It is worth recording, for possible future
use, that

‖ũm‖ = ohp(1), m = 1, 2, (5.32)

which follows from (5.30), and that

‖ũ1 − ũ2‖ = Ohp
(
(Nε)−2‖Y1‖

)
, (5.33)

follows from (5.29).
Equations (5.30) and (5.31) imply that Ũm − λi (Um)Ik−1 converges w.h.p. to

Diag(θ1 − θi , . . . , θi−1 − θi , θi+1 − θi , θk − θi ).

Since i ∈ I, the above matrix is invertible. Fix δ > 0 such that every matrix in the closed
δ-neighborhood Bδ , in the sense of operator norm, of the above matrix is invertible. Let

C4 = sup
E∈Bδ

‖E−1‖. (5.34)

Then, C4 < ∞. Besides, there exists C5 < ∞ satisfying∥∥∥E−1
1 − E−1

2

∥∥∥ ≤ C5‖E1 − E2‖, E1, E2 ∈ Bδ. (5.35)

Fix N ≥ 1 and a sample point such that Ũm − λi (Um)Ik−1 belongs to Bδ . Then, it is
invertible. Define a (k − 1) × 1 vector

ṽm = −
[
Ũm − λi (Um)Ik−1

]−1
ũm, m = 1, 2,

and a k × 1 vector

vm = [ṽm(1), . . . , ṽm(i − 1), 1, ṽm(i), . . . , ṽm(k − 1)
]′

, m = 1, 2.
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It is immediate that

‖ṽm‖ ≤ C4‖ũm‖, m = 1, 2. (5.36)

Our next claim is that

Umvm = λi (Um)vm, m = 1, 2. (5.37)

This claim is equivalent to

[Um − λi (Um)Ik] vm = 0. (5.38)

Let Ūm be the (k − 1) × k matrix obtained by deleting the i th row of Um − λi (Um)Ik . Since
the latter matrix is singular, and Ũm − λi (Um)Ik−1 is invertible, it follows that the i th row of
Um −λi (Um)Ik lies in the row space of Ūm . In other words, the row spaces ofUm −λi (Um)Ik
and Ūm are the same, and so do their null spaces. Thus, (5.38) is equivalent to

Ūmvm = 0.

To see the above, observe that the i th column of Ūm is ũm , and hence we can partition

Ūm = [Ūm1 ũm Ūm2
]
,

where Ūm1 and Ūm2 are of order (k − 1) × (i − 1) and (k − 1) × (k − i), respectively.
Furthermore, [

Ūm1 Ūm2
] = Ũm − λi (Um)Ik−1.

Therefore,

Ūmvm = ũm + [Ūm1 Ūm2
]
ṽm = ũm +

(
Ũm − λi (Um)Ik−1

)
ṽm = 0.

Hence, (5.38) follows, which proves (5.37).
Next, we note

‖v1 − v2‖ = ‖ṽ1 − ṽ2‖ ≤ ‖(Ũ1 − λi (U1)Ik−1)
−1‖‖ũ1 − ũ2‖

+ ‖(Ũ1 − λi (U1)Ik−1)
−1 − (Ũ2 − λi (U2)Ik−1)

−1‖‖ũ2‖
≤ C4‖ũ1 − ũ2‖ + C5‖(Ũ1 − λi (U1)Ik−1) − (Ũ2 − λi (U2)Ik−1)‖‖ũ2‖,

C4 and C5 being as in (5.34) and (5.35), respectively. Recalling that the above calculation
was done on an event of high probability, what we have proven, with the help of (5.29) and
(5.33), is that

‖v1 − v2‖ = Ohp
(
(Nε)−2‖Y1‖

)
.

Furthermore, (5.32) and (5.36) imply that

‖ṽm‖ = ohp(1).

Finally, noting that

Um(i, i) = 0, m = 1, 2,

and that

vm(i) = 1, m = 1, 2,
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it follows that

|λi (U1) − λi (U2)| =
∣∣∣∣∣∣

∑
1≤ j≤k, j =i

U1(i, j)v1( j) −
∑

1≤ j≤k, j =i

U2(i, j)v2( j)

∣∣∣∣∣∣
≤

∑
1≤ j≤k, j =i

|U1(i, j)||v1( j) − v2( j)|

+
∑

1≤ j≤k, j =i

|U1(i, j) −U2(i, j)|v2( j)|

= Ohp (‖ũ1‖‖v1 − v2‖ + ‖U1 −U2‖‖ṽ2‖)
= ohp

(
(Nε)−2‖Y1‖

)
.

Recalling (5.27) and (5.28), (5.26) follows, which completes the proof in conjunction with
(5.25). ��

Now, we are in a position to prove Theorem 2.2.

Proof of Theorem 2.2 Recalling that

Y1(i, i) = θi Nε e′
iWei ,

it suffices to show that

μ − E(μ) = μ−1Y1(i, i) + op(
√

ε). (5.39)

Lemma 5.8 implies that

μ − μ̄ = μ−1Y1(i, i) + ohp
(
(Nε)−1‖Y1‖ + √

ε
) = Ohp

(
(Nε)−1‖Y1‖ + √

ε
)
, (5.40)

a consequence of which, combined with Lemma 5.3, is that

lim
N→∞(Nε)−1μ̄ = θi . (5.41)

Thus, ∣∣∣∣ 1μ̄Y1(i, i) − 1

μ
Y1(i, i)

∣∣∣∣ = Ohp
(
(Nε)−2|μ − μ̄|‖Y1‖

)

= ohp (|μ − μ̄|)
= ohp

(
(Nε)−1‖Y1‖ + √

ε
)

= op(
√

ε), (5.42)

Lemma 5.3 implying the second line, the third line following from (5.40) and the fact that

‖Y1‖ = Op(Nε3/2), (5.43)

which is also a consequence of the former lemma, being used for the last line. Using
Lemma 5.8 once again, we get that

μ = μ̄ + 1

μ̄
Y1(i, i) + ohp

(
(Nε)−1‖Y1‖ + √

ε
)
. (5.44)

Let

R = μ − μ̄ − 1

μ̄
Y1(i, i).
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Clearly,

E(R) = E(μ) − μ̄,

and (5.44) implies that for δ > 0 there exists η > 1 with

E|R| ≤ δ(
√

ε + (Nε)−1E‖Y1‖) + E1/2
(

μ − μ̄ − 1

μ̄
Y1(i, i)

)2

O(e−(log N )η ).

Lemma 5.3 implies that

E|R| ≤ o(
√

ε) + E1/2
(

μ − μ̄ − 1

μ̄
Y1(i, i)

)2

O(e−(log N )η ).

Next, (5.41) and that |μ| ≤ N 2 a.s. imply that

E1/2
(

μ − μ̄ − 1

μ̄
Y1(i, i)

)2

= O(N 2) = o(ε1/2N 3) = o(ε1/2e(log N )η ).

Thus,

E|R| = o(
√

ε),

and hence

E(μ) = μ̄ + o(
√

ε).

This, in view of (5.44), implies that

μ = E(μ) + 1

μ̄
Y1(i, i) + op

(
(Nε)−1‖Y1‖ + √

ε
) = E(μ) + 1

μ̄
Y1(i, i) + op

(√
ε
)
,

the second line following from (5.43). This establishes (5.39) with the help of (5.42), and
hence the proof. ��

5.3 Proof of Theorem 2.3

Theorems 2.1 and 2.2 establish Theorem 2.3 with the help of (2.10).

5.4 Proof of Theorem 2.4

Now we shall proceed toward proving Theorem 2.4. For the rest of this section, that is, this
subsection and the subsequent two, Assumption F2. holds. In other words, r1, . . . , rk are
assumed to be Lipschitz continuous and hence so is f .

The following lemma essentially proves Theorem 2.4.

Lemma 5.9 Under Assumptions E1 and F2.,

μ = λi
(
Y0 + (Nεθi )

−2E(Y2)
)+ Op

(√
ε + (Nε)−1) .

Proof Lemma 5.5 implies that

μ = λi

(
3∑

n=0

μ−nE(Yn)

)
+ Op

(
μ−1‖Y1‖ +

L∑
n=4

μ−n‖E(Yn)‖
)

+ op(
√

ε).
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Equation (5.43) implies that

μ = λi

(
3∑

n=0

μ−nE(Yn)

)
+ Op

(
√

ε +
L∑

n=4

μ−n‖E(Yn)‖
)

.

From (5.22), it follows that

L∑
n=4

μ−n‖E(Yn)‖ = Op
(
(Nε)−1) ,

and hence

μ = λi

(
3∑

n=0

μ−nE(Yn)

)
+ Op

(√
ε + (Nε)−1) . (5.45)

Lemma 4.4, in particular (4.5) therein, implies that

‖E(Y3)‖ = O
(
(Nε)2

)
,

and hence

μ−3‖E(Y3)‖ = Op
(
(Nε)−1) .

This, in conjunction with (5.45), implies that

μ = λi
(
Y0 + μ−2E(Y2)

)+ Op
(√

ε + (Nε)−1) . (5.46)

An immediate consequence of the above and (5.22) is that

μ = λi (Y0) + Op(1). (5.47)

Applying Fact 5.1 as in the proof of Lemma 5.2, it can be shown that

|λi (Y0) − Y0(i, i)| ≤
∑

1≤ j≤k, j =i

|Y0(i, j)|. (5.48)

Since ri and r j are Lipschitz functions, it holds that

e′
i e j = 1(i = j) + O

(
N−1) .

Hence, it follows that

Y0(i, i) = Nε
(
θi + O(N−1)

) = Nεθi + O(ε),

and similarly,

Y0(i, j) = O(ε), j = i .

Combining these findings with (5.48) yields that

λi (Y0) = Nεθi + O(ε). (5.49)

Equations (5.47) and (5.49) together imply that

μ = Nεθi + Op(1). (5.50)

Therefore, ∥∥μ−2E(Y2) − (Nεθi )
−2E(Y2)

∥∥
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= Op
(
(Nε)−3‖E(Y2)‖

)
= Op

(
(Nε)−1) .

This in conjunction with (5.46) completes the proof. ��
Theorem 2.4 is a simple corollary of the above lemma, as shown below.

Proof of Theorem 2.4 A consequence of Theorem 2.2 is that

μ − E(μ) = Op(
√

ε).

The claim of Lemma 5.9 is equivalent to

λi (B) − μ = Op
(√

ε + (Nε)−1) .
The proof follows by adding the two equations, and noting that B is a deterministic matrix.

��

5.5 Proof of Theorem 2.5

Next we proceed towards the proof of Theorem 2.5, for which the following lemma will be
useful.

Lemma 5.10 Under Assumptions E1 and F2, as N → ∞,

e′
j

(
I − μ−1W

)−n
el = 1( j = l) + Op

(
(Nε)−1) , 1 ≤ j, l ≤ k, n = 1, 2.

Proof For a fixed n = 1, 2, expand
(
I − μ−1W

)−n = I + nμ−1W + Op
(
μ−2‖W‖2) .

The proof can be completed by proceeding along similar lines as in the proof of Lemma 5.9.
��

Now we are in a position to prove Theorem 2.5.

Proof of Theorem 2.5 Theorem 2.1 implies that (2.11) holds for any i ∈ I. Fix such an i ,
denote

μ = λi (A),

and let v be the eigenvector of A, having norm 1, corresponding to μ, which is uniquely
defined with probability close to 1.

Fix k ≥ 2, and j ∈ {1, . . . , k} \ {i}. Premultiplying (5.7) by e′
j yields that

e′
jv = Nε

k∑
l=1

θl(e
′
lv)e′

j (μI − W )−1 el , w.h.p. (5.51)

Therefore,

e′
jv

(
1 − θ j

Nε

μ
e′
j

(
I − μ−1W

)−1
e j

)

= Nε

μ

∑
1≤l≤k, l = j

θl(e
′
lv)e′

j

(
I − μ−1W

)−1
el , w.h.p.
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Lemma 5.10 implies that as N → ∞,

1 − θ j
Nε

μ
e′
j

(
I − μ−1W

)−1
e j

P−→ 1 − θ j

θi
= 0.

Therefore,

e′
jv = Op

⎛
⎝Nε

μ

∑
1≤l≤k, l = j

θl(e
′
lv)e′

j

(
I − μ−1W

)−1
el

⎞
⎠

= Op

⎛
⎝ ∑

1≤l≤k, l = j

∣∣∣e′
j

(
I − μ−1W

)−1
el
∣∣∣
⎞
⎠

= Op
(
(Nε)−1) ,

the last line being another consequence of Lemma 5.10. Thus, (2.13) holds.
Using (5.7) once again, we get that

1 = (Nε)2
k∑

l,m=1

θlθm(e′
lv)(e′

mv)e′
l (μI − W )−2 em,

that is,

θ2i (e′
iv)2e′

i

(
I − μ−1W

)−2
ei

= (Nε)−2μ2 −
∑

(l,m)∈{1,...,k}2\{(i,i)}
θlθm(e′

lv)(e′
mv)e′

l

(
I − μ−1W

)−2
em . (5.52)

Using Lemma 5.10 once again, it follows that

e′
i

(
I − μ−1W

)−2
ei = 1 + Op

(
(Nε)−1) .

Thus, (2.12) would follow once it’s shown that

(Nε)−2μ2 = θ2i + Op
(
(Nε)−1) , (5.53)

and that for all (l,m) ∈ {1, . . . , k}2 \ {(i, i)},

(e′
lv)(e′

mv)e′
l

(
I − μ−1W

)−2
em = Op

(
(Nε)−1) . (5.54)

Equation (5.53) is a trivial consequence of (5.50). For (5.54), assuming without loss of
generality that l = i , (2.13) implies that

∣∣∣(e′
lv)(e′

mv)e′
l

(
I − μ−1W

)−2
em
∣∣∣ =

∣∣∣(e′
mv)e′

l

(
I − μ−1W

)−2
em
∣∣∣ Op

(
(Nε)−1)

≤
∣∣∣e′
l

(
I − μ−1W

)−2
em
∣∣∣ Op

(
(Nε)−1)

= Op
(
(Nε)−1) ,

the last line following from Lemma 5.10. Thus, (5.54) follows, which in conjunction with
(5.53) establishes (2.12). This completes the proof. ��
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5.6 Proof of Theorem 2.6

Finally, Theorem 2.6 is proved below, based on Assumptions E2. and F2.

Proof of Theorem 2.6 Fix i ∈ I. Recall (5.8) and (5.9), and let u be as defined in the former.
Let ũ be the column vector obtained by deleting the i th entry of u, Ṽi be the column vector
obtained by deleting the i th entry of the i th column of V , and Ṽ be the (k − 1) × (k − 1)
matrix obtained by deleting the i th row and i th column of V . Then, (5.9) implies that

μũ = Ṽ ũ + u(i)Ṽi , w.h.p. (5.55)

Lemma 5.1 implies that∥∥∥∥Ik − μ−1V − Diag

(
1 − θ1

θi
, . . . , 1 − θk

θi

)∥∥∥∥ = ohp(1),

and hence Ik−1 − μ−1Ṽ is non-singular w.h.p. Thus, (5.55) implies that

ũ = u(i)μ−1
(
Ik−1 − μ−1Ṽ

)−1
Ṽi , w.h.p. (5.56)

The next step is to show that∥∥∥∥μ−1V − Diag

(
θ1

θi
, . . . ,

θk

θi

)∥∥∥∥ = op
(√

ε
)
. (5.57)

To see this, use the fact that f is Lipschitz to write for a fixed 1 ≤ j, l ≤ k,

V ( j, l) = Nε
√

θ jθl

(
e′
j el + μ−1e′

jWel + Op
(
μ−2‖W‖2))

= Nε
√

θ jθl

(
e′
j el + Op

(
(Nε)−1))

= Nεθ j
(
1( j = l) + Op

(
(Nε)−1))

= Nεθ j
(
1( j = l) + op

(√
ε
))

, (5.58)

the last line following from the fact that

(Nε)−1 = o
(√

ε
)
, (5.59)

which is a consequence of (2.5). This along with (5.50) implies that

(Nεθi )
−1μ = 1 + op

(√
ε
)
. (5.60)

Combining this with (5.58) yields that

μ−1V ( j, l) = θ−1
i θ j1( j = l) + op

(√
ε
)
.

Thus, (5.57) follows, an immediate consequence of which is that∥∥∥∥
(
Ik−1 − μ−1Ṽ

)−1 − D̃

∥∥∥∥ = op
(√

ε
)
, (5.61)

where

D̃ =
[
Diag

(
1 − θ1

θi
, . . . , 1 − θi−1

θi
, 1 − θi+1

θi
, . . . , 1 − θk

θi

)]−1

.
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Next, fix j ∈ {1, . . . , k} \ {i}. By similar arguments as above, it follows that

V (i, j) = Nε
√

θiθ j

(
3∑

n=0

μ−ne′
iW

ne j + Op
(
μ−4‖W‖4)

)

= Nε
√

θiθ j

3∑
n=0

μ−ne′
iW

ne j + Op
(
(Nε)−1)

= Nε
√

θiθ j

2∑
n=1

μ−ne′
iW

ne j + op
(√

ε
)
,

using (5.59) once again, because

Nεe′
i e j = O(ε) = o

(√
ε
)
,

and

Nεμ−3e′
iW

3e j = Op
(
(Nε)−2E(e′

iW
3e j )

) = op
(√

ε
)
,

by (4.5). Thus,

V (i, j) − Nε
√

θiθ jμ
−1e′

iWe j = Nε
√

θiθ jμ
−2e′

iW
2e j + op

(√
ε
)

= Nε
√

θiθ jμ
−2E

(
e′
iW

2e j
)+ op

(√
ε
)

= (Nε)−1θ
1/2
j θ

−3/2
i E

(
e′
iW

2e j
)+ op

(√
ε
)
,

the second line following from Lemma 4.3, and the last line from (5.59), (5.60) and
Lemma 4.2. In particular,

V (i, j) = Op(1).

The above in conjunction with (5.61) implies that
[(

Ik−1 − μ−1Ṽ
)−1

Ṽi

]
( j)

=
(
1 − θ j

θi

)−1√
θiθ j

[
(Nε)−1θ−2

i E
(
e′
iW

2e j
)+ Nεμ−1e′

iWe j
]

+ op(
√

ε).

In light of (5.56), the above means that

e′
jv

= (e′
iv)μ−1

(
1 − θ j

θi

)−1 [
(Nε)−1θ−1

i E
(
e′
iW

2e j
)+ Nεθiμ

−1e′
iWe j + op(

√
ε)
]

= μ−1
(
1 − θ j

θi

)−1 [
(Nε)−1θ−1

i E
(
e′
iW

2e j
)+ Nεθiμ

−1e′
iWe j + op(

√
ε)
]
,

the last line following from (2.12) and (5.59). Using (5.60) once again yields that

Nε(e′
jv) = 1

θi − θ j

[
(Nε)−1θ−1

i E
(
e′
iW

2e j
)+ Nεθiμ

−1e′
iWe j

]
+ op(

√
ε).

This completes the proof. ��
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Appendix

Lemma 6.1 The eigenfunctions {ri : 1 ≤ i ≤ k} of the operator I f are Riemann integrable.

Proof Let D f ⊂ [0, 1] × [0, 1] be the set of discontinuity points f . Since f is Riemann
integrable, the Lebesgue measure of D f is 0. Let

Dx
f = {y ∈ [0, 1] : (x, y) ∈ D f }, x ∈ [0, 1].

If λ is the one dimensional Lebesgue measure, then Fubini’s theorem implies that

E = {x ∈ [0, 1] : λ(Dx
f ) = 0}

has full measure. Fix an x ∈ E and consider xn → x and observe that

f (xn, y) → f (x, y) for ally /∈ Dx
f .

Fix 1 ≤ i ≤ k and let θi be the eigenvalue with corresponding eigenfunction ri , that is,

ri (x) = 1

θi

∫ 1

0
f (x, y)ri (y) dy. (6.1)

Using f is bounded and r ∈ L2[0, 1], dominated convergence theorem implies

ri (xn) = 1

θi

∫
(Dx

f )
c
f (xn, y)ri (y) dy → 1

θi

∫ 1

0
f (x, y)ri (y) dy = ri (x)

and hence r is continuous at x . So the discontinuity points of ri form a subset of Ec which has
Lebesgue measure 0. Further, (6.1) shows that ri is bounded and hence Riemann integrability
follows. ��

The following result is a version of the Perron–Frobenius theorem in the infinite dimen-
sional setting (also known as the Krein–Rutman theorem). Since our integral operator is
positive, self-adjoint and finite dimensional so the proof in this setting is much simpler and
can be derived following the work of [28]. In what follows, we use for f , g ∈ L2[0, 1], the
inner product

〈 f , g〉 =
∫ 1

0
f (x)g(x)dx .

Lemma 6.2 Suppose f > 0 a.e. on [0, 1]×[0, 1]. Then largest eigenvalue θ1 of T f is positive
and the corresponding eigenfunction r1 can be chosen such that r1(x) > 0 for almost every
x ∈ [0, 1]. Further, θ1 > θ2.

Proof First observe that

0 < θ1 = 〈r1, θ1r1〉 = 〈r1, I f (r1)〉 = |〈r1, I f (r1)〉|
≤ 〈u1, I f (u1)〉 ≤ θ1
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where u1(x) = |r1|(x) and the last inequality follows from the Rayleigh-Ritz formulation of
the largest eigenvalue. Hence note that the string of inequalities is actually an equality, that
is,

〈r1, I f (r1)〉 = 〈u1, I f (u1)〉.
Breaking r1 = r+

1 − r−
1 implies either r+

1 = 0 or r−
1 = 0 almost everywhere. Without loss

of generality assume that r1 ≥ 0 almost everywhere. Using

θ1r1(x) =
∫ 1

0
f (x, y)r1(y) dy

Note that if r1(x) is zero for some x then due to the positivity assumption on f , r1(y) = 0
for almost every y ∈ [0, 1] which is a contradiction. Hence we have that r1(x) > 0 almost
every x ∈ [0, 1].

For the final claim, without loss of generality assume that
∫ 1
0 r1(x) dx ≥ 0. If θ1 = θ2,

then the previous argument would give us r2(x) > 0 and this will contradict the orthogonality
of r1 and r2. ��

Lemmas 4.1–4.4 are proved in the rest of this section. Therefore, the notations used here
should refer to those in Sect. 4 and should not be confused with those in Sect. 5. For example,
e1 and e2 are as in Lemma 4.2.

Proof of Lemma 4.1 Note that for any even integer k

E(‖W‖k) ≤ E(Tr(Wk)). (6.2)

Using E(W (i, j)2) ≤ εM and condition (1.2) it is immediate that conditions of Theorem
1.4 of [34] are satisfied. We shall use the following estimate from the proof of that result. It
follows from [34, Sect. 4]

E(Tr(Wk)) ≤ K1N (2
√

εMN )k (6.3)

where K1 is some positive constant and there exists a constant a > 0 such that k can be
chosen as

k = √
2a(εM)1/4N 1/4.

Using (6.2), (6.3) and (1 − x)k ≤ e−kx for k, x > 0,

P
(
‖W‖ ≥ 2

√
MNε + C1(Nε)1/4(log N )ξ/4

)

= K1N

(
1 − C1(Nε)1/4(log N )ξ/4

2
√
MNε + C1(Nε)1/4(log N )ξ/4

)k

≤ K1N exp

(
− kC1(Nε)1/4(log N )ξ/4

2
√
MNε + C1(Nε)1/4(log N )ξ/4

)
. (6.4)

Now plugging in the value of k in the bound (6.4) and using

2
√
M + C1(Nε)−1/4(log N )ξ/4 ≤ 2

√
M + C1

we have

(6.4) ≤ K1N exp

(
−C1aM1/4

√
2(log N )ξ/4

2
√
M + C1

)
≤ e−C2(log N )ξ/4
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for some constant C2 > 0 and N large enough. This proves (4.1) and hence the lemma.
��

Proof of Lemma 4.2 Let A be the event where Lemma 4.1 holds, that is, ‖W‖ ≤ C
√
Nε for

some constant C . Since the entries of e1 and e2 are in [−1/
√
N , 1/

√
N ] so ‖ei‖ ≤ 1 for

i = 1, 2. Hence on the high probability event it holds that∣∣E (e′
1W

ne21A
)∣∣ ≤ (CNε)n/2.

We show that the above expectation on the low probability event Ac is negligible. For that
first observe

|E[(e′
1W

ne2)
2]| ≤ NnC ′

for some constant 0 < C ′ < ∞. Thus using Lemma 4.1 one has
∣∣E (e′

1W
ne21Ac

)∣∣ ≤ ∣∣∣E [(e′
1W

ne2)
2]1/2∣∣∣ P(Ac

N )1/2

≤ exp
(
nC ′ log N − 2−1C2(log N )ξ/4)

Since n ≤ log N and ξ > 8 the result follows. ��
Proof of Lemma 4.3 The proof is similar to the proof of Lemma 6.5 of [18]. The exponent in
the exponential decay is crucial, so the proof is briefly sketched. Observe that

e′
1W

ne2 − E
(
e′
1W

ne2
)

=
∑

i∈{1,...,N }n+1

e1(i1)e2(in+1)

(
n∏

l=1

W (il , il+1) − E

[
n∏

l=1

W (il , il+1)

])
(6.5)

To use the independence, one can split thematrixW asW ′+W ′′ where the upper triangular
matrix W ′ has entries W ′(i, j) = W (i, j)1(i ≤ j) and the lower triangular matrix W ′′ with
entries W ′′(i, j) = W (i, j)1(i > j). Therefore the above quantity under the sum breaks
into 2n terms each having similar properties. Denote one such term as

Ln =
∑

i∈{1,...,N }n+1

e1(i1)e2(in+1)

(
n∏

l=1

W ′(il , il+1) − E

[
n∏

l=1

W ′(il , il+1)

])
.

Using the fact that each entry of e1 and e2 are bounded by 1/
√
N , it follows by imitating the

proof of Lemma 6.5 of [18] that

E[|Ln |p] ≤ (Cnp)np (Nε)np/2

N p/2 ,

where p is an even integer and C is a positive constant, independent of n and p. Rest of the
2n − 1 terms arising in (6.5) have the same bound and hence

P
(∣∣e′

1W
ne2 − E

(
e′
1W

ne2
)∣∣ > N (n−1)/2εn/2(log N )nξ/4

)

≤ (2Cnp)np (Nε)np/2

N p/2N p(n−1)/2ε pn/2(log N )pnξ/4
= (2Cnp)np

(log N )pnξ/4 .

Choose η ∈ (1, ξ/4) and consider

p = (log N )η

2Cn
,
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(with N large enough to make p an even integer) to get

P
(∣∣e′

1W
ne2 − E

(
e′
1W

ne2
)∣∣ > N (n−1)/2εn/2(log N )nξ/4

)

≤ exp

(
− 1

2C
(log N )η(

ξ

4
− η) log log N

)
.

Note that n ≤ L , ensures that p > 1. Since the bound is uniform over all 2 ≤ n ≤ L , the
first bound (4.2) follows.

For (4.3) one can use Hoeffding’s inequality [21, Theorem 2] as follows.
Define

Ã(k, l) = A(k, l)e1(k)e2(l), 1 ≤ k ≤ l ≤ N .

Since A(k, l) are Bernoulli random variables, so one has { Ã(k, l) : 1 ≤ k ≤ l ≤ N }
are independent random variables taking values in [−1/N , 1/N ] and hence by Hoeffding’s
inequality we have, for any δ > 0,

P

⎛
⎝
∣∣∣∣∣∣
∑

1≤k≤l≤N

Ã(k, l) − E

⎛
⎝ ∑

1≤k≤l≤N

Ã(k, l)

⎞
⎠
∣∣∣∣∣∣ > δNε

⎞
⎠

≤ 2 exp
(−δ2(Nε)2

) ≤ 2 exp
(−δ2(log N )2ξ

)
.

Dealing with the case k > l similarly, the desired bound on e′
1We2 follows. ��

Proof of Lemma 4.4 Follows by a simple moment calculation. ��
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spacing and the extreme eigenvalues. Commun. Math. Phys. 314(3), 587–640 (2012). https://doi.org/10.
1007/s00220-012-1527-7
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