
Journal of Statistical Physics (2020) 180:1206–1251
https://doi.org/10.1007/s10955-020-02612-1

Estimation of Local Microcanonical Averages in Two Lattice
Mean-Field Models Using Coupling Techniques

Kalle Koskinen1 · Jani Lukkarinen1

Received: 9 January 2020 / Accepted: 8 July 2020 / Published online: 20 July 2020
© The Author(s) 2020

Abstract
We consider an application of probabilistic coupling techniques which provides explicit
estimates for comparison of local expectation values between label permutation invariant
states, for instance, between certainmicrocanonical, canonical, and grand canonical ensemble
expectations. A particular goal is to obtain good bounds for how such errors will decay
with increasing system size. As explicit examples, we focus on two well-studied mean-
field models: the discrete model of a paramagnet and the mean-field spherical model of a
continuum field, both of which are related to the Curie–Weiss model. The proof is based on a
construction of suitable probabilistic couplings between the relevant states, usingWasserstein
fluctuation distance to control the difference between the expectations in the thermodynamic
limit.

Keywords Curie-Weiss · Mean field models · Wasserstein distance · Microcanonical
ensemble · Coupling in probability

1 Introduction

Weconsider a novelmethodof analysis of convergenceof local expectationvalues in probabil-
ity distributions associated with microcanonical ensembles. Our approach aims at answering
the following question which would be natural, for example, to control expectations in states
arising in ergodic theory: Assume that the system is in a microcanonical state with one or

Communicated by Ivan Corwin.

Joel L. Lebowitz has been one of the driving forces and main supporters of mathematical statistical physics
for over half a century. It is a particular honour and a pleasure to dedicate this, in relation humble, update on
foundations of statistical mechanics to him.

B Kalle Koskinen
kalle.koskinen@helsinki.fi

Jani Lukkarinen
jani.lukkarinen@helsinki.fi

1 Department of Mathematics and Statistics, University of Helsinki, P.O. Box 68, 00014 Helsingin
yliopisto, Finland

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10955-020-02612-1&domain=pdf
http://orcid.org/0000-0002-3278-7245


Estimation of Local Microcanonical Averages... 1207

two known fixed conserved quantities which are label permutation invariant. Consider an
observable which depends only on a few degrees of freedom of some finite but large system,
for example, consider local correlation functions. Assume that there is some other permuta-
tion invariant probability distribution, such as the corresponding grand canonical ensemble,
in which the expectation of the observable can be computed, either via a simulation or ana-
lytically. Can we estimate the error which arises from replacing the typically not computable
microcanonical expectation with the second result? Assuming that the two ensembles are
thermodynamically equivalent, how fast does the error decrease with increasing system size?

From the perspective of uniformmeasures with constraints, wemainly focus on the related
standard ensembles, i.e., microcanonical, canonical, and grand canonical ensembles, each
with parameters associated with the thermodynamically relevant quantities. For the sake of
completeness, we will give a heuristic overview of the standard ensemble theory in Sect. 1.1.
There we also introduce notations and terminology which will be used later for defining the
ensemble measures of the two models.

In the above standard ensemble set-up, the thermodynamic equivalence of ensembles can
often be studied via relative entropy methods. In certain models, in particular, of discrete
lattice fields, the relative entropy bounds can also provide an answer to the question stated in
the beginning via the Pinsker inequality. However, relative entropy estimates are not always
readily available, cannot be used between measures which are not absolutely continuous at
least in one direction, and as we will show explicitly later, the estimates they provide might
not be optimal.

The motivation to look for improvements of the well developed earlier methods comes
from a recent result [13] for the supercritical Berlin–Kac spherical model [1]. This is a model
with two thermodynamic quantities in a canonical ensemble where one of them becomes
frustrated and forms a condensate. This results in an nonequivalence between the canonical
and grand canonical ensembles. However, it was shown in [13] that, after separating the con-
densate modes, the state of the remaining modes is well described by a grand canonical state.
Comparing canonical with this modified grand canonical ensemble yields local expectations
which converge to each other in the thermodynamic limit. The result was proven using a
suitably constructed coupling and relying on the translation invariance of the system, and the
resulting estimates imply a power-law convergence in the system size of the errors between
the two expectation values.

The coupling technique in [13] is, however, quite specific to the Berlin–Kac model, and
relies partially on the existence of the condensate. Here, we explore the extension of these
ideas to well-studied cases where equivalence and non-equivalence of various ensembles are
known, and which are sufficiently simple to be fairly explicitly computable. For the models
chosen here, translation invariance is being replaced by label permutation invariance, and it
will serve as an important tool to lift the fairly crude coupling estimates into convergence
of various local expectations. We also explore the idea of replacing the standard ensembles
of some of these models with other, more accurate but still easy to evaluate, measures. The
standard theory of ensemble equivalence will serve as a guide in this choice, and also in most
of the cases studied here, it will suffice on its own.

Thefirst of themodels is the simple paramagnetwhich one canfind in [11]. Inworkingwith
this model, there will be a slight abuse of terminology. There is no associated Hamiltonian,
but themagnetization is the “conserved quantity” of this model. The corresponding canonical
ensemble then has a parameter associated with the control of expectation of magnetization.
The paramagnet model is, however, closely related to the standard Curie–Weiss model since
the ensemble expectations of the latter can be expressed as a convex combination of those of
the former (this connection will be discussed also in Sect. 3.4).
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The second model is a continuum modification of the Curie–Weiss model called the
mean-field spherical model. The model has been studied in [9] and it is a simplification of
the Berlin–Kac model introduced in [1]. In [9], the authors consider the thermodynamic
properties of the microcanonical and canonical ensembles. In Sect. 4, we explore the mean-
field spherical model in a slightly generalized set-up, namely, by also considering the density
of the system to be a free parameter. This allows to study the properties of the grand canonical
ensemble which is not explored in [9].

For both of these models, we will give detailed proofs of explicit rates of convergence of
finite marginal distributions and/or finite moments of all order between the ensembles of the
models. The main result here is the development of novel methods which employ rigorous
and well-understood analysis of the thermodynamic properties of the ensembles in order to
prove a form of weak convergence of the probability measures corresponding to the different
ensembles.

For the simple paramagnet, we will supply two distinct proofs with explicit errors for the
convergence of local observables. The first proofwill utilize relative entropy and, as such, will
mainly reprove and collect known results. The second proof will utilize a coupling argument.
Due to the simple nature of this model, we can show explicitly that the error bounds given by
the coupling method are strictly better than the bounds given by the relative entropy method
that we used. For the mean-field spherical model, we will focus solely on application of the
coupling methods to prove local convergence results.

Themainmathematical tools for the rigorous control of expectations in the various ensem-
ble measures are couplings of the ensemble measures and the related Wasserstein distance
between them, with suitably chosen “cost functions.” We give a brief review of couplings
and Wasserstein metric in Sect. 2.1.

A crucial property of the ensemble measures and of the couplings constructed here is their
invariance under permutations of the particle labels. The permutation invariance improves the
control of differences of expectations under the ensemble measures, allowing to bound the
error by the above Wasserstein distance. The method is similar to how translation invariance
has been used in [13] for the supercritical Berlin–Kac spherical model, and it is described
in detail in Sect. 2. Another tool for such an estimation is the Laplace method of asymptotic
analysis for such integrals. The method and how it applies to the above error estimation is
also discussed in Sect. 2 and A.2.

We postpone more detailed discussion about further related previous works, and how the
present estimates connect to these, at the end of Introduction, to Sect. 1.2.

1.1 Equilibrium Ensembles with TwoThermodynamic Quantities

To fix our conventions, let us record here briefly our definitions and parametrization of the
standard ensembles. For a review of further results and discussion about the thermodynamic
equivalence of ensembles, we refer to [16] and for mathematical details also to [12].

In the following,S is some arbitrary state spacewith somefixed positive referencemeasure
dφ. The two thermodynamic observables, the “conservedquantities”,will be called the energy
H : S → R and the particle number N : S → R. We use V > 0 to represent the number of
degrees of freedom of the system and we focus on the properties of the system for large V .
It is typically related to the “volume” of the state space S in some way.

We represent the constraints using, at the moment somewhat formal, δ-function notations;
the rigorous meaning of the notations will be discussed later. Let us stress that we do not take
the commonly used thin-shell smoothing of these measures since this would for our purposes

123



Estimation of Local Microcanonical Averages... 1209

unnecessarily complicate the analysis. However, we then have to be careful in the choice
of allowed parameter values in some of the ensembles below, to avoid instances where the
normalization factor is zero or otherwise ill-defined.

The microcanonical ensemble with energy density ε ∈ R and particle density ρ ∈ R is
then given by

μ
ε,ρ;V
MC (dφ) := 1

ZMC(ε, ρ; V )
δ(H [φ] − εV )δ(N [φ] − ρV ) dφ.

The canonical ensemble with inverse temperature β ∈ R and particle density ρ ∈ R is given
by

μ
β,ρ;V
C (dφ) := 1

ZC(β, ρ; V )
e−βH [φ]δ(N [φ] − ρV ) dφ.

Finally, the analogously defined grand canonical ensemble with inverse temperature β ∈ R

and chemical potential μ ∈ R is

μ
β,μ;V
GC (dφ) := 1

ZGC(β, μ; V )
e−βH [φ]−μN [φ] dφ.

Let us remark that, for later convenience, we do not follow the standard physics conventions
here using which our parameter “μ” should have been replaced by “−βμ”.

With the above definitions, there are a number of immediate, explicit relations between
some of the above ensembles. In particular, we will need later the following two observations
which allow representing an ensemble as a mixture of the more constrained ensemble:

μ
β,ρ;V
C (dφ) = 1

∫
dε e−VβεZMC(ε, ρ; V )

∫
dε e−VβεZMC(ε, ρ; V )μ

ε,ρ;V
MC (dφ) (1.1)

and

μ
β,μ;V
GC (dφ) = 1

∫
dεdρ e−V (βε+μρ)ZMC(ε, ρ; V )

∫
dεd

ρ e−V (βε+μρ)ZMC(ε, ρ; V )μ
ε,ρ;V
MC (dφ).

Next,we define the specificmicrocanonical entropy ormicrocanonical entropy per degrees
of freedom by

s(ε, ρ; V ) := 1

V
ln ZMC(ε, ρ; V ).

We define the specific canonical free energy or canonical free energy per degrees of freedom
by

fC(β, ρ; V ) := − 1

V
ln ZC(β, ρ; V ) .

Note that we do not divide here by β, as would be common for definition of a free energy:
this would not be convenient for our models since also zero and negative values of β may
occur here. Similarly, the specific grand canonical free energy or grand canonical free energy
per degrees of freedom is defined here by

fGC(β, μ; V ) := − 1

V
ln ZGC(β, μ; V ).
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Now, in order to see the relationship to Laplace-type integrals, we note that

e−VβεZMC(ε, ρ; V ) = e−V (βε−s(ε,ρ;V )) , e−V (βε+μρ)ZMC(ε, ρ; V )

= e−V (βε+μρ−s(ε,ρ;V )).

Assuming that the limits exist, we define

s(ε, ρ) := lim
V→∞ s(ε, ρ; V ), fC(β, ρ) = lim

V→∞ fC(β, ρ; V ), fGC(β, μ)

:= lim
V→∞ fGC(β, μ; V ).

Then either Laplace-type integral estimates or large deviation techniques [12] can often be
used to show that the limit functions are related by a Legendre transform:

fC(β, ρ) = inf
ε

{βε − s(ε, ρ)} , fGC(β, μ) = inf
ε,ρ

{βε + μρ − s(ε, ρ)} .

Typically, this results in a one-to-one correspondence between the parameters ε and ρ in the
microcanonical ensemble with the associated free parameters β and μ. Assuming that the
above thermodynamic limits exist and agree with each other using this correspondence, we
say that the ensembles are thermodynamically equivalent.

The theory of Laplace-type integrals is well-developed and allows one to compute explicit
asymptotics of such integrals. In particular, one is typically interested in second-order fluc-
tuations. Indeed, from the specific free energies, we obtain

〈H〉β,ρ;V
C

V
= ∂β fC(β, ρ; V ),

〈
H2
〉β,ρ;V
C −

(
〈H〉β,ρ;V

C

)2

V
= −∂2β fC(β, ρ; V ).

Using the theory of Laplace-type integrals, we typically have

lim
V→∞

〈H〉β,ρ;V
C

V
= ∂β fC(β, ρ) , lim

V→∞

〈
H2
〉β,ρ;V
C −

(
〈H〉β,ρ;V

C

)2

V
= −∂2β fC(β, ρ).

The notion of “typical” here is rather vague and we refer the reader to A.2 for a more
detailed account of the use of the Laplace method. The first limit implies that the energy
density of the canonical system converges to a constant, which, in turn, implies that the
energy density behaves like O(1) for large V . The contents of the second limit imply that

the standard deviation of the energy density of the canonical system behaves like O(V− 1
2 ).

However, one should not rely on these formulae directly at phase transition points where the
differentiability assumptions fail: in such cases, more refined tools, such as subdifferentials
and convex analysis, will be needed to study the related behaviour.

However, in addition to analysing the thermodynamic properties of the system, the
Laplace-type analysis offers us something more. Indeed, if we return to the alternative rep-
resentation of the canonical ensemble and we denote the minimizing ε of fC(β, ρ) by ε∗,
then, for some suitable class of observables g(φ), one might expect that

lim
V→∞

∣
∣
∣〈g〉ε∗,ρ;V

MC − 〈g〉β,ρ;V
C

∣
∣
∣ = 0. (1.2)

We then say that the two ensembles are equivalent in this observable class. For instance, if
the above result would hold for every function g : S → C which is Lipschitz continuous,
we could say that the microcanonical and canonical ensembles are Lipschitz observable
equivalent. Analogously, if the result holds for all polynomials g of the field whose degree is
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not allowed to grow with V , we say that the ensembles are equivalent in their local moments.
In this paper, we consider the suitable class of functions g, and the rate of convergence in
(1.2) in more detail.

1.1.1 Clarification of Terminology

To avoid possible misunderstandings, let us explicitly record our usage of the terminology
concerning ensembles and related objects such as the partition function and free energy.Most
notably, we will need to make a distinction between thermodynamic and auxiliary statistical
ensembles.

A statistical ensemble is a probability distribution describing the state of a system. A ther-
modynamic ensemble is a particular statistical ensemble which is determined by the physical
properties of the system, in particular, by its dynamics. Themost common examples start with
aHamiltonian defining the dynamics and then include any other relevant conserved quantities
using one of the above discussed forms leading to microcanonical, canonical, and possibly
one or more grand canonical ensembles. Partition functions and free energies can then be
associated with these thermodynamic ensembles. We do make some choices of convenience
to simplify the overall constant in the partition function: to avoid misunderstandings, we
include also their explicit definitions in the following.

Here, we start from some some given thermodynamic ensemble in the microcanonical
form. This yields the physical probability distribution whose local expectation values we
aim to estimate. For this estimation, it turns out to be helpful to introduce new probability
measures, i.e., statistical ensembles, on the system which we will call auxiliary ensembles.
Since many of these auxiliary measures can be written in the same form as standard thermo-
dynamic ensembles, it will be helpful to extend the standard terminology also there, leading,
for example, to “auxiliary microcanonical ensemble with fixed magnetization density” for
the Curie–Weiss model.

The auxiliary ensembles can be associatedwith “partition functions” and “free energies” in
analogywith the standard ensembles, and this indeedwill becomeahelpful shorthandnotation
in some of our computations. However, it should be stressed that the auxiliary ensembles
usually do not have any thermodynamicmeaning, for example, themagnetization defining the
auxiliary ensemble above is not implied to be a conserved quantity in any dynamics leading
to the Curie–Weiss model. In addition, when talking about phase transitions and their order,
we will always refer to the parameters in the original thermodynamic ensembles, and not to
those appearing in the auxiliary ensembles.

1.2 RelatedWorks and Further Motivation

There has always been considerable interest in trying to classify the “correct” notions of con-
vergence of the equilibrium ensembles. For a particularly illuminating and modern account
on some of the various notions which have been considered, we refer to [16] and its refer-
ences. Thermodynamic equivalence from the point of view of large deviations and convexity
properties of entropy is considered in great generality in [16]. Here, we approach the prob-
lem more from the point of view of convergence of generic local expectation values, and the
additional facilitating ingredient is label permutation invariance of the studied equilibrium
ensembles. For rigorous applications of the ensembles in non-equilibrium phenomena, such
as for estimating the accuracy of local thermal equilibrium while studying heat transport, it
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would be important to be able to estimate the error in the approximation. This ultimate goal is
the second motivation for starting with the simple example cases in the present contribution.

In fact, such rigorous proofs are already available in the literature, albeit for different
systems from the ones studied here. A very detailed mathematical account of such a con-
vergence has been given in [2] starting from uniform distributions on the intersection of a
simplex and a sphere. By appropriately parametrizing the radius of the sphere, and consider-
ing the behaviour of finite dimensional marginals and moments of this uniform distribution
as the dimension of the space is increased, the author is able to rigorously prove that a phase
transition occurs for this specific system. In particular, the author is able to prove that in the
high dimensional limit the finite marginal distributions of the given uniform distributions are
of product form.

Another work in this direction, which cites the previous article, is given in [8]. In this work
the authors consider the convergence of the microcanonical and grand canonical measures
related to the Bose–Hubbard model. The commonality between both [2] and [8] is that the
models they are considering are defined on state spaces with strictly positive unbounded
elements. Such a feature seems to be a key property of these models since both of these
works observe a phase transition into a state which can be characterized as containing a
condensate.

In fact, a fairly satisfying account of ensembles with unbounded strictly positive phase
spaces has been given in [14]. In this work the author proves a form of the equivalence
of ensembles for systems with multiple constraints satisfying certain conditions, and the
results are quite general as to their applicability. However, the main theorems presented there
hold for phase spaces which are defined on [0,∞)N rather than R

N , and, furthermore, the
assumptions of the main theorem do not hold for the ensembles we are considering here.

We also mention an extensive source for references to the relative entropy method and
usage of the method in [7] and [3]. Some of these references will also be explicitly quoted
later when discussing the usage of relative entropy.

Finally, let us mention the origin of the continuum model we are considering. First, we
recall the (discrete) Curie–Weiss model. For a general overview of the discrete model, we
refer to [10].We alsomention the classicalwork of Ellis in [6]which goes beyond the standard
Curie–Weiss model. In [9], the authors consider a further simplification to the Berlin–Kac
model introduced in [1]. In particular, the nearest neighbour Ising model is replaced by a
mean-field Hamiltonian, and, as evidenced in the article, the thermodynamic properties of the
microcanonical and canonical ensembles become exactly computable. However, the authors
do not consider the properties of local observables in their analysis. The following references
contain results about the phase structure of these models [9], as well as of their Potts model
type generalizations to multicomponent cases [4].

Our approach differs significantly from those of the above previous works and their asso-
ciated models. In particular, we will employ various coupling methods to prove convergence
of finite dimensional marginal distributions and finite moments of all orders. In addition, our
arguments do not hinge on definitions of the microcanonical ensembles with thin-set approx-
imations. Instead, we define the microcanonical ensembles directly as constrained measures
and explore their properties via analytic rather than probabilistic methods. For the first model,
we refer to [11] for a considerably more detailed analysis of the various properties of the
model. However, for the second model introduced in [9] there does not seem to be proofs
pertaining to the convergence of finite dimensional marginals or finite moments. There is a
considerable amount of fine structure which must be considered to give a full account of the
local convergence at this level.
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Finally, let us stress that the main purpose of this paper is to display the specific methods
of coupling and their relationship with the local convergence properties of the equilibrium
ensembles. The thermodynamic properties of these systems are already well-known and have
been studied extensively, but wewish to give an alternate, simpler andmore accurate, account
of the two models present in this paper, with the hope that the ideas used here generalize to
other, less explicitly tractable models.

2 TwoMethods of Coupling andMain Lemmas

In this section, we will present definitions relevant to this article including the concept of
coupling, the Wasserstein distance metric, and their two application methods which will be
presented as theorems later on.

2.1 Couplings andWasserstein Distances

We collect some of the basic notions related to couplings here. More thorough introduction
is available for instance in [17].

2.1.1 Couplings and Transport Maps

We will frequently make use of the notion of coupling between probability measures. Let
X be a sample space and let � be a σ -algebra on X . Let μ1 and μ2 be two probability
measures on X . Define the coordinate projections P1 : X × X → X and P2 : X × X → X
by P1(x, y) := x and P2(x, y) := y. A probability measure γ on a sample space X × X
with a σ -algebra � ⊗ � is called a coupling if γ ◦ P−1

1 = μ1 and γ ◦ P−1
2 = μ2. Here, and

in the following, P−1 will be used not only to denote the inverse of a mapping P , but also
for the associated map which takes a set to its preimage under P .

In this paper, we will often give the definitions of probability measures with the explicit
assumption that they can be constructed by simply giving suitable values of the expectations
of measurable functions. For example, if X is a locally compact Hausdorff space and we are
able to construct a bounded positive linear functional L on Cc(X), the space of continuous
functions with compact support equipped with the supremum norm, such that ‖L‖ = 1,
then by the Riesz–Markov–Kakutani representation theorem, there exists a unique Radon
probability measure1 μ on X such that L( f ) = 〈 f 〉μ for all f ∈ Cc(X).

For the contents of this paper, we will use the following equivalent notion of coupling. Let
f : X → R be a measurable function. A probability measure γ , as defined in the previous
paragraph, is a coupling if

〈 f ◦ P1〉γ = 〈 f 〉μ1
, 〈 f ◦ P2〉γ = 〈 f 〉μ2

holds for all such functions f . One typically says that the marginal distributions of γ are
given by μ1 and μ2.

In this paper, we will sometimes refer to specific types of couplings as transport maps.
Let μ1 be a probability measure as before, and let T : X → X be a measurable map.
Define the probability measure μ2 by setting μ2(A) := μ1(T−1(A)) for all A ∈ �. Such

1 Radon measures are a subclass of Borel measures with additional technical regularity properties, cf.
Wikipedia or [15].
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a probability measure μ2 is called the pushfoward measure of μ1 by the map T . We then
denote μ2 = T∗μ1. This notion is also sometimes called the abstract change of variables
due to the following equivalent definition of the pushforward measure: If f : X → R+ is a
characteristic function of a measurable set, we may set

〈 f 〉μ3 =
∫

X
μ1(dx) f (T (x)) , (2.1)

and this defines a positive measure μ3 on �. Then, it is straightforward to check that μ3

indeed is a probability measure for which (2.1) holds for every non-negative measurable
function f . In addition, μ3 = μ2, and thus (2.1) provides an alternative definition of T∗μ1.

Whenμ2 andμ1 aremeasures such that there is ameasurablemap T forwhichμ2 = T∗μ1,
we call T a transport map from the measureμ1 toμ2. A transport map T can always be used
to construct a coupling between μ1 and μ2 as follows: If g : X × X → R+ is a measurable
function, we define a probability measure γ by setting

〈g〉γ =
∫

X
μ1(dx) g(x, T (x)).

One can go through analogous steps as above and show that γ is then indeed a coupling of
μ1 and μ2 = T∗μ1.

2.1.2 Wasserstein Distance and Coupling Optimization

For the moment, we will specialize to probability measures on Rn . Let μ1 and μ2 be proba-
bility measures on R

n and let f : Rn → R be a bounded 1-Lipschitz function with respect
to the || · ||p-norm for some p ≥ 1. To be explicit, we require that f is a function for which
its optimal Lipschitz constant K , defined by

K := sup
φ �=ψ

| f (φ) − f (ψ)|
‖φ − ψ‖p

,

satisfies K ≤ 1. This is a property which depends on the choice of norm, and restricts the
class of allowed functions. Naturally, if f is a function with K > 1, then we can apply the
results below to the 1-Lipschitz function 1

K f , and the conclusions for the original function
f will be the same, as long as the constant K remains bounded in n. We have chosen to use
the “1-Lipschitz” assumption in order to remove one, otherwise quite relevant, constant from
the estimates.

Suppose there exists a coupling γ of μ1 and μ2. Using the properties of probability
measures, we have
∣
∣〈 f 〉μ1

− 〈 f 〉μ2

∣
∣ = ∣∣〈 f ◦ P1 − f ◦ P2〉γ

∣
∣ ≤ 〈| f ◦ P1 − f ◦ P2|〉γ ≤ 〈||x1 − x2||p

〉
γ

.

(2.2)

On the last line, we have used the short hand notation xi = Pi (x), i = 1, 2, for clarity.
One should note that the coupling does not appear on the left hand side of this inequality,
and, we are thus free to minimize this inequality with respect to all couplings γ . Since there
always exists at least one coupling, given by the the product coupling γ = μ1 ⊗ μ2, and
since the functions f are bounded, then for any coupling the middle expression has a uniform
upper bound. Therefore,

∣
∣〈 f 〉μ1

− 〈 f 〉μ2

∣
∣ ≤ inf

γ

〈||x1 − x2||p
〉
γ

.
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Naturally, we can swap the norm || · ||p for any cost function c(x, y) : Rn × R
n → R+

with enough regularity as long as we can relate the difference of the expectations somehow
to the given cost function.

For p ≥ 1, definePp(R
n) to be the space of probabilitymeasureswith finite p:thmoments,

i.e., assuming that 〈‖x‖p
p〉 < ∞. Consider μ1, μ2 ∈ Pp(R

n). Given also some q ≥ 1,
we denote the p-Wasserstein distance between μ1 and μ2 with respect to the q-norm by
Wp;q(μ1, μ2). Explicitly,

Wp;q(μ1, μ2) =
(

inf
γ

∫

Rn×Rn
γ (dx, dy) ||x − y||pq

) 1
p

,

and, since ‖x‖q ≤ n1/q max j |x j |, is straightforward to check that thenWp;q(μ1, μ2) < ∞.
The p-Wasserstein distance has been studied comprehensively and applied in a great

variety of circumstances; examples and discussion are provided in [17]. However, for the
purposes of this paper, we will be more interested in slightly modified cost functions which
are similar in nature to the p-Wasserstein distances. The main drawback of many of the
methods and papers associated with the Wasserstein distances is that the focus has been on
the case where the dimension of the space n is fixed. In the context of statistical mechanics,
we are typically interested in asymptotic properties for arbitrarily large n.

2.2 Definitions

For the purposes of this section and for the definition of the lattice model later, let us fix
some shorthand notations first. Given N ∈ N, we denote the collection of first N integers as
follows

[N ] := {1, 2, . . . , N } , (2.3)

and we denote the group of permutations of its elements by SN . Given a subset I ⊂ [N ],
of a length n := |I |, there is a unique bijection πI : I → [n] which retains the order
of the elements in the subsequence. We let π̄I ∈ SN denote the extension of πI which is
obtained by permuting the elements in [N ] \ I in an order preserving manner into the set
[N ] \ [n]. In addition, every bijection πI as above defines a projection PI : RN → R

n via
the formula (PI x) j := x

π−1
I ( j), j ∈ [n]. Analogously, given a permutation π ∈ SN , the

corresponding coordinate permutation will be denoted Qπ : RN → R
N ; explicitly, we set

(Qπ x) j := xπ−1( j), j ∈ [N ] (note that using the inverse permutation in the formula will
result in a map which will send coordinate i into coordinate π(i)).

Given y ∈ R, there is a unique integer k ∈ Z for which k ≤ y < k + 1, and we denote
this by using the “floor” notation, k := �y�. In particular, given n, N ∈ N such that n ≤ N
and setting k = �N/n� we have k ∈ N and k satisfies kn ≤ N < (k + 1)n.

Definition 2.1 (Permutation invariance of measures on R
N ) Given N ∈ N, a probability

measure μ on R
N , we say that μ is permutation invariant, if for every integrable function

f : RN → R and a permutation π ∈ SN , we have f ◦ Qπ ∈ L1(μ) and

〈 f ◦ Qπ 〉μ = 〈 f 〉μ .

Finally, instead of using a standard p-norm tomeasure distances inRN , we scale it suitably
with N so that the Wasserstein cost function becomes an average over particle labels. The
benefits of this definition will become apparent in Sect. 2.3.
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1216 K. Koskinen, J. Lukkarinen

Definition 2.2 (Specific p-norm fluctuation distance) Suppose p ≥ 1 and N ∈ N. Let μ1

and μ2 be two Radon probability measures on R
N such that the p:th moments under both

measures are finite. Their specific p-norm fluctuation distance wp is then defined as

wp(μ1, μ2; N ) :=
(

inf
γ

∫

RN×RN
γ (dx, dy)

1

N

N∑

i=1

|xi − yi |p
) 1

p

,

where the infimum is taken over all couplings of μ1 and μ2.

Clearly, this definition relates to the standard p-norm Wasserstein distance mentioned

earlier via a scaling: wp = N− 1
p Wp;p .

2.3 The Direct CouplingMethod

To highlight the benefits of the above definitions, we offer the following fundamental Lemma
which will be used to prove the main theorems of this paper. It should be stressed that the
key assumption is to specialize to permutation invariant measures. We aim to consider local
expectations, i.e., 〈F〉 for functions F : RN → R which depend only on components xi ,
i ∈ I , where I ⊂ [N ] can be otherwise arbitrary but it has a bounded size, i.e., |I | remains
bounded when N → ∞. In particular, note that then there is some f : R|I | → R such that
F = f ◦ PI .

Lemma 2.3 Suppose p ≥ 1 and N ∈ N. Let μ1 and μ2 be two permutation invariant Radon
probability measures on R

N such that the p:th moments under both measures are finite.
Consider a subset I ⊂ [N ]. If f : R|I | → R is a bounded 1-Lipschitz function with respect
to the || · ||p norm, then we have

∣
∣〈 f ◦ PI 〉μ1

− 〈 f ◦ PI 〉μ2

∣
∣ ≤

(
|I |

1 − |I |
N

) 1
p

wp(μ1, μ2; N ) .

Proof For the proof, set n := |I | and k := �N/n� when k ∈ N and k satisfies kn ≤ N <

(k + 1)n. We define the sets Ii ⊂ [N ], i ∈ [k], by setting I1 := I and, for i > 1, we

proceed inductively by selecting |I | elements from the set [N ] \
(⋃i−1

j=1 I j
)
to be the set Ii .

The collection of sets Ii are disjoint and
⋃k

i=1 Ii ⊂ [N ]. For any i , there is a permutation in
SN which is bijection between Ii and I . Thus by the assumed permutation invariance of the
measures, we have

〈
f ◦ PIi

〉 = 〈 f ◦ PI 〉 for either measure and all i . Therefore,

〈 f ◦ PI 〉μ1
− 〈 f ◦ PI 〉μ2

= 1

k

k∑

i=1

(〈
f ◦ PIi

〉
μ1

− 〈 f ◦ PIi
〉
μ2

)
.

Suppose then that γ is a coupling betweenμ1 andμ2. Then
〈
f ◦ PIi

〉
μ j

= 〈 f ◦ PIi ◦ Pj
〉
γ

for both j = 1, 2. Again resorting to the shorthand notations x j := Pj x , we can rewrite
〈
f ◦ PIi

〉
μ1

− 〈 f ◦ PIi
〉
μ2

= 〈 f (PIi x1) − f (PIi x2)
〉
γ

.

The absolute value of this expression can now be estimated using the assumed 1-Lipschitz
property of f . Combining the results and using the triangle inequality we thus obtain
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∣
∣〈 f ◦ PI 〉μ1

− 〈 f ◦ PI 〉μ2

∣
∣ ≤ 1

k

k∑

i=1

〈‖PIi x1 − PIi x2‖p〉γ

≤
(
1

k

k∑

i=1

〈‖PIi x1 − PIi x2‖p
p〉γ
) 1

p

,

where in the last step we have used Hölder’s inequality. Since the sets Ii are disjoint, here∑k
i=1 ‖PIi x1 − PIi x2‖p

p ≤∑N
j=1 |(x1) j − (x2) j |p . Therefore,

∣
∣〈 f ◦ PI 〉μ1

− 〈 f ◦ PI 〉μ2

∣
∣ ≤

(
1

k

〈||x1 − x2||pp
〉
γ

) 1
p

.

Because the left hand side of the above estimate does not depend on the coupling γ , we can
take the infimum over all possible couplings. Then using the relation between k and n stated
in the beginning of the proof, we obtain

∣
∣〈 f ◦ PI 〉μ1

− 〈 f ◦ PI 〉μ2

∣
∣ ≤

(
n

1 − n
N

) 1
p

wp(μ1, μ2; N ) ,

as desired. ��
The first Lemma concerned bounds on local observables which were bounded 1-Lipschitz

functions. This next variant of the Lemma concerns estimation of arbitrary finite moments.

Theorem 2.4 Suppose p > 1 and N ∈ N. Let μ1 and μ2 be two permutation invariant
Radon probability measures on RN such that the p0:th moments of both measures are finite
for some p0 ≥ p.

Let J be afinite sequenceof elements in [N ]where elementsmaybe repeated. Let n J := |J |
denote the length of the sequence and I ⊂ [N ] the collection of elements occurring in the
sequence, i.e., set I := {J |  ∈ [nJ ]}. For any x ∈ R

N , we then let x J denote the power

x J :=
nJ∏

=1

xJ .

Assuming also nJ ≤ p0 + 1 − p0
p , it follows that

∣
∣
∣
∣

〈
x J
〉

μ1
−
〈
x J
〉

μ2

∣
∣
∣
∣ ≤ nJ M(J , p)nJ−1

(
|I |

1 − |I |
N

) 1
p

wp(μ1, μ2; N ) ,

where M(J , p) = 1 if n J = 1, and otherwise

M(J , p) := max
i∈I

(〈
|xi |q(nJ−1)

〉 1
q(nJ −1)

μ1
,
〈
|xi |q(nJ−1)

〉 1
q(nJ −1)

μ2

)

< ∞ ,

with q = p
p−1 .

Proof Generalized Hölder’s inequality implies that

〈|x J |〉 ≤
nJ∏

=1

〈|xJ |nJ 〉 1
nJ .
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Since 1 ≤ nJ ≤ p0, the assumptions guarantee that x J is integrable with respect to both
μ1 and μ2. On the other hand, nJ ≤ p0 + 1 − p0

p implies q(nJ − 1) ≤ p0, so that also
M(J , p) < ∞.

First, note that for x, y ∈ R
N , we have

x J − y J =
nJ∑

i=1

(xJi − yJi )
∏

j<i

x J j
∏

k>i

yJk .

There are nJ factors in each of the products under the sum. Thus for any coupling γ

betweenμ1 andμ2 and, for simplicity, replacing x1, x2 by x, y, we find using the generalized
Hölder’s inequality

∣
∣
∣
∣

〈
x J − y J

〉

γ

∣
∣
∣
∣ ≤

nJ∑

i=1

〈

|xJi − yJi |
∏

j<i

|xJj |
∏

k>i

|yJk |
〉

γ

≤
nJ∑

i=1

〈|xJi − yJi |p
〉 1
p
γ

∏

j<i

〈
|xJj |q

′ 〉 1
q′
γ

∏

k>i

〈
|yJk |q

′ 〉 1
q′
γ

,

where q ′ := q(nJ − 1), so that indeed 1
p + (nJ − 1) 1

q ′ = 1, as required by the Hölder’s
inequality. Apart from the first term, the remaining nJ −1 terms are all bounded by M(J , p).
Therefore,

∣
∣
∣
∣

〈
x J − y J

〉

γ

∣
∣
∣
∣ ≤ M(J , p)nJ−1

nJ∑

i=1

〈|xJi − yJi |p
〉 1
p
γ

≤ M(J , p)nJ−1nJ

(
1

nJ

nJ∑

i=1

〈|xJi − yJi |p
〉
γ

) 1
p

,

where Hölder’s inequality has been used in the second step. Here, even if there are repetitions
in the sequence J , we have 1

nJ

∑nJ
i=1 |xJi −yJi |p ≤∑i∈I |xi−yi |p =: ‖x−y‖p

I ,p. Therefore,

∣
∣
∣
∣

〈
x J − y J

〉

γ

∣
∣
∣
∣ ≤ nJ M(J , p)nJ−1

〈
‖x − y‖p

I ,p

〉 1
p

γ
.

To finish the proof, one should notice that the label subset I which appears in this theorem
can be regarded in the sameway as in the proof of Lemma2.3. Using the assumed permutation
invariance to clone the labels yields collections of subsequences J () and subsets I for
 ∈ [k], where k := �N/n�, n := |I |. Since 〈x J 〉μi = 〈x J ()〉μi by construction, we find
using permutation invariance that

∣
∣
∣
∣

〈
x J
〉

μ1
−
〈
x J
〉

μ2

∣
∣
∣
∣ ≤

1

k

k∑

=1

∣
∣
∣
∣

〈
x J () − y J ()

〉

γ

∣
∣
∣
∣ ≤

nJ M(J , p)nJ−1

k

k∑

=1

〈
||x − y||pI,p

〉 1
p

γ

≤ nJ M(J , p)nJ−1

(
|I |

1 − |I |
N

) 1
p

wp(μ1, μ2; N ) ,

as desired. ��
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2.4 Free EnergyMethod

By applying Lemma 2.3, we are now able to produce two distinct types of coupling proofs
which concern the ensembles discussed in the introduction.

Theorem 2.5 Let με,ρ;N
MC be a permutation invariant probability measure corresponding to a

microcanonical ensemble with energy density ε and particle density ρ. In addition, assume
that if we fix a possible energy density ε′, then for any other possible energy density ε there
exists a constant C(ε, ρ) > 0 independent of ε′ and N, but possibly dependent on ε and ρ,
such that

wp(μ
ε,ρ;N
MC , μ

ε′,ρ;N
MC ; N ) ≤ C(ε, ρ)|ε − ε′|

for some p ≥ 1. Suppose also that the microcanonical and canonical measures, for some
parameter β, have finite p:th moments.

Fix n < ∞ and consider any I ⊂ N of length n. Let f : R
|I | → R be a bounded

1-Lipschitz function with respect to the || · ||p norm. Then
∣
∣
∣〈 f ◦ PI 〉ε,ρ;N

MC − 〈 f ◦ PI 〉β,ρ;N
C

∣
∣
∣

≤ C(ε, ρ)

(
|I |

1 − |I |
N

) 1
p
(

σ
β,ρ;N
C

(
H

N

)

+
∣
∣
∣
∣
∣
ε − 〈H〉β,ρ;N

C

N

∣
∣
∣
∣
∣

)

,

where the canonical standard deviation of energy density reads explicitly

σ
β,ρ;N
C

(
H

N

)

=

√√
√
√
〈
H2
〉β,ρ;N
C −

(
〈H〉β,ρ;N

C

)2

N 2 .

Using the notation of the specific free energies, the same result can be rewritten as
∣
∣
∣〈 f ◦ PI 〉ε,ρ;N

MC − 〈 f ◦ PI 〉β,ρ;N
C

∣
∣
∣

≤ C(ε, ρ)

(
|I |

1 − |I |
N

) 1
p ( 1√

N

√
−∂2β fC(β, ρ; N ) + ∣∣ε − ∂β fC(β, ρ; N )

∣
∣
)

Proof By the relation (1.1), we have

〈 f ◦ PI 〉ε,ρ;N
MC − 〈 f ◦ PI 〉β,ρ;N

C = 1
∫
dε′ e−Nβε′ ZMC(ε′, ρ; N )

∫
dε′ e−Nβε′

ZMC

(ε′, ρ; N )
(
〈 f ◦ PI 〉ε,ρ;N

MC − 〈 f ◦ PI 〉ε
′,ρ;N
MC

)
.

Applying Lemma 2.3 together with the assumptions of this theorem, we thus obtain
∣
∣
∣〈 f ◦ PI 〉ε,ρ;N

MC − 〈 f ◦ PI 〉β,ρ;N
C

∣
∣
∣

≤ 1
∫
dε′ e−Nβε′ ZMC(ε′, ρ; N )

∫
dε′ e−Nβε′

ZMC(ε′, ρ; N )

(
|I |

1 − |I |
N

) 1
p

C(ε, ρ)|ε−ε′| .

Since

|ε − ε′| ≤
∣
∣
∣
∣
∣
ε − 〈H〉β,ρ;N

C

N

∣
∣
∣
∣
∣
+
∣
∣
∣
∣
∣

〈H〉β,ρ;N
C

N
− ε′

∣
∣
∣
∣
∣
,
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where the first term on the right hand side does not depend on ε′, we obtain by Hölder’s
inequality an estimate
∣
∣
∣〈 f ◦ PI 〉ε,ρ;N

MC − 〈 f ◦ PI 〉β,ρ;N
C

∣
∣
∣

≤ C(ε, ρ)

(
|I |

1 − |I |
N

) 1
p [ ∣∣
∣
∣ε − 〈H〉β,ρ;N

C

N

∣
∣
∣
∣

+
(

1
∫
dε′ e−Nβε′ ZMC(ε′, ρ; N )

∫
dε′ e−Nβε′

ZMC(ε′, ρ; N )

∣
∣
∣
∣
∣

〈H〉β,ρ;N
C

N
− ε′

∣
∣
∣
∣
∣

2) 1
2
]

= C(ε, ρ)

(
|I |

1 − |I |
N

) 1
p
(

σ
β,ρ;N
C

(
H

N

)

+
∣
∣
∣
∣
∣
ε − 〈H〉β,ρ;N

C

N

∣
∣
∣
∣
∣

)

,

as desired. Then we use the generic properties listed in Sect. 1.1 to express the result in terms
of the canonical free energy. ��

Following the theme of the direct coupling method, the approach can also then be applied
to the case of finite moments.

Theorem 2.6 Let με,ρ;N
MC be a permutation invariant probability measure corresponding to a

microcanonical ensemble with energy density ε and particle density ρ. In addition, assume
that if we fix a possible energy density ε′ then for any other possible energy density ε there
exists a constant C(ε, ρ) > 0 independent of ε′ and N, but possibly dependent on ε and ρ

such that

wp(μ
ε,ρ;N
MC , μ

ε′,ρ;N
MC ; N ) ≤ C(ε, ρ)|ε − ε′|

for some p > 1. Suppose also that the microcanonical and canonical measures, for some
parameter β, have finite p0:th moments for some p0 ≥ p.

Let J be afinite sequence of elements in [N ]where elementsmaybe repeated, let n J := |J |,
and suppose that nJ ≤ p0 + 1 − p0

p . Collect into I ⊂ [N ] the elements occurring in the
sequence. It follows that

∣
∣
∣
∣

〈
φ J
〉ε,ρ;N
MC

−
〈
φ J
〉β,ρ;N
C

∣
∣
∣
∣

≤ C(ε, ρ)nJ M(J , p)nJ−1

(
|I |

1 − |I |
N

) 1
p
(

σ
β,ρ;N
C

(
H

N

)

+
∣
∣
∣
∣
∣
ε − 〈H〉β,ρ;N

C

N

∣
∣
∣
∣
∣

)

,

where, using the dual exponent q = p
p−1 ,

M(J , p) := max
i∈I

(〈
|φi |q(nJ−1)

〉ε,ρ;N
MC

,
〈
|φi |q(nJ−1)

〉ε′,ρ;N
MC

) 1
q(nJ −1)

< ∞ .

Proof The proof is almost identical to the proof of the previous theorem. In order to isolate
the moments of the canonical ensemble, one needs an additional application of Hölder’s
inequality. ��

For suitable ensembles, these theorems together imply that with bounded moments, one
can achieve an explicit rate of convergence of the finite dimensional moments and marginals
of the ensembles.
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3 Simple Model of a Paramagnet

In this section, we will consider a simple model of a paramagnet discussed in [11]. We begin
by defining the magnetization of the lattice system and the two probability measures on the
lattice that we will consider.

Definition 3.1 Let � be a finite lattice with size N := |�|. We define the space of spin
configurations S := {−1, 1}�. Define the magnetization M : S → R by

M[φ] :=
∑

x∈�

φ(x) .

Furthermore, we define the magnetization density mN : S → R by mN [φ] = M[φ]
N .

In the following definitions, there will be a slight misuse of the ensemble terminology.
We will refer to the fixed magnetization probability measures as an auxiliary microcanon-
ical ensemble, and the probability measure with a parameter controlling the expectation of
magnetization will be referred to as an auxiliary canonical ensemble.

Definition 3.2 (Fixed magnetization ensemble/auxiliary microcanonical ensemble) Let m ∈
Ran[mN ]. For such an m, define the set Sm := {φ ∈ S : mN [φ] = m}. The auxiliary
microcanonical ensemble with magnetization densitym is defined via its action on functions
f : S → R by

〈 f 〉m;N
MC := 1

|Sm |
∑

φ∈Sm

f (φ).

Definition 3.3 (Fluctuating magnetization/auxiliary canonical ensemble) Let μ ∈ R. The
auxiliary canonical ensemble with magnetic potential μ is defined via its action functions
f : S → R by

〈 f 〉μ;N
C := 1

∑
φ∈S e−μM[φ]

∑

φ∈S
e−μM[φ] f (φ)

= 1
∑

m∈Ran[mN ] e−μmN |Sm |
∑

m∈Ran[mN ]
e−μmN |Sm | 〈 f 〉m;N

MC .

The second representation is called the magnetization representation of this ensemble.

Wewill also need the following standard “thermodynamic” properties of these ensembles.
We have compiled them in the following lemma.

Lemma 3.4 For m ∈ Ran[mN ] \ {−1, 1}, the partition function of the fixed magnetization
ensemble is given by

ZMC(m; N ) := |Sm | =
(

N
1+m
2 N

)

=
(

(N + 1)
∫ 1

0
dt e

N
(
1+m
2 ln t+ 1−m

2 ln(1−t)
))−1

.

The partition function of the fluctuating magnetization ensemble is given by

ZC(μ; N ) :=
∑

φ∈S
e−μM[φ] = (2 cosh(μ))N ,

123



1222 K. Koskinen, J. Lukkarinen

and the specific free energy is given by

fC(μ; N ) := − 1

N
ln ZC(μ; N ) = − ln(2 cosh(μ)).

The average and standard deviation of the magnetization density are given by

〈M〉μ;N
C

N
= − tanh(μ),

and

σ
μ;N
C

(
M

N

)

= 1√
N

√
1 − tanh2(μ).

Proof The calculation of the auxiliary microcanonical partition function is based on the fact
that the number of positive spins in a field configuration fully defines the total magnetization
of the configuration, and, as a result, one only needs to consider the number of configurations
with a specific number of positive spins. The final equality follows from the representation
of the beta function after opening up the combination and subsequent factorials.

The rest of the results concerning the auxiliary canonical ensemble follow by first com-
puting the partition function, by noting that the structure of the measures is that of a product
measure. Then we can differentiate the free energy with respect toμ and divide appropriately
by the degrees of freedom N . ��

Next,we are going to present twodistinctmethodswithwhich to compute upper bounds for
the rate of convergence of expectations of functions between these two probability measures.

3.1 Relative Entropy

Wewill, again, follow the presentation of this topic given in [11].We begin with the definition
of relative entropy.

Definition 3.5 (Relative entropy) Let λ1 and λ2 be two probability measures on a space X .
If λ1 is not absolutely continuous with respect to λ2, the relative entropyH(λ1||λ2) = ∞. If
λ1 is absolutely continuous with respect to λ2, then we have

H(λ1‖ λ2) :=
∫

X
dλ1 ln

dλ1

dλ2
.

For the paramagnet, we have the following calculation of the relative entropy.

Proposition 3.6 (Upper and lower bounds for specific relative entropy) For all m ∈
Ran[mN ]\{−1, 1},μ ∈ R, andη > 0, there a cutoff N (m, η) ∈ N such that for N ≥ N (m, η),
we have

(
1

2
− η

)
ln(N + 1)

N
≤ H(μ

m;N
MC ‖ μ

μ;N
C )

N
− F(m, μ) ≤ ln(N + 1)

N
, (3.1)

where

F(m, μ) := ln 2 + ln cosh(μ) + μm + 1 + m

2
ln

(
1 + m

2

)

+ 1 − m

2
ln

(
1 − m

2

)

.

(3.2)
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Every pair (m, μ) ∈ (Ran[mN ] \ {−1, 1}) × R which satisfies m = − tanhμ solves
F(m, μ) = 0 and there are no other solutions to this equation for allowed values of m
and μ.

Proof We have

dμ
m;N
MC

dμ
μ;N
C

(φ) = 1(φ ∈ Sm)

ZMC(m; N )

ZC(μ; N )

e−μmN
.

It follows that

H(μ
m;N
MC ‖ μ

μ;N
C )

N
= ln 2 + ln cosh(μ) + μm

+ ln(N + 1)

N
+ 1

N
ln
∫ 1

0
dt e

N
(
1+m
2 ln t+ 1−m

2 ln(1−t)
)

.

Define the function f (t) := 1+m
2 ln t + 1−m

2 ln(1− t). It can be shown by differentiation that
the mapping f is strictly concave and thus attains its unique maximum on the interval (0, 1).
This maximum is attained at the point t0 := 1+m

2 ∈ (0, 1). Therefore,

1

N
ln
∫ 1

0
dt e

N
(
1+m
2 ln t+ 1−m

2 ln(1−t)
)

≤ f

(
1 + m

2

)

= 1 + m

2
ln

(
1 + m

2

)

+ 1 − m

2
ln

(
1 − m

2

)

.

Recalling the definition of F(m, μ) in (3.2), we conclude that

ln(N + 1)

N
+ 1

N
ln
∫ 1

0
dt eN f (t) − f (t0) ≤ H(μ

m;N
MC ‖ μ

μ;N
C )

N
− F(m, μ) ≤ ln(N + 1)

N
.

By computation, if m ∈ (−1, 1) and μ ∈ R are such that m = − tanhμ, then μ =
1
2 ln

(
1−m
1+m

)
and thus F(m, μ) = 0. For fixedm, by differentiationwe find thatμ �→ F(m, μ)

is a strictly convex function with a minimum at μ = 1
2 ln

(
1−m
1+m

)
. Hence, this value of μ is

the only zero of the function.
To get a useful lower bound, we need to inspect the values of the function f more carefully.

Suppose 0 < δ < 1
2 and consider t ∈ [t0(1 − δ), t0]. Then

− f ′′(t) = t0
t2

+ 1 − t0
(1 − t)2

≤ 1

(1 − δ)2t0
+ 1

1 − t0
≤ 4

t0
+ 1

1 − t0
.

and since f ′(t0) = 0, we find from Taylor’s theorem that there is K > 0 which depends only
on m via t0 such that for the above choice of t , which have |t − t0| ≤ δt0,

f (t0) − f (t) ≤ K 2δ2 .

Therefore, by the positivity of the integrand, we obtain

∫ 1

0
dt eN f (t) ≥

∫ t0

(1−δ)t0
dt eN f (t) ≥ eN f (t0)−NK δ2 t0δ ,

which implies
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ln(N + 1)

N
+ 1

N
ln
∫ 1

0
dt eN f (t) − f (t0) ≥ −K δ2 + 1

N
ln(t0(N + 1)δ) .

Consider then arbitrary p ∈ (0, 1
2 ), and set δ := 1

2 (N+1)− 1
2−p . The lower bound becomes

− K
4 (N + 1)−1−2p + 1

N ln(t0(N + 1)
1
2−p/2) ≥ 1

N

(− K
4 + ln(t0/2) + ( 12 − p

)
ln(N + 1)

)
.

Therefore, there exists N0 which depends only on m and p such that for all N ≥ N0, the
lower bound is greater than 1

N

( 1
2 − 2p

)
ln(N + 1). If η < 1 we can set p = η/2, and the

above estimates together thus prove (3.1) for all N ≥ N0. The lower bound is trivial if η ≥ 1.
This concludes the proof of the Proposition. ��

3.2 Coupling

For the use of the coupling method, the previous thermodynamic calculations concerning
the auxiliary canonical ensemble will be needed. The additional ingredient is the explicit
coupling for certain observables presented in the following theorem.

Theorem 3.7 Let m ∈ Ran[mN ] and m′ ∈ Ran[mN ]. We have
w1(μ

m;N
MC , μ

m′;N
MC ; N ) = |m′ − m|.

Proof Denote M = mN and M ′ = m′N . By symmetry, it suffices to prove the result in

the case M ′ > M ; note that if M ′ = M , then μ
m;N
MC = μ

m′;N
MC . First, consider any field

configuration φ ∈ S such that M[φ] = M . Note that �+[φ] corresponds to the sites on the
lattice for which φ has a positive spin. Now, consider another field configuration such that
φ′|�+[φ] = φ and M[φ′] = M ′. Such a configuration φ′ can be constructed by taking the
configuration φ and flipping negative spins to positive spins or vice versa until we obtain the
magnetization M ′.

As before, define M+ := |�+[φ]| and M− := N − M+, and set also M ′+ := |�+[φ′]|.
Then M+ = N+M

2 , M− = N−M
2 , and M+ < M ′+. Denote � := M ′+ − M+ = M ′−M

2 > 0.

The number of field configurations with magnetization M is given by
( N
M+
)
or, equivalently,

by
( N
M−
)
. In order to go frommagnetization M to M ′, we must flip� negative sites to positive

sites. The number of ways to do this is
(M−

�

)
. Define γ : S × S → R by

γ (φ, φ′) := 1(φ ∈ Sm, φ′ ∈ Sm′ , φ′|�+[φ] = φ|�+[φ])
1
( N
M−
)

1
(M−

�

) .

By construction, we have

∑

φ′∈S
γ (φ, φ′) = 1(φ ∈ Sm)

( N
M−
)

1
(M−

�

)
∑

φ′∈Sm′
1(φ′|�+(φ) = φ|�+[φ]) = 1(φ ∈ Sm)

( N
M−
)

1
(M−

�

)

(
M−
�

)

= 1(φ ∈ Sm)
( N
M−
) = 1(φ ∈ Sm)

|Sm | .

In the other direction, if we fix φ′ with magnetization M ′ and consider the number of ways
to go to a field configuration φ which agrees on the positive lattice sites of φ, then clearly we
must take � = M ′−M

2 positive sites of φ′ and flip them negative. The number of ways to do

this is given by
(M ′+

�

)
and we thus have
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∑

φ∈S
γ (φ, φ′)= 1(φ′ ∈ Sm′)

( N
M−
)

1
(M−

�

)
∑

φ∈Sm

1(φ′|�+[φ] =φ|�+[φ])= 1(φ′ ∈ Sm′)
( N
M−
)

1
(M−

�

)

(
M ′+
�

)

.

Now, we have the following simple binomial coefficient manipulations

(M ′+
�

)( N
M ′+
)

( N
M−
)(M−

�

) =
(M ′+)!N !

(M ′+−�)!�!(N−M ′+)!(M ′+)!
N !(M−)!

(N−M−)!(M−)!(M−−�)!�!
= (N − M−)!

(M ′+ − �)!
(M− − �)!
(N − M ′+)!

= (M+)!
(M+)!

(M− − M ′+ + M+)!
(M− + M+ − M ′+)! = 1.

It follows that

∑

φ∈S
γ (φ, φ′) = 1(φ′ ∈ Sm′)

( N
M ′+
) = 1(φ′ ∈ Sm′)

|Sm′ | .

This verifies thatγ is indeed a coupling between thefixedmagnetization density ensembles
with different magnetizations m and m′. For such a coupling, by construction, we have

γ (φ, φ′) ||φ − φ′||1 = 2�γ (φ, φ′) = (M ′ − M)γ (φ, φ′),

from which it follows that

w1(μ
m;N
MC , μ

m′;N
MC ; N ) ≤ M ′ − M

N
= m′ − m.

On the other hand, if η is any other coupling of μ
m;N
MC and μ

m′;N
MC , we also have

1

N

∫

S×S
η(dφ, dφ′)

∑

x∈�

|φ(x) − φ′(x)| ≥ 1

N

∣
∣
∣
∣
∣
∣

〈
∑

x∈�

φ(x) −
∑

x∈�

φ′(x)
〉

η

∣
∣
∣
∣
∣
∣
= m′ − m.

This implies that the coupling γ is an optimal coupling, and, we have

w1(μ
m;N
MC , μ

m′;N
MC ; N ) = m′ − m.

This completes the proof assuming M ′ > M , and hence by symmetry, also the proof of the
Theorem. ��

3.3 Convergence of Local Observables

In this subsection, we will present two distinct proofs of the convergence of local observables
based on the two previously introduced objects. The first proof will be based on utilizing
the Pinsker inequality and its relationship with relative entropy. This type of argument can
be found in [7]. The argument uses the information divergence related methods from [5]
in which a statement concerning the relationship between weak convergence and relative
entropy is also given.

We must also emphasize that whatever we refer to here as the relative entropy method
is precisely the collection of arguments and theorems that will be presented shortly. We are
not stating that the classical inequalities could not be, for instance, strengthened or leveraged
with other theorems in order to produce better results. For an example of this sort of work,
we refer to [3].
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3.3.1 Relative Entropy Method

Again, we will follow the example of [11]. We have the following theorem.

Theorem 3.8 Let m ∈ Ran[mN ] \ {−1, 1} and μ ∈ R. Let I ⊂ � and suppose f :
{−1, 1}|I | → R. It follows that

∣
∣
∣〈 f ◦ PI 〉m;N

MC − 〈 f ◦ PI 〉μ;N
C

∣
∣
∣
2

2
≤ |I |

(

max
φ∈{−1,1}|I |

| f (φ)|
)2 H(μ

m;N
MC ‖ μ

μ;N
C )

N

Proof The following proof can be considered a sketch of the standard argument presented
for the same model in [11].

Since f is a bounded function, and the measures are absolutely continuous with respect
to each other, we have

∣
∣
∣〈 f ◦ PI 〉m;N

MC − 〈 f ◦ PI 〉μ;N
C

∣
∣
∣ ≤

(

max
φ∈{−1,1}|I |

| f (φ)|
)

||μm;N
MC |I − μ

μ;N
C |I ||TV.

By Pinsker’s inequality, we have

||μm;N
MC |I − μ

μ;N
C |I ||2TV

2
≤ H(μ

m;N
MC |I ||μμ;N

C |I ).
Now, let N ≥ |I | and let Ik ⊂ � be disjoint copies of size |I | on the lattice such that
� ⊂ ⋃K

k=1 Ik and
⋃K−1

k=1 Ik ⊂ �. It follows that (K − 1)|I | ≤ |�| ≤ K |I | which implies

that 1
K ≤ |I |

N . Now, by utilizing the fact that μ
μ;N
C is a product measure, and that both

measures are permutation invariant, it follows that

H(μ
m;N
MC |I ‖μμ;N

C |I ) ≤ |I |H(μ
m;N
MC ‖ μ

μ;N
C )

N
.

The statement follows by combining these calculations. ��
We give the full convergence rate in the following corollary. Here, and in the following,

we employ the standard rigorous definition of the “O”-notation: given g(N ) ≥ 0 for N ∈ N,
“X(N ) = O(g(N ))” refers to the limit N → ∞, i.e., it means there is an N -independent
constant C and some N0 ∈ N such that |X(N )| ≤ Cg(N ) for all N ≥ N0. However, in these
results, the constant C is allowed to depend on possible other parameters of the setup: for
example, no uniformity of C in the parameters m, |I | or ‖ f ‖∞ is claimed below.

Corollary 3.9 Let m ∈ Ran[mN ] \ {−1, 1} and μ = tanh−1(−m). Let I ⊂ � be a fixed size
index set, and let f : {−1, 1}|I | → R. It follows that

∣
∣
∣〈 f ◦ PI 〉m;N

MC − 〈 f ◦ PI 〉μ;N
C

∣
∣
∣ ≤

√
2|I |

(

max
φ∈{−1,1}|I |

| f (φ)|
)
√

H(μ
m;N
MC ‖ μ

μ;N
C )

N

≤ √2|I |
(

max
φ∈{−1,1}|I |

| f (φ)|
)√

log(N + 1)

N
.

By applying the relative entropy method, we have

〈 f ◦ PI 〉m;N
MC = 〈 f ◦ PI 〉μ;N

C + O
(√

log(N )N− 1
2

)
.
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The factor of
√
log(N ) cannot be removed by using this specific inequality since if we

choose η = 1
4 , there exists a cutoff N (m) ∈ N such that for N ≥ N (m), we have

ln(N + 1)

4N
≤ H(μ

m;N
MC ‖ μ

μ;N
C )

N
.

Proof The corollary follows directly by combining the contents and bounds from proposi-
tion 3.6 and theorem 3.8. ��

3.3.2 Coupling Method

The main theorems formulated in the coupling section concern 1-Lipschitz functions with
respect to some norm || · ||p . Since the domain set is finite, all functions f : {−1, 1}|I | → R

are automatically Lipschitz functions with respect to all of these norms. The choice of using
p = 1 norm below is partially a matter of convenience, due to equivalence of the finite set
p-norms, but one should be careful in the application of the result if the size of the set I
is allowed to become unbounded as N → ∞. We recall from Sect. 2.1.2 that the optimal
Lipschitz constant does depend on the choice of norm, and it will affect the overall constant
in the bounds, unless scaled to one, as we require here.

Wecannowstate the full convergence theorem.Wecontinue to use the notations introduced

before Corollary 3.9, i.e., “A(N ) = B(N ) + O(N− 1
2 )” here means that there exists N0 ∈ N

and C ≥ 0 such that |A(N ) − B(N )| ≤ CN− 1
2 for all N ≥ N0.

Theorem 3.10 Let m ∈ Ran[mN ] \ {−1, 1} and μ = tanh−1(−m). Let I ⊂ � be a fixed size
index set, and let f : {−1, 1}|I | → R be a bounded 1-Lipschitz function with respect to the
|| · ||1 norm. It follows that

〈 f ◦ PI 〉m;N
MC = 〈 f ◦ PI 〉μ;N

C + O(N− 1
2 ).

Proof The result follows by applying the free energy method presented in Theorem 2.5,
along with the w1 fluctuation distance bound presented in Theorem 3.7, and the equations in
Lemma 3.4. ��

For the auxiliarymicrocanonical ensemblewith fixedmagnetization density, thew1 choice
of cost function is natural since the || · ||1-norm satisfies

|M[φ] − M[φ′]| ≤ ||φ − φ′||1.

3.4 Relationship to the Curie–Weiss Model

Let us first recall the Curie–Weiss Hamiltonian.

Definition 3.11 (Curie–Weiss Hamiltonian) Let � be a finite lattice with size N := |�|. We
define the space of spin configurations S := {−1, 1}�. Let J > 0 and h ∈ R. Define the
Hamiltonian H : S → R by

H [φ] := − J

2N

∑

x,y∈�

φ(x)φ(y) − h
∑

x∈�

φ(x).

The energy density εN : S → R is defined by εN [φ] := H [φ]
N .
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Note that the Hamiltonian can be written in terms of the magnetization by

H [φ] = − J

2N
M[φ]2 − hM[φ] = − J

2N

(

M[φ] + hN

J

)2

+ h2N

2J
.

This relation leads to a simplification when studying the microcanonical ensemble of the
Curie–Weiss model, defined as follows.

Definition 3.12 (Fixed energy density/Microcanonical ensemble) Let ε ∈ R be such that
ε ∈ Ran[εN ]. Define the set Sε := {φ ∈ S : εN [φ] = ε}. The microcanonical ensemble with
energy density ε is defined via its action on functions f : S → R by

〈 f 〉ε;NMC := 1

|Sε|
∑

φ∈Sε

f (φ).

We will always use the lower case letter m to specify fixed magnetization densities intro-
duced in Definition 3.2, and ε for fixed energy densities so that there is no ambiguity.

In some sense, the fixed energy ensemble for some values of J and h is not necessarily
fundamental as it can be represented as a convex combination of fixed magnetizations. The
energy density can be written in terms of the magnetization density as

εN [φ] = − J

2

(

mN [φ] + h

J

)2

+ h2

2J
⇐⇒ mN ,±[φ] = − h

J
±
√

h2

J 2
− 2εN [φ]

J
,

from which it is clear that for some values of h and J there are multiple magnetization
densities which give the same energy density. The following lemma makes the previous
statements more quantitative.

Lemma 3.13 Let ε ∈ R be such that ε ∈ Ran[εN ] and define m± = − h
J ±

√
h2

J 2
− 2ε

J . We
have

〈 f 〉ε;NMC = |Sm+|
|Sm+| + |Sm−| 〈 f 〉m+;N

MC + |Sm−|
|Sm+| + |Sm−| 〈 f 〉m−;N

MC , (3.3)

with the convention that 〈 f 〉m;N
MC = 0 and |Sm | = 0 if m /∈ Ran[mM ].

Proof Since ε ∈ Ran[εN ], it follows that ε ≤ h2
2J . If ε = h2

2J , we have m+ = m−, Sm = Sε

for m = m±, and thus 〈 f 〉ε;NMC = 1
2 〈 f 〉m+;N

MC + 1
2 〈 f 〉m−;N

MC . Hence, (3.3) holds in this case.

We may thus assume that ε < h2
2J , when m− < m+. We have Sε = Sm+ ∪ Sm− and

Sm+ ∩ Sm− = ∅. Thus, |Sε| = |Sm−| + |Sm+| and

1

|Sε|
∑

φ∈Sε

f (φ) = 1

|Sm−| + |Sm+|

⎛

⎝|Sm+| 1

|Sm+|
∑

φ∈Sm+

f (φ) + |Sm−| 1

|Sm−|
∑

φ∈Sm−

f (φ)

⎞

⎠ ,

from which the statement follows. ��
From the previous lemma, it is apparent that if one has knowledge of the auxiliary micro-

canonical partition function and local observables of the fixed magnetization ensemble, then,
in principle, one has a full description of the weak convergence properties of corresponding
fixed energy density ensemble. In the later sections, we will give an example of this exact
kind of analysis with the mean-field spherical model.
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3.5 Final Remarks and Comparison of Methods

From the results in the previous subsections, we can see that the coupling method generates
a strictly better convergence rate by removing the factor of

√
log(N )which is an irremovable

part of the magnitude of specific relative entropy in this case. For the relative entropymethod,
the primary object of interest is the calculation of the specific relative entropy. As can be seen,
the selection of the magnetization density m and the parameter μ comes down to solving an
equation which relates these parameters. Once the pair has been realized from this equation,
we obtain the desired upper bound. In our calculation, the partition functions of both the
auxiliary microcanonical ensemble and auxiliary canonical ensemble needed to be estimated
sufficiently accurately (othermore refined approaches for using relative entropymay be found
in [12]).

For the coupling method, one needed to come up with the coupling of the auxiliary
microcanonical ensembles resulting in Theorem 3.7. In addition, one uses the standard “ther-
modynamic” relations for the auxiliary canonical ensemble, given in Lemma 3.4. Because the
auxiliary canonical ensemble was in product form, the calculations were particularly simple.

From these observations, the main difference between the methods concerns the treatment
of the auxiliary microcanonical ensemble. In the above direct relative entropy computation,
we need to calculate the partition function of the auxiliary microcanonical ensemble and the
auxiliary canonical ensemble, but the “thermodynamic” relations of the auxiliary canonical
ensemble do not seem important. For the coupling method, the auxiliary microcanonical
partition function does not play the same role, and the coupling is the most important object
along with the “thermodynamic” relations from the auxiliary canonical ensemble.

4 Mean-Field Spherical Model Aka Continuum Curie–Weiss Model

For this model, we will need to clarify the goals and priority of the limiting measures for
the local convergence result. Our main goal is to analyse explicitly the probability measure
associated with the microcanonical ensemble. To that end, there will be some local conver-
gence results in which thermodynamic equivalence might hold between two ensembles, but
we will opt for a simpler auxiliary ensemble measure as the approximating measure.

In particular, for this model, we will see that the simplest limit measure to consider will
be either a Gaussian measure or a convex combination of Gaussian measures. We will also
prove some local convergence results where the limiting measure is not a product measure.

In the second model considered here, the “spin-field” φ is allowed to take all real values
otherwise being similar to the discrete Curie–Weiss model.

Definition 4.1 (Continuum Curie–Weiss Hamiltonian) Let � be a finite lattice with size
N := |�|. We define the space of field configurations S := R

�. Let J > 0 and h ∈ R.
Define the Hamiltonian H : S → R and the particle number N : S → R by

H [φ] := − J

2N

∑

x,y∈�

φ(x)φ(y) − h
∑

x∈�

φ(x), N [φ] :=
∑

x∈�

φ(x)2.

We also define the magnetization M : S → R by

M[φ] :=
∑

x∈�

φ(x).

123



1230 K. Koskinen, J. Lukkarinen

Furthermore, we define the energy density ε : S → R and magnetiztion densitym : S →
R by ε[φ] := H [φ]

N and m[φ] := M[φ]
N .

As in the discrete case, the Hamiltonian can be written in terms of the magnetization,

H [φ] = − J

2N
M[φ]2 − hM[φ] = − J

2N

(

M[φ] + hN

J

)2

+ h2N

2J
.

In this model, the particle number function N [·] is much more relevant than in the discrete
case. For this Hamiltonian, we will need to consider probability measures described by prod-
ucts of delta functions. To properly resolve them, we begin with an observation concerning a
matrix relevant to the definitions of the ensembles. In the following, we employ the notation
MN (R) for the collection of real N × N matrices.

Lemma 4.2 Define M ∈ MN (R) by Mi j := 1 for all i ∈ [N ] and j ∈ [N ]. There exists an
orthogonal matrix U ∈ MN (R) which diagonalizes M such that for x ∈ R

N , we have

(Ux)1 = 1√
N

N∑

i=1

xi .

Proof A simple analysis shows that M has an eigenvalue N with no degeneracy, and an
eigenvalue 0 with N − 1 fold degeneracy. Collecting the eigenvalues into a diagonal matrix
results in D ∈ MN (R) for which D11 := N and Di j := 0 for all other i ∈ [N ] and j ∈ [N ].
Since M is a real symmetric matrix, then there exists an orthogonal matrix Q ∈ MN (R) such
that

QT DQ = M .

Writing out the above matrix multiplication componentwise explicitly, we find for all i, j

N Q1i Q1 j = 1.

In particular, then |Q1i | = 1√
N
for all i ∈ [N ], and thus for each i there is σi ∈ {±1} such

that Q1i = σi
1√
N
. Using a proof by contradiction, one can see that, in fact, the elements Q1i

must either all be negative or all be positive. Now, define U ∈ MN (R) by U := −Q if the
elements Q1i are all negative, and U := Q if the elements Q1i are all positive. It follows
that U is an orthogonal matrix and, by definition, we have

(Ux)1 :=
N∑

j=1

U1 j x j = 1√
N

N∑

i=1

xi .

This completes the proof of the Lemma. ��
Next, wewill give two examples of how to apply δ-function calculation rules to resolve the

ones relevant to the Curie–Weiss system, for both microcanonical and canonical ensembles.
It is possible to prove the validity of these manipulations under the assumptions made in the
Examples, for instance, following the discussion in Appendix A of [13].

Example 4.3 LetU : S → R×R
N−1 be an orthogonalmatrix satisfyingLemma4.2. Suppose

ρ > 0 and m ∈ (−√
ρ,

√
ρ). For bounded 1-Lipschitz functions f : S → R, we have

∫

S
dφ δ

(
∑

x∈�

φ(x) − mN

)

δ

(
∑

x∈�

φ(x)2 − ρN

)

f (φ)
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=
∫

R

dz
∫

RN−1
dψ δ(

√
Nz − mN )δ(z2 + ||ψ ||2 − ρN )

(
f ◦U−1) (z, ψ)

= (N (ρ − m2))
N−3
2

2
√
N

∫

SN−2
d�

(
f ◦U−1) (m

√
N ,
√
N (ρ − m2)�).

Here we have first made a change of variables to (z, ψ) = Uφ and then used spherical
coordinates system to integrate out the resulting δ-functions. Since the left hand side does
not depend on the choice of the matrix U , all choices must result in the same value for the
integral on the right hand side.

Example 4.4 Let U : S → R × R
N−1 be an orthogonal matrix satisfying Lemma 4.2. Fix

h ∈ R and ρ > 0, and suppose ε ∈ R satisfies ε < h2
2J . Define then

m+ := − h

J
+
√

h2

J 2
− 2ε

J
, m− := − h

J
−
√

h2

J 2
− 2ε

J
.

Then, m−,m+ are distinct real numbers, and we assume furthermore that m2+ < ρ and
m2− < ρ.

Then for bounded 1-Lipschitz functions f : S → R, we may proceed as in the previous
Example to conclude that

∫

S
dφ δ

⎛

⎝− J

2N

∑

x,y∈�

φ(x)φ(y) − h
∑

x∈�

φ(x) − εN

⎞

⎠ δ

(
∑

x∈�

φ(x)2 − ρN

)

f (φ)

=
∫

R

dz
∫

RN−1
dψ δ

(

− J

2
z2 − h

√
Nz − εN

)

δ(z2 + ||ψ ||2 − ρN )
(
f ◦U−1) (z, ψ)

= 1

J
√

h2

J 2
− 2ε

J

√
N

∫

R

dz
∫

RN−1
dψ δ

(
z − m+

√
N
)

δ(z2 + ||ψ ||2 − ρN )
(
f ◦U−1) (z, ψ)

+ 1

J
√

h2

J 2
− 2ε

J

√
N

∫

R

dz
∫

RN−1
dψ δ

(
z − m−

√
N
)

δ(z2 + ||ψ ||2 − ρN )
(
f ◦U−1) (z, ψ)

= 1

J
√

h2

J 2
− 2ε

J

√
N

(N (ρ − m2+))
N−3
2

2
√
N

∫

SN−2
d�

(
f ◦U−1) (m+

√
N ,

√
N (ρ − m2+)�)

+ 1

J
√

h2

J 2
− 2ε

J

√
N

(N (ρ − m2−))
N−3
2

2
√
N

∫

SN−2
d�

(
f ◦U−1) (m−

√
N ,

√
N (ρ − m2−)�).

We will utilize these forms for more explicit definitions of the ensembles and in the proof
concerning the boundedness of moments of the microcanonical ensembles.

4.1 Microcanonical Analysis

From here on, whenever the mappingU is present, we are always referring to the mappingU
defined by a matrix satisfying Lemma 4.2. We fix the choice of this matrix in the following.
We begin with definitions of the two ensembles, related to fixed magnetization and to fixed
energy.

Definition 4.5 (Fixed magnetization density and particle density/auxiliary microcanonical
ensemble) Let ρ > 0 and m ∈ (−√

ρ,
√

ρ). The auxiliary microcanonical ensemble with
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particle densityρ andmagnetization densitym is definedvia its action onbounded1-Lipschitz
functions f : S → R by

〈 f 〉m,ρ;N
MC := 1

|SN−2|
∫

SN−2
d�

(
f ◦U−1) (m

√
N ,
√
N (ρ − m2)�).

Furthermore, we define the specific auxiliary microcanonical partition function by

ZMC(m, ρ; N ) := (ρ − m2)
N−3
2 ,

and the specific auxiliary microcanonical entropy by

sMC(m, ρ) := 1

2
ln(ρ − m2).

Definition 4.6 (Fixed energy density and particle density/microcanonical ensemble) Let ρ >

0, and ε, m+, and m− be as in Example 4.4, in particular, assume ε < h2
2J and m2−,m2+ < ρ.

The microcanonical ensemble with energy density ε and particle density ρ > 0 is then
defined via its action on bounded 1-Lipschitz functions f : S → R by

〈 f 〉ε,ρ;N
MC := ZMC(m+, ρ; N )

ZMC(m+, ρ; N ) + ZMC(m−, ρ; N )
〈 f 〉m+,ρ;N

MC

+ ZMC(m−, ρ; N )

ZMC(m+, ρ; N ) + ZMC(m−, ρ; N )
〈 f 〉m−,ρ;N

MC .

If ε < h2
2J but min(m2−,m2+) < ρ ≤ max(m2−,m2+), we set 〈 f 〉ε,ρ;N

MC := 〈 f 〉m,ρ;N
MC with

m := m+ if |m+| < |m−|, and m := m−, otherwise.
If ε = h2

2J and ρ > h2

J 2
, we set 〈 f 〉ε,ρ;N

MC := 〈 f 〉m,ρ;N
MC with m := − h

J .

One can indeedverify byusing the calculations inExamples 4.3 and4.4 that thesemeasures
correspond to δ-function definitions, resolved in the manner used in the Examples. The
second definition serves as an explanation of the choice of multiplicative constants in the
definition of the microcanonical partition function and specific entropy. In the degenerate

case ε = h2
2J , we would have above m+ = m− = − h

J = m, and in this case the δ-function
definition in Example 4.4 does not really make sense since it would contain a singular term

δ
(
(z − m

√
N )2
)
. Following these observations, we define the fixed energy microcanonical

ensemble via the corresponding fixed magnetization ensemble.
Note that in addition to values of (ε, ρ) for which there are no solutions to the con-

straints, we have also left undefined the degenerate energy ensembles for which ε ≤ h2
2J but

min(m2−,m2+) = ρ, as well as the degenerate magnetization ensembles with m2 = ρ. In
theses cases, the dimensionality of the solution manifold does not increase with N since all
solutions have ψ = 0. As such, the resulting degenerate ensemble does not have standard
thermodynamic behaviour.

We begin by estimating the fluctuation distance of two fixed magnetization ensembles by
constructing a suitable transport map between them.

Theorem 4.7 Let ρ > 0 and m,m′ ∈ (−√
ρ,

√
ρ). Consider some N ∈ N. We have

w2(μ
m,ρ;N
MC , μ

m′,ρ;N
MC ; N ) ≤

(

1 + 2
√
1 − m2/ρ

)

|m − m′|.
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Proof Define T : R × R
N−1 → R × R

N−1 by

T (z, ψ) :=
(

m′√N ,
√
N (ρ − m′2) ψ

||ψ ||2
)

.

Note that then for any � ∈ S
N−2 we have T (m

√
N ,
√
N (ρ − m2)�) = (m′√N ,√

N (ρ − (m′)2)�). In order for this mapping to act on the correct coordinate space, we
define T ′ : R� → R

� by T ′ := U−1 ◦ T ◦U . Then for any observable f we obtain directly
from the definitions a relation

〈
f ◦ T ′〉m,ρ;N

MC = 〈 f 〉m′,ρ;N
MC .

Therefore, T ′ is a transport map from the measure μ
m,ρ;N
MC to μ

m′,ρ;N
MC . Let γ denote the

associated coupling as defined in Sect. 2.1.1. This yields an estimate

w2(μ
m,ρ;N
MC , μ

m′,ρ;N
MC ; N )2 ≤

∫
γ (dφ, dψ)

1

N
‖φ − ψ‖22 =

∫
μ
m,ρ;N
MC (dφ)

1

N
‖φ − T ′φ‖22

= 1

N

1

|SN−2|
∫

SN−2
d�

∣
∣
∣
∣

∣
∣
∣
∣U

−1(m
√
N ,

√
N (ρ − m2)�) −U−1(m′√N ,

√
N (ρ − m′2)�)

∣
∣
∣
∣

∣
∣
∣
∣

2

= 1

N

1

|SN−2|
∫

SN−2
d�

∣
∣
∣
∣

∣
∣
∣
∣(m

√
N ,

√
N (ρ − m2)�) − (m′√N ,

√
N (ρ − m′2)�)

∣
∣
∣
∣

∣
∣
∣
∣

2

= (m − m′)2 +
(√

ρ − m2 −
√

ρ − m′2
)2

≤
(

1 + 4ρ

ρ − m2

)

(m − m′)2.

Since 1 + x2 ≤ (1 + x)2 for x ≥ 0, we obtain the stated bound after taking a square root. ��
In the previous theorem, the fluctuation distance is seemingly bounded asymmetrically

with respect to themagnetization densitiesm andm′. By symmetry, the bound holds for either
choice, and thus a symmetric bound can also be straightforwardly derived. The reason for
the asymmetric choice is that while using the fluctuation distance, we will always consider
one of the magnetization densities to be fixed.

To study the fixed energy ensembles, we begin with a Lemma which implies that, for
h �= 0, one of the fixed magnetization measures dominates in the fixed energy ensemble.

Lemma 4.8 Consider some N ∈ N. If h �= 0, then

max{ZMC(m+, ρ; N ), ZMC(m−, ρ; N )} =
⎛

⎜
⎝ρ −

⎛

⎝ |h|
J

−
√

h2

J 2
− 2ε

J

⎞

⎠

2
⎞

⎟
⎠

N−3
2

.

Proof If we consider themappingm �→ ZMC(m, ρ; N ), then it is clear that ZMC(m, ρ; N ) ≥
ZMC(m′, ρ; N ) for all |m| ≤ |m′| <

√
ρ. Now, note that

m2± = h2

J 2
+
(
h2

J 2
− 2ε

J

)

∓ 2
h

J

√
h2

J 2
− 2ε

J
.

If h > 0, then m2− > m2+ �⇒ |m−| > |m+|, and, if h < 0, then m2+ < m2− �⇒ |m+| >

|m−|. The result follows by plugging in the values in the partition function. ��
With the above computations, we can also now give a simpler definition of the set of

allowed energies, i.e., of those values of ε for which the fixed energy ensemble is defined
using Definition 4.6.
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Definition 4.9 For h ∈ R and ρ > 0, we define the set of possible energy densities Eh,ρ by

Eh,ρ :=
⎧
⎨

⎩
ε ∈ R : ε ≤ h2

2J
,

∣
∣
∣
∣
∣
∣

|h|
J

−
√

h2

J 2
− 2ε

J

∣
∣
∣
∣
∣
∣
<

√
ρ

⎫
⎬

⎭
.

We remark that for all of the above h, ρ the set Eh,ρ contains ε = 0 and an interval of negative

values of ε. In particular, Eh,ρ is non-empty. Also, in case h = 0, we have E0,ρ =
(
− ρ J

2 , 0
]
.

Theorem 4.10 Let h �= 0, ρ > 0, and suppose ε ∈ Eh,ρ . For integrable functions f : S → R

satisfying 〈| f |〉m±,ρ;N
MC ≤ K for some K ≥ 0 and whenever the ensemble is defined, we have

∣
∣
∣〈 f 〉ε,ρ;N

MC − 〈 f 〉m,ρ;N
MC

∣
∣
∣ ≤ 2K

∣
∣
∣
∣
∣
∣
∣
∣
∣

ρ −
(

|h|
J +

√
h2

J 2
− 2ε

J

)2

ρ −
(

|h|
J −

√
h2

J 2
− 2ε

J

)2

∣
∣
∣
∣
∣
∣
∣
∣
∣

N−3
2

, (4.1)

where

m = − h

J
+ sgn(h)

√
h2

J 2
− 2ε

J
.

In addition,

〈 f 〉ε,ρ;N
MC = 〈 f 〉m,ρ;N

MC + O(e−cN )

for some positive constant c > 0.

Proof If ε = h2
2J , we have here m = − h

J , and the Theorem is trivially true since

then 〈 f 〉ε,ρ;N
MC = 〈 f 〉m,ρ;N

MC . The same holds for those values where ε < h2
2J and ρ ≤

max(m2−,m2+).

In the remaining cases, we necessarily have ε < h2
2J and m2−,m2+ < ρ. Applying

lemma 4.8, we have the following estimate
∣
∣
∣〈 f 〉ε,ρ;N

MC − 〈 f 〉m,ρ;N
MC

∣
∣
∣ ≤ (〈| f |〉m+,ρ;N

MC + 〈| f |〉m−,ρ;N
MC )

ZMC(m− sgn(h), ρ; N )

ZMC(msgn(h), ρ; N )
.

The results follow since the term inside the absolute values on the right hand side in (4.1) is
strictly less than one. ��

If h = 0, there exists a suitable coupling which can be constructed from the couplings
used for the fixed magnetization ensembles.

Theorem 4.11 Let h = 0 and ε′, ε ∈
(
− ρ J

2 , 0
]
. For ε �= 0, we have

w2(μ
ε,ρ;N
MC , μ

ε′,ρ;N
MC ; N ) ≤ 2

J

1
√

− 2ε
J

√

1 −
(
− 2ε

Jρ

) |ε − ε′|,

and, for ε = 0, we have

w2(μ
0,ρ;N
MC , μ

ε′,ρ;N
MC ; N ) ≤ 2√

J
|ε′| 12 .
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Proof Now m± = ±
√

−2ε
J , and thus if ε �= 0, we have 0 < |m±| < ρ. Therefore, these

ensembles are defined as in the first case in Definition 4.6.
Suppose first that ε, ε′ < 0 and let m± and m′± be corresponding positive and negative

magnetization densities to ε and ε′, respectively. To obtain a transport map, we define T :
R × R

N−1 → R × R
N−1 by

T (z, ψ) := 1(z ≥ 0)

(

m′+
√
N ,

√
(ρ − m′2+)N

ψ

||ψ ||2
)

+ 1(z < 0)

(

m′−
√
N ,

√
(ρ − m′2−)N

ψ

||ψ ||2
)

.

Now, letU ∈ MN (R)be the sameunitarymapping as before.By settingT ′ := U−1◦T ◦U and

going through the same calculations as earlier, one can confirm that
〈
f ◦ T ′〉ε,ρ;N

MC = 〈 f 〉ε′,ρ;N
MC

for all observables f . Thus T ′ is a transport map and the associated coupling yields a bound

w2(μ
ε,ρ;N
MC , μ

ε′,ρ;N
MC ; N )2 ≤ 1

2

∑

σ=±1

[

(mσ − m′
σ )2 +

(√
ρ − m2

σ −
√

ρ − (m′
σ )2
)2
]

= 2

J
(
√−ε − √−ε′)2 +

(√

ρ − −2ε

J
−
√

ρ − −2ε′
J

)2

≤ 4

J 2
ρ

(− 2ε
J

) (
ρ − (− 2ε

J

)) (ε − ε′)2.

If ε = 0 > ε′, we have m = 0 but it still holds that 〈 f 〉ε,ρ;N
MC = 1

2 〈 f 〉m,ρ;N
MC + 1

2 〈 f 〉m,ρ;N
MC .

Proceeding as above then yields an estimate

w2(μ
0,ρ;N
MC , μ

ε′,ρ;N
MC ; N )2 ≤ 2

J
(−ε′)+

(
√

ρ −
√

ρ − −2ε′
J

)2

≤ 2

J
|ε′| + 4

ρ J 2
ε′2 ≤ 4

J
|ε′|.

The bound is also trivially true if ε = ε′ = 0. Combining the above estimates proves the
statement in the Theorem. ��

4.2 Canonical Analysis

Compared to the regular Curie-Weiss model from [10], the canonical ensemble is somewhat
simpler to analyse. In particular, one should note that when applying the identity

e
x2
2 = 1√

2π

∫

R

dz e− z2
2 −xz,

which is sometimes referred to as Gaussian linearization, to solve the partition function of the
regular Curie-Weissmodel, we are effectively adding an extra variable overwhich to integrate
when using Laplace’s method. To this end, in order to avoid multi-dimensional Laplace
analysis, we can forego the use of Gaussian linearization, and use a direct 1-dimensional
Laplace method.

In the following definitions and calculations, there will be a significant difference in the
treatment of the models depending on whether we are dealing with h = 0 or h �= 0. In the
previous section, for h = 0, we constructed an explicit coupling between the fixed energy
density ensembles. In the case of h �= 0, it will turn out that the coupling between the fixed
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magnetization density ensembles is the more important object of study. This phenomenon
seems to be closely related to the phase transitions in the mean-field spherical model which
are thoroughly presented and analysed in [9].

We will define the canonical ensembles with the help of the microcanonical ensembles.

Definition 4.12 (Fluctuating magnetization and fixed particle density/auxiliary canonical
ensemble) Let ρ > 0 and μ ∈ R. The auxiliary canonical ensemble with magnetic potential
μ and particle density ρ is defined via its action on bounded 1-Lipschitz functions f : S → R

by

〈 f 〉μ,ρ;N
C := 1

∫ √
ρ

−√
ρ
dm e−μNm ZMC(m, ρ; N )

∫ √
ρ

−√
ρ

dm e−μNm ZMC(m, ρ; N ) 〈 f 〉m,ρ;N
MC

= 1

ZC(μ, ρ; N )

∫ √
ρ

−√
ρ

dm e−N (μm−sMC(m,ρ))(ρ − m2)−
3
2 〈 f 〉m,ρ;N

MC ,

where we define the auxiliary canonical partition function by

ZC(μ, ρ; N ) :=
∫ √

ρ

−√
ρ

dm e−N (μm−sMC(m,ρ))(ρ − m2)−
3
2 ,

and the specific auxiliary canonical free energy by

fC(μ, ρ; N ) := − 1

N
ln ZC(μ, ρ; N ).

The case h �= 0 is taken care of by the previous definition. We will refer to the special
case of h = 0 as the fluctuating energy density ensemble.

Definition 4.13 (Fluctuating energy density and fixed particle density/canonical ensemble)
Let h = 0. Suppose ρ > 0 and β ∈ R. The canonical ensemble with inverse temperature β

and particle density ρ is defined via its action on bounded 1-Lipschitz functions f : S → R

by

〈 f 〉β,ρ;N
C := 1

∫ 0
− ρ J

2
dε e−βεN ZMC(ε, ρ; N )

∫ 0

− ρ J
2

dε e−βεN ZMC(ε, ρ; N ) 〈 f 〉ε,ρ;N
MC

= 1

ZC(β, ρ; N )

∫ 0

− ρ J
2

dε e−N (βε−sMC(ε,ρ))

(

−2ε

J

)− 1
2
(

ρ + 2ε

J

)− 3
2 〈 f 〉ε,ρ;N

MC ,

where the microcanonical partition function ZMC(ε, ρ; N ) is defined by

ZMC(ε, ρ; N ) :=
(
ρ + 2ε

J

) N−3
2

√
− 2ε

J

,

the specific microcanonical entropy sMC(ε, ρ) is defined by

sMC(ε, ρ) := 1

2
ln

(

ρ + 2ε

J

)

,

and the canonical partition function ZC(β, ρ; N ) by
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ZC(β, ρ; N ) :=
∫ 0

− ρ J
2

dε e−N (βε−sMC(ε,ρ))

(

−2ε

J

)− 1
2
(

ρ + 2ε

J

)− 3
2

,

and the specific canonical free energy fC(β, ρ; N ) by

fC(β, ρ; N ) := − 1

N
ln ZC(β, ρ; N ).

One can verify by formal calculations that this corresponds to the typical definition of an
ensemble with a fixed average constraint. We have overloaded the notation here similarly as
was done in the previous section: for example, the functions ZC(μ, ρ; N ) and ZC(β, ρ; N )

are different, but the name of the first parameter will uniquely determine to which we refer
in the following. Proceeding as before, we first present the asymptotics of the derivatives of
the partition function.

Theorem 4.14 Let ρ > 0 and μ ∈ R. Define ψμ,ρ : (−√
ρ,

√
ρ) → R by

ψμ,ρ(m) := μm − 1

2
ln(ρ − m2).

Employing the shorthand notation

〈F(m)〉′ := 1

ZC(μ, ρ; N )

∫ √
ρ

−√
ρ

dm e−Nψμ,ρ(m)(ρ − m2)−
3
2 F(m),

we have
〈
M

N

〉μ,ρ;N

C
= 〈m〉′ and σ

μ,ρ;N
C

(
M

N

)

=
√

〈m2〉′ − (〈m〉′)2 .

Furthermore, if we fix ρ > 0, then for every μ ∈ R there exists m ∈ (−√
ρ,

√
ρ) such that

ψμ,ρ is minimized at m, and, for every m ∈ (−√
ρ,

√
ρ), there exists μ ∈ R such that ψμ,ρ

is minimized at m. The following asymptotics hold

〈
M

N

〉μ,ρ;N

C
= 1(μ �= 0)

⎛

⎝ 1

2μ
− sgn(μ)

√(
1

2μ

)2
+ ρ

⎞

⎠

+ O(N− 1
2 ), σ

μ,ρ;N
C

(
M

N

)

= O(N− 1
2 ).

Proof Thefirst part of the theorem follows directly by differentiating the specific free energies
with respect to μ and dividing by the degrees of freedom N appropriately.

Next, for fixed ρ > 0, we compute

ψ ′
μ,ρ(m) = μ + m

ρ − m2 , ψ ′′
μ,ρ(m) = 1

ρ − m2 + 2m2

(ρ − m2)2
= ρ + m2

(ρ − m2)2
> 0.

It follows that the map ψμ,ρ is strictly concave for all μ ∈ R, and we can check that there is
a unique global minimum at m ∈ (−√

ρ,
√

ρ) which satisfies ψ ′
μ,ρ(m) = 0. First, if μ = 0,

then clearly the minimizing m = 0. If μ �= 0, we have

ψ ′
μ,ρ(m) = 0 ⇐⇒ m = 1

2μ
±
√(

1

2μ

)2

+ ρ.
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Next, if μ > 0, then 1
2μ +

√(
1
2μ

)2 + ρ >
√

ρ , and thus the minimizing m must be

m = 1

2μ
−
√(

1

2μ

)2

+ ρ ∈ (−√
ρ, 0).

If μ < 0, then 1
2μ −

√(
1
2μ

)2 + ρ = −
(√(

1
2μ

)2 + ρ − 1
2μ

)

< −√
ρ, and thus the

minimizing m must satisfy

m = 1

2μ
+
√(

1

2μ

)2

+ ρ ∈ (0,
√

ρ).

The conclusion is that, if |m| <
√

ρ, then

ψ ′
μ,ρ(m) = 0 ⇐⇒ m = 1(μ �= 0)

⎛

⎝ 1

2μ
− sgn(μ)

√(
1

2μ

)2

+ ρ

⎞

⎠ .

Furthermore, the above relation goes both ways. For every μ ∈ R there exists a unique
minimizing m for the above equation, and, for every m ∈ (−√

ρ,
√

ρ), there exists μ ∈ R

such that the given m is the minimizing term. This can be seen by simply studying the given
equation above and considering the limits |μ| → 0 and |μ| → ∞ and using the continuity
on the open intervals (−∞, 0) and (0,∞).

The asymptotics of the average and standard deviation of magnetization density are given
by the asymptotics of Laplace type integrals. We have

〈
M

N

〉μ,ρ;N

C
= 1(μ �= 0)

⎛

⎝ 1

2μ
− sgn(μ)

√(
1

2μ

)2
+ ρ

⎞

⎠

+ O(N− 1
2 ), σ

μ,ρ;N
C

(
M

N

)

= O(N− 1
2 ),

as desired. ��
Next, we present the asymptotics of the h = 0 case.

Theorem 4.15 Let h = 0. Let ρ > 0 and β ∈ R. Define ψβ,ρ :
(
− ρ J

2 , 0
]

→ R by

ψβ,ρ(ε) := βε − 1

2
ln

(

ρ + 2ε

J

)

.

Employing the shorthand notation

〈F(ε)〉′ := 1

ZC(β, ρ; N )

∫ 0

− ρ J
2

dε e−Nψβ,ρ(ε)

(

−2ε

J

)− 1
2
(

ρ + 2ε

J

)− 3
2

F(ε),

we have
〈
H

N

〉β,ρ;N

C
= 〈ε〉′ and σ

β,ρ;N
C

(
H

N

)

=
√

〈ε2〉′ − (〈ε〉′)2 .
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Furthermore, if we fix ρ > 0, then for every β ≥ 1
Jρ

, there exists ε ∈
(
− ρ J

2 , 0
]
such that

ψβ,ρ is minimized at ε, and, for every ε ∈
(
− ρ J

2 , 0
]
, there exists β ≥ 1

Jρ
such that ψβ is

minimized at ε. For such β and ε, the following asymptotics holds

〈
H

N

〉β,ρ;N

C
= − Jρ

2

(

1 − 1

β Jρ

)

+ O(N− 1
2 ), σ

β,ρ;N
C

(
H

N

)

= O(N− 1
2 ). (4.2)

If β < 1
Jρ

, the mapping ψβ is always minimized at 0, and the following asymptotics hold

〈
H

N

〉β,ρ;N

C
= O(N−1), σ

β,ρ;N
C

(
H

N

)

= O(N−1).

Proof The first part of this theorem follows directly by differentiating the specific free ener-
gies with respect to β and dividing by the degrees of freedom N appropriately.

Next, fix ρ > 0. We have

ψ ′
β,ρ(ε) = β −

1
J

ρ + 2ε
J

, ψ ′′
β,ρ(ε) = 2

J 2
1

(
ρ + 2ε

J

)2 .

It follows that ψβ,ρ is strictly convex and obtains a unique global minimum when ψ ′
β,ρ(ε) =

0. Computing it from the above, we see that ψ ′
β,ρ(ε) = 0 ⇐⇒ ε = − Jρ

2

(
1 − 1

β Jρ

)
.

In particular, we see that for every ε ∈
(
− Jρ

2 , 0
]
there exists β ≥ 1

Jρ
such that the given

ε minimizes ψβ,ρ , and, conversely, for every β ≥ 1
ρ J there exists a minimizing value ε ∈

(
− ρ J

2 , 0
]
. Furthermore, if β < 1

ρ J , then ψ ′
β,ρ is strictly negative on the entire interval, and,

as a result ψβ,ρ is minimized for ε = 0.
For the asymptotics, if β ≥ 1

Jρ
, then the asymptotics are standard and we have

〈
H

N

〉β,ρ;N

C
= − Jρ

2

(

1 − 1

β Jρ

)

+ O(N− 1
2 ), σ

β,ρ;N
C

(
H

N

)

= O(N− 1
2 ).

If β = 1
Jρ

, then we need to choose half-integer values of “α” in the Laplace method, but this

will not alter the scaling of the asymptotics for the above ratios. However, if β < 1
Jρ

, then
ψ ′

β,ρ(ε) < 0 for all ε, and since then “μ = 1” in the Laplace method, it follows that

〈
H

N

〉β,ρ;N

C
= O(N−1), σ

β,ρ;N
C

(
H

N

)

= O(N−1).

This completes the proof of the Theorem. ��

4.3 Grand Canonical Analysis

Finally, wewill present the grand canonical ensemble and auxiliary grand canonical ensemble
and the direct coupling method. If one considers microcanonical to be the most fundamental
ensemble, this will result in substantial simplification of computation of its expectation values
in the thermodynamic limit since these can now be computed using the grand canonical
ensemble which is a Gaussian measure.
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Definition 4.16 (Fluctuating magnetization and particle density/auxiliary grand canonical
ensemble) Let μ ∈ R and η > 0. The auxiliary grand canonical ensemble with magnetic
potentialμ and chemical potential η is defined via its action on bounded 1-Lipschitz functions
f : S → R by

〈 f 〉μ,η;N
GC := 1

∫
RN dφ e−μM[φ]−ηN [φ]

∫

RN
dφ e−μM[φ]−ηN [φ] f (φ).

The definition may be rewritten using the same parametrization of the integrals as for the
auxiliary microcanonical ensemble. The result is summarized in the following Lemma.

Lemma 4.17 Letμ ∈ R andη > 0.We have for all bounded 1-Lipschitz functions f : S → R

〈 f 〉μ,η;N
GC = 1

ZGC(μ, η; N )

∫ ∞

−∞
dz e

−η
(
z+ μ

√
N

2η

)2 ∫ ∞

0
dr r N−2e−ηr2

× 1

|SN−2|
∫

SN−2
d�

(
f ◦U−1) (z, r�),

where

ZGC(μ, η; N ) :=
∫ ∞

−∞
dz e

−η
(
z+ μ

√
N

2η

)2 ∫ ∞

0
dr r N−2e−ηr2 .

We can now construct a direct coupling between the auxiliary microcanonical ensemble
and the auxiliary grand canonical ensemble.

Theorem 4.18 Suppose ρ > 0, m ∈ (−√
ρ,

√
ρ), μ ∈ R and η > 0 satisfy the relations

m = − μ

2η
, ρ = 1

2η
+ μ2

4η2
.

Then,

w2(μ
μ,η;N
GC , μ

m,ρ;N
MC ; N ) ≤ 1

√
ρ − m2

1√
N

,

which implies

w2(μ
μ,η;N
GC , μ

m,ρ;N
MC ; N ) = O(N− 1

2 ).

Proof Define T : R × R
N−1 → R × R

N−1 by

T (z, ψ) :=
(

m
√
N ,
√
N (ρ − m2)

ψ

||ψ ||2
)

,

and set T ′ := U−1 ◦ T ◦ U . It follows that 〈 f ◦ T 〉μ,η;N
GC = 〈 f 〉m,ρ;N

MC , and thus T ′ is a
transport map. Therefore, using the related coupling we find an estimate

w2(μ
μ,η;N
GC , μ

m,ρ;N
MC ; N )2

≤ 1

N

1

∫∞
−∞ dz e

−η
(
z+ μ

√
N

2η

)2

∫ ∞

−∞
dz e

−η
(
z+ μ

√
N

2η

)2 (
z − m

√
N
)2

+ 1

N

1
∫
RN−1 dψ e−η||ψ ||2

∫

RN−1
dψe −η||ψ ||2

∣
∣
∣||ψ || −

√
N (ρ − m2)

∣
∣
∣
2
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= 1

N

1
∫∞
−∞ dz e− z2

2

∫ ∞

−∞
dz e− z2

2

(
z√
2η

−
(

m
√
N + μ

√
N

2η

))2

+ 1

N

1
∫
RN−1 dψ e− ||ψ ||2

2

∫

RN−1
dψ e− ||ψ ||2

2

∣
∣
∣
∣
||ψ ||√
2η

−
√
N (ρ − m2)

∣
∣
∣
∣

2

.

We compute

μ
√
N

2η
= −m

√
N ,

1√
2η

=
√

ρ − m2 ⇐⇒ μ = − m

ρ − m2 , η = 1

2(ρ − m2)
.

The converse result states that

m = − μ

2η
, ρ = 1

2η
+ μ2

4η2
.

It follows that for every pair (m, ρ) for which the auxiliary microcanonical ensemble
exists, there exists a pair (μ, η) such that the auxiliary grand canonical ensemble exists, and,
the converse result holds as well. For such a pair satisfying the equations given above, we
have

1

N

1
∫∞
−∞ dz e− z2

2

∫ ∞

−∞
dz e− z2

2

(
z√
2η

−
(

m
√
N + μ

√
N

2η

))2

= 1

N

1

2η
= 1

N

1

4(ρ − m2)
,

and

1

N

1
∫
RN−1 dψ e− ||ψ ||2

2

∫

RN−1
dψ e− ||ψ ||2

2

∣
∣
∣
∣
||ψ ||√
2η

−
√
N (ρ − m2)

∣
∣
∣
∣

2

= 1

N

1

2η

1
∫
RN−1 dψ e− ||ψ ||2

2

∫

RN−1
dψ e− ||ψ ||2

2

∣
∣
∣||ψ || − √

N
∣
∣
∣
2
.

We have ||ψ ||2 − N = 1 +∑N−1
i=1 (ψ2

i − 1), and thus

(||ψ ||2 − N
)2 =

N−1∑

i=1

(ψ2
i − 1)2 +

N−1∑

i �= j

(ψ2
i − 1)(ψ2

j − 1) − 2
N−1∑

i=1

(ψ2
i − 1) + 1.

Therefore,

∣
∣
∣||ψ || − √

N
∣
∣
∣
2 =

(||ψ ||2 − N
)2

(
||ψ || + √

N
)2

≤ 1

N

⎛

⎝
N−1∑

i=1

(ψ2
i − 1)2 +

N−1∑

i �= j

(ψ2
i − 1)(ψ2

j − 1) − 2
N−1∑

i=1

(ψ2
i − 1) + 1

⎞

⎠ .

It follows that

1
∫
RN−1 dψ e− ||ψ ||2

2

∫

RN−1
dψ e− ||ψ ||2

2

∣
∣
∣||ψ || − √

N
∣
∣
∣
2 ≤ 2N − 1

N
.
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Combining all the terms, we find

w2(μ
μ,η;N
GC , μ

m,ρ;N
MC ; N )2 ≤ 1

N

1

2η

3N − 1

N
= 1

4(ρ − m2)

3N − 1

N 2 ≤ 1

(ρ − m2)N
,

which implies the bound stated in the Theorem. ��
If h �= 0, the microcanonical energy ensemble is well-approximated by an auxiliary

microcanonical magnetization ensemble whose auxiliary grand canonical theory we already
covered above. For the case of h = 0, we consider the following grand canonical energy
ensembles.

Definition 4.19 (Fluctuating energy and particle density/grand canonical ensemble) Sup-
pose h = 0,μ > 0 andβ <

2μ
J . The grandcanonical ensemblewith inverse temperatureβ and

chemical potential μ is defined via its action on bounded 1-Lipschitz functions f : S → R

by

〈 f 〉β,μ;N
GC := 1

∫
RN dφ e−βH [φ]−μN [φ]

∫

RN
dφ e−βH [φ]−μN [φ] f (φ).

The definition may be rewritten using the same parametrization of the integrals as for the
microcanonical ensemble. The result is summarized in the following Lemma.

Lemma 4.20 Let h = 0. Let μ > 0 and β <
2μ
J . Then

〈 f 〉β,μ;N
GC = 1

ZGC(β, μ; N )

∫ ∞

−∞
dz e

−
(
μ− β J

2

)
z2

∫ ∞

0
dr r N−2e−μr2 1

|SN−2|
∫

SN−2
d�

(
f ◦U−1) (z, r�),

where

ZGC(β, μ; N ) :=
∫ ∞

−∞
dz e

−
(
μ− β J

2

)
z2
∫ ∞

0
dr r N−2e−μr2 .

For the fixed energy density ensemble, there is only a single value of energy density for
which a direct coupling can be constructed.

Theorem 4.21 Suppose h = 0 and μ > 0 are given. Define ρ = 1
2μ . Then, for all β <

2μ
J ,

we have

w2(μ
β,μ;N
GC , μ

ε,ρ;N
MC |ε=0; N )2 ≤ 1

N

1

2
(
μ − β J

2

) + 1

N

1

μ
= 1

N

(
ρ

1 − ρβ J
+ 2ρ

)

,

implying

w2(μ
β,μ;N
GC , μ

ε,ρ;N
MC |ε=0; N ) = O(N− 1

2 ).

Proof Let us begin by considering the more general case with h ∈ R and μ, ρ > 0 arbitrary.
Let m+ and m− be the corresponding negative and positive magnetization densities to the
given ε. Define T : R × R

N−1 → R × R
N−1 by

T (z, ψ) := 1(z ≥ 0)

(

m+
√
N ,

√
N (ρ − m2+)

ψ

||ψ ||2
)
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+ 1(z < 0)

(

m−
√
N ,

√
N (ρ − m2−)

ψ

||ψ ||2
)

.

Define T ′ := U−1 ◦ T ◦ U . It follows that
〈
f ◦ T ′〉β,μ;N

GC = 〈 f 〉ε,ρ;N
MC , and T ′ is a transport

map. Using the associated coupling, we find

w2(μ
β,μ;N
GC , μ

ερ;N
MC ; N )2 ≤ 1

N

1
∫∞
0 dz e

−
(
μ− β J

2

)
z2

∫ ∞

0
dz e

−
(
μ− β J

2

)
z2
(

z −
√

−2ε

J

√
N

)2

+ 1

N

1
∫
RN−1 dψ e−μ||ψ ||2

∫

RN−1
dψe −μ||ψ ||2

∣
∣
∣
∣
∣
||ψ || −

√

N

(

ρ −
(

−2ε

J

))∣∣
∣
∣
∣

2

= 1

N

1
∫∞
0 dz e− z2

2

∫ ∞

0
dz e− z2

2

⎛

⎜
⎜
⎝

z
√

2
(
μ − β J

2

) −
√

−2ε

J

√
N

⎞

⎟
⎟
⎠

2

+ 1

N

1
∫
RN−1 dψ e− ||ψ ||2

2

∫

RN−1
dψ e− ||ψ ||2

2

∣
∣
∣
∣
∣
||ψ ||√
2μ

−
√

N

(

ρ −
(

−2ε

J

))∣∣
∣
∣
∣

2

.

Note that for ε �= 0, we have

1

N

1
∫∞
0 dz e− z2

2

∫ ∞

0
dz e− z2

2

⎛

⎜
⎜
⎝

z
√

2
(
μ − β J

2

) −
√

−2ε

J

√
N

⎞

⎟
⎟
⎠

2

∼ −2ε

J
,

which does not provide any additional convergence for the local expectation error estimates.
However, under the assumptions listed in the Theorem, i.e., if h = 0 = ε, μ > 0, ρ = 1

2μ ,
we find via the same computation as above that

w2(μ
β,μ;N
GC , μ

ε,ρ;N
MC ; N )2 ≤ 1

N

1

2
(
μ − β J

2

) + 1

N

1

2μ
2 = 1

N

(
ρ

ρ − β J
+ ρ

)

.

Note that the above holds for all β <
2μ
J ⇐⇒ β < 1

ρ J . ��

For the cases β ≥ 1
ρ J , we must introduce another class of auxiliary measures.

Definition 4.22 Let μ ≥ 0 and η > 0. We define an alternate auxiliary grand canonical
ensemblewith parametersμ andη via its action on bounded 1-Lipschitz functions f : S → R

by

〈 f 〉μ,η;N
AGC := 1

ZAGC(μ, η; N )

∫

S
dφ e−η||φ||2 cosh(μM[φ]) f (φ),

where

ZAGC(μ, η; N ) =
∫

S
dφ e−η||φ||2 cosh(μM[φ]).

By direct computation, we also have then
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〈 f 〉μ,η;N
AGC = 1

2
〈 f 〉μ,η;N

GC + 1

2
〈 f 〉−μ,η;N

GC .

Comparing this to the definition of the microcanonical ensemble, we find using Lemma 4.18

that if h = 0 and − ρ J
2 < ε < 0, then, with μ =

√
−2ε
J

1
ρ+ 2ε

J
and η = J

2(Jρ+2ε) ,

w2(μ
μ,η;N
AGC , μ

ε,ρ;N
MC ; N ) = O(N− 1

2 ).

One should note that there is no direct coupling of this new alternate auxiliary grand
canonical ensemble to the microcanonical ensemble because the probability measures are
not disjoint. However, the individual grand canonical ensembles do converge suitably to
the fixed magnetization density case, and thus we still have the desired local convergence
properties. We also remark that the case μ = 0 corresponds to the regular grand canonical
ensemble given by a Gaussian measure with β = 0.

4.4 Convergence of Finite Marginal Distributions and Finite Moments

In this subsection, we will collect and apply the upper bounds and error estimates presented
for the continuum model to formulate the main local convergence theorems. Since our main
goal is to prove convergence theorems and error estimates for local observables of the mean-
field spherical microcanonical ensemble, we will present a variety of target measures which
the local observables can converge to. Some of these target measures will come from ther-
modynamic ensembles and others from auxiliary ensembles. In particular, the value of the
constant h will have a significant impact on the choice of target measure.

The main theorems concerning the convergence of moments required the boundedness of
single moments of all degrees. To this end, we will employ the following lemma.

Lemma 4.23 Let f : R → R be integrable with respect to any Gaussian measure. Let x ∈ �

and define Px : S → R by Px (φ) = φx . It follows that for all ρ > 0 and m ∈ (−√
ρ,

√
ρ),

we have

〈 f ◦ Px 〉m,ρ;N
MC = O(1).

Proof A direct calculation using the delta function definition of the measures shows that

〈 f ◦ Px 〉m,ρ;N
MC = 1

C(m, ρ; N )

∫ ∞

−∞
dφx f (φx )1

× ((φx − m)2 ≤ (ρ − m2)(N − 1)
)
(

1 − (φx − m)2

(ρ − m2)(N − 1)

) N−4
2

,

where

C(m, ρ; N ) :=
∫ ∞

−∞
dφx 1

(
(φx−m)2≤(ρ − m2)(N − 1)

)
(

1− (φx−m)2

(ρ − m2)(N − 1)

) N−4
2

.

For N ≥ 5, we have

1
(
(φx − m)2 ≤ (ρ − m2)(N − 1)

)
(

1 − (φx − m)2

(ρ − m2)(N − 1)

) N−4
2

≤ 1
(
(φx − m)2 ≤ (ρ − m2)(N − 1)

)
e
− (φx−m)2

2(ρ−m2)

N−4
N−1
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≤ e
− (φx−m)2

8(ρ−m2) .

By the dominated convergence theorem, using the assumed integrability of f , we have

lim
N→∞ 〈 f ◦ Px 〉m,ρ;N

MC = 1

∫∞
−∞ dφx e

− (φx−m)2

2(ρ−m2)

∫ ∞

−∞
dφx f (φx )e

− (φx−m)2

2(ρ−m2) < ∞ ,

which implies that

〈 f ◦ Px 〉m,ρ;N
MC = O(1).

��
Lemma 4.24 Let f : R → R be integrable with respect to any Gaussian measure. Let x ∈ �

and define Px : S → R by Px (φ) = φx . Then for all ρ > 0, h ∈ R, and ε ∈ Eh,ρ , we have

〈 f ◦ Px 〉ε,ρ;N
MC = O(1).

Proof By definition, 〈 f ◦ Px 〉ε,ρ;N
MC is either equal to one of the expectations studied in the

previous Lemma, or it is a convex combination of 〈 f ◦ Px 〉m+,ρ;N
MC and 〈 f ◦ Px 〉m−,ρ;N

MC . In
both of these cases, the result remains bounded as N → ∞. ��

As we remarked earlier, the phase transitions in the mean-field spherical model result in
the need for different limiting measures outside of the standard ensembles when using the
coupling method. Of particular importance is the parameter h ∈ R. In the following con-
vergence results, we will always explicitly state for which different parameters and limiting
measures the convergence results hold.

First, we will state the convergence result for the auxiliary microcanonical, auxiliary
canonical, microcanonical, and canonical ensembles.

Theorem 4.25 Let ρ > 0 and m ∈ (−√
ρ,

√
ρ) and define μ := − m

ρ−m2 . Let I ⊂ � be a

fixed size index set, and let f : R|I | → R be a bounded 1-Lipschitz function with respect to
the || · ||2-norm. It follows that

〈 f ◦ PI 〉m,ρ;N
MC = 〈 f ◦ PI 〉μ,ρ;N

C + O(N− 1
2 ).

��
Proof The result follows by applying the free energy coupling presented in Theorem 2.5,
along with the w2 bound presented in Theorem 4.7, and with the asymptotics presented in
Theorem 4.14. ��
Theorem 4.26 Suppose h �= 0 and ρ > 0. Assume ε ∈ Eh,ρ . Define m := − h

J +
sgn(h)

√
h2

J 2
− 2ε

J andμ := − m
ρ−m2 . Let I ⊂ � be a fixed size index set, and let f : R|I | → R

be a bounded 1-Lipschitz function with respect to the || · ||2-norm. It follows that
〈 f ◦ PI 〉ε,ρ;N

MC = 〈 f ◦ PI 〉μ,ρ;N
C + O(N− 1

2 ).

Proof By Theorem 4.10, we have

〈 f ◦ PI 〉ε,ρ;N
MC = 〈 f ◦ PI 〉m,ρ;N

MC + O(e−cN ),
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and, by Theorem 4.25, we have

〈 f ◦ PI 〉m,ρ;N
MC = 〈 f ◦ PI 〉μ,ρ;N

C + O(N− 1
2 ),

from which the result follows. ��
Theorem 4.27 Let h = 0. Suppose ρ > 0 and ε ∈

(
− Jρ

2 , 0
]
. Let I ⊂ � be a fixed size index

set, and let f : R|I | → R be a bounded 1-Lipschitz function with respect to the || · ||2-norm.
For ε ∈

(
− Jρ

2 , 0
)
, define β := 1

J

ρ+ 2ε
J
. It follows that

〈 f ◦ PI 〉ε,ρ;N
MC = 〈 f ◦ PI 〉β,ρ;N

C + O(N− 1
2 ).

For ε = 0, let β < 1
ρ J be arbitrary. It follows that

〈 f ◦ PI 〉0,ρ;N
MC = 〈 f ◦ PI 〉β,ρ;N

C + O(N− 1
2 ).

Proof If ε ∈
(
− Jρ

2 , 0
)
, the result follows by applying the free energy coupling presented

in Theorem 2.5, along with the w2 bound presented in Theorem 4.11, and the asymptotics
presented in Theorem 4.15.

If ε = 0, then observe that thew2 bound inTheorem4.11 is not Lipschitz in the appropriate
sense to directly apply Theorem 2.5. However, following the proof of Theorem 2.5, we can
apply the following inequality

〈

w2

(

μ
0,ρ;N
MC , μ

H
N ,ρ;N
MC ; N

)〉β,ρ;N

C
≤ 2√

J

(
〈−H/N 〉β,ρ;N

C

) 1
2
,

where the upper-index H
N is a non-positive random variable of the canonical ensemble. It

follows that
∣
∣
∣〈 f ◦ PI 〉0,ρ;N

MC − 〈 f ◦ PI 〉β,ρ;N
C

∣
∣
∣ ≤ C

(
〈−H/N 〉β,ρ;N

C

) 1
2
,

for a global constant C > 0. By considering the asymptotics presented in Theorem 4.15, we
have

〈 f ◦ PI 〉0,ρ;N
MC = 〈 f ◦ PI 〉β,ρ;N

C + O(N− 1
2 ).

��
Finally, we will state the convergence result for the auxiliary microcanonical, auxiliary

grand canonical, alternate auxiliary grand canonical, microcanonical, and grand canonical
ensembles.

Theorem 4.28 Let ρ > 0 and m ∈ (−√
ρ,

√
ρ) and define μ := − m

ρ−m2 and η := 1
2(ρ−m2)

.

Let I ⊂ � be a fixed size index set, and let f : R|I | → R be a bounded 1-Lipschitz function
with respect to the || · ||2-norm or let f be a finite product of finite order moments. It follows
that

〈 f ◦ PI 〉m,ρ;N
MC = 〈 f ◦ PI 〉μ,η;N

GC + O(N− 1
2 ).

Proof The result follows by applying the direct coupling method in Lemma 2.3 along with
the w2 bound given in Theorem 4.18. The convergence of the finite dimensional moments
follows from Theorem 2.4 and the fact that the moments of both relevant ensembles are
bounded by Lemma 4.23. ��
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Theorem 4.29 Suppose h �= 0 and ρ > 0. Assume ε ∈ Eh,ρ . Define m := − h
J +

sgn(h)

√
h2

J 2
− 2ε

J and set then μ := − m
ρ−m2 and η := 1

2(ρ−m2)
. Let I ⊂ � be a fixed

size index set, and let f : R|I | → R be a bounded 1-Lipschitz function with respect to the
|| · ||2-norm or let f be a finite product of finite order moments. It follows that

〈 f ◦ PI 〉ε,ρ;N
MC = 〈 f ◦ PI 〉μ,η;N

GC + O(N− 1
2 ).

Proof The proof follows from Theorem 4.28 via the same steps as in the proof of Theo-
rem 4.26. ��

Theorem 4.30 Suppose h = 0 and ρ > 0. Assume ε ∈
(
− Jρ

2 , 0
]
and define μ :=

√
− 2ε

J

ρ−
(
− 2ε

J

)

and η := 1

2
(
ρ−
(
− 2ε

J

)) . Let I ⊂ � be a fixed size index set, and let f : R
|I | → R be a

bounded 1-Lipschitz function with respect to the || · ||2-norm or a finite product of finite order
moments. It follows that

〈 f ◦ PI 〉ε,ρ;N
MC = 〈 f ◦ PI 〉μ,η;N

AGC + O(N− 1
2 ).

Proof The result follows by splitting the fixed energy density ensemble into its fixed mag-
netization ensity ensembles and applying Theorem 4.28. ��

4.5 Remark on Choice of Cost Function

For this model, it should be observed that the w2 convergence is a natural choice of con-
vergence from the perspective that it implies both w1 and w2 convergence simultaneously,
which in turn implies that the magnetization density converges along with the energy density.
Without this property, a coupling of suitable strength between the microcanonical and grand
canonical measures seems unlikely. Observe that

w1

(
μ
m,ρ;N
MC , μ

m′,ρ;N
MC ; N

)
≤ w2

(
μ
m,ρ;N
MC , μ

m′,ρ;N
MC ; N

)
.

Employing the lower bound in the triangle inequality, we have

w1

(
μ
m,ρ;N
MC , μ

m′,ρ;N
MC

)
≥ |m − m′|.

Now, if we consider Theorem 4.7, then we have

|m − m′| ≤ w2

(
μ
m,ρ;N
MC , μ

m′,ρ;N
MC ; N

)
≤
(

1 + 2
√
1 − m2/ρ

)

|m − m′|.

Thus, even though optimality of the transport was not necessarily achieved as in the discrete
case, the best possible scaling in the dependence on changes in the parameter m was still
obtained here.
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A Rigorous Asymptotic Analysis of Laplace-Type Integrals

First, we will fix some notation and definitions.

Definition A.1 (Asymptotic equivalence) Let f , g : R → R be suitable functions so that the
following limits and quotients exist. We say that f and g are asymptotically equivalent at
a ∈ R := [−∞,∞] if

lim
x→a

f (x)

g(x)
= 1.

Asymptotic equivalence will be denoted f ∼ g without reference to the limiting point a if it
is clear from context.

Furthermore, we say that a function f admits an asymptotic power series representation
at a point a ∈ R if there is a sequence of constants (ak)k∈N0 and some μ ≥ 0 such that

lim
x→a

(x − a)−N−μ

(

f (x) −
N∑

k=0

ak(x − a)k+μ

)

= 0

for all N ∈ N0. Since this implies that f (x) − ∑N−1
k=0 ak(x − a)k+μ ∼ aN (x − a)N+μ

whenever aN �= 0, we will use the notation

f (x) ∼
∞∑

k=0

ak(x − a)k+μ

to denote the above without reference to N , even if the power series on the right does not
converge.

Analogously, we define asymptotic power series representation as x → ∞ by requiring
that x �→ f (1/x), x > 0, has an asymptotic power series at 0. Explicitly, we then require

lim
x→∞ xN+μ

(

f (x) −
N∑

k=0

akx
−k−μ

)

= 0 ,

for all N ∈ N0, and denote this by

f (x) ∼
∞∑

k=0

akx
−k−μ

The asymptotic analysis of Laplace-type integrals has been studied extensively. For com-
pleteness, we will present below a general form of the asymptotics of Laplace-type integrals.

Theorem A.2 Let h : [a, b] → R be a function satisfying the following conditions:
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• h attains a global minimum at the left end-point a, h(x) > h(a) for all x ∈ (a, b), and
for every δ > 0 we have infx∈[a+δ,b){h(x) − h(a)} > 0.

• h admits a power series representation at the left end-point a of the form

h(x) ∼ h(a) +
∞∑

s=0

as(x − a)s+μ

for some μ > 0 and with a0 �= 0.
• h is differentiable in a neighbourhood of a and the previous power series representation

can be term-wise differentiated to give

h′(x) ∼
∞∑

s=0

as(s + μ)(x − a)s+μ−1 .

• h′ is continuous in a neighbourhood of a except possibly at a.

Suppose also that ϕ : [a, b] → R is a function satisfying all of the following:

• ϕ is continuous in a neighbourhood of a except possibly at a.
• ϕ admits a power series representation at the left end-point a of the form

ϕ(x) ∼
∞∑

s=0

bs(x − a)s+α−1

for some α ∈ C such that Re α > 0, and with b0 �= 0.

Furthermore, suppose that there exists M > 0 such that for all λ ≥ M, the integral I (λ)

defined by

I (λ) :=
∫ b

a
dx ϕ(x)e−λh(x),

converges absolutely.
Then, as λ → ∞,

I (λ) ∼ e−λh(a)
∞∑

s=0

�

(
s + α

μ

)
cs

λ
s+α
μ

,

where the coefficients cs are expressible in terms of as and bs , and, in particular, we have

c0 = b0

μa
α
μ

0

.

Proof The proof is given [18], chapter 2 “Classical Procedures”, section 1 “Laplace’s
method”. ��

The previous theorem can be applied to all the Laplace-type integrals that will be used in
this paper. To be explicit, the most typical usage of this theorem will be for the case where
h : [a, c] → R is a twice continuously differentiable strictly convex function, which implies
that h′′(x) > 0 for all x ∈ [a, c]. If there exists b ∈ (a, c) such that h′(b) = 0, then this
point b is the global minimum of h and one can consider the function h on the intervals
[a, b] and [b, c]. Note that the previous theorem holds precisely for h on the interval [b, c]
since h attains its global minimum at the left-end point b. For the interval [a, b], one instead
considers the mapping h̃(x) := h(−x) defined on the interval [−b,−a]. One finds that the
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mapping h̃ obtains a global minimum at −b and again the contents of the previous theorem
hold.

The role of the mapping ϕ : [a, c] → R does not change. In particular, if ϕ admits a power
series representation at any point on this interval, then it necessarily also admits power series
representations when using one sided limits.

In the case of a strictly convex h, at the global minimum b, we have μ = 2 and a0 =
1
2h

′′(b) �= 0. The mapping ϕ is of more importance. In particular, suppose that ϕ is a smooth
function such that for some finite i ∈ N and for all k < i , we have ϕ(k)(b) = 0 and
ϕ(i)(b) �= 0. In the notation of the previous theorem, this would correspond to the situation
where α = i + 1 and b0 = 1

i !ϕ
(i)(b). Applying the previous theorem, we then would have

∫ c

a
dx ϕ(x)e−λh(x) ∼ e−λh(b)�

(
i + 1

2

)
1

i !ϕ
(i)(b)

1

2
( 1
2h

′′(b)
) i+1

2

1

λ
i+1
2

,

and
∫ c
a dx ϕ(x)e−λh(x)

∫ c
a dx e−λh(x)

∼ �
( i+1

2

)

�
( 1
2

)
1

i !ϕ
(i)(b)

1
( 1
2h

′′(b)
) i
2

1

λ
i
2

.

The primary message from this is that the order of the first non-zero derivative of ϕ

determines the rate of vanishing of such Laplace-type integrals, in particular, in this case we
would have

∫ c
a dx ϕ(x)e−λh(x)

∫ c
a dx e−λh(x)

= O(λ− i
2 ) , λ → ∞.

Furthermore, there will be some cases in which h′(x) �= 0 for any x ∈ (a, c). In such a
situation, it will also typically be so that h′(x) < 0 for all x ∈ (a, c), this implies that h is
minimized at the right end point c, and, by considering the mapping h̃(x) = h(−x) again,
we see that the mapping h̃ is now minimized at its left end point −c and thus the theorems
hold again. In such a situation, we have μ = 1 instead of μ = 2.
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