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Abstract
We extend results on quadratic pressure and convergence of Gibbs measures from Leplaideur
and Watbled (Bull Soc Math France 147(2):197–219, 2019) to some general models for spin
spaces. We define the notion of equilibrium state for the quadratic pressure and show that
under some conditions on the maxima for some auxiliary function, the Gibbs measure con-
verges to a convex combination of eigen-measures for the Transfer Operator. This extension
works for dynamical systems defined by infinite-to-one maps. As an example, we compute
the equilibrium for the mean-field XY model as the number of particles goes to +∞.
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264 R. Leplaideur, F. Watbled

1 Introduction

1.1 Background, Main Motivations, Open Questions

Thermodynamic formalism has been introduced in Dynamical Systems in the 70’s mainly
by Sinai, Ruelle and Bowen (see [2,23,24]). The main motivation was to exhibit special
invariant measures representing systems at equilibrium. Along the years, vocabulary from
Physics has been used but for notions that may differ from the original ones in Physics. This
is in particular the case for the notion of phase transition.

The present paper is the continuation of a recent work [20] where a dictionary between
some phase transitions in Statistical Mechanics and their interpretation in Ergodic Theory
was given.

In this paper we shall call Probabilistic Gibbs Measures (PGM for short) the Gibbs
measures used in Physics or in Probability Theory and usually defined on finite lattices. On
the other hand, Dynamical Gibbs Measures (DGM) will denote invariant measures usually
considered in Ergodic Theory for Dynamical Systems, thus defined on an infinite system.

With this distinction, authors in [20] introduced the notion of quadratic pressure for
dynamical systems and showed that for a generalization of the Curie–Weiss model, the
PGM converge as the number of sites goes to +∞ to a convex combination of measures
associated to the DGM which maximize the quadratic pressure.

The number of these DGM is the number of maxima for a special auxiliary function
ϕβ : R → R and it was shown that a phase transition occurs at βc when this number changes
at βc.

The Curie–Weiss–Potts model is usually considered as an extension of the Curie–Weiss
model, although phase transitions are quite different (see below). We refer to [9,12] for a
complete description of Ising, Curie–Weiss, and Potts models, and to [10] for the Curie–
Weiss–Potts model. Even if for the Curie–Weiss–Potts model a similar result to Theorem3
(in the present paper) was given in [20], a total description of the phenomenon with respect
to quadratic pressure has not yet been done.

It was thus a natural question to investigate if a dictionary between Curie–Weiss general
models for spin spaces andErgodic Theory could be defined. In the present paper, we consider
more general interactions between sites formean field interactions and show that the approach
of [20] can actually be adapted to these generalized spin spaces. These are the purposes of
Theorems2 and 3.

In view to give an application to the XY -model (see Sect. 5), the statement is done for
dynamical systems which are not necessarily finite-to-one.

For that goal, the notion of entropy needs to be made precise. This notion has already
been investigated and we mention e.g.a series of works [1,6,7,21] and more recently [13].
We re-employ here the idea to define the entropy as the Fenchel-Legendre transform of the
pressure function and to link it to a min–max problem. We remind that pressure here has
to be understood within ergodic viewpoint and is the logarithm of the spectral radius of the
transfer operator.

Some version of the transfer operator with infinite-to-one map has already been studied in
[21]. We point out that in our case we have a more flexible operator as the transition depends
on the two first coordinates (see below). Actually, we believe that it can easily be extended
to the case where transitions only depend on finitely many coordinates, which is what should
be a natural extension of the notion of subshift of finite type with infinite (and uncountable)
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Curie–Weiss Type Models for General Spin Spaces... 265

alphabet. In other words, the transfer operator in [21] is the one for a full-shift of finite type
whereas our is the one for more general irreducible subshift of finite type.

The main purpose of Theorem1 is thus to show the existence of the spectral gap for the
transfer operator (one of the main assumption to use [13]) and also to study the regularity of
the spectral radius, in particular for the multi-dimensional case.

Theorem3 is where we actually make links between Dynamical Gibbs Measures and
Probabilistic GibbsMeasures. It deals with convergence of the PGM to a convex combination
of eigen-measures for the Transfer Operator. One of the key points is the Laplace method.
This is where the auxiliary function ϕβ is involved.

We remind that the Laplace method deals with integrals of the form
∫
I f (t)enφ(t)dt and

gives an equivalent of this quantity as n goes to +∞. This equivalent only involves values
ci where φ is maximal. For each ci one gets an expression γ (ci , n) depending on how flat φ
is close to ci and also on how f behaves close to ci .

If I is some subset of Rd with non-empty interior, we emphasize that there is a big
difference between d = 1 and the higher-dimensional case. For d = 1 we can, in general,
compare all the γ (ci , n), up to the condition that they are finitely many, and whatever the
flatness at each ci is (as long as it is not totally degenerate). This does not hold for d > 1,
and we only get case-by-case results, unless all the maxima have a non-degenerate Hessian.
The consequence in our problem is that we can (in general) precisely determine what is the
convex combination for the limit of the PGM, only if all the maxima are non-degenerate.

Once we link a phase transition with the change of maxima for an auxiliary function, it
becomes easy to understand (and classify) different kinds of phase transitions. In spirit, a
change in the number of the maxima may occur in two different ways. Either one maximum
splits and produces several maxima. This is what happens in the Curie–Weiss model and also
for the XY -model (see Sect. 5). Or, one local maxima far from the global ones becomes a
global one. This is what happens in the Curie–Weiss–Potts model.

Now that we have at our disposal a kind of dictionary between the mean field theory and
ergodic theory, we can formulate and translate some problems from one area to the other
one, and expect to use tools from the latter to solve the problem of the former. We address
here two questions of that kind.

Non-ergodic interacting particle systems. Some examples have quite recently been given
or discussed (see [17,22]). It is clear from the mathematical point of view that even if the
underlying dynamical system is uniquely ergodic, the conformal measure (with respect to
some potential that has to be made precise) may be different from the unique invariant
measure as it is not necessarily invariant. From [20] and Theorem3 we have shown that
thermodynamical limits for PGM are the conformal measures and not the DGM. This could
thus be a way to exhibit new examples of these “non-ergodic” uniquely invariant systems.

Conservation of Gibbsianness under local transformations (see [19]) and non-linear pres-
sure. In [5] the concept of quadratic pressure is extended to define a non-linear thermodynamic
formalism. An equivalent to Theorem2 is stated and also the convergence (at logarithmic
scale) of the partition function is proved. Nevertheless at that stage, there is no equivalent to
the PGM extending the quadratic pressure to general non-linear pressure. Following [26], it
appears reasonable to expect that results from [19] could be used to define the good notion
of PGM in non-linear thermodynamic formalism.
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266 R. Leplaideur, F. Watbled

1.2 Settings and Results

1.2.1 Shift with (Possibly) Infinite Alphabet

Let (E, d) be a compact metric space, let ρ be a Borel probability measure on E with full
support. We assume that ρ satisfies the following assumption

(H): for any sufficiently small ε > 0, x �→ ρ(B(x, ε)) is continuous.

We consider a map A : E × E → [0, 1] called the transition function, which satisfies the
following properties:

(A1) A is continuous with values in {0, 1}.
(A2) A is Lipschitz continuous with respect to the second variable with Lipschitz constant

Lip(A).
(A3) A generates some mixing in the following sense.

∃N ∈ N, ∀ n ≥ N , ∀ a, b ∈ E, ∃z1, . . . , zn−1 ∈ E

such that A(a, z1)A(z1, z2) · · · A(zn−1, b) = 1. (1)

Remark 1 The assumption (A1) yields that A is constant with value 0 or 1 on each connected
component of E × E . The assumption (A3) implies in particular that A is not identically
null. 	


We define � ⊂ EN in the following way:

� :=
{
x = x0x1x2 · · · ∈ EN; ∀ i ∈ N, A(xi , xi+1) > 0

}
.

The shift map σ : � → � is defined by

σ(x0x1x2 · · · ) = x1x2 · · · .

Note that if E is connected, e.g.E = [0, 1], then A ≡ 1. If E is a finite set {1, . . . k}, then �

is the subshift of finite type with transition matrix having entries A(i, j).

For n ≥ 1, let �n be the set of words z1 · · · zn with
n−1∏

i=1

A(zi , zi+1) = 1. For a and b in

E , let �n−1(a, b) be the set of words z1 · · · zn−1 in �n−1 with A(a, z1) = A(zn−1, b) = 1.
Assumption (A3) on A means that for every a, b in E , for every n ≥ N , �n−1(a, b) = ∅. It
implies in particular that for every a in E , there always exist u, v in E such that A(a, u) = 1
and A(v, a) = 1.We denote by�n(b) the set of words z0 · · · zn−1 in�n with A(zn−1, b) = 1.

We set P = ρ⊗N. The distance on � is defined by

d�(x, y) =
+∞∑

n=0

d(xn, yn)

2n+1 .

We notice that for any a in �n ,

d�(ax, ay) = 1

2n
d�(x, y)

and that

d�(σ nx, σ n y) = 2n
(

d�(x, y) −
n−1∑

k=0

d(xk, yk)

2k+1

)

.
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We denote by C0(�), respectively C+1(�), the set of continuous, respectively Lipschitz
continuous, functions from � to R, equipped respectively with the norms

‖φ‖∞ = max
x∈�

|φ(x)|, ‖φ‖L = ‖φ‖∞ + Lip(φ),

where Lip(φ) stands for the Lipschitz constant of φ. We recall that the spaces (C0(�), ‖·‖∞)

and (C+1(�), ‖ · ‖L) are Banach spaces. We set M(�) the space of probability measures on
� and recall that by the Riesz representation theorem, the map μ �→ ( f �→ ∫

f dμ) is a
bijection between M(�) and

{l ∈ C0(�)∗; l(1) = 1 and l( f ) ≥ 0 whenever f ≥ 0},
where ∗ means the topological dual space and 1 is the constant function ≡ 1.

A measure μ is σ -invariant if μ(σ−1(B)) = μ(B) for all Borel sets B. The set Mσ (�) is
the space of σ -invariant probability measures on �. Both M(�) and Mσ (�) are convex and
compact for the weak star topology.

The transfer operator associated to φ : � → R (Lipschitz continuous) is the linear
operator defined by

Lφ( f )(ω) =
∫

E
eφ(tω)A(t, ω0) f (tω) dρ(t).

Theorem1 states several properties on the spectrum of the transfer operator. To properly
state the theorem we need to introduce some more quantities.

The operator Lφ acts on C0(�) and on C+1(�). The spectral radius of Lφ on C0(�),
denoted by rφ , is a simple eigenvalue of the adjoint operator L∗

φ acting on the space of Radon
measures on �, and the conformal measure νφ is the unique probability eigen-measure
associated to the eigenvalue rφ . It is also a simple eigenvalue of Lφ acting on C+1(�), with
a positive eigenfunction Gφ such that the measure μφ = Gφνφ is a probability measure. We
call μφ the dynamical Gibbs measure (DGM for short) associated to φ.

If z belongs to R
q and ψi , i = 1, . . . q are in C+1(�) one sets

−→
ψ := (ψ1, . . . , ψq) and

z · −→
ψ :=∑q

i=1 ziψi . We denote by ||z|| the Euclidean norm of z

||z||2 =
q∑

i=1

z2i .

Definition 1.1 For fixed
−→
ψ and z ∈ R

q , one sets

H(z,
−→
ψ ) := inf

t∈Rq

{
log r

t·−→ψ − t · z
}

,

where r
t·−→ψ is the spectral radius for L

t·−→ψ , and

I (
−→
ψ ) :=

{∫ −→
ψ dμ, μ ∈ Mσ (�)

}

.

Note that I (
−→
ψ ) is a closed convex subset of Rq . Moreover, z �→ H(z,

−→
ψ ) is upper semi-

continuous, as it is an infimum of affine functions.

Theorem 1 For any φ ∈ C+1(�), rφ is a simple single dominating eigenvalue. Moreover, for

any
−→
ψ with ψi ∈ C+1(�), the map P : t �→ log r

t·−→ψ is infinitely differentiable.

Furthermore,
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268 R. Leplaideur, F. Watbled

(1) H(z,
−→
ψ ) = −∞ if z /∈ I (

−→
ψ ),

(2) H(z,
−→
ψ ) is finite if z = ∇P(t) for some t ∈ R

q .

We call pressure function for
−→
ψ the map t �→ P(t). In the following∇P(Rq)will denote

the set of z such that z = ∇P(t) for some t ∈ R
q .

1.2.2 Quadratic Pressure

For fixed
−→
ψ ∈ C+1(�)q and for β ≥ 0, t , z in R

q , we set

ϕβ(t) := −β

2
||t||2 + log r

β t·−→ψ and ϕβ(z) := H(z,
−→
ψ ) + β

2
||z||2.

Notation 1 We set Htop := log r0.

Definition 1.2 For μ in Mσ (�), the entropy is the quantity

Ĥ(μ) := inf−→
ψ ∈C+1(�)q

H
(∫ −→

ψ dμ,
−→
ψ

)

.

Let
−→
ψ ∈ C+1(�)q be fixed. The quantity

P2(β) = sup
μ

{

Ĥ(μ) + β

2

∥
∥
∥
∥

∫ −→
ψ dμ

∥
∥
∥
∥

2
}

is referred to as the quadratic pressure function for
−→
ψ .

Remark 2 In [13] the authors define the entropy by setting

hX (μ) := inf
A∈X (�)

(

log rA −
∫

A dμ

)

for μ ∈ Mσ (�)

and the pressure by setting

Pr(B) := sup
μ∈Mσ (�)

(

hX (μ) +
∫

B dμ

)

for B ∈ X (�),

whereX (�) is a suitable space of potentials� → R. We notice that our definition of entropy
is the same as theirs with X (�) = C+1(�), whereas our definition of pressure is linked to

theirs by P(t) = Pr(t · −→
ψ ), where

−→
ψ is fixed in C+1(�)q . We point out that μ �→ Ĥ(μ) is

upper semi-continuous as the infimum over a family of upper semi-continuous functions. 	

From Theorem1 we can use the work of Giulietti et al. [13, th.F]. We emphasize that the

key point in their work is the spectral decomposition of the transfer operator, which is stated
in Theorem1. Then, we deduce the existence of the DGM which is the unique equilibrium
state for φ.

Stated with our settings, we get that for any
−→
ψ ∈ C+1(�)q and for any t there is a unique

invariant measure μ
t.
−→
ψ

which maximizes Ĥ(μ) +
∫

t · −→
ψ dμ. Moreover,

P(t) = Ĥ(μ
t·−→ψ ) +

∫
t · −→

ψ dμ
t·−→ψ . (2)
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Convexity for the multi-dimensional pressure function t �→ P(t) = supμ{Ĥ(μ) + ∫ t ·−→
ψ dμ} and differentiability obtained from Theorem1 yield that for every t and every i ,
∂ log r

t·−→ψ
∂ti

=
∫

ψi dμ
t·−→ψ .

Theorem 2 Equilibrium states for the quadratic pressure For any
−→
ψ ∈ C+1(�)q and

for any β ≥ 0 the invariant probability measures which maximize P2(β) are the dynamical
Gibbs measures μ

β t·−→ψ where the t’s are the maxima for ϕβ .

This result goes in the same direction as the ones from [5,20]. However, we point out
some interesting difference here: in the higher-dimensional case, there may be infinitely
many measures which maximize the quadratic pressure. This is actually the case for XY -
model (see below Remark6).

1.2.3 Generalized Curie–Weiss Hamiltonian

For φ ∈ C+1(�), we remind that Sn(φ) stands for φ+φ ◦σ +· · ·+φ ◦σ n−1 =∑n−1
k=0 φ ◦σ k .

With previous notations, Sn(
−→
ψ ) is the vector with coordinates Sn(ψi ). Then, the Generalized

Curie–Weiss Hamiltonian is defined for ω ∈ � by

Hn(ω) := − 1

2n
‖Sn(−→ψ )(ω)‖2.

We define the probabilistic Gibbs measure (PGM for short) μn,β on � by

μn,β(dω) := e−βHn(ω)

Zn,β

P(dω) = e
β
2n ‖Sn(−→ψ )(ω)‖2

Zn,β

P(dω), (3)

where Zn,β is the suitable normalization factor.
If Pn , P are probability measures in M(�), we say that Pn converges weakly to P if∫

�
f d Pn → ∫

�
f d P for each f in C0(�). As C+1(�) is dense in C0(�), this is equivalent

to
∫
�

f d Pn → ∫
�

f d P for each f in C+1(�).

Theorem 3 Generalized Curie–Weiss model One-dimensional case: if q = 1, then the
PGM μn,β converges weakly to a convex combination of the conformal measures νβtψ asso-
ciated to the μβtψ ’s from Theorem2 as n goes to +∞.

Higher-dimensional case: for q > 1, if ϕβ attains its maximum only on non-degenerate
points (i.e., d2ϕβ is invertible at those points), then they are finitely many and the PGM μn,β

converges weakly to a convex combination of the conformal measures ν
β t·−→ψ associated to

the μ
β t·−→ψ ’s, where the t’s are the maxima for ϕβ .

Remark 3 The classical Curie–Weiss–Potts model (see Theorem 2.1 of [10]) is obtained by
taking E = {1, . . . q}, ψi = 1[i] and A(i, j) = 1 for every pair (i, j). 	


We point out that the mean-field XY model (see Sect. 5) is an example where ϕβ attains
its maximum on an infinite set of points, and for all of them the Hessian is degenerate.

1.3 Plan of the Paper

In Sect. 2 we prove Theorem1. As we said above, the main ingredient is to define and study
the spectrum of the Transfer Operator. We prove that this operator has a spectral gap and
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270 R. Leplaideur, F. Watbled

that the spectral radius is a simple isolated dominating eigenvalue. This allows to define the
notion of conformal measure.

In Sect. 3 we prove Theorem2. Themain ingredient is to define two auxiliary functions, ϕβ

and ϕβ , to show that one is always bigger than the other one, but both have the same maxima
(arising for the same points). The maximal value for ϕβ equals the quadratic pressure but
maxima for ϕβ are easier to detect. Part of the difficulty in this section comes from our way
to define the entropy for measure, as we want to deal with possibly infinite-to-one maps.

In Sect. 4 we prove Theorem3. The main trick is the Hubbard–Stratonovich formula and
then the Laplace method, as in [20].

In Sect. 5 we discuss an application to the mean-field XY model.

2 Proof of Theorem1

2.1 Properties for the Transfer Operator with Infinite Alphabet

2.1.1 First Spectral Properties:L� is Quasi-compact

The function A is continuous thus uniformly continuous (since E × E is compact) and with
values in {0, 1}. Therefore, there exists εA ∈ ]0, 1[ such that for any u, u′, t and t’ in E
satisfying d(u, u′) < εA and d(t, t ′) < εA,

A(t, u) = A(t ′, u′). (4)

Lemma 2.1 Lφ acts on C0(�) and on C+1(�).

Proof Let f be in C0(�). The function x �→ eφ(t x)A(t, x0) f (t x) is continuous on � and

|eφ(t x)A(t, x0) f (t x)| ≤ e‖φ‖∞‖ f ‖∞,

thus by the dominated convergence theorem Lφ( f ) is continuous on �. Moreover Lφ acts
continuously on C0(�) with operator norm

‖Lφ‖∞ ≤ e‖φ‖∞ . (5)

Now let f be in C+1(�). Notice that for any t in E and x , y in �,

d�(t x, t y) = 1

2
d�(x, y),

so that the function ft : x �→ f (t x) is Lipschitz with Lip( ft ) ≤ 1
2Lip( f ). It is easy to show

that if φ is Lipschitz, then eφ is Lipschitz with

Lip(eφ) ≤ e‖φ‖∞Lip(φ).

Notice also that for any t in E , the map At : x �→ A(t, x0) is Lipschitz with

Lip(At ) ≤ 2Lip(A).

As the product of two Lipschitz functions f and g is Lipschitz with

Lip( f g) ≤ ‖ f ‖∞Lip(g) + ‖g‖∞Lip( f ),

we easily deduce that Lφ( f ) is Lipschitz and that Lφ acts continuously on C+1(�). 	
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Lemma 2.2 The spectral radius on C0(�) satisfies log rφ = lim
n→+∞

1

n
log ||Ln

φ(1)||∞.

Proof We recall that rφ := lim
n→+∞ ‖Ln

φ‖1/n∞ = inf
n≥1

‖Ln
φ‖1/n∞ . For any f in C0(�), x ∈ �,

|Lφ( f )(x)| ≤
∫

E
eφ(t x)A(t, x0)| f (t x)| dρ(t) ≤ ‖ f ‖∞Lφ(1)(x) ≤ ‖ f ‖∞‖Lφ(1)‖∞,

hence ‖Lφ‖∞ = ‖Lφ(1)‖∞. For n ∈ N,

Ln
φ( f )(x) =

∫

�n(x0)
eSn(φ)(t x) f (t x)ρ⊗n(dt),

where t inside the integral stands for t = t0 · · · tn−1 and ρ⊗n(dt) = ∏n−1
i=0 ρ(dti ). Then

‖Ln
φ‖∞ = ‖Ln

φ(1)‖∞ for the same reason as for n = 1, hence rφ = lim
n→+∞ ‖Ln

φ(1)‖1/n∞ . 	


As the measure ρ is of full support and A satisfies the hypothesis (A3) it is easy to show
that for any x in �, Lφ(1)(x) is strictly positive. One then has that

L̂∗
φ(μ) := L∗

φ(μ)

L∗
φ(μ)(1)

is a probability measure for any μ ∈ M(�). The map L̂∗
φ : M(�) → M(�) is continuous

on the compact (for the weak*-topology) convex space M(�) therefore by the Schauder-
Tychonoff theorem, there exists a probability measure νφ such that

L̂∗
φ(νφ) = νφ.

This measure is either called the conformal measure or the eigen-measure. In the following

we set λφ := L∗
φ(νφ)(1) =

∫
Lφ(1) dνφ .

Proposition 2.3 With previous notations rφ = λφ . Moreover for any x ∈ �,

log rφ = lim
n→+∞

1

n
logLn

φ(1)(x). (6)

Proof Lipschitz regularity for φ yields that the Bowen condition holds: for any n, for any x
and y satisfying xi = yi for i = 0, . . . n − 1,

|Sn(φ)(x) − Sn(φ)(y)| ≤ D Lip(φ), (7)

where D = Diam(�) = max{d�(x, y); x, y ∈ �}. Indeed if xi = yi for i = 0, . . . n − 1
then d�(σ k x, σ k y) = 2kd�(x, y) for 0 ≤ k ≤ n, so that

|Sn(φ)(x) − Sn(φ)(y)| ≤
n−1∑

k=0

Lip(φ)2kd�(x, y) ≤ 2nLip(φ)d�(x, y)

= Lip(φ)d�(σ n(x), σ n(y)).

Lemma 2.4 For any x, y in � such that d�(x, y) < εA
2 , for any n ≥ 2,

e−DLip(φ) ≤ Ln
φ(1)(x)

Ln
φ(1)(y)

≤ eDLip(φ). (8)
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272 R. Leplaideur, F. Watbled

Proof If d�(x, y) < εA
2 then d(x0, y0) < εA so that �n(x0) = �n(y0). For any a ∈ �n(x0),

(7) implies that

|Sn(φ)(ax) − Sn(φ)(ay)| ≤ D Lip(φ),

therefore

eSn(φ)(ay)e−DLip(φ) ≤ eSn(φ)(ax) ≤ eSn(φ)(ay)eDLip(φ)

and by integrating over �n(x0) one gets

Ln
φ(1)(y)e−DLip(φ) ≤ Ln

φ(1)(x) ≤ Ln
φ(1)(y)eDLip(φ).

	

We pick N1 sufficiently big such that Assumption (A3) holds, that is

∀a, b ∈ E, �N1−1(a, b) = ∅.

Then, we choose N2 sufficiently big such that 2−N2 <
εA

2Diam(�)
.

Claim 1 There exists C = C(φ) > 0 such that for every n > N1 + N2, for every x and y in
�,

e−C ≤ Ln
φ(1)(x)

Ln
φ(1)(y)

≤ eC . (9)

Proof of the Claim We pick x and y in �. We denote by t an element (t1, . . . , tN2) of �N2

and by u and v some elements of �N1 . We set N := N2 + N1 and m := n − N .

Ln
φ(1)(x) = LN

φ ◦ Lm
φ (1)(x)

=
∫∫

eSN (φ)(tux)A(tN2 , u1)A(uN1 , x0)Lm
φ (1)(tux) dρ⊗N2 (t)dρ⊗N1 (u)

=
∫∫

eSN2 (φ)(tux)eSN1 (φ)(ux)A(tN2 , u1)A(uN1 , x0)Lm
φ (1)(tux) dρ⊗N2 (t)dρ⊗N1 (u)

where we used the identity

SN1+N2(φ) = SN2(φ) + SN1(φ) ◦ σ N2 .

Let us set mA = inf t∈E ρ (B(t, εA)), which is positive thanks to hypotheses (H). As
�N1−1(u1, y0) = ∅ we can pick u in this set. If v ∈ �N1 is such that d(v1, u1) < εA
and d(vi , ui−1) < εA for every 2 ≤ i ≤ N1, then A(vN1 , y0) = 1, that is v ∈ �N1(y0). We
deduce that

∫

�N1

A(vN1 , y0)1B(u1,εA)(v1)dρ⊗N1(v) ≥ mN1
A .

Therefore

Ln
φ(1)(x) ≤ 1

mN1
A

∫∫∫
eSN2 (φ)(tux)eSN1 (φ)(ux)A(tN2 , u1)A(uN1 , x0)Lm

φ (1)(tux)

A(vN1 , y0)1B(u1,εA)(v1)dρ⊗N1(v)dρ⊗N2(t)dρ⊗N1(u).

From (7) we deduce that

eSN2 (φ)(tux) ≤ eDLip(φ)eSN2 (φ)(tvy).
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As d�(tux, tvy) = 2−N2d�(ux, vy) <
εA

2
we know from (8) that

Lm
φ (1)(tux) ≤ eDLip(φ)Lm

φ (1)(tvy).

As eSN1 (φ)(ux) ≤ e2N1‖φ‖∞eSN1 (φ)(vy) we deduce eventually that

Ln
φ(1)(x) ≤ e2DLip(φ)+2N1‖φ‖∞

mN1
A

∫∫∫
eSN2 (φ)(tvy)eSN1 (φ)(vy)Lm

φ (1)(tvy)A(tN2 , u1)

A(uN1 , x0)A(vN1 , y0)1B(u1,εA)(v1) dρ⊗N1(v) dρ⊗N2(t)dρ⊗N1(u)

≤ e2DLip(φ)+2N1‖φ‖∞

mN1
A

∫∫
eSN (φ)(tvy)Lm

φ (1)(tvy)

A(tN2 , v1)A(vN1 , y0) dρ⊗N2(t)dρ⊗N1(v)

where we use A(tN2 , v1) = A(tN2 , u1),

≤ e2DLip(φ)+2N1‖φ‖∞

mN1
A

Ln
φ(1)(y).

Exchanging x and y we get the reverse inequality. 	

We can now finish the proof of Proposition2.3. First we recall that according to Lemma2.2,

log rφ = lim
n→+∞

1

n
log ||Ln

φ(1)||∞. As � is compact there exists xn ∈ � such that

‖Ln
φ(1)||∞ = Ln

φ(1)(xn). For any x in � and n > N1 + N2 we get from (9) that

e−CLn
φ(1)(xn) ≤ Ln

φ(1)(x) ≤ eCLn
φ(1)(xn), (10)

therefore

−C

n
+ 1

n
logLn

φ(1)(xn) ≤ 1

n
logLn

φ(1)(x) ≤ C

n
+ 1

n
logLn

φ(1)(xn),

and taking the limit we get (6). Now integrating (10) we get

e−CLn
φ(1)(xn) ≤

∫
Ln

φ(1)(x) dνφ(x) ≤ eCLn
φ(1)(xn),

and since λnφ =
∫

Ln
φ(1)(x) dνφ(x) we get log λφ = log rφ . 	


We claim that we can apply the Ionescu-Tulcea & Marinescu Theorem1 (see [16], see
also [4], Theorem 4.2 or [11], Theorem 2.1) to get a spectral decomposition of the operator

L̃φ := 1

rφ
Lφ . Indeed the spaces C0(�), C+1(�) satisfy the first hypotheses of the ITM

Theorem, which is

(1) if fn ∈ C+1(�), f ∈ C0(�), lim
n→∞ ‖ fn − f ‖∞ = 0, and ‖ fn‖L ≤ C for all n, then

f ∈ C+1(�) and ‖ f ‖L ≤ C ,

and L̃φ satisfies the three following hypotheses:

(2) supn∈N{‖L̃n
φ( f )‖∞, f ∈ C+1(�), ‖ f ‖L ≤ 1} < +∞,

1 ITM Theorem in short.
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(3) there exists a ∈]0, 1[, b > 0 and n0 ≥ 1 such that for any f ∈ C+1(�),

‖L̃n0
φ ( f )‖L ≤ a‖ f ‖L + b‖ f ‖∞,

(4) if V is a bounded subset of (C+1(�), ‖ · ‖L), then L̃n0
φ (V ) has compact closure in

(C0(�), ‖ · ‖∞).

We sketch the proof of (3) and let the reader check the other conditions.
Proof of (3). A direct computation yields that for f Lipschitz continuous

∣
∣
∣Ln

φ( f )(x) − Ln
φ( f )(y)

∣
∣
∣ ≤ Lip( f )

d�(x, y)

2n
Ln

φ(1)(x)

+en‖φ‖∞‖ f ‖∞(Lip(φ) + 2Lip(A))d�(x, y).

From (9) we know that for any n > N1 + N2, for any x in �,

e−C ≤ Ln
φ(1)(x)

λnφ
≤ eC ,

hence as rφ = λφ we have

∣
∣
∣L̃n

φ( f )(x) − L̃n
φ( f )(y)

∣
∣
∣ ≤ Lip( f )

d�(x, y)

2n
eC

+en‖φ‖∞

rnφ
‖ f ‖∞(Lip(φ) + 2Lip(A))d�(x, y).

Therefore

‖L̃n
φ( f )‖L = Lip(L̃n

φ( f )) + ‖L̃n
φ( f )‖∞ ≤ AnLip( f ) + Bn‖ f ‖∞ ≤ An‖ f ‖L + Bn‖ f ‖∞

where An = eC

2n
and Bn = en‖φ‖∞

rnφ
(Lip(φ) + 2Lip(A) + 1). Picking any a in ]0, 1[ and

adjusting n such that 2−neC < a one gets the result. 	

In particular, and consideringLφ as an operator on C+1(�), the proof of the ITMTheorem

shows (see [4, Lem. 4.7], or [11, Lemma 2.4]) that rφ is an eigenvalue for Lφ associated to
the function in C+1(�) defined by

Gφ := lim
n→+∞

1

n

n−1∑

k=0

L̃k
φ(1).

Furthermore, we have the following decomposition

L̃φ :=
∑

eiθ j � j + �

where the � j ’s are (finitely many) projectors with finite rank, the θ j ’s are real numbers and
� has spectral radius strictly smaller than 1. Moreover,

�k� j = 0 if j = k and �� j = � j� = 0.
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2.1.2 Second Decomposition of the Spectrum: r� is the Unique Eigenvalue with
Maximal Modulus and Its Eigenspace is of Dimension One

For simplicity we set θ0 = 0. We shall see that mixing yields more precise results on the
spectral decomposition of Lφ .

Lemma 2.5 For any x ∈ �,
⋃

n≥0

σ−n({x}) is dense in �.

Proof Let x and y be in �, let ε > 0. Let n ∈ N be such that 2−nDiam(�) < ε, and let
zi = yi for every i in {0, . . . , n − 1}, so that d�(y, z) ≤ ε. According to assumption (A3)
there exist un, . . . , un+N−2 in E such that z := y0 · · · yn−1un · · · un+N−2x belongs to �.
Then z belongs to σ−(n+N−1)({x}) ∩ B(y, ε).

Remark 4 Actually, we have proved a better result: for any ε, there exists N ′ = N ′(ε) such
that for any y and x , B(y, ε) ∩ σ−N ′

({x}) = ∅. 	

Proposition 2.6 The spectral radius rφ is a simple single dominating eigenvalue. The rest of
the spectrum for Lφ is a compact set strictly inside the disk D(0, rφ).

Proof Because of the first result on the spectrum of Lφ , it remains to prove that rφ is simple
and that any other eigenvalue has modulus strictly lower than rφ . For that we use spectral
properties of positive operators exposed in [18, chap. 1& 2]. We claim that the set K of non-
negative Lipschitz functions is a solid and reproducing cone. Solid means it has non-empty
interior and reproducing means

C+1(�) = K − K .

It is easy to see that any positive Lipschitz function is in
◦
K .

• Step one We prove that for any f ≡ 0 ∈ K , there exists p such that Lp
φ( f ) belongs to

◦
K .

Let y be such that f (y) > 0. Let ε > 0 be such that d�(y, y′) ≤ ε �⇒ f (y′) > 0.
According to Remark4, there exists p ∈ N such that for any x ∈ �, B(y, ε)∩σ−p({x}) = ∅.
ThenLp

φ( f ) is positive. Indeed let x ∈ �, and z in B(y, ε)∩σ−p({x}). Let η := min(εA, ε
2 ).

We remind that εA has been fixed just above formula (4). The definition of εA yields that

every t in
p−1∏

i=0

B(zi , η) belongs to �p(x0), therefore

Lp
φ( f )(x) =

∫

�p(x0)
eSp(φ)(t x) f (t x)ρ⊗p(dt) ≥

∫

∏p−1
i=0 B(zi ,η)

eSp(φ)(t x) f (t x)ρ⊗p(dt).

But if t ∈
p−1∏

i=0

B(zi , η) then

d�(t x, y) ≤ d�(t x, z) + d�(z, y) ≤ η + ε

2
≤ ε

hence f (t x) > 0. As any non-empty ball in E has positive ρ-measure we deduce that
Lp

φ( f )(x) > 0.
• Step two End of the proof. We deduce from step one that Lφ is strongly positive (see

[18, Definitions 2.1.1]). Therefore it is u-positive for any u ∈ ◦
K . From Th. 2.10, 2.11 and 2.13
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we deduce that rφ is a simple eigenvalue and that every other eigenvalue λ of Lφ satisfies the
inequality |λ| < rφ . 	


To re-employ notation from above, there is only one �0, no other �i ’s. Furthermore,
using the fact that νφ is an eigenmeasure, one easily gets that for any f ∈ C+1(�),

1

rφ
Lφ( f ) =

(∫
f dνφ

)

· Gφ

︸ ︷︷ ︸
=�0( f )

+�( f ). (11)

Because �0� = ��0 = 0, we also immediately get

∀ n ≥ 1,
1

rnφ
Ln

φ( f ) =
(∫

f dνφ

)

· Gφ + �n( f ). (12)

2.2 Gibbs Measure and Ergodic Properties

2.2.1 The Gibbs Measure and Its Main Properties

Let μφ be the measure defined by dμφ := Gφdνφ . We emphasize that by construction μφ is
a probability measure. We shall use the following fact: for every n ∈ N,

Ln
φ( f .g ◦ σ n) = g.Ln

φ( f ). (13)

Lemma 2.7 Themeasureμφ is σ -invariant. It is called theDynamical GibbsMeasure (DGM
in short) associated to φ.

Proof For f continuous
∫

f ◦ σ dμφ =
∫

f ◦ σ.Gφ dνφ

= 1

rφ

∫
Lφ( f ◦ σ.Gφ) dνφ

= 1

rφ

∫
f .Lφ(Gφ) dνφ =

∫
f dμφ,

where we used L∗
φ(νφ) = rφ.νφ to get the second equality and (13) to get the third. 	


Proposition 2.8 The measure μφ is mixing thus ergodic.

Proof Let f and g be two functions in C+1(�). Then (12) yields
∫

f .g ◦ σ n dμφ =
∫

f .g ◦ σ n .Gφ dνφ

= 1

rnφ

∫
Ln

φ( f Gφ.g ◦ σ n) dνφ

= 1

rnφ

∫
Ln

φ( f .Gφ).g dνφ

=
∫ ((∫

f .Gφ dνφ

)

.Gφ + �n( f .Gφ)

)

.g dνφ.
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We have seen that the spectral radius of � is strictly lower than 1. Therefore �n( f .Gφ) goes
to 0 for the Lipschitz norm, thus for the continuous norm. This yields

∫
f .g ◦ σ n dμφ →n→+∞

∫
f dμφ

∫
g dμφ,

and the proposition is proved. 	


2.2.2 Further Properties

Lemma 2.9 There exists C(φ) such that for every x, e−C(φ) ≤ Gφ(x) ≤ eC(φ).

Proof By definition, Gφ ≥ 0. Let us prove by contradiction it is positive. Assume that
Gφ(x) = 0. Then, Lφ(Gφ) = rφGφ shows that Gφ(t x) = 0 for ρ-a.e. t in E such that
A(t, x0) > 0. As A and Gφ are continuous and ρ has full support, this yields that for every t
such that A(t, x0) > 0 Gφ(t x) = 0. In other words, for every y in σ−1({x}), Gφ(y) = 0. By
induction we deduce that for every n ∈ N, for every z in σ−n({x}), Gφ(z) = 0. Now, the set
∪n≥0σ

−n({x}) is dense, and Gφ is continuous everywhere and null on a dense set. It is thus
null everywhere which is impossible because

∫
Gφ dνφ = 1. This shows that Gφ is positive,

thus bounded from below by some constant of the form e−C(φ). Furthermore, � is compact
and then Gφ is bounded from above. 	


Lemma2.9 immediately yields

Corollary 2.10 Both measures μφ and νφ are equivalent.

2.2.3 Regularity of the Spectral Radius

Proposition 2.11 The map P : φ �→ log rφ is convex on C+1(�).

Proof Let us pick φ1, φ2 in C+1(�), and α ∈ [0, 1]. Set φ := αφ1 + (1 − α)φ2. For n ∈ N,
x ∈ �,

Ln
φ(1)(x) =

∫

En
eSn(φ)(t x)1�n(x0)(t)ρ

⊗n(dt)

=
∫

En
eαSn(φ1)(t x)1α

�n(x0)
(t)e(1−α)Sn(φ2)(t x)11−α

�n(x0)
(t)ρ⊗n(dt)

≤
(∫

En
eSn(φ1)(t x)1�n(x0)(t)ρ

⊗n(dt)

)α (∫

En
eSn(φ2)(t x)1�n(x0)(t)ρ

⊗n(dt)

)1−α

therefore

1

n
log
(
Ln

φ(1)(x)
)

≤ α
1

n
log
(
Ln

φ1
(1)(x)

)
+ (1 − α)

1

n
log
(
Ln

φ2
(1)(x)

)
.

We deduce from (6) that

log rαφ1+(1−α)φ2 ≤ α log rφ1 + (1 − α) log rφ2 ,

which proves the convexity of P . 	
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Let
−→
ψ = (ψ1, . . . , ψq) ∈ C+1(�)q . We recall the definition

I (
−→
ψ ) :=

{∫ −→
ψ dμ, μ ∈ Mσ (�)

}

.

By definition I (
−→
ψ ) is a convex and closed set.

Proposition 2.12 The map P : t �→ log r
t·−→ψ is convex and infinitely differentiable on R

q

with

∇P(t) =
∫ −→

ψ dμ
t·−→ψ . (14)

For any z = ∇P(t) in ∇P(Rq), H(z,
−→
ψ ) is finite with

H(∇P(t),
−→
ψ ) = P(t) − t · ∇P(t) = log r

t·−→ψ −
∫

t · −→
ψ dμ

t·−→ψ . (15)

If z does not belong to the closure ∇P(Rq) of ∇P(Rq), in particular when z /∈ I (
−→
ψ ), then

H(z,
−→
ψ ) = −∞.

Proof The convexity of P follows from Proposition2.11. The map Q with values in
L(C+1(�)) defined on Rq by

Q(t) = L
t·−→ψ

is infinitely differentiable with

∂Q

∂tk
(t)(g) = Q(t)(ψkg).

Adapting the proof of Thm. III.8 and Corollary III.11. of [14] we see that the map t �→ r
t·−→ψ

is infinitely differentiable with

∂r
t·−→ψ

∂tk
(t) = r

t·−→ψ

∫
ψk dμ

t·−→ψ ,

from which we deduce (14).
The conjugate function P∗ of P , defined by

P∗(z) = sup
t∈Rq

(t · z − P(t)),

is convex on R
q with values in ] − ∞,+∞]. We refer for instance to [25], section 26, for

the theory of conjugates of convex functions. In particular it is known that

∇P(Rq) ⊂ domP∗ ⊂ ∇P(Rq),

where domP∗ = {z ∈ R
q , P∗(z) < +∞}, with

P∗(∇P(t)) = t · ∇P(t) − P(t).

As H(·,−→ψ ) = −P∗ the proof is finished. 	
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3 Proof of Theorem2

3.1 Auxiliary Functions' and'ˇ

We recall the definitions of ϕβ and ϕβ defined on Rq :

ϕβ(t) = −β

2
‖t‖2 + log r

β t·−→ψ , ϕβ(z) := H(z,
−→
ψ ) + β

2
‖z‖2. (16)

3.1.1 The Function'ˇ

We remind the notation Htop := log r0.

Lemma 3.1 For every β > 0 and every t satisfying ||t|| > 4‖−→ψ ‖∞,

ϕβ(t) < Htop − β

4
||t||2.

Proof Let us set g(x) := log r
xβ t·−→ψ with x ∈ [0, 1]. It is differentiable and Prop.2.12 yields

that for every x ,

g′(x) = β t ·
∫ −→

ψ dμ
xβ t·−→ψ .

Then, we use the mean value theorem. There exists θ ∈]0, 1[ such that

log r
β t·−→ψ = g(1) = Htop + g′(θ) = Htop + β t ·

∫ −→
ψ dμ

θβ t·−→ψ .

This yields

ϕβ(t) = log r
β t·−→ψ − β

2
||t||2 ≤ Htop + β‖t‖‖−→ψ ‖∞ − β

2
||t||2.

Now

β‖t‖‖−→ψ ‖∞ − β

2
||t||2 −

(

−β

4
||t||2

)

= −β‖t‖
4

(
‖t‖ − 4‖−→ψ ‖∞

)

and we get the result. 	

We emphasize an immediate consequence of Lemma3.1: all the maxima for ϕβ are reached

at critical points and inside the hypercube [−K , K ]q if K is chosen greater than 4‖−→ψ ‖∞.

Indeed ϕβ(0) = Htop and if t is outside the hypercube [−K , K ]q with K ≥ 4‖−→ψ ‖∞ then

||t|| > 4‖−→ψ ‖∞, which implies ϕβ(t) < Htop .

3.1.2 The Function'ˇ

We also recall the definition

H(z,
−→
ψ ) := inf

t∈Rq

{
log r

t·−→ψ − t.z
}

= −P∗(z), where P(t) = log r
t·−→ψ . (17)

From the theory of conjugate functions we know that H(·, −→ψ ) is concave and upper semi-
continous, with values in [−∞,+∞[.
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We emphasize that Proposition2.12 yields that ϕβ = −∞ outside I(
−→
ψ ), and ϕβ is

finite on ∇P(Rq). Consequently all the maxima for ϕβ are reached inside the hypercube

[−‖−→ψ ‖∞, ‖−→ψ ‖∞]q , which contains I(
−→
ψ ).

Let us set

H̃(z) :=
{
supμ

{
Ĥ(μ),

∫ −→
ψ dμ = z

}
if z ∈ I (

−→
ψ ),

−∞ if z /∈ I (
−→
ψ ).

Then,

Lemma 3.2 The function H̃ is upper semi-continuous on Rq .

Proof Let z be fixed in Rq , let (zn) be a sequence in Rq converging to z. If z is not in I(
−→
ψ )

then neither is zn for n big enough hence

lim sup
n→+∞

H̃(zn) = −∞ = H̃(z).

Let us thus assume that z is in I(
−→
ψ ). If only a finite number of z′ns belong to I(

−→
ψ ) then

lim sup
n→+∞

H̃(zn) = −∞ ≤ H̃(z).

If an infinite number of z′ns belong to I(
−→
ψ ) then to compute the limsup we can assume

without loss of generality that every zn is in I(
−→
ψ ). Let μn be an invariant measure such that∫ −→

ψ dμn = zn and

Ĥ(μn) ≥ H̃(zn) − 1

n
. (18)

Let μ be any accumulation point for (μn) for the weak* topology. For simplicity we shall
write μ = limn→+∞ μn .

Then,
∫ −→

ψ dμ = lim
n→+∞

∫ −→
ψ dμn = lim

n→+∞ zn = z and as the metric entropy is upper

semi-continuous we get

H̃(z) ≥ Ĥ(μ) ≥ lim sup
n→+∞

Ĥ(μn) ≥ lim sup
n→+∞

(

H̃(zn) − 1

n

)

= lim sup
n→+∞

H̃(zn).

	

Proposition 3.3 For every z in R

q , H̃(z) = H(z,
−→
ψ ).

Proof For any t ∈ R
q we have

P(t) = sup
μ

(

Ĥ(μ) + t ·
∫ −→

ψ dμ

)

= sup
z∈Rq

sup
μ,
∫ −→

ψ dμ=z

(Ĥ(μ) + t · z)

= sup
z∈Rq

(H̃(z) + t · z) .

In other words (−H̃)∗ = P . It is easily seen that H̃ is concave. By Theorem 12.2 of [25]
the biconjugate (−H̃)∗∗ of −H̃ is equal to its closure. Then, Lemma3.2 shows that −H̃
is closed convex therefore −H̃ = P∗. As by definition P∗ = −H(·,−→ψ ), we deduce that

H̃ = H(·,−→ψ ). 	
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Furthermore, note that the definition of P(t) and Proposition3.3 yield

log r
t·−→ψ = P(t) = sup

z
{H(z,

−→
ψ ) + t · z}. (19)

Finally we have:

Corollary 3.4 For every z ∈ R
q , ϕβ(z) = H̃(z) + β

2 ||z||2.

3.1.3 Maxima for'ˇ and'ˇ

The main result of this Subsection is

Proposition 3.5 Inequalityϕβ(z) ≥ ϕβ(z)holds for any z inRq .Moreoverϕβ(z) ismaximum
if and only if ϕβ(z) is maximum. Furthermore, if ϕβ(z) is maximum then ϕβ(z) = ϕβ(z).

Proof • Step 1. ϕβ ≥ ϕβ . We use Equality (17) with t = β z. This yields

ϕβ(z)=H(z,
−→
ψ ) + β

2
‖z‖2 ≤ log r

t·−→ψ − t.z + β

2
||z||2= log r

β z·−→ψ − β

2
||z||2=ϕβ(z).

• Step 2. ϕβ(z) is maximal if and only if ϕβ(z) is maximal andmaximal values do coincide.
Let z be a maximum for ϕβ . Then, it is a critical point for ϕβ . As

∇ϕβ(z) = β∇P(β z) − β z

this yields z = ∇P(β z). Using (15) we get

H(z,
−→
ψ ) = H(∇P(β z),

−→
ψ ) = P(β z) − β z · ∇P(β z) = P(β z) − β‖z‖2,

therefore

P(β z) = H(z,
−→
ψ ) + β‖z‖2.

Using step 1 and this last equality we get

ϕβ(z) ≤ ϕβ(z) = P(β z) − β

2
‖z‖2 = H(z,

−→
ψ ) + β‖z‖2 − β

2
‖z‖2 = ϕβ(z),

which shows that ϕβ(z) = ϕβ(z).
On the other hand for any z′,

ϕβ(z′) ≤ ϕβ(z′) ≤ ϕβ(z) = ϕβ(z),

which shows that z is also a maximum for ϕβ .
Conversely, if z is a maximum for ϕβ , let z

′ be any maximum for ϕβ . We get

ϕβ(z) ≥ ϕβ(z′) = ϕβ(z′) ≥ ϕβ(z) ≥ ϕβ(z).

This shows that z is also a maximum for ϕβ , which finishes the proof. 	

Corollary 3.6 Maxima for ϕβ are reached on ∇P(Rq).

Proof Proposition3.5 states that maxima for ϕβ are maxima for ϕβ . We have seen after
Lemma3.1 that all the maxima for ϕβ are reached at critical points.

Now, t is a critical point for ϕβ(t) = −β
2 ‖t‖2 + log r

β t·−→ψ means

t = ∇P(β t) ∈ ∇P(Rq).
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3.2 Measures Maximizing Quadratic Pressure

3.2.1 Another Expression forP2(ˇ)

We remind that the metric entropy μ �→ Ĥ(μ) is upper semi-continuous (see Remark2).
Therefore the function

F : μ �→ Ĥ(μ) + β

2

∥
∥
∥
∥

∫ −→
ψ dμ

∥
∥
∥
∥

2

is upper semi-continuous hence attains it supremum on the compact set Mσ (�).

P2(β) = max
μ∈Mσ (�)

F(μ)

= max
z∈Rq

max

{

Ĥ(μ) + β

2
||z||2,

∫ −→
ψ dμ = z

}

= max
z∈Rq

(

H̃(z) + β

2
‖z‖2

)

= max
z∈∇P(Rq )

ϕβ(z)

= max
z∈Rq

ϕβ(z)

where the last equality comes from Proposition 3.5 and the fourth equality comes from
Corollaries 3.4 and 3.6.

3.2.2 Good DGMMaximize Quadratic Pressure

We note

M := {z ∈ R
q ;ϕβ(z) is maximal}.

Let z ∈ M . We saw in the proof of Proposition 3.5 that z is then a critical point for ϕβ hence

z = ∇P(β z) =
∫ −→

ψ dμ
β z·−→ψ . From (2) we know that

Ĥ(μ
β z·−→ψ ) = P(β z) −

∫
β z · −→

ψ dμ
β z·−→ψ

hence from (15) we deduce that H(z,
−→
ψ ) = Ĥ(μ

β z·−→ψ ), thus

ϕβ(z) = F(μ
β z·−→ψ ).

Let μ be any measure, z′ := ∫ −→
ψ dμ. Then

F(μ) = Ĥ(μ) + β

2
||z′||2 ≤ H̃(z′) + β

2
‖z′‖2 = ϕβ(z′) ≤ ϕβ(z).

Therefore, μ
β z·−→ψ maximizes F .
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3.2.3 Maxima for Quadratic Pressure are Realized only by Good DGM

Conversely let μ maximizing the function F . Set z :=
∫ −→

ψ dμ. Then z is in M hence

satisfies

z =
∫ −→

ψ dμ
β z·−→ψ =

∫ −→
ψ dμ,

and Ĥ(μ) = H̃(z). Now using (2) we can write

P(β z) = Ĥ(μ
β z·−→ψ ) + β z ·

∫ −→
ψ dμ

β z·−→ψ = H̃(z) + β z · z = Ĥ(μ) + β z ·
∫ −→

ψ dμ,

which means that μ is equal to μ
β z·−→ψ by uniqueness of the (linear) equilibrium state.

4 Proof of Theorem3

4.1 A Useful Computation

Let f : � → R be continuous. We want to evaluate the limit of
∫

f (ω)dμn,β(ω) as

n → +∞. In the first step we do the computation without the normalizing term Zn,β and
estimate it in the second step. We recall the identity

e‖ξ‖2 = 1

(2π)q/2

∫

Rq
exp

(

−1

2
‖t‖2 + √

2t.ξ
)

d t. (20)

Then we have

Zn,β

∫

�

f (ω)dμn,β(ω) =
∫

�

e
β
2n ||Sn(−→ψ )(ω)||2 f (ω) dP(ω)

= 1

(2π)q/2

∫

�

∫

Rq
e− 1

2 ‖t‖2e
√

β
n t.Sn(

−→
ψ )(ω) f (ω) d t dP(ω)

= 1

(2π)q/2

∫

Rq
e− 1

2 ‖t‖2
∫

�

∫

�n(ω0)

e

√
β
n t.Sn(

−→
ψ )(αω) f (αω) dρ⊗n(α) dP(ω) d t

= 1

(2π)q/2

∫

Rq
e− 1

2 ‖t‖2
∫

�

Ln√
β
n t·

−→
ψ

( f )(ω) dP(ω) d t

=
(

βn

2π

)q/2 ∫

Rq
e− nβ

2 ‖z‖2
∫

�

Ln
β z·−→ψ ( f )(ω) dP(ω) d z

where we made the change of variable β z =
√

β
n t to get the last equality.

We claim and prove just below that for fixed β, the part of the integral in z outside the
hypercube [−K , K ]q is negligible with respect to the other part.

∫

Rq\[−K ,K ]q
e− nβ

2 ‖z‖2
∫

�

Ln
β z·−→ψ ( f )(ω) dP(ω) d z

≤
∫

Rq\[−K ,K ]q
e− nβ

2 ‖z‖2‖Ln
β z·−→ψ ‖∞‖ f ‖∞ d z. (21)
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On the other hand, we remind (see Inequality (5)) ‖Ln
β z·−→ψ ‖∞ ≤ enβ‖z‖‖−→ψ ‖∞ , which yields

e− nβ
2 ‖z‖2‖Ln

β z·−→ψ ‖∞ ≤ enβ(‖z‖‖−→ψ ‖∞− 1
2 ‖z‖2) ≤ e−nβ

‖z‖2
4

for ‖z‖ > 4‖−→ψ ‖∞.
Now, reporting this inequality in the right hand side term of (21) and assuming K >

4||−→ψ ||∞, one gets

∫

Rq\[−K ,K ]q
e−nβ

‖z‖2
4 d z ≤

q∑

i=1

∫

|zi |>K
e−nβ

z2i
4
∏

j =i

e−nβ
z2j
4 d z

=
(
4π

nβ

) q−1
2

q∑

i=1

∫

|zi |>K
e−nβ

z2i
4 dzi ,

and
∫

|zi |>K
e−nβ

z2i
4 dzi ≤ 4

nβK
e−nβ K2

4 .

Returning to (21) we get

∫

Rq\[−K ,K ]q
e− nβ

2 ‖z‖2
∫

�

Ln
β z·−→ψ ( f )(ω) dP(ω) d z = O

⎛

⎝e−nβ K2
4

n
q+1
2

⎞

⎠ . (22)

if K is greater than 4‖−→ψ ‖∞.
Now, we recall that

ϕβ(z) = −β

2
‖z‖2 + log r

β z.
−→
ψ

and that if f belongs to C+1(�) then

Ln
β z·−→ψ ( f )(ω) = e

n log r
β z·−→ψ

[(∫

�

f dν
β z·−→ψ

)

G
β z·−→ψ (ω) + �n

β z·−→ψ ( f )(ω)

]

,

where the operator norm of �
β z·−→ψ acting on C+1(�) is strictly less than one. We write

�
β z·−→ψ = e−ε(β,z)T (β, z) where ε(β, z) is the spectral gap of the operator L

β z·−→ψ and

||T (β, z)||L = 1. Then

∫

[−K ,K ]q
e−

nβ
2 ‖z‖2

∫

�
Ln

β z·−→ψ ( f )(ω) dP(ω) d z

=
∫

[−K ,K ]q
enϕβ(z)

∫

�

[(∫

�
f dν

β z·−→ψ

)

G
β z·−→ψ (ω)+e−nε(β,z)T n(β, z)( f )(ω)

]

dP(ω) d z

(23)

The spectral gap ε(β, z) is lower semi-continuous in z hence, on the compact set
[−K , K ]q , it attains its infimum m(β), which is strictly positive. We set

α(n, z, f ) =
∫

�

e−nε(β,z)T n(β, z)( f )(ω) dP(ω),
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and notice that for any z in [−K , K ]q ,
|α(n, z, f )| ≤ e−nm(β)‖ f ‖L .

Eventually we get

Zn,β

∫

�

f (ω) dμn,β (ω) =
(

βn

2π

)q/2 ∫

[−K ,K ]q
enϕβ(z)

[(∫

�

f dν
β z·−→ψ

)(∫

�

G
β z·−→ψ dP

)

+ α(n, z, f )

]

d z + O

⎛

⎝ e−nβ K2
4

n
q+1
2

⎞

⎠

(24)

The normalization term Zn,β is obtained taking f ≡ 1. This yields

∫

�

f (ω) dμn,β (ω)

=

∫

[−K ,K ]q
enϕβ(z)

[(∫

�

f dν
β z·−→ψ

)(∫

�

G
β z·−→ψ dP

)

+ α(n, z, f )

]

d z + O

⎛

⎝ e−nβ K2
4

n
q+1
2

⎞

⎠

∫

[−K ,K ]q
enϕβ (z)

[∫

�

G
β z·−→ψ dP + α(n, z,1)

]

d z + O

⎛

⎝ e−nβ K2
4

n
q+1
2

⎞

⎠

.

(25)

where α(n, z, f ) and α(n, z,1) converge uniformly to 0 with respect to z when n tends
to infinity.

4.2 The Case q = 1

In this case the function ϕβ is analytic hence admits only finitely many maxima, and we can
argue as in [20].

4.3 The Higher-Dimensional Case

We assume that all the maxima for ϕβ are non-degenerate.

Lemma 4.1 The function ϕβ admits only finitely many maxima.

Proof The proof is done by contradiction. Let us consider a sequence (zn) of maxima for ϕβ .
We have seen that all the maxima are critical points and are in some compact set [−K , K ]q
(see Lemma3.1 and discussion after).

Therefore, we may consider some accumulation point z for the zn’s. For simplicity we set
z = limn→+∞ zn and we assume that zn = zn+1 holds for every n. Note that by continuity,
z is also a critical point for ϕβ and ϕβ is maximal at z.

We remind that ϕβ is C∞. If we consider the restriction ϕβn of ϕβ to each segment
[zn, zn+1], then ϕβn is C∞ and ϕβ

′
n(zn) = ϕβ

′
n(zn+1) = 0. Hence, Rolle’s theorem shows

that there exists z′n ∈ [zn, zn+1] such that

ϕβ
′′
n(z

′
n) = 0. (26)
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Set un := zn − zn+1 and consider any accumulation point u for
zn − zn+1

||zn − zn+1|| . Equality
(26) can be rewritten under the form

d2ϕβ(z′n)(un,un) = 0,

which yields as n → +∞ d2ϕβ(z)(u,u) = 0. This means that z is a degenerate maximal
point for ϕβ , which is in contradiction with our assumption. 	


Let z1, . . . , zk be the points where ϕβ attains its maximum. We recall that the Laplace
method (see [27, Ch.IX Th.3]) states

∫

0
enϕβ(z)g(z) d z ∼n→∞

(2π)q/2g(z1)enϕβ(z1)

nq/2
√

| det d2ϕβ(z1)|
,

provided that ϕβ admits no other critical point than z1 in an open set O ofRq , that g(z1) = 0
and that the Hessian matrix d2ϕβ(z1) is negative definite (which holds by our assumption).

Remark 5 We emphasize the assumption g(z1) = 0. 	

We choose K such that ϕβ(z1) + β K 2

4 > 0, and letting n → +∞ in (25), we get that for
every f in C+1(�),

lim
n→+∞

∫

�

f (ω) dμn,β(ω) =

k∑

j=1

∫
G

β z j ·−→ψ dP
√
det d2ϕβ(z j )

∫
f dν

β z j ·−→ψ

k∑

j=1

∫
G

β z j ·−→ψ dP
√
det d2ϕβ(z j )

,

which finishes the proof of Theorem3.

5 Application to theMean-Field XY Model

5.1 The Cosine Potential

The mean-field XY model is a system of n globally coupled planar spins (or alternatively of
n globally interacting particles constrained on a ring), with Hamiltonian

Hn = − 1

2n

n∑

i, j=1

cos(pi − p j ),

where pi ∈ [0, 2π[. We can interpret it as a generalized Curie–Weiss model by setting

E = T = {z ∈ R
2, ‖z‖ = 1}, � = T

N, and
−→
ψ (ω) = ω0. Indeed every ωk in the word

ω = ω0ω1 · · · of � is uniquely expressed as ωk = (cos θk, sin θk) with θk in [−π, π[, and
then

‖Sn(−→ψ )(ω)‖2 = ‖
n−1∑

k=0

ωk‖2 =
n−1∑

i, j=0

〈ωi , ω j 〉 =
n−1∑

i, j=0

cos(ωi − ω j ).
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We endow T with the usual distance on R2, and the Haar measure ρ given by
∫

T

h(z) ρ(dz) =
∫ π

−π

h(uθ )
dθ

2π
, where uθ = (cos θ, sin θ).

As
−→
ψ only depends on the first coordinate, we see that for any t in R2 and any f in C0(�),

L
t·−→ψ ( f )(ω) =

∫ π

−π

et·uθ f (uθω)
dθ

2π
,

so that the spectral radius of L
β t·−→ψ is

r
β t·−→ψ = λ

β t·−→ψ =
∫ π

−π

eβ t·uθ
dθ

2π
,

with eigenfunction G
β t·−→ψ = 1, and ν

β t·−→ψ = μ
β t·−→ψ . We notice that r0 = 1. If t = 0, we

denote by |t| its Euclidean norm and by θt the unique element of [−π, π[ such that t = |t|uθt .
Then

r
β t·−→ψ =

∫ π

−π

eβ|t| cos(θt−θ) dθ

2π

=
∫ θt+π

θt−π

eβ|t| cos y dy

2π

=
∫ π

−π

eβ|t| cos y dy

2π

because the integral does not depend on the interval of length 2π where we compute it.
Eventually we have

r
β t·−→ψ =

∫ π

0
eβ|t| cos y dy

π
= I0(β|t|), (27)

where I0 is the modified Bessel function of order zero, and we get

ϕβ(t) = −β

2
|t|2 + log r

β t·−→ψ = −β

2
|t|2 + log I0(β|t|).

This shows that ϕβ(t) is constant on all the circles centered in 0.

Remark 6 Unless ϕβ is maximal only at 0, which does not hold for every β as we will see
below,we have here an examplewhere all themaximaof the auxiliary function are degenerate.

	

We set

φβ(x) := −β

2
x2 + log I0(βx) for x ≥ 0.

The equality (25) becomes
∫

�

f (ω) dμn,β(ω)

=

∫

B(0,K )

enϕβ(z)
[∫

�

f dμ
β z·−→ψ + α(n, z, f )

]

d z + O

⎛

⎝e−nβ K2
4

n
3
2

⎞

⎠

∫

B(0,K )

enϕβ(z) d z + O

⎛

⎝e−nβ K2
4

n
3
2

⎞

⎠

. (28)
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where we replaced for convenience the square [−K , K ]2 by the disk B(0, K ). We are thus
led to study the asymptotic behaviour of the integral

I (n, f ) =
∫

B(0,K )

enϕβ(z)
[∫

�

f dμ
β z·−→ψ

]

d z.

In polar coordinates we write z = ruθ and we get

I (n, f ) =
∫ K

0

∫ π

−π

enφβ(r)
[∫

�

f dμ
βruθ ·−→ψ

]

r dr dθ.

For x ∈ R+, we denote by ηx the mean value of DGM’s defined by
∫

�

h dηx = 1

2π

∫ π

−π

[∫

�

h dμ
xuθ ·−→ψ

]

dθ

for any bounded measurable h, so that

I (n, f ) = 2π
∫ K

0
enφβ(r)

(∫

�

f dηβr

)

r dr ,

which is then a one-dimensional Laplace integral. We study the maximum of the function
φβ on R+. First we notice that 0 ≤ I0(βx) ≤ βx and I0(0) = 1, hence

φβ(x) ≤ βx(1 − x

2
) and φβ(0) = 0,

from which we deduce that max
R+

φβ = max[0,2[ φβ . Next we look for the critical points of φβ on

[0, 2[. We compute the first and second derivatives

φ′
β(x) = β

[(
I ′
0

I0

)

(βx) − x

]

= β

[∫ π

0 eβx cos θ cos θ dθ
∫ π

0 eβx cos θ dθ
− x

]

, (29)

φ′′
β(x) = β

[

β

(
I ′′
0 I0 − I ′2

0

I 20

)

(βx) − 1

]

= β

⎡

⎣
∫ π

0 eβx cos θ cos2 θ dθ
∫ π

0 eβx cos θ dθ
−
(∫ π

0 eβx cos θ cos θ dθ
∫ π

0 eβx cos θ dθ

)2

− 1

⎤

⎦ . (30)

We notice that φ′
β(x) ≤ β(1 − x), from which we deduce that max

R+
φβ = max[0,1] φβ . As

I ′
0(0) = 0 we know that φ′

β(0) = 0. We compute

φ′′
β(0) = β

[
β I ′′

0 (0) − 1
] = β

[
β

π

∫ π

0
cos2 θ dθ − 1

]

= β

[
β

2
− 1

]

.

We shall thus consider three cases: β > 2, β = 2, and β < 2. First we take a closer look at the
critical points of φβ . We recall that the Bessel function I0 satisfies the differential equation
(we refer for instance to [3] for information about Bessel functions)

I ′′
0 (x) + 1

x
I ′
0(x) − I0(x) = 0 (31)

so that
(
I ′′
0

I0

)

(βx) = 1 − 1

βx

(
I ′
0

I0

)

(βx).
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Replacing in (30) we get that for every x ,

φ′′
β(x) = β2

[(
I ′′
0

I0

)

(βx) −
(
I ′
0

I0

)2
(βx) − 1

β

]

= −β2

[(
I ′
0

I0

)2

(βx) + 1

βx

(
I ′
0

I0

)

(βx) − 1 + 1

β

]

. (32)

Now from (29) we know that r is a critical point of φβ if and only if

(
I ′
0

I0

)

(βr) = r .

If r is such a point then replacing in (32) we get

φ′′
β(r) = −β2

[

r2 + 2

β
− 1

]

. (33)

Case β > 2: In this case φ′′
β(0) > 0 hence 0 is not a maximum point. We claim that φ has

a unique maximum and that it belongs to ]
√

β−2
β

, 1].
We denote by r1 < · · · < rm the m points of ]0, 1] where φβ attains its maximum M on

R+. Then every rk satisfies φ′
β(rk) = 0 and φ′′

β(rk) ≤ 0. Remember that every critical point
r satisfies (33) which we rewrite

φ′′
β(r) = β2

[
β − 2

β
− r2

]

= β2

(√
β − 2

β
− r

)(√
β − 2

β
+ r

)

. (34)

As φ′′
β(rk) ≤ 0 we deduce that r1 ≥

√
β−2
β

. We observe that any critical point r strictly

bigger than r1 satisfies φ′′
β(r) < 0, which means r is a local maximum for φβ . Now, ifm ≥ 2

then between r1 and r2 there must be a local minimum which is also a critical point. This
yields a contradiction. Therefore, m = 1 and r1 is the unique critical point for φ.

Let us show that r1 >

√
β−2
β

. Indeed if r1 =
√

β−2
β

then φ′
β(r1) = φ′′

β(r1) = 0. From
(29) we know that

∀ x,

(
I ′
0

I0

)

(βx) = x + φ′
β(x)

β
.

Replacing in (32) we get that

∀ x, φ′′
β(x) = −(φ′

β(x))2 −
(

2βx + 1

x

)

φ′
β(x) − β2x2 + β2 − 2β (35)

which is a differential equation satisfied by φβ . When we differentiate this equality we get
that

∀ x, φ′′′
β (x) = −2φ′

β(x)φ′′
β(x) −

(

2β − 1

x2

)

φ′
β(x) −

(

2βx + 1

x

)

φ′′
β(x) − 2β2x . (36)

We deduce that φ′′′
β (r1) = −2β2r1 is strictly negative, therefore r1 can not be a maximum,

which yields a contradiction. Hence r1 >

√
β−2
β

holds and this finishes to prove the claim.
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Nowwe are ready to conclude the case β > 2.We apply the Laplacemethod to the integral
I (n, f ) and we find that

I (n, f ) ∼ 2π

√
2πenφβ(r)r (

∫
�

f dηβr )

n1/2
√

|φ′′
β(r)|

,

hence
∫

�

f (ω) dμn,β(ω) ∼ I (n, f )

I (n,1)
∼
∫

�

f dηβr .

Case β < 2: In this case φ′
β(0) = 0 and φ′′

β(0) < 0 hence 0 is a local maximum of φβ .
The equation (33) tells us that every critical point r satisfies

φ′′
β(r) = −β2

[

r2 + 2 − β

β

]

,

which is strictly negative, therefore every critical point is a local maximum. The same argu-
ment than above shows that φβ attains its maximum at 0 and only at 0.

As the maximum is reached at 0, we cannot directly apply the Laplace method as it is
emphasized in Remark5. We then use the following lemma. It is a special version of the
Laplace method and can be found in [8].

Lemma 5.1 Let α and γ be two positive real numbers. Then, for any sequence (bn) such that
nbα

n → +∞
∫ bn

0
xγ e−nxα

dx ∼n→+∞
1

α n
γ+1
α

�

(
γ + 1

α

)

.

Proof Just set u = nxα . 	


We apply Lemma 5.1 for
∫ bn

0
enφβ(r)

(∫

�

f dηβr

)

r dr , with bn = 1/ 4
√
n. Because

bn → 0, we can get φβ(r) = −φ′′
β(0)r2 + O(r3) on [0, bn]. Note that for r ∈ [0, bn], by

continuity for the eigen-measures ν
β t·−→ψ for operators L

t·−→ψ we also have.

r
∫

f dηβr ∼n→+∞ r
∫

f dη0

A computation shows that
∫ b

bn
enφβ(r)

(∫

�

f dηβr

)

r dr is of order less than e−nb2n/2 if b is

chosen small but positive such that φβ(r) ≤ −φ′′
β(0) r

2

2 on [0, b]. Then, nb2n → +∞ yields
that this quantity is exponentially small (in n). Because 0 is the unique maximum for φβ ,∫ b

bn
enφβ(r)

(∫

�

f dηβr

)

r dr is of order less than e−nε(b) with ε(b) > 0.

Hence we get

I (n, f ) ∼ 2π

∫
�

f dη0

n|φ′′
β(0)| �(1) = 2π

∫
�

f dμ0

n|φ′′
β(0)| ,

hence
∫

�

f (ω) dμn,β(ω) ∼ I (n, f )

I (n,1)
∼
∫

�

f dμ0.
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Case β = 2: In this case φ′
β(0) = φ′′

β(0) = 0 and every critical point r = 0 is a local
maximum since it satisfies

φ′′
β(r) = −β2r2,

which is strictly negative. We deduce, as above, that there exists only one maximum, which
may be 0 or not. If it is 0, then we conclude as before but we have to pick an higher order
for the derivative (and use Lemma5.1 with α ≥ 4). If it is not 0, then we conclude the
computation as above.

We conclude that for every β > 0, the sequence of measures (μn,β)n∈N weakly converges
to ηβr where r is the unique point at which φβ reaches its maximum on R+.
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