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Abstract

Starting from the microscopic reduced Hartree—Fock equation, we derive the macroscopic
linearized Poisson—Boltzmann equation for the electrostatic potential associated with the
electron density.
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1 Introduction
1.1 The Reduced Hartree-Fock Equation

The success of the Hartree—Fock and density functional theories in revealing the electronic
structure of matter warrants their use as a starting point in the derivation of emergent macro-
scopic properties of quantum matter.

Here, one of the central problems is the derivation of macroscopic Maxwell’s equations in
dielectrics. The first attack on such a derivation was made in the pioneering works of Cances,
Lewin and Stoltz and E and Lu and their collaborators [5-9,15-17,17]. These works deal
with the reduced Hartree—Fock equation (REHF)! and the Kohn—Sham equation (KSE) of
the density functional theory (DFT) at zero temperature. The first treatment of the positive
temperature REHF was given by Levitt [23] (see also [13]).

In this paper, we consider the REHF at positive temperature, which is also a simplified
DFT equation, and derive from it the linearized effective Poisson-Boltzmann equation of
electrostatics, widely used in molecular and structural biology (see e.g. [19]).

For a positive temperature 7 and with the electron charge set to ¢ = —1, REHF can
be written in terms of the one-particle negative charge (or probability) density p(x) of the

! The REHF obtained from the Hartree—Fock equation (HFE) by omitting the exchange term, see below.
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electron (or generally any Fermi) gas, as

p =den|fr(h, — wl, (1.1)
where den : A — py4 is the map from operators, A, to functions p4(x) := A(x, x) (here
A(x, y) stands for the integral kernel of an operator A), fr (1) is the Fermi—Dirac distribution,

Jr) = frpA/T),  frp() = (1.2)

e +1
(due to the Fermi—Dirac statistic), u is the chemical potential and 4, is a self-adjoint one-
particle Hamiltonian depending on the density p (self-consistency). Since &, is self-adjoint
the r.h.s. of (1.1) is well defined. Assuming the electrons are subject to an external potential
due to a positive charge distribution « (say, due to positive ions), s, is given by

hy =—=A—vx*(kK—p), (1.3)

where v is an inter-particle pair potential. It is taken to be the electrostatic potential, as
specified below.
Let leoc = LIZOC(R”’) denote the space of locally square integrable functions. We fix a

lattice £ C R? and let Lger be the space of leoc, periodic w.r.t. £ functions. Finally, let
2

(le)er)l be the orthogonal complement of the constant functions in L.

ger)l and v is the electrostatic potential, v(x) = ﬁlﬁcl in 3D, or,

In what follows, we

assume p —k € L2+ (L
generally,

v f=(=NT",

for f € L* + (L}%er)J-, so that A~! is well-defined.> For p’s and «’s specified above, the
operator /1, is self-adjoint.

The positive temperature, reduced Hartree—Fock equation (1.1) will be abbreviated, with
the view to readability, as the TREHF.

For T = 0, function (1.2) becomes the characteristic function of the interval (—oo, 0) and
Eq. (1.1) becomes just the REHF.

1.2 Electrostatic Potential
Due to the choice v * f = (—A)~! f, the electrostatic potential ¢ = v * (k — p) satisfies the
Poisson equation

—Ap = (k — p). (1.4)

Plugging p from (1.1) into this equation and taking v * (k — p) = ¢ in (1.3), we find the
equation for ¢

—A¢ = (k — den[ fr(h? — 1)), (1.5)

2 The decomposition L? + L%er is unique: if f € L% + Lger, then the periodic part, fper, of f is given by
the Fourier coefficients

; : 1 —dp ik-
k) = lim — @)~/ kX r(x)dx, k e LF,
Sper (k) ngnoo |An|( ) /;\ne f)dx, ke

where Ap := Uyep, (R + A), with £y, := LN [-n, n]d and Q an arbitrary fundamental cell of £, and £*
is the reciprocal lattice. Hence L?+ L}%er is a Hilbert space with the inner product which is sum of the inner
products in L and Lger. The operator A on L2 + L%er is self-adjoint on the natural domain (i.e. H> + ngr)
and is invertible on the subspace L2 + (Lger)J‘.
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where
W =—A—¢. (1.6)

We can recover p from ¢ via Eq. (1.4) or the equation
p = den[ fr (h? — p)]. (1.7)
Ifi, pe L2+ L2

per>

Let H* and H?,_ be the Sobolev spaces corresponding to L2 and L2

per per*
¢ e H> + szer and ¢ and p — k satisfy (1.4), then

/pper:/’(per, (1.8)
Q Q

where 2 is an arbitrary fundamental cell of £ and the subindex ‘per’ denotes the periodic
part of the corresponding function (€ L? + L2 ). Indeed, let A, := U £, (2 + L), where

per

Ly = LN [=n,n). Integrating (1.4) over the domain A, and using the Stokes’ theorem,

we find
/ Vo= [ (k—p).
A, An

Since lim,_ oo |Alﬁ faAn V¢ = 0 and lim,,_, o ITln\ '[An (k — p) = [o(py — K)per, the last
relation gives (1.8).

Equation (1.8) shows that p —k € L?+ (Lger)l, i.e. it satisfies the conditions mentioned
in the paragraph after (1.3).

Equation (1.8) determines the chemical potential ;« and expresses the conservation of the
charge per fundamental cell of £. It is considered as the solvability condition and should be
added to (1.1) in the periodic case.

In what follows we associate with a solution p of (1.1) the electrostatic potential

$p= (=) —p), (1.9)
and with a solution ¢ of Eq. (1.5), the charge density p according to (1.4), or (1.7).

1.3 Relation to the TEHF and KSE

The key positive temperature HFE is given by

vy = fr(hy —w), (1.10)
where fr(X) is as above and, for an external charge distribution «,
hy :=—=A—v* (K —py)+ex(y). (1.11)

Here, recall, p) (x) := y(x,x) and v x f = (—A)~'f, and ex(y) (the exchange term) is
the operator with the integral kernel ex (y)(x, y) := —v(x — y)y (x, y), where y (x, y) is the
integral kernel of y. Observing that £, |e)C (1)=0 = hp,, where h, is given in (1.3), one sees
that (1.10) with ex(y) = 0 implies the equation

v = fr(hp, — ). (1.12)

Equation (1.12) is equivalent to Eq. (1.1). Indeed, applying the map den to Eq. (1.12) gives
(1.1). In the opposite direction, if p solves (1.1), then the density operator

v = frhy — u, (1.13)
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acting on L*(R?), solves (1.12). Thus, (1.12) is the TREHF in terms of the density operator

y.

Byreplacing ex(y) in(1.11) by alocal exchange-correlation term xc(p) and then applying,
as above, the map den to the resulting equation, one obtains the natural extension of the
original Kohn—Sham equation to positive temperatures:

p = denl fr(hp® — w1, (1.14)
WS = —A —vx (kK — p) +xc(p) . (1.15)

1.4 The Origin of the TEHF/TREHF Equations

As the TEHF and TREHF arise in the same way, in order to avoid repetitions, we consider
here only the later.
Equation (1.12) originates from the static version

[hp,, ¥1=0 (1.16)
of the time dependent RHF equation (see e.g. [12] for a review)
oy =ilhp,,v]. (1.17)

Indeed, ignoring symmetries and accidental divergence, y solves (1.16) if and only if y solves
vy = f((hp, — wn)/T) for some reasonable function f. (The parameters 7" and p are of no
significance at this stage; they are introduced for future reference.)

The selection of f is done on physics grounds, either bringing the system in question in
contact with a thermal reservoir at temperature 7 and the chemical potential 1, or passing to
the thermodynamic limit. This leads to Eq. (1.12).

As we discuss below, Eq. (1.12) is the Euler-Lagrange equation for the natural free energy.

Remark If the particles in question were bosons, then frp would be replaced by the
Bose-Einstein distribution

fBEQV) = (1.18)

er—1"
1.5 Results

We are interested in the dielectric response in a medium subjected to a local deformation of
the crystalline structure. To formulate our results we introduce some notation and definition.
In what follows, we assume that d = 3 and let £ be a (crystalline) Bravais lattice in R3.

We also define the Hilbert space of £-periodic functions
L2 =12 (R ={f €L (R : fis L-periodic }, (1.19)

per per loc
with the inner product (f, g) = fQ fg and the norm | f ||i2 = fQ | £1? for some arbitrary
per

fundamental domain Q of L. We denote by Hp,, = H;er(RS) and || - ||y, the associated
Sobolev spaces and their norms, while the standard Sobolev spaces and their norms are

denoted by H* = H*(R?) and || - || -

Crystals We consider a background charge distribution, x(y) = kper(y), periodic with
respect to the lattice £ (crystal). Here y stands for the microscopic coordinate.
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958 I. Chenn, I. M. Sigal

We think of £ and kper as a crystal lattice and the ionic charge distribution of £. An
example of per is

Kper () = ) _Kaly —1), (1.20)

lel

where k, denotes an ionic (“atomic”) charge distribution.
Dielectrics Next, we describe a model of the (crystalline) dielectric.

Definition 1.1 We say that an L-periodic background charge density «pe; € le)er is dielectric,
if TREHF (1.1), with ¥ = kper, has an L-periodic solution (oper, Mper), With the following
properties:

(a) the periodic one-particle Schrodinger operator

per == h?% = —A — $per, with (1.21)
bper := 47 (—A) " (kper — Pper), (1.22)

acting on L> = L?(R?) is self-adjoint and has a gap in its spectrum;
(b) teper is in this gap;
(©) Pper € ngr and || ¢per |l H2,, t |iper] < Aper, independently of T'.

An existence result for the dielectrics is discussed in Remarks 6 and 7 after the next
theorem. In particular, Proposition 1.3 shows that the set of dielectric charge densities iper
is robust. Moreover, (1.5) can be reformulated so that only ¢per and ftper, but not «per, enter
it explicitly, see (1.44). So these are the only inputs of our analysis

Dielectric response We consider a macroscopically deformed microscopic crystal charge
distribution,

K5(Y) = Kper (¥) + 8%’ (8y), (1.23)

where § is a small parameter which stands for the ratio of microscopic and macroscopic
scale and «’(x) € L? is a small local perturbation living on the macroscopic scale. By y and
x = 8y, we denote the microscopic and macroscopic coordinates, respectively. Thus, the
microscopic scale is y ~ 1 and x ~ § and the macroscopic one, y ~ 1/6 and x ~ 1.

We formulate the conditions for our main result. We introduce the homogeneous Sobolev
spaces

H = H'R? = { f measurable on R fllgs < oo} (1.24)

for s > 0 with the associated norm
115 = f (=AY 2. (1.25)

[Al] (Dielectricity) iper is dielectric.

Let hper and hper o denote operators given by expression (1.21) acting on L2(R3) and
L%er(R3), respectively. These operators are self-adjoint and the latter has a purely discrete
spectrum. By Assumptions [A1], ptper is in @ gap of hper. For notational convenience, we
rescale our problem so that

ni= diSt(N—pers U(hper)) = 1. (1.26)
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It follows the Bloch-Floquet decomposition results in Sect. 2.4 below that the gaps of Zper
are contained in the resolvent set of Aper,0, so that

no = dist(uper, 0 (hper,0)) > 1. (1.27)
[A2] (Perturbation ")
«eH' nH.
In what follows, the inequalities A < B and A 2 B mean that there are constants C and

¢ independent of T and §, s.t. A < CB and A > ¢B and similarly for A < B and A > B.
Our main result is

Theorem 1.2 Let Assumptions [Al]-[A2] hold and let (¢per, tper) be the electrostatic and
chemical potentials associated with kper (entering [Al]) as per Definition 1.1.
There is o = a(Aper) > O sufficiently small, s.t., if

[A3] (Regime) The parameters T > 0 and § > 0 satisfy
cr =T e <o, ;%% <a, (1.28)
then the following statements are true

1. Electrostatic TREHF (1.5), with k = k5 given in (1.23) and u = [iper, has a unique
solution ¢s € H2 + H!:

per

2. The potential ¢s(y) is of the form

¢s(¥) = ¢per(¥) + 8% (8y) + Prem(8y), (1.29)

where @rem(x) € H' and obeys the estimates (with HO = L2)

1 1. _ .
I gremll i < =27 (7 /28)> 7, (1.30)

with o given in (1.28), and v (x) € H' and satisfies the equation

V=V eV =, (1.31)
with a positive number v > 0 and a constant real, symmetric 3 x 3 matrix, € >
11— 0(c});

3. € = €(T) and v = v(T, §) are given explicitly by (1.35)—(1.37) and (1.32)—(1.33),
below.

We discuss Assumptions [A1] and [A3] in Remarks 6 and 10 and the statements of the
theorem, in Remarks 1-4, below.

1.6 Discussion

(1) Theorem 1.2(1) and Eq. (1.9) connecting the charge density p with ¢ imply that RHF
equation (1.1), with (1.23) and & = per, has a unique solution p;5 € Lger +H L
(2) The quantity v = v(T, §) is defined as

v=3821Q|" im + 0(c2)), (1.32)
m = =Trq [ f1 (hper,o — w)] > 0. (1.33)
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Lemmas B.1 and B.2 of Appendix B imply the estimates
0<crSmZecr. (1.34)

By (1.34) and (1.28), m is the leading term in (1.32) and v > §~7/8.
(3) The 3 x 3 matrix, €, in (1.31) is given explicitly by

e=1+¢ —¢€", (1.35)
1
¢ = 1 ke f Fer 002 (=i V)7per, 0 (2) (=1 V) Fper,0(2). (1.36)
1 ~_
"= @w’, Ko'oiz, - (1.37)

where rper,0(2) == (z — hper,o)’1 and /per,0 denotes the restriction of Zper 1= hrer =
—A + ¢per tO Lger, Ko is the operator defined in (4.11), and

o' =2den }5 Foer.0(2) (=1 V)rper 0(2) - (1.38)
(4) Equations (1.31), (1.32) and (1.34) imply that
Iyl g = oasiQl > m="21P=h, i =0,1,
and therefore, by (1.28), (1.30) and (1.34), we have
lgremll 2 < @'/ m™128)* < Iyl 2.

Hence 1 is a subleading term in (1.29) in the L2-norm.

(5) (1.31)is the linearized Poisson—Boltzmann equation used extensively in physical chem-
istry and molecular biology (see e.g. [19]). € is an effective permittivity matrix and /v
and 1/./v are the Debye-Hiickel parameter and the Debye length, respectively.

The screening term v in (1.31) is due to the electrons at the tail of the Fermi—Dirac
distribution being at the conduction band. (In the macroscopic regime, the Fermi—-Dirac
distribution becomes the (Maxwell-) Boltzmann distribution.)

(6) (Existence of crystalline dielectrics) We say that the potential ¢ is gapped if the
Schrodinger operator —A — ¢ has a gap in its continuous spectrum.

Proposition 1.3 For any L-periodic, gapped potential ¢per € H, k .k > 2, and any real

per’

number [per in a gap of hper = —A — Qper, there is kper € Hé‘e? such that Eq. (1.1), with

K = Kper, has the solution (p = pper € Hé‘e;z, 1 = Uper) With the associated (according

to (1.4)) electrostatic potential exactly ¢per. Moreover, the pair (¢per, per) Satisfies the
p p p

electrostatic Eq. (1.5) with this Kpe;.

Proof Let ¢per be such that Ziper := —A — ¢per has a gap. We choose fiper to be in this gap
and define (see (1.6)—(1.7))

Pper = den[ fr (hper — tper)]- (1.39)

Next, we define
Kper := —A@per + Pper- (1.40)
Then, itis straightforward to check that (oper, 4per) is a solution of Eq. (1.1) with background

potential kpe;. By construction, Aper has a gap and fuper is in this gap. O
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One can extend Proposition 1.3 to construct pairs (fper = —A — Pper, per) having any
desired property P. Following Proposition 1.3, we construct pper, @per, and iper via (1.39)
and (1.40) in this order. Then (poper, Mper) is a solution of Eq. (1.1) with background potential
Kper- BY construction, /pe has property P.

The proposition above shows that for any positive 1 and 7', we can find kpe; € Hlfejz such
that the solution of Eq. (1.1) with & = kper and T gives the gap 7.

(7) (General dielectrics) We say that a background charge density « is dielectric if Eq. (1.1)

with background charge distribution « has a solution (p, ), with p in an appropriate
space, say, Héc N L®°, and having the following properties:

(a) the one-particle Schrodinger operator, defined for this solution,
h? = —A — ¢, with ¢ := 47 (—A) "Lk — p), (141)

acting on L?, is self-adjoint and has a gap in its spectrum;
(b) w isin this gap.

By the remark at the end of the previous item we have

Proposition 1.4 (Existence of general dielectrics) For any gapped potential ¢ € Hlﬁc N L*®
and any number w in a gap of h® == —A — ¢, there is k € leoc N L s.t. Eq. (1.1), with
these k € Ll200 N L*° and u, has the solution p, whose the electrostatic potential (according

to(1.4)) is ¢.

(8) (Existence of ideal crystals) The existence of periodic solutions to Eq. (1.1) (equilibrium
crystalline structures exists at 7 > 0) is shown in the following:

Theorem 1.5 Let d = 3 and kper € ngr. Then Eq. (1.1), with the L—periodic background

charge density Kk = Kper has a solution (pper, [per), With pper periodic and satisfying . /Pper €
1

Hl,.

We give references to the proof of this theorem below.

(9) In the limit 7 — 0, our expression for the dielectric constant € agrees with [7] (see

Appendix A below).

(10) (Physical dimensions) The physical cell size of common crystals is on the order of
10-10 ([35]). This gives 6 ~ 10710, The gap size, 1o, is on the order leV [35]. Since
the Boltzmann constant, kg, is of the order 10~*eV /K, this gives no/kg ~ 10*K.
Thus, though we do not compute actual constants in our estimate, we expect that the
allowed values of § and T are within physically interesting ranges.

(11) (Energy) The evolution (1.17) conserves the number of particles Nx(y) := Trx(y)
and the energy

1
Ex(y) :==Trx((-A)y) + 3 /X oYUk Oy, (1.42)

where X is either R or a fundamental cell Q of £, with Tr x defined accordingly, and
Oy =K — py.
Equation (1.12) is the Euler—Lagrange equation for the free energy functional

Fr(y) == Ex(y) = TSx(y) — uNx(y), (1.43)
where Sx(y) = —Trq(yIny + (1 — y) In(1 — y)) is the entropy.

To obtain the HF (free) energy functional, one should add to (1.42) ((1.43)) the HF exchange
energy term Ex(y) = 3 [y [y [v(x — )y (x, »I*.
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962 I. Chenn, I. M. Sigal

Literature The relation of the HF theory to the exact quantum many-body problem was
established rigorously in [26].

For T = 0, the existence theory for the RHFE and HFE was developed in [1,11,21,26,29],
see [22,25,28], for reviews. For the Hartree—Fock equation (1.10) with periodic k¥ = «per,
the existence of periodic solutions from certain trace classes was obtained in [10] and [11].

Results for 7 = 0, similar and related to Theorem 1.2, were proven in [5-9,15-17].

For the case where T > 0, F. Nier [32] proved the existence and uniqueness of the
TRHF (1.1) via variational techniques. Later, Prodan and Nordlander [33] provided another
existence and uniqueness result with the exchange-correlation term in the case where k' = kper
is small. In this case, the associated potential term @per + Xc(pper), Where xc(p) is a local
exchange-correlation term, see (1.15), is small as well. (As was pointed by A. Levitt, a result
for small k = kper would not work in Theorem 1.2 above as Assumption [A1] fails for it.)

The results given in Theorem 1.5 is taken from [13]. Papers [1,10,11,13] use variational
techniques and did not provide uniqueness results. A. Levitt [23] proved the screening of
small defects for the TRHFE.

Approach  Asin [23], our starting point is Eq. (1.5) for the electrostatic potential ¢. We also
use some important ideas from [8]. However, our approach to proving Theorem 1.2 is fairly
novel. Rather that employing variations-based techniques, we use the Lyapunov—Schmidt
reduction, which also allows us to estimate the remainders.

The starting equation of our analysis can be formulated as follows. Let (¢per (), fper) be
the solution of (1.5), with k(x) = Kper(x), and let ks be given in (1.23). Define ¥ by the
equality

¢ :¢per+1/f-

Plugging this decomposition into (1.5), with k = ks and u = pper, and using that h? =
h®er — 4, we arrive at the equation for

—AY = (ks — den[gg, (V)D), (1.44)

where ¢l = bper + lpers g, (W) = fr (W% — ) — fr(h%) and k'5(y) 1= 83/ (8).

This is a nonlinear and nonlocal Poisson equation for . We see that only ¢{Jer = Pper +
[per»> but not kper, enters Eq. (1.44) explicitly.

Though we deal with the simplest microscopic model—the reduced HF equation—our
techniques are fairly robust and would work for the full-fledged DFT. Also, we favoured
rough estimates to more precise but lengthier ones which produce better bounds on 8 in
(1.28), see Appendix D below.

The paper is organized as follows. After presenting preliminary material on charge density
estimates and the Bloch—Floquet decomposition in Sect. 2, we prove Theorem 1.2 in Sects.
3-5. Section 3 contains the main steps of the proof of Theorem 1.2. Section 5 covers fairly
straightforward technical estimates of the nonlinearity.
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2 Densities and Bloch-Floquet Decomposition
2.1 Locally Trace Class Operators

Let C. = C.(R?) denote the space of compactly supported continuous functions on R3. An
operator A on L2 is said to be locally trace class if fA and Af are trace class for all f € C..
(For the proofs below, it suffices to require that f A is trace class.)

Let £ be a Bravais lattice on R3 and €2 a fundamental domain of £ as in Sect. 1.5. Denote
|S| to be the volume of a measurable set S C R3 and note that |Q] is independent of the
choice of the fundamental cell 2. Let T; be the translation operator

Ty f(x) = flx —s). 2.1

We say that a function f : R? — C is £-periodic if and only if it is invariant under the
translations action of T for all lattice elements s € £. We define the space
— 3 3y . £ o di
L;I;er =Ll (R) ={f e Ll (R’ : fis L-periodic}, 2.2)

per loc

with the norm of L? (2) for some 2. The norms for Lf;er and L? = LP (R3) are distinguished
by the subindices L, and L”.

We say that a bounded operator A on L? is L-periodic if and only if [A, Ty] = 0 for all
s € L where T is the translation operator defined in (2.1).

Let S be the standard p-Schatten space of bounded operators on L? with the p-Schatten
norm

AN, :=Tr2((A*A)P72). 23)

Next, let xo denote the characteristic function of a set Q C R3 and let Sger be the space of
bounded, £-periodic operators A on L? with || Al She < where

1
1ANG, =Tra((A"A)"?) = - Trr2 (xa(A"A) xa). 24)

We remark that the Sger norm does not depend on the choice of €2 since A is L-periodic.
We have the following estimates for the densities in terms of Schatten norms.

2.2 Densities

For a locally trace class operator A, we define its density den[A] to be a regular countably
additive complex Borel measure satisfying

/den(A)f =Tr(fA), (2.5)

for every f € C.. If Tr(fA) is continuous in f in the C.-topology, then the Riesz repre-
sentation theorem shows that (2.5), for every f € C,, define den[A] uniquely. In our case,
we will frequently stipulate stronger regularity assumptions on A, implying that den[A] is
actually in a reasonable function space. (e.g. Lemma 2.1 below).

If an operator A has an (distributional) integral kernel, A (x, y), with the diagonal, A(x, x),
being a regular countably additive complex Borel measure, then

den(A)(x) = A(x, x). (2.6)
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964 I. Chenn, I. M. Sigal

Finally, den is a linear map on locally trace class operators with the property that for any
fecC,

den(fA) = fden(A). Q.7

Lemma 2.1 Let A be a locally trace class operator on L? and € > 0. We have the following
statements.

(1) If(1—A)3*€A € §2, resp. S. per, then den[A] € L2, resp. Lper Moreover, respectively,

Iden[Alll2 S 111 = A4 g, (2.8)

IdenfAlll 3, < 1917211 = A <Alg, (2.9)

() If (1—A)'/4*€A € S5, thenden[A] € H™ (where H* is defined in (1.24)). Moreover,

I denfATll -1 S (1= AV Al gors (2.10)

Proof We prove (2.9) and (2.10) only; (2.8) is similar and easier. We begin with (2.9). Since

the operator (1 — A)V/4+€ A is L-periodic, its density, if it exists, is also L-periodic. By the
L? pcr duality, relation (2.5), den[A] € L2 and (2.9) holds if and only if

per” per
Tra(f A S 121 g, (1= A)YHFA] gpor 2.11)
for all f € L?(R3) with support in €, where we recall ”f”L%er = |[fxall.2. Since the

support of f is in €2, by the Holder’s inequality for the trace-per-volume norm,

*IT ro(fA)] = 7|Tr(XQfAXQ)| (2.12)
|€2] 1€2]
SIAQ = 2o 1= 2 g (2.13)
By the Kato—Seiler—Simon inequality
If)g(=iV)lise S IFlLrliglize (2.14)

for 2 < p < oo (see [36]; one can also replace S” and L? by their periodic versions Sé’er
and Lper, respectively.), we obtain (2.11). Thus, (2 9) is proved.
Now we prove (2.10) as above. By the H'-H! duality, it suffices to show that

ITe(£ A S NF g I = AV A gos (2.15)

forall f € H' N C, and for € > 0. So, we estimate |Tr( fA)|. By the non-abelian Holder
inequality with 1 = § + 575 ([36]),

ITe(f A S NFA = A4 gl (1 — A)VAFEA gos. (2.16)
The Kato—Seiler—Simon inequality (2.14) shows
ITe(f A S NFlsll(1 — A4 A gors. (2.17)

Now, applying the Gagliardo—Nirenberg—Sobolev inequality (for d = 3; see [24])

I flls S UV Fllz2 (2.18)
to || fllze in (2.17), we ob.tain (2.15). The proof of Lemma 2.1 is completed by the H'-H!
duality and the fact that H' N C. is dense in H'. O
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2.3 Bloch-Floquet Decomposition

Let £* denote the lattice reciprocal to £, with the reciprocity relation between bases for £
and £* given by w; - a);‘ = 2m§;;. Define the (fiber integral) space

HE={feli R xR :Trf=Ff (2.19)
and TX f = ™" f, Vs € L, Vr € L*}, (2.20)

where Tsk is the translation in the k-variable by s and 7;* is the translation in the x-variable
by r (see (2.1)). We write f = fx(x) € HGZ as

® ~ ® R
f= / Sedk = f fiedk, (2:21)
]R3/L'* Q*
for some choice of a fundamental cell Q2* of the reciprocal lattice £* and dk == || \dk.

We use the Bloch—Floquet decomposition Ugg mapping from L?(R?) into HGZ as

@ A
Uppf = 5 dk fi., (2.22)
fe() =Y e M f(x 4 1) (2.23)
tel

and the inverse Bloch-Floquet transform

® .
Ugy (/ dkfk) (x) ::/ dk ™ fi(x), Vx € R>. (2.24)
Q* Q
Lemma 2.2 We have, for any f € L,
/ fi(x)dx = fk) (2.25)
Q
Proof By (2.23) and a change of variable, we see that
/ fe(x)dx = / D e KO f(x 4 1ydx (2.26)
2 tel
=> / e ™% £(x)dx (2.27)
er e
= / e f(x)dx. (2.28)
Equation (2.25) follows from the definition of the Fourier transform. ]

Let (f)s = |S|7! fs f(x)dx, the average of f on a set S, and g be the indicator (char-
acteristic) function of S.

Lemma2.3 Let f € L? and f be its k-th fiber L-Bloch—Floquet decomposition. Then for
any S C QF,

@ A~
xs(i9)f = Uyt [ ak it (229)
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Proof Let f € L with the k-th fiber f;. Then Lemma 2.2 shows that

(foe =127 f k). (2.30)

Using the definition of the inverse Bloch transform in (2.24) and (2.30), we see that

@ ~ A .
Uai ([ ditsia) = [ ake™tgoa,

= / dk 197 e £ (k) (2.31)
S
Since dk = |*|~'dk = ||dk, the last equation yields
1 @ A k ~
Ug f dk (fi)e = f dk e f k) = xs(—iV) . (232)
S S
which gives (2.29). ]

Let P, = xp()(—iV) where B(r) is the ball of radius » centered at the origin (see (3.37)).
Lemmas 2.2 and 2.3 imply

Corollary 2.4 Let f € L* and B(r) C Q*, then
P e = 1917 f &) o) (k). (2.33)

Any L-periodic operator A has a Bloch-Floquet decomposition [34] in the sense that

®
A= Ug / dk A Ug, (2.34)
Q*
where Ay are operators (called k-fibers of A) on Lger and the operator féi dk Ay acts on

[& dk fi € HE as
@ ~ $ ~ $ ~
/ dkAg / dk fr = / dkAy fx. (2.35)
* Q* Q*

Definitions (2.34) and (2.35) implies the following relations for any £-periodic operators
A and B

(Af)k = Ak fx (2.36)

(AB)y = Ay B, (2.37)

Al = sup [|Agll. (2.38)
keQ*

Furthermore, we have

Lemma 2.5 Let A be an L-periodic operator and Ay, its k-fibers in its Bloch—Floquet decom-
position. Then

Ak — eiiXkA(]eiXk

@ Springer



On Derivation of the Poisson-Boltzmann Equation 967

Proof We compute (Af)i. Let Ty denote the translation operator (2.1). Let Ay denote the
0-th fiber of A in its Bloch-Floquet decomposition. By (2.23) and the periodicity of A,

(Af =Y e MEIT Af = e AeT M, f (2.39)
tel tel
— e—ikxAOeikx Ze—ik(x+t)T7tf (2_40)
tel
_ —ikXA ikx
= e Oe fk' (241)
O

Now, we have the following result.

Lemma 2.6 Let A be an L-periodic operator and Ay, its k-fibers in its Bloch—Floquet decom-
position and let r be such that B(r) C Q*. Then

P AP, = b(—iV)P, (2.42)
where b(k) = (Al q, 1 € L2 _(R3) is the constant function 1.

per

Proof Let f; be the k-th fiber of the Bloch—Floquet function f. We apply Lemma 2.3 with
S =B(r)and f = AP,¢ (so that xs(—iV) = P,) to obtain

@ ~
P, APg = Ugy / dk (AP p)i)a. (2.43)
Q*
By Corollary 2.4 and Eq. (2.43), we find
@ A~
P, AP¢ = 19| U f dk (Ao k), (2.44)
B(r)

where 1 € Lger’ 5 1s the constant function equal to 1. Using the definition (2.24) of the inverse
Bloch—Floquet transform and that dk = 12|~ Ldk, we deduce (2.48). ]

2.4 Passing to the Macroscopic Variables

Define the microscopic lattice L5 := 8L and let £} be its reciprocal lattice. Define the
rescaling operator

Us: f(x)—~ 832 f© %) (2.45)

mapping from the microscopic to the macroscopic scale. A change of variable in (2.5) gives
the following

Lemma 2.7 For any operator A on L?, we have
873/2Us den[A] = den[Us AU;]. (2.46)
Finally, note that
A is L-periodic iff Us AUj be Ls-periodic. (2.47)

Lemma 2.6 implies
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Lemma 2.8 Let A be an L-periodic operator and Ay, its k-fibers in its Bloch—Floquet decom-
position and let r be such that B(8r) C Q*. Then

P,UsAU{ P, = b(—i8V) P, (2.48)

where b(k) = (Arl)q, 1 € Lger is the constant function 1.

Proof By U§ P,Us = Ps, and Lemma 2.6, we have
PrUgAU;Pr = U,sl)(srAI’grUék = U,sb(—iV)PgrU;.
Relations Us Ps, U = P, and Usb(—iV)U; = b(—i8V) yield (2.48). O

3 Dielectric Response: Proof of Theorem 1.2

In this section, we prove Theorem 1.2 modulo several technical (though important) statements
proved in Sects. 4 and 5.

3.1 Linearized Map

Our starting point is Eq. (1.5), which we reproduce here
—A¢ = (k —denl fr(h? — 1)), 3.1
where, recall, f7(A) is given in (1.2) and, recall,
h? = —A —¢. (3.2)

We consider (3.1) on the function space ¢ € szer + H'. For such ¢’s, the operator ho is
self-adjoint and bounded below so that functions of 4% above are well-defined by the spectral
theory.

Our first step is to investigate the linearization of the map on the r.h.s. of (3.1)

M = dg den| fr (h? — )l (3.3)

¢:¢per :

To derive basic properties of M, we find an explicit formula for it. Recalling the relation
fr(X) := frp(A/T), see (1.2), and assuming that ¢ is close to @per, we write fr h® — )
using the Cauchy-integral formula

1
fr = = /r dzfr(z — W — b~ (3.4)

where I is a positively oriented contour around the spectrum of 2% not containing the poles
of fr which are located at u + iw (2k + 1)T, k € Z (see Fig. 2 below), in which € satisfies

€ <Tm and — 1 < cos(ue). 3.5)

Here we use that 4% is bounded from below and, due to the definition fr (1) = e)‘/++l (see
(1.2)) and the relation |[Imz| < 7 /4T,

|fr(z =] < min(1, e~ Re0/Ty) (3.6)
assuring the convergence of the integral. (Note that we do not use that 4% has a gap and that

W is in the gap.)
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Fig. 1 The contour I'. It depends on € satisfying (3.5)

To simplify the expressions below, we will introduce the following notation

1
% — f dzfr(z — 1) 3.7)
Tt Jr

where I' is the contour given in Fig. 1, with the positive orientation.
Recall the notation for the £-periodic Hamiltonian and introduce one for the £-periodic
resolvent:

per i= h%et = — A — P rper(2) = (2 — hper) "\ (3.8)

By Theorem 1.5, the electrostatic potential, ¢per (y) associated with the solution pper(y) (c.f.
(1.9)) satisfies

Pper € Hop. (3.9)

Hence the operator /e, is self-adjoint and the operator functions above are well-defined.
Moreover, under Assumption [A1],

sup [1(z = hiper) ' lloo = O(1). (3.10)

zel

Finally, for any operator &, we denote % : @ — ha and h® : @ — ah.
The next proposition gives an explicit form for M and states its properties (also see [7]).
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Proposition 3.1 Let Assumption [Al] hold. Then

(1) The operator M has the following explicit representation

Mf = —den[%l’per(Z)frper(Z)] G.11)
1 tanh(5% (h%, — 1)) — tanh(5= (AR — 1))
B e —

where f € L? on the right hand side is considered as a multiplication operator.
(2) The operator M is bounded, self-adjoint, positive on L* and L-periodic (c.f. Sect. 2.2)
and satisfies

M|l < 1. (3.13)

Proof of Proposition 3.1 In this proof, we omit the subscript “per” in hper and rper(z). We
begin with item (1). Equation (3.11) follows from definition (3.3), the Cauchy formula (3.4)
and a simple differentiation of the resolvent.

Now, we use (3.11) to derive (3.12). By the definition of hL and A% and the second
resolvent identity, we have, for any operator «,

C-mla@-n" =)@ -rF) e
— (hL _ hR)—l((Z _ hL)—l _ (Z _ hR)_l)O[. (314)

Using the Cauchy integral formula and the definition (3.7) and the choice of the contour I'
i(see Fig. 1), we observe that

?g(z — ) laz—h"" = mt = B!

x %/dzfr(z—m«z—h%*l —(z—=h*Na
Tt Jr

=t —n®T (it = ) — fr(® = w)e (3.15)
Now, by definition (1.2), fr(}) := ﬁ and therefore fr(A) = %(1 + tanh(A/27)). This

relation, together with (3.15), gives

jg(z It

I tanh(5 (Wt — p)) — tanh(5 (AR — 1))
== a.
2 hL — hR
This, together with (3.11), gives (3.12). Item (1) is now proved.
Now we prove item (2). Since & = hpe is self-adjoint and bounded below, we can pick

¢ > 0 sufficiently large, s.t. h > —c + 1. Then, in particular, 4 + c is invertible and, for each
function f € L?(R?), we define the operator

(3.16)

api=(C+mn2fe+ 2 (3.17)
The Kato—Seiler-Simon inequality (2.14) shows that o 7 is Hilbert—-Schmidt and
lerllse S 112 (3.18)

(the $2 norm is given in (2.3)). Using (3.11), together with (2.5), we write (f, M g)
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= — § Tr(fr(2)gr(z)), which can be transformed to

(f, Mg) =— %Tr(a}(c+h)r(z)agr(z)(6+h)). (3.19)
Moreover, by (3.16), we have that
(f, Mg) = Tr (a;c(hL, hR)ag) , (3.20)

Gl y) e — L tanh (57 (x — 1)) — tanh (57 (y — w))
TS G+ T—(+o !

(3.21)

Since the function G : R? — R is bounded on the set x, y > —c + 1, we see that M is
bounded due to (3.18) and (3.20).

Moreover, we can also see from expressions (3.20) - (3.21) that M is symmetric since G
is real and A% and i % are self-adjoint in the space S2. Since M is bounded, it is self-adjoint.
Since the function G in (3.21) is positive for x, y > —c + 1, Eq. (3.20) and spectral theorem
on S% show that (f, Mf) = Tr (a;‘pG(hL, hR)ozf> > 0 for any nonzero f € L?(R?). This
shows that M is positive.

Finally, formula (3.11) and the fact i = hpe; and r = rper(2z) are L-periodic show that M
is L-periodic.

To prove bound (3.13), we use (3.11) and (2.8) to find

IMfli2 S ICE—=A) ?g (@) fr@lls2 (3.22)

< \75|||(1 —Ar@IPIFA =) g (3.23)

Now, writing —A = h — z + ¢per + 2, for z € I', and using the uniform boundedness of
|¢per |l y2 which follows from Assumption [A1], we derive the estimate

I(1—=Mrl S 1, (3.24)

which, together with (3.23) and the Kato-Seiler-Simon inequality (2.14), gives bound (3.13).
The proof of Proposition 3.1 is now complete. O

3.2 Scaling and Splitting

This step is to pass from the microscopic coordinate y to the macroscopic one, x = &y
passing to the macroscopic quantities (with superscripts §) which are related the microscopic
quantities (with subscripts §) as

K0 =873 Usks, ¢°(x) = 82 (Usps)(x) = 8 s (67 "), (3.25)
Kper () 1= 8 ieper 871 x0) = (872 Usicper) (x), (3.26)

where Us : f(x) — 6_3/2f(8_]x), the LZ(R3)—unitary scaling map, see (2.45) (note that
the L'-norm, hence total charge, is preserved under this scaling). Let

12 (X) = Kper () + K/ (x) (3.27)

be the macroscopic perturbed background potential. Accordingly, we rescale equation
(3.1) by applying §3/2Uj to it. Using Lemma 2.7 and relations Us fr(h® — wUs =
Fr(Ush?U; = p) and
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Ush®Uj = —8A — 5¢°,
we arrive at the rescaled electrostatic potential equation

— Ap® = k® — Fs(¢?), (3.28)

F5(¢) = den[ fr(=8°A — 8¢ — ). (329)
We will consider (3.28) on the space szer +H.
Let d)ger = §1/2 Usper, where ¢y is the periodic potential associated to the periodic
solution (Oper, Mper) Of (1.1) with periodic background charge «per given in Theorem 1.5. We
split the solution ¢° into the big part ¢ger and the fluctuation

p=¢" =" — Pl (3.30)
We rewrite Eq. (3.28) by expanding the r.h.s. around ¢ger to obtain

Ksp =« + N5 (9) (3.31)
where N is defined by this expression and
Ks=—A+M;s, with Ms = dgFs(¢he,). (3.32)

Note that the inputs into this equation are @per, 4 = fper and k' (cf. (1.44)).

As was mentioned in the introduction, we prove Theorem 1.2 by decomposing ¢ in (3.30)
in small and large momentum parts (c.f. [8]). We use rough estimates for high momenta while
we expand in § and use a perturbation argument for low momenta.

We begin with a discussion of the linearized map, Ks. Since we rescaled equation (1.1)
by applying 8 ~3/2Uj to it and rescaled the microscopic potentials via (3.25), it follows that

F5s =832Us 0 F o (5712U5) (3.33)

where F = Fs—;. Thus, by the definition of My in (3.32) and the fact it is linear, it can be
written as

Ms = 8§ 2UsMUY, (3.34)

where M := Mj— and is given by (3.3).

Recall that an operator A on L?(R?) is said to be £-periodic if and only if it commutes with
the translations 7§ (see (2.1)) by all lattice elements s € £. As an immediate consequence of
Proposition 3.1, representation (3.11), and the rescaling (3.34), we have the following result

Proposition 3.2 Let Assumption [Al] hold. Then Mg is Ls-periodic, positive (so that
Ks = —A + Ms > —A), bounded on L? with an O(8~2) bound, and has the following
representation

M(S(p = —dden [% rger(z)(prger(z):l ) (335)
where the resolvent operator rger (2) acting on L*(R3) is given by
(@ =@ —h) ™ Ky =—8A — 5. (3.36)
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3.3 Lyapunov-Schmidt Decomposition

To separate small and large momenta, we now perform a Lyapunov—Schmidt reduction.

Let xo be the characteristic function of a set Q C R3. Let Qj denote the fundamental
domain of L as in Sect. 2.4. We recall the definition of the orthogonal projection onto low
momenta (as [8])

Pr = xpo)(—iV), (3.37)

where B(r) is the ball of radius r centred at the origin. With m given in (1.33) and estimated
in (1.34), we choose r such that B(r) C Q5 and

a :=4ér = O(1) small, but a*>m, (3.38)

is independent of § and T (or m) and is fixed. Below, we use the convention that < is
independent of r, § and T'. Let

P.=1-P (3.39)

be the orthogonal projection onto the large momenta. We decompose

Y =95+, (3.40)
where ¢, = Pr¢ and ¢; = P.¢. Here s stands for small momentum and / stands for large
momenta. We split (3.31) as

PrKs(ps +@1) = PrK/+PrN6(‘p)» (3.41)

P Ks(ps +¢1) = Prc’ + P-Ns(9) . (3.42)
We solve (3.42) for ¢; in the ball

Bis :=lp € BH' gl <), (3.43)

while keeping ¢, fixed in the (deformed) ball
Bysi={p € P H :lgls <), (3.44)

with the norm ||¢||s given by

1

ol =Y 2 DIVigll,. ¢ =8m~ /2 (3.45)
0

The constants ¢ and ¢; above (should not be confused with the estimating function ct which
appeared in Theorem 1.2) are chosen to satisfy the conditions

Ko Lok, (3.46)
where 0 := m /28 and, recall, ¢ = Sm~1/2,
The latter condition can be satisfied, provided

0:=m 3% « 1. (3.47)

Due to estimate (1.34), this is equivalent to condition (1.28).
We see that, while our model is parametrized by § and S satisfying (1.28), our method is
determined by the parameters a, cs and ¢;, satisfying (3.38) and (3.46).
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The subleading term, ¥, in (1.29) just fits into By s: [[¥[ls ~ ¢ < ¢s. Finally, we note
that since V1P, < r~ 1P, V-1 .=vA~l r = a/§, we have

lolz Sm2elelg, llells S llelig, Yo € Ran Py (3.48)

Equation (3.48) shows that, if m1/2§ = § K c¢s5/cy, then, in the L2%-norm, By s is much
smaller that By 5.

In the proofs below, we will use the convention || - [0 = || - ||;2 and the estimates of
the nonlinearity Ns (defined implicitly through (3.31)) proved in Proposition 5.2 in Sect. 5
below, under Assumption [A1]:

INs(@1) — Ns(@2) |l 12
1
<Sm7387 2 (llgills + le2ll)ller — @2 lls. (3.49)

Proposition 3.3 Let Assumptions [Al [-[A3] hold. Assume ¢; € By s and that (3.38) holds.
Then Eq. (3.42) on B s has a unique solution ¢; = ¢;(¢s) € By s.

Proof of Proposition 3.3 We use that, by Proposition 3.2, Ks := P.Ks P, is invertible on the
range of P, (see (3.39)) to convert (3.42) into a fixed point problem

o1 = Pi(p) = )+ B/ (¢1), (3.50)
where

@) = Ky ' (—Msps + Pri'), (3.51)

@/ (¢) = Ky ' PNs(ps + ). (3.52)

Given gy, this is a fixed point problem for ¢;. We will solve this problem in the ball By s
defined in (3.43)). Let H? = L%. We begin with the following simple but key lemma

Lemma 3.4 Let Assumption [Al] hold and let cT := T—le—m/T < 1 (which is weaker than
Assumption [A3]). Then, for f € L2(R3),

1Ky fllges S 20 fllgin i <k k=0,1 (3.53)
15 M5 Py fll2 S f g2 (3.54)
1Ky MsP, fllge S 1S N (3.55)

Proof of Lemma 3.4 Since —AP, > r?P,, we have the inequality 7| f||> < (f, Ksf) <
(WAl ||I€5f||, which gives r2||f|| < ||Ks f|, which implies (3.53) fork =i = 0.

Since K5 P, > —AP,, we have ||15,f||12q1 < (f, Ksf) < |IP- fI|IIKs f]|. This inequality
and | f|| = V'RV [ < r7 'V f], where

v li=v(=a)l, (3.56)

give || P fll g1 < r~'|Ks £, which implies (3.53) for k = 1.
Inequality (3.53), with i = 0, and the bound || M;s|| < 82, proven in Proposition 3.2,
yield
1Ky Ms P fll e S r¥I1LFI . (3.57)

~

for k = 0, 1, which for k£ = 0 implies (3.54).

@ Springer



On Derivation of the Poisson-Boltzmann Equation 975

Finally, we prove more subtle (3.55). Using V™! from (3.56), we write VI?(S_IM(gf =
VI?(;IV - (V=1 M) f. Proposition 3.2 shows that VI%(;IV < 1. It follows

IVKs ' Ms fll2 S NBV™" Ms fll 2. (3.58)
This bound and Proposition C.4 of Appendix C imply (3.55). O
Definition (3.51) and Eqgs. (3.55) and (3.53), with k = 1,7 = 0, show that
17111 < Nslls + il 2 (3.59)
For the nonlinear term, ®/ (¢;) := K; ' P, Ns(¢s + ¢1) (see (3.52)), Egs. (3.53), with
k=1,i =0, (5.1) and the inequality [l¢;lls,s < ll@ill g1 (see (3.48)) give
1] (@)l < 7' m =587 2l s + gl )°. (3.60)

Since ||¢slls < ¢s and ||¢lls < ¢; for ¢ € By 5 and @5 € By 5 (see (3.44) and (3.43)) and,
due to our assumption (3.46), we have

Sl 2 4 s +82m™ V35 + ) < ¢, (3.61)

(3.59)—(3.61) show that ®; maps B; s into itself.
Once more, by Egs. (3.48), (3.53), with k = 1,i = 0, (3.49) and (3.55), we see that ®;
satisfies

|D:(p1) — Pr(@2)l 1
1.
<rtmT387 2 (g lls + llg2lls) ler — @2lls (3.62)

and therefore, since r = a/4, is a contraction on B; s for m_%(S I 20; « 1, which follows
from (3.46). Proposition 3.3 now follows by applying the fixed point theorem on B; 5. O

Let ¢; = ¢;(¢s) be the solution to Eq. (3.42) given in Proposition 3.3 with ¢; € By s.
Later on we will need a Lipschitz estimate on the solution, ¢;(¢s) € By s.

Lemma3.5 If ¢, ¥ € By, then the solution, ¢;(¢s) € By s, to (3.42) given in Proposition
3.3 satisfies the estimate

(@) — ol < lle = ¥lls. (3.63)
Proof Since ¢;(¢), ¢; () satisfy (3.42) (and therefore (3.50)), we see that
w1(@) — () = —K5 ' Ms(p — )
+ Ky Pr(Ns (¢ + 01(9) — Ns (¥ + @1 (¥))). (3.64)

Using Egs. (3.64), (3.53), with k = 1,7 = 0, and (3.55) and nonlinear estimate (3.49) and
going through the same arguments as in the proof of Proposition 3.3, we show (3.63). O

We substitute ¢; = @;(¢r) (see (3.50)), with ®;(¢;) given by (3.50)—(3.52) into Eq. (3.41)
and note that P, K5 P, = P, M; P, to arrive at the following equation

Loy = Ok’ + ON(p(s)), (3.65)

where ¢ (¢5) = @5 + @1(@5) with ¢ (@) being the solution of (3.42), and
¢:= P,KsP, — P,MsK; ' MsP,, (3.66)
Q=P — P MsK; " (3.67)
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Note that £ is the Feshbach—Schur map of K5 := —A + Mj; with projection P,.
In Sect. 3.4 below, we prove the following

Proposition 3.6 Under Assumption [Al], Eq. (3.65) has a unique solution ¢ € By s.

As a consequence of Propositions 3.3 and 3.6 and Eqgs. (3.40) and (3.48), Eq. (3.31) has
the unique solution ¢ = ¢; + ¢; € H'(R?), with the estimate

lells < cs + .

This proves the existence and uniqueness of the solution ¢s € (szer + HY(R3) of (3.28)
(and therefore of (1.5)) with « given in (1.23). This completes the proof of Theorem 1.2(1).
O

Now, we address Theorem 1.2(2). Below, we let 8 = T, so that

cr = Be P = sg.

We begin with a result, proven in Sect. 4, which gives a detailed description of the operator
L.

Proposition 3.7 On ran P, the operator £ in (3.66) is a smooth, real, even function of —iV
and it has the expansion

L =v—VeV+ 0> (—iV)h (3.68)

where v = 82|~ (m + 0(s§)), with m given in (1.33), and € is a matrix given explicitly
in (1.35)—(1.37) and satisfies the estimate

€>1-0(sp). (3.69)
By Proposition 3.7 the leading order term in £ is given by
Lo:=v — VeV, (3.70)

where v = §72|Q|(m + O(s3)), with m given in (1.33), € = 1 — O(sp).
To construct an expansion of ¢, we let ¥ be the solution to the equation

Loy =k’ (3.71)
(since v > 0 and € > 0, this solution exists) and write
05 = Py + ¥ (3.72)
where ¥ is defined by this expression. In Sect. 3.5 below to prove the following
Proposition 3.8 Under Assumption [Al], Y1 € By s obeys the estimate
Iills S (m'/? +6'2)¢. (3.73)
Due to (3.40) and (3.72), the solution ¢ of Eq. (3.31) can be written as
p=Py+id1+a (3.74)

with Y1 € By s, satisfying estimate (3.73), and ¢; € By 5.
To complete the proof of item (2) of Theorem 1.2, we notice that (3.30), (3.74) and the
relation P.yr = ¢ — P imply (1.29) with

Grem =V1 — PY + 1. (3.75)
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Thus it remains to estimate the remainders above (see (1.30)). B
Equation (3.73) controls ¥;. To control the term — Py, we use (3.56) and Eal P <r2
to obtain, fori =0, 1,

1Pl i = IV Pty ' il 2 = 16 BV |l 2
Sr2 e i (3.76)

Since, by condition (1.28), (m'/? + 0'/2)z?~1 > §%, Eqs. (3.73) and (3.76), together with
(3.75), show that

Iyt — Poyrlls < (m'/* + 60" (3.77)

By Proposition 3.3, ¢; is in the range of P, and bounded as loill g1 S e Hence, using

(3.48) and taking ¢; = w~/*¢, w := max (8, m) < 1 (satisfying (3.46)) and using that
rlot = om'?2¢? < m'/*c?, gives

lgill 2 < m 42, Nl < 0 Ve, (3.78)

By (1.34), Eqgs. (3.77) and (3.78) imply part (2) of Theorem 1.2.
Finally, part (3) of Theorem 1.2 follows from Proposition 3.7 and Eqs. (3.70) and (3.71).
O

3.4 Small Quasi-momenta: Proof of Proposition 3.6

Our starting point is Eq. (3.65). By Proposition 3.7, the operator £ given in (3.66) is invertible.
Hence we can rewrite (3.65) as the fixed point problem:

@5 = Dy (gy), Dy(ps) := —L7 100 — N(g(gy))), (3.79)

where ¢(¢5) = @5 + @1 (ps) with ¢; () being the solution of (3.42), and Q is given in (3.67).
First, we estimate the operator 10 in ;. Recall, m is given in (1.33).

Lemma 3.9 Assume (3.38) and, recall, ¢ := §m~='/2. Then
1e= s < ¢l flle. (3.80)
Proof By the choice a := §r = O(1) (see (3.38)), we have that that
0% (—iV)*) = 0(a*(—iV)*) on RanP,.

By Proposition 3.7, we have that v = §72|Q| " (m + O (s3)), which, together with the lower
bound in (1.34), implies

v > 8721Q m =197 e 2 (3.81)
These two facts and Eq. (3.68) imply V¥¢~! < ¢27% k =0, 1, 2, which gives

IVEe I <% k=0,1,2, (3.82)
for the Lz-operator norm. Furthermore, we claim the bound

IVEe= P Ms K| < ¢ Fm 2, (3.83)
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Indeed, decomposing M according to (C. 2)—(C. 4) of Proposition C.1 and using bound Egs.
(3.82), we find

IV e P M5V Py
< |VketeMip | + VeV MI VLR
ST Im! 2 1k, (3.84)

where | - || is the operator norm in L2. Since ¢ := dm~!/?

, this implies
IVEeT P MV T P flle S a” RIS D e (3.85)
Equation (3.53), with k = 1,i = 0,and (3.85), together with the insertion of 1 = v-lv =
A~1VV between M;s and K(;l, imply (3.83).
Using (3.82) and (3.83) and recalling the definition Q := P. — P, MsK (see (3.67)),
we find that

IVketo < ¢k k=0,1,2, (3.86)

which, due to the definition of the norm || f||5 =~ Zo o= vk 12 1n (3.45), implies Lemma
3.9. O

Lemma 3.9 and nonlinear estimate (5.1), together with ¢ 812 = 1725172 imply that,
under Assumption [Al],

e~ QN5 (@) — Ns(¥)]lls
<m0 2 (llplls + 1w 1) lle — ¥ lls. (3.87)
Equation (3.79), Lemma 3.5 and estimate (3.87) imply, for ¢, ¢ € By s,
D (@s)lls S ¢l ll 2 +m =812, (3.88)
@5 (5) — P (@))ls S m~%6cyllgs — @fls. (3.89)

These inequalities, together with the inequality m>/°8~1/2 = 073/2¢ > ¢, > ¢, which
follows from assumption (3.46), yield that @, (¢;) is a contraction on By s and therefore has
a unique fixed point. This proves Proposition 3.6. O

3.5 Proof of Proposition 3.8

In view of Proposition 3.7, we write
=40y + 0, (3.90)

where £ is defined (3.70), and ¢’ is defined by this expression. By Proposition 3.7, ¢/ =
0(82(—iV)*) on the range of P,.
Insertmg (3.72) into Eq. (3. 65) and using (3.90) and the relations £ P,y = Py’ + €' Py

and — Pk’ + Qk’ = — P, M(sK '/, we obtain the equivalent equation for v :
= ' Poy — PMsK; 'k’ + ONs(9) (3.91)
¢ =) =Py + Y1+ (P + Y1), (3.92)

with ¢; = ¢;(f) the solution to Eq. (3.42) given by Proposition 3.3 with ¢, replaced by
f € Bs,,s.
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By Proposition 3.7, the operators £ and £ are invertible. We invert £¢ (see (3.70)) in (3.71)
to obtain

v o=ty (3.93)
Furthermore, we invert £ (see (3.66)) in Eq. (3.91) and use (3.95) to find
Y1 =01 (Y1) = D} + D[ (@), (3.94)
where ¢ is given in (3.92), and, with Q given in (3.67),
@ = e W+ P MK, (3.95)
®{(9) =t ON(@). (3.96)

(3.94) is a fixed point equation for ;. However, we do not have to solve it since we have
already proved the existence of ¥/1. We use (3.94) to estimate ;.

Next, by Proposition 3.7, Eq. (3.81) and the relation 02(—iV)") = 0(a?(—iV)?) on
Ran P, (see the definition of P, in (3.37)), valid due to the choice a := ér = O(1) (see
(3.38)), we have that the operators £, £o, £ given in (3.66), (3.70), and (3.90), respectively,
satisfy

10| < 82 (=iv)*, (3.97)
b> A+ (3.98)
L2 —A+¢72 (3.99)

where, recall, ¢ := m~'/28, with m given in (1.33), (cf. (3.82)).
Using (3.97)—(3.99) and the fact ¢, £y, £’ are self-adjoint and are functions of —iV and

therefore mutually commute, and using (3.83), we find that
19411 e < 821 | ggi +m" 227 ikl 2, i =0, 1. (3.100)

~

By the choice of the By s norm (see (3.45)) and since 8% < m!/2¢2~ (by (3.46), or (1.28)),
we see that

@115 < m' ¢l |l 2. (3.101)

Now, we turn our attention to the map ®(p) := ¢! ON(9) (see (3.96)). The definition
of ®(¢p) and Eq. (3.87) give

107 (@)lls < m~>/%82)3]3. (3.102)

Next, we estimate ¢ = @(¥1) := Py + Y1 + @i (P + 1) = @5 + ¢ (see (3.92)). By
Propositions 3.3 and 3.6, ||¢;|ls < ¢; and || P, + ¥1]ls < ¢s and therefore ||@]ls < ¢ + ¢
This, together with (3.102) and condition (3.46) and inequality (3.48), yields

107 (@)lls <m0} (3.103)
1 ~ 1
Equations (3.101) and (3.103) and the relation m=/681/2 = 63/2¢ =1 imply

D1 @lls S m' el 2 + 62 7. (3.104)

By condition (3.46) and our choice ¢; = ¢, ® :=min(@~'/2, m~1/%), we see that (3.104)
implies

[P1(Dlls S (a_2m1/2 + 01/2);

Since {1 = ®1(¢1) and, the above estimate gives (3.73), proving Proposition 3.8. O
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4 Analysis of the Operator £. Proof of Proposition 3.7

The goal of this section is to prove Proposition 3.7. The proof follows readily from Lemmas
4.1,4.3 and 4.4 below. Throughout this section, we suppose Assumption [A1] holds, without
mentioning this explicitly.

Let M and K be the k-th Bloch—Floquet fibers of M = M;s—; and K = Ks—; (see
(2.34), not to be confused with Ms and 155). Since, by Proposition 3.2, K is invertible, then
sois K and K; ' = (K1) (see (2.37)). We have

Lemma 4.1 The operator £, defined in (3.606), is of the form
£ =5"2b(—i8V)P,, 4.1)

where b(k) is a smooth, even function of —i8V given explicitly as:

b(k) =IQ17 L (k> + Mic = MK M) 5 . 4.2)
Proof Since Mj is Ls-periodic by Proposition 3.2, Eq. (3.66) implies that so is £. Moreover,
(3.66) and (3.34) yield

€ =P, [872Us(—A + M)US1P, — P,[8 > UsMU;]
x P [872Us(—A + MU' P [672Us MU P,

which implies that

where, recall, M = Mj |5=1v

€= 8"2Ust|;_ U5 (4.3)

The last two properties and Lemma 2.8 show that £ is a function of —iéV of the form (4.1),
where b(k) = ((£|s=1)k1)q, with (€ |s=1)r being the Bloch—Floquet fibres of ¢ |s—1 and 1
standing for the constant function, 1 € Ll%er (R3). Using Egs. (2.37), (3.66) and Ax1 = 0, we
find explicit form (4.2) of b(k).

The next proposition gives the Bloch—Floquet decomposition of the operator M.

Proposition 4.2 The operator M has a Bloch—Floquet decomposition (2.34) whose k—fiber,
My, acting on Lger is given by

M f = —den |:f rper,o(Z)frper,k(Z)i| (4.4)

where [ € Lger and, on Lger,
Fperk(2) = (2 = hper i)™, (4.5)
hperk = (—iV = k)% = ¢per - (4.6)

Proof of Proposition 4.2 Let T be given in (2.1) and ¢ € L?. To compute k-fibers of M, we
note 7_, den[A] = den [Tt*ATt] and [T}, rper(z)] = O for all ¢ € L. Using these relations,
the definition of the Bloch—Floquet decomposition (2.23) and Eq. (3.11), we obtain

(M)(x) = =y e Hhtn f T—; den [Fper(2)@rper(2)]
tel

=_ Z etk +n) 7{ den [T} rper (2)@rper () T1 | - .7

tel
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Since rper(z) is L-periodic, (4.7) shows
(M) (x)
— ) ik 55 den [rper (2) (T—r9)rper (2)] . 48)
tel

Using that den[A]f = den[Af] = den[ f A] for any operator A on L*(R3) and any suffi-
ciently regular function f on R3, we insert the constant factor of e /¥ into den in (4.8). We
obtain

(M) (x)
= —e ik 7{ den [rper(z) Zeikt(T_,go)rper(Z)i| : (4.9)
tel
This and the definition of the Bloch—Floquet decomposition of ¢, (2.23), imply
Mep)p(x) =— f den I:rper(Z)‘pkeierper(Z)e_ikx] . (4.10)
Since '**(—iV)e™** = —iV — k, and therefore e/** rper(2)e ™K = rper £ (2), this gives
(4.4). O

Since the resolvents rper,k (z) are smooth in k (see (4.5)—(4.6)), then, by (4.4), M is also
smooth in k. Hence, by (4.2), b(k) is smooth in k.

Since the operator My — M K ‘ 1Mk in (4.2) is self-adjoint, the function b(k) is real. By
Lemma 4.2 and the properties 7per,k (z) := Crper,k(2)C = per,—k (2), where C is the complex
conjugation, and the contour of integration in (4.4) is symmetric w.r.to the reflection z — Z,
we have b(k) = b(k) = b(—k), i.e. b(k) is even. ]

Let Ko = K=o denote the O-fiber of K, acting on Lger (R3). We also let [Ty denote the
projection onto constant functions on L2_ (R3) and Iy := 1 — ITy. Finally, we define

per
Ko := oK. (4.11)
Recall the abbreviation sg := Be 0P With this notation, we have
Lemma 4.3 Let m be given in (1.33). The function b(k) given in (4.2) satisfies
bk) = |27 (m + O(s}) + k- ek
+k-O@sp)k + O(k[Y), (4.12)
where m is a scalar given by (1.33) and € is a real matrix given by (1.35)—(1.37).

Proof of Lemma 4.3 First, we use (4.2) to write b(k) as

b(k) = by (k) — ba(k), (4.13)
bi(k) := k> + 17 (1, Mil)z, (4.14)
ba(k) := |17 (1, MkIZk_lel)L%er. (4.15)

We begin with by (k). We claim that
bi(k) =|Q'm + €] k> + k- (1 + €k + O(k|Y), (4.16)
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where m and ¢’ are given in (1.33) and (1.36), respectively, and ei is areal, symmetric matrix
satisfying ei = O(sp), contributing to the third term on the r.h.s. of (4.12).
Using definition of b; in (4.14) and Proposition 4.2, we see that

bi(k) = —121~1 (1, den 7§ oer 0 per k(@) 1260 @.17)
= _|Q|_]TrQ % rper,O(Z)rper,k(Z)y (4.18)

where 1 is the constant function 1 € Lger and €2 is an arbitrary fundamental cell of £. To

begin with, using the Cauchy-formula for derivatives, we obtain
b1(0) = — || ' Trg 74 Foer.0(2) = Q1 'm. (4.19)

Next, recall that hper x = (—iV — k)? — dper (see (4.6)). We have, by the resolvent identity,
that

rper,k(Z) - rper,O(Z) = rper,k(Z)[Z(_iV) k— |k|2]rper,O(Z)- (4.20)

Applying this identity to (4.18) and using that b (k) is even, we obtain (4.16), with ei =
—|§2|_1TrL]%cr §ri o(z) and €’ given by (1.36).

per,
Using the Cauchy-integral formula, we rewrite €] as

1
€ == 3Trpy f7 (tper = o). 4.21)

Then following the proof of Lemma B.2 with f{, replaced by f{,, we show that €] = O (sp).
This proves (4.16).
Next, we prove the expansion

by(k) =k - €'k + k- €k + O(k*) + O(s3). (4.22)

where €” is given in (1.37), €] is a real matrix satisfying €/ = O(sp) (contributing to the
third term on the r.h.s. of (4.12)). First, we recall from (4.15)

ba(k) = 121 (1L (MK~ M)il) 13, (4.23)
= Q7 (Ml K M) 2 4.24)

wherf_:, reca_lll, My, Ky and Ky are the k-th Bloch-Floquet fiber of M = Ms—1, K = Ks=
and K = Ks—. Letting
pr = (P)iMil € L (4.25)

per >

where Lger is given in (1.19), a is given in (3.38), and P, is defined in (3.37), we find

ba(k) = 121 o, K or) 2 (4.26)

per

Now, we expand py in k. By (4.4), we have My_ol = —den [f rser,o(z)]. Next, recall
§ = 57 [rdzfr(z — ) (see (3.7)) to obtain

Mj—p1 = —den fi/" (hper,O — ). 4.27)
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Since ff., < 0, we have My—o1 > 0. Introduce the function
V(x) = —den | f7 (hper,o — w)] (x) = 0. (4.28)
By definition (4.25) and Egs. (4.4), (4.27) and (4.28), we have
o = (P V + pt, (4.29)

P = (Po) den 55 oer.0(2) (=i V)k + k%) rper £ (2). (4.30)

Inserting the decomposition (4.29) into (4.26) gives
Q02 (k) =(V, K7 'V) +2Re(V, KL op) + (of, K o} 431)

We expand the third term on the r.h.s. on (4.31). First, we give a rough bound. For z € I", we
claim the estimates
1 — A)arper,k(Z)”

< 0= A rer@I S d*7H S, (4.32)
fora = 0,1/2, where d = d(z) := dist(z, 0 (hper)) > %. The first estimate follows from
(2.38). The second estimate is straightforward for « = 0, 1, which by interpolation, gives
it for all @ € [0,1]. For « = 1/2, it can be also proven directly as ||(—A)!/2f|? =
(f, (hper — 2 + Pper + 2) f). Taking f = rper(z)u, we arrive at the second estimate in

(4.32) fora = 1/2.
By the second resolvent identity (4.20) and estimates (4.32), we have the expansion

Fper k(2) = Tper.0(2) + O(k|d ™3/ 4 |k[Pd72).
Using this expansion in (4.30), we find
op = p -k + Ok,

where p’ is given in (1.38). Using the latter relation, the relation K © = 16(; 4 O (k) and

the fact that, since on Lger the spectrum of —i'V is discrete, (P)i=0 = (Py—o)i—o for a is

sufficiently small, we obtain
1207 i, K ' op) = —ke"k + O (KY), (4.33)

for €” is given in (1.37), where the power of the remainder comes from the fact b, (k) is
even which is shown by the same argument that was used in demonstration that b(k) is even.
Equations (4.31) and (4.33) show that

ba(k) = by(0) — ke"k + O (k*) + Rem, (4.34)
Rem := (V,[K; ' — K, '1V) +2Re(V, K, ' 0}), (4.35)

with b2(0) := ||~ 1(V, K;_' V). To estimate b (0) and the terms in (4.35), we use Eq. (3.53)
and the relation [|K ~'|| = supy |K; || (see (2.38)) to obtain

1K S L.
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We use this bound, Lemma B.2, (4.30) and the fact that b, (k) is even in k, to obtain
IQIRem| < (IVIZ, + VI, )k
= O(splkl?), (4.36)
1Q[b2(0) = 0(||V||ifm) = 0(sp). 4.37)

We identify the first, third and fourth terms on the r.h.s. of (4.34) with the fourth, third and
second terms in (4.22), respectively. Equations (4.34)—(4.36) imply (4.22).

Equations (4.13), (4.16), and (4.22) yield equation (4.12), with €] + ¢} making up the
third term on the r.h.s. of (4.12). This completes the proof of Lemma 4.3. O

Lemma 4.4 The 3 x 3 matrix € entering (4.2) is symmetric and satisfies
e>1-0(sp). (4.38)

Proof We prove this lemma using the Feshbach—Schur map. Let P = Py (see (3.37)) for
some real number s > 0, unrelated to r and satisfying B(8s) C Q*. For any projection P
and operator H on L2(R3), the Feshbach—Schur map Fp(H) is defined as

Fp(H):= PHP — PHPH 'PHP. (4.39)

where P =1— P, H = PHP,and H™! is defined on the range of P. The Feshbach—Schur
map has the property [20]

—A¢o(H) < —A¢o(Fp(H+ L) —AP). (4.40)

for any A > 0. That is, for all A > 0,
H>0 < Fp(H+XA)—AP >0. (4.41)

With the Laplacian A, we define
Kes=Ks+cA. (4.42)

Since Ms > 0 by Proposition 3.1, we have that K. 5 > 0 for all ¢ € [0, 1). Consequently,
(4.41) shows that, for any A > 0,

Fp(Kes+2) — AP = 0. (4.43)

Using definition (4.39) and the resolvent identity, we obtain

Fp(Kcs5+A) — AP (4.44)
= PK.sP — PMs(K.5+ »P)"'MsP (4.45)
= Fp(Kcs) + \PMsK_{(Kcs +AP)"'MsP (4.46)
= Fp(Kes) + APMsK_{MsP

— A2 PM5(Ke5) 2 (Kes + AP) ' MsP. (4.47)

By the choice of P = P (see (3.37)), we see that 1%6,5 > 52, Since Ms < 872, we see that
the last term in (4.47) is bounded by O (\28~*s70). Thus, (4.44) - (4.47) implies

Fp(Kes+21) — AP = Fp(Kes) + AW + 0028 450 P, (4.48)
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where W = PM(s(I?c,(;)’zMg P. To estimate W, we proceed as in the proof of Lemma 4.1.
First, since M; is Ls-periodic by Proposition 3.2, W is Ls-periodic. Moreover, the definition
W := PMs(K.5)">MsP and (3.34) yield
W = P8 UsMiUS) Bs[8 2 Us (A + M) US> P87 Us My Uy P
= PasMﬂsaskflf_’alePss,
which implies that
W =UsW|,_Uj. (4.49)

((Kes)™! entering W in the second power eats up 52 compared to (4.3).) Since B(8s) C QF,
the last two properties and Lemma 2.8 show that W is a function of —i6V of the form

W =w(—idV)P, (4.50)

where w(k) = (Wil)gq, with Wy being the Bloch—Floquet fibers of W and 1 standing for
the constant function, 1 € Lger (R3). Using Eq. (2.37), we find, as in (4.1)—(4.2), the explicit
form of w(k):

wk) =IQ17H1, My K> My 1) 4.51)

2
Lper ’

where M and K are the _k—th Bloch-Floquet fibres of Ms—1 and Ks—1.

Since the operator My K~ 2 M, in (4.2) is self-adjoint, the function w (k) is real. Arguing as
with b (k) in the proof of Lemma 4.1, we conclude that w (k) is even and smooth. Furthermore,
as with b; (k) in the proof of Lemma 4.3, we expand w (k) in k to the fourth order to obtain

W = 0(sp) — 8°VesVP + 0(8*(=iV)*P), (4.52)

e3 = Q170" K 30" 13, > 0. (4.53)

where p’ is given_in (1.38), K¢.0 = Kcs=1k=0 1s the O-th fiber of K. s—1, and IEC,O =

IZIOKCYOIZIO. Here [Ty = 1 — I1p and Iy is the projection in Lger onto constants. The inverse

IE;& is taken on the range of Io. Equations (4.48) and (4.52) imply that
Fp(Kes +2) = AP = Fp(Kes) + O(s5) — A8*Ves VP
+ 0@ =iV)*P)+ 08 4s70P). (4.54)

Now, we use definition (4.42) to expand the term Fp(K.s) in (4.54) in c. A simple
computation shows that

Fp(K.s) = Fp(Ks) + cAP (4.55)
— ) "PMs(K; ' (—A)" Ky M P. (4.56)
n>1

Since IE,; > 0, (4.56) is negative, we conclude
Fp(K.s5) < Fp(Ks) +cAP. (4.57)
Since Fp(K;s) = £ for r = s (see (3.60)), we see, by Lemma 4.3, that

Fp(Ks) = — VeV P + 0(8*(—iV)*P, (4.58)
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986 I. Chenn, I. M. Sigal

with € defined there. We use that O (§*(—iV)*P) = 0(G%(—iV)?P), where & := 8s (which
is unrelated to the a in (3.38)) and (4.57) and (4.58) to obtain

Fp(Kes) < —V(e —c+ 0@H))VP. (4.59)
Setting €4 := 0(@%) + 18%e3, we see that Egs. (4.54), (4.43) and (4.59) imply
—V(e+e—c)VP+ 00 s )P+ O(sp)P
> Fp(Kes+A) —AP > 0. (4.60)
Inequality (4.60) holds for all s € (0, s7h. Taking s = §73/4 we find
—VeVP > [(c — 0(")A — 0(s8'%) — O(sp)1Ps.

where Ps := P;_s-3/4. Since this holds for every 6 > 0, since P = P converges strongly to
1, as s — o0, and since the expression for € given in Lemma 4.3 is independent of §, we see
that

—VeV = —cA — O(sp),

for every ¢ € [0, 1). Passing to the Fourier transform gives & - €§ > clE> — O(s%), Ve € R3.
For £ € R3, with |£] > 1, this implies & - €£ > (¢ — 0(s§))|g|2, which is equivalent to
(4.38). O

5 Nonlinear Estimates

Let Ns be given implicitly by (3.31) and recall the definition of the By s norm from (3.45).
Let H = L2, In this section we prove estimates on Nj.

Proposition 5.1 Let Assumption [Al] hold. If |18, 5, |92, s = 0(871/%), then we have
the estimate

[INs(p1) — Ns(@2)l 12
Sm7Bs71 2oy s, 5 + ll2llB ) 01 — @2l 1 (5.1)

In Appendix D, we prove a more refined estimate. We derive Proposition 5.1 from its
version with § = 1 by rescaling. For § = 1, we have the following result.

Proposition 5.2 Let Assumption [Al] hold and either | Y ||;2 = o(1) or [V¢| 2 = o(1).

Then N := Ns_ satisfies the estimate

2
INWD = N2l S [(Illﬁjllm)lllﬁl — Y2l g

Jj=1

+ (I 1 125 1 = wall
1 gl — Yl D I — wzni/f)]. (5.2)

We first derive Proposition 5.1 from Proposition 5.2 and then prove the latter statement.
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Proof of Proposition 5.1 By (3.33), Ns and the unscaled nonlinearity N = Ns— are related
via
Ns(p) =87 PUNGW), ¢ =57"2Ufo, (5.3)

where Us is given in (2.45). Equations (5.2) and (5.3) the relation ||Uf¢ll;2 = ll¢|l;2 and
the notation y; = 8_1/2U3*<pj imply

2
INs(@1) = Ns(g)ll 2 S 8732 [nwj L v — vl
j=1
1/3

I I 15 19 = w2l

1 gl — Yl 1 — 1/f2||2/3] (5.4)

~1/2

Furthermore, using the relation ||/ || gx = 6 U5l g = 6"_1/2||<p||1_~1k, we find

2
INs(@1) = Ns(g2)ll 2 S 8732 [auw i llor — 2l 1
j=1

1/3
+8*(|I¢JII/II¢,II llor — @2l g
+lejllgiller = sozllH/,H(m 2112 ] (5.5)
2
3

To estimate the terms on the r.h.s. of (5.5) we use the inequality a'/35%/3 <
a = |l¢llg1 and b := m'/25~1||y/|| ;2, to obtain

(a + b), with

13, 12/3 _ 2, _ _
el i1y < ™28 gl g+ m 67 2.

13, 2/3

With the definition of the norm || - ||s in (3.45), this yields §3 3 ||<p||
< 2m='38|lpllsll x|l g1 Since | x Il g1 < llxls, this in turn lmphes

el 2 Il g
173, 12/3 2 _
85l o251 e < 3 Pslells -
Applying this inequality to (5.5), we arrive at (5.1). O

Proof of Proposition 5.2 Let hper and rper(z) be given in (3.8). First we observe that Eqs.
(3.28)—(3.32), with § = 1, read

N@) = F(@) — F(dper) — dy F (dper) ¥, (5.6)
F(¢) = den[ fr(h? — w1, (5.7)

where V¥ 1= ¢ — ¢per and, recall, h? := —A — ¢ = hper — Y. Next, using Egs. (3.4) and
(3.7) and expanding (z — )l =(z - hper + 1//)_1 to the second order, we find

N (%) := den[N2(¥)], (5.8)

where

Ne(p) = f (2 = hyer + 9) =PI DT (5.9)
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(n— 17‘3\1) I ££*¢ 1/2,1)
| e
rod
(n—1/2,0) P :
R (u+1/2,0)
i a0
(n=1/2,1) L (~61/2,-1)

Fig.2 The deformation of the contour I' is indicated by the blue dashed line. The spectrum of /iper is denoted
by solid black line. The poles of f7(z — 1) are denoted by the black dots. The number ¢ denotes the lower
bound Aiper > —c + 1

with § given by ¢ := % Jr dzfr(z — ), where I' is the contour given in Fig. 1 (see (3.7)),
equipped with the positive orientation.

We deform the contour I" given in Fig. 1 into the contour indicated in Fig. 2 by the blue
dashed line and consisting of two separate contours traversed counter-clockwise.

By the formal resolvent expansion (without justifying the convergence)

@ = hper + )7 =Y rper DU rper (DT, (5.10)

k=2

we see that N (i) can be written as the formal series

N() =Y den[Ne(¥)], (5.11)
k=2
where
Ni(¥) o= 55 Fper([(=¥)rper ()1 (5.12)

Proposition 5.3 Ler Assumption [Al] hold and let Ny be given by (5.12). Assume that
IVY |12 = o(1), then we have the estimate

4/3 2/3 — .
lden[Ne(W)]llz2 S IVUILS IV IS 19152, =01, (5.13)

where the constants associated with < are independent of B.

@ Springer



On Derivation of the Poisson-Boltzmann Equation 989

Proof Below, we use the notation r = rper (z), where rper (2) is given in (3.8), and the estimate
(see (4.32))

11— a)r) <a* ' <, (5.14)

fora € [0, 1] and z € T", where
1
d =d(z) := dist(z, 0 (hper)) > 7 (5.15)

We use the L2-L?2 duality to estimate the L? norm of den[ Ny (¥)]. We have, by (2.5) and
definition (5.12),

| den[Ni (¥)]ll 2 = Sup V fden[Nk(llf)]‘

fli2=1

= sup [Tr[f Ne(¥)]|

Il 2=1

(In the last two lines, f is considered as a multiplication operator.)
Let f € L? and recall the Schatten norm Il - llsp defined in (2.3). Using the non-abelian
Holder’s inequality 1 = 2 —|— + + 5> we see that, for k > 2,

ITe(frr)O) SIFris lvrlissllvr g 2. (5.17)

Next, we use the operator trace-class estimate ||A||§3 = Tr(JAP) < [A|Tr(JA]?) =
IANIAN, < lAllsollAll3, to obtain

= sup (5.16)

Il 2=1

1/3

2/3
[Allss = 1Allgs 1Al ) (5.18)

Using this equality to estimate the third factor in (5.17) and the standard relative bounds
lrl S Nvillpz and [[Yrll S v lize S 1Yl g1, we bound the rh.s. of (5.17) as

TeCfrr O SIFrlselvr g Il 1w ls2, i =0.1. (5.19)

For a typical term on the r.h.s., we have || grisr < ||g(1 — A)™*?|lsp||(1 — A)*rr||, with
3/2p) < ap < 1, p > 3/2, which, together with Kato—Seiler—Simon’s inequality (2.14)
and inequality (5.14), gives

lgriise < llgllLrd® ™", 3/2p) <ap <1, p > 3/2.

Applying this estimate to each of the first three factors on the r.h.s. of (5.19) and using the
Gagliardo—Nirenberg—Sobolev inequality (2.18), we find

ITe(rpry)] Sd™PIFIIve S 1w 15 1w 2, (5.20)

for j = 0, 1. Recalling definition (5.15) of d = d(z), we see that the integral on the r.h.s. of
(5.16) converges absolutely. Equations (5.20), (5.15), (3.7) and (3.6) give

SUAIIVY S w15 1w (5.21)

‘74 Te(fr(yr)*)

for j =0, 1. Equations (5.16) and (5.21) imply (5.13). O
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Now, we complete the proof of Proposition 5.2. Proposition 5.3 shows thatif ||/ || ;2 < oo
and either [[¥]|;2 = o(1) or |[¥]| ;1 = o(1), then series (5.11) converges absolutely in L2,
Now, using series (5.11), we write

N(@1) = N(y) = Y den[Nx(¥1) — Ne(¥2)]. (5.22)

k>2

By definition (5.12), Ni (¥) is an k-th degree monomial in ¢. Hence, we can expand Ny (1) —
N (yr2) in the following telescoping form

Koy =R = ) TR =y 4 (= R (5.23)

The proof of Proposition 5.2 follows by applying appropriate and straightforward extension
of Proposition 5.3 to each term in the expansion of N (¢¥1) — Ni(¥2) given in (5.23). O
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AppendixA:e(T) — e€(0)asT — 0

LemmaA1 Let xc = 0. Then € = €(T) — €(0) as T — 0, where €(0) is the dielectric
constant for T = 0 obtained in [7].

Proof We see from (1.35) below that €(T), T = 1/8, is of the form
1
G(T)ZT/ Srz—wX @ (A.1)
Tl Jr

where X (z) is some holomorphic function on C\R, independent of 8, and remains holomor-
phic on the real axis where the gap of /ipe; occurs. On R, we note that fpp(Bx) converges to
the indicator function x(—0,0) as 8 — oo. If we take B — oo, the integral

1
T/ Srz—wX(z) (A.2)
Tl Jr
converges to ﬁ /. G, X(z) where G is any contour around the part of the spectrum of /per
that is less than ftper. This is the same expression as in [7] after inserting 1 = Zi l@i Y {@i
for each resolvent of /e in X (z) where the ¢;’s are eigenvectors of /iper. ]

Appendix B: Bounds on mand V

In this section, we prove bounds on m and V given (1.33) and (4.28). Note thatm = ||V ||, Lot
Since f} < 0 (T = 1/B), (4.28) implies that V > 0 and therefore, by (4.28), ”V”L;I)er =
Jo V. where Q is a fundamental domain of £ (see Sect. 1.5), which yields

m = / V= _TrLgerf}(hper,O — W), M = Hper- (B.1)
Q
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Lemma B.1 Let Assumption [Al] hold and ngy be given in (1.27). Then

! Be P, (B.2)

m=1Viy, = 5

where ng is given in (1.27).

Proof Using that 1 is the smallest distance between y = fiper and the spectrum of /e o (see
(1.27)) and Eq. (B.1) and replacing Tr 12, f} (hper,0 — 1) by the contribution of the eigenvalue

of hper,o closest to u, we find

Bno 1

e

> e M0, B.3
L+ Py = 3P° (-3

This gives (B.2). ]

m=>— fr(no) =B

Lemma B.2 Let Assumption [Al] hold. Then, for 1 < p < oo,

IVilg, < Be™. (B.4)

Proof We do the case for p = 1 and p = 00, and conclude the lemma by interpolation. By
Assumption [A1], the potential ¢pe; is bounded. Thus, Zper,0 has only discrete spectrum on
L2, (R?) and

1 eBO—1)
2V, = Z T BO—N2
B per (1 4 eBO—)

A€o (hper,())

Z PO 4 Z e PO (B.6)

n>Ar€o (hper.O) n<Ai€o (hper.O)

= Y e (B.7)

AEO (hper,O)

(B.5)

IA

Again, we use that 7 is the smallest distance between (4 = [iper and the spectrum of Zper o
(see (1.27)). Peeling the eigenvalue(s) closest to u and letting 7o + & stand for the distance
between p and the rest of the spectrum o (per,0), We find, for some constant c,

Z P — pPmo Z ePIr—ul (B.8)
A€o (hper,0) A€o (hper,0), [A—pml=n0+E

We estimate the sum on the .h.s. by an integral as follows. Since the potential ¢pe; is infinites-
imally bounded with respect to —A, the eigenvalues of Zper o go to infinity at a similar rate
as those of —A (on L3, (R?)), i.e. as n?. Thus, assuming that for 1 sufficiently large, the nth

eigenvalue A, ~ n? has the degeneracy of the order O (%), k > 0, we conclude that

3 ehow g / kBG4
X

2
HU<AEOT (hper,O) ZpAno+e

= 1/ (y —l—u)%e_ﬁydy < l’u%e—ﬂ(no%)_ (B.9)
2 Jyznote B

For the first sum in (B.6), we consider separately the cases 4 < 1 and p >> 1 and, in the 2nd
case, break the sum into the sums over A < 1 and A > 1. In the first three situations, the
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estimate is straightforward and in the last one, we proceed as in (B.9) to obtain
3 PO < %M%e*ﬂno_
I‘«_’]O_EZ}\EU(hper,O)

This proves the lemma for p = 1.
Let W;‘e’rl be the usual Sobolev space associated to L
the case p = oo, we use the Sobolev inequality

1

per involving up to 4 derivatives. For

1 £llso < 11y (B.10)
for f € Wge’rl. Thus, it suffices for us to estimate || V/V ”Lll)er’ j=0,...,4. To this end, we
note that

Vden(A) = den([V, A]) (B.11)
for an operator A on L%er(RS). Thus, it suffices that we estimate the trace 1-norm of
VS f1.(hper,o — W)V on Lger(R3) fors = 0,...,4. Since the potential @per is bounded
together with all its derivatives, we have, fors =0, ..., 4,

V=2 < 1, (B.12)
where h = hpero + ¢, with ¢ > 0 s.t. hpero + ¢ > 0. Indeed, to fix ideas, consider

one of the terms, say, [[V2h=3/2||. We have V3 £[12 < |[(=A2f11? = (f, (h + dper —
¢)? f). Taking f = h—3/%u, expanding the binomial (4 + Pper — ¢)? and commuting the
operator / in the resulting terms h2¢per and ¢perh2 to the right and left, respectively, and
estimating the resulting commutators, [h, ¢] and [@per, ] = —[h, ¢per], We arrive at the
estimate |[V32~3/2|| < 1 as claimed. (B.12) implies also that ||A~>F$/2V4=5|| < 1, for
j =0,...,4. As the result, we have

IV £ (hper0 — IOV gt S g (Bper,0) 1

where g(x) := —(x + c)s/zf} (x — ) (x 4+ ¢)>7%/2 > 0. Hence, it suffices to estimate
lg (Aper,0)lls1 = Tr[g(hper,0)]. The latter can be done the same way as the case for p = 1 by
summing eigenvalues of /1per,o and the lemma is proved. O

Appendix C: Bound on Mg

In an analogy to L2, = L2_(R?) given in (1.19), we let

per per
L s = Lo s(R?) = {f € Lio(R?) : f is Ls-periodic }. (C. 1

Moreover, we recall V™1 := V(=A)~! (see (3.56)). The main result of this appendix is the
following

Proposition C.1 Let Assumption [Al] hold. Then the operator Ms can be decomposed as

Ms = My + My, (C.2)

with the operator M and My satisfying the estimates
1BV~ MiPrgll 2 S 87 IV, 1Pl 2, (C.3)
1BV~ MY PVl 2 S 1Pl 2. (C.4)
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Proof of Proposition C.1 Proposition 4.2 and the rescaling relation (3.34) imply the explicit
form for the k-fibers of Mj:

Lemma C.2 Then Ms has a Bloch—Floquet decomposition (2.34) with L = Ls, whose k—fiber
Ms i acting on Lger,é is given by

Msif =~ 8den [f rSer,()(z)erer,k(z)] (C.5)

2 2
where [ € LPemS and, on Lper,S’

Foek = @ =Moo )7 M =82 (=iV — k)% + 8¢, (C.6)
We decompose the operator Ms  acting on Lger, 5 as
Ms . =: Mso + My, (C.7)

where Ms 0 = Ms =0 and M é‘ « 18 defined by the expression (C. 7). We define operators M(g
and Mj on L2(R?) via

@ A~

Mé ::/ dkMg,(]gD, (C 8)
H
@ A~

MY = / di M 0, (C.9)
Q '

8

where Qj is a fundamental cell of the reciprocal lattice to L5 and dk = |25~ ldk. By Lemma
C.2 and definition (C. 7), the latter operators satisfy (C. 2).

Lemma C.3 Mj (see (C. 8)) restricted to the range of P, is a multiplication operator given
by

(M3 Pr)(x) = Vs(x)(Prp)(x), (C. 10)
where
Vs(x) = =82 den [ ff (hpero — )] (6 %), (C. 11)
with hper,o given in (4.6) (with k = 0).

Proof By (C. 5) and definition of M é in (C. 8), we see that

@ A
MPg = — /g _ dk§den [?f rger,o(z)(Pr(p)krger’U(z)] . (C.12)
S

By Corollary 2.4 and the Cauchy integral formula,

2]
M Prp = — /Q dk 8 den [%(rger’o(z))z] 19251~ g (k) (C.13)
8
@ ~
= /Q dk den[ f7(h)er o — 111 G (k). (C. 14)
8
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where rger,o(z) and hger,o are given in (C. 6). Applying the inverse Bloch—-Floquet transform
(2.24), (C. 14) implies

M P = —8den[f} (e o — 0] | dke™™1Qs51 714 (k). (C.15)
P ot
8

Since dk is normalized by the volume |} (which is independent of the choice of the cell),
(C. 15) shows

MiPrp = = 8den | f (g = 0] Pro (C. 16)
By Lemma 2.7 and recalling the definition of Us from (2.45), we see that
8den| 1 (erg = )] = 8 den [Us f7 (hpero — U} ] (C. 17)
=872 den [ f7 (hper.o — )] (67'x) (C. 18)
where hper,0 = hge:r,lo, which together with (C. 16) gives (C. 10)—(C. 11). O

Proof of (C. 3) Let Vs be given in (C. 11). Since the Bloch-Floquet decomposition is unitary,
we see, by Lemma C.3 and Corollary 2.4, that

IM5 Pz, = Vs Proll7s =/Q dk|Vslpk)lISs1 7z, (C. 19)
* per,
S

where L2, is given in (C. 1). Using the fact that dk = |2}|~'dk and || = 63|, (C. 19)

.. pen
implies

IM§P2, =83 1QU1Vs12,  I1Proll2s. (C. 20)
Lper,E

By a change of variable, we see that || V5|, 2 = s~ v ||le) , where V is given by (4.28).
B per, er

Combing with (C. 20), the fact P.(—iV)~! < r~! (where V™! is given in (3.56)) and

r~l=a"18 < § (see (3.38)) yields Eq. (C. 3). O

Proof of (C.4) Let M} be given by (C. 9) and k~! := k/|k|>. Let ¢ € L?(R?). By Corollary
2.4, we have

PV o) = k19019261 x50y (K). (C.21)

This gives Mj P,V g = |Qs] ! fé’ir) d/Gng k1 (k). Since the Bloch-Floquet decompo-
sition is unitary, we see, using (C. 21), that

IM§ PV )2,

= )2 /B aR M} kG (€.22)
N per,

Since dk = |2%|~'dk = |Q|dk and |Q25] = 83|, (C. 22) is bounded as
1M PV~ oll7

<67 sup (uMg(klniz 5|k|—2> 1Pl (C.23)
per,

keB,

2

2 . .
where 1 € Lper’ 5 18 the constant function 1 and Lper,

s is givenin (C. 1).
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By (C. 5) and (C. 7), we have, for Mé/,k given in (C. 7), that

MS/,;(QD = —dden [% rper,O(Z)(P(”ger,k(Z) - rger’O(Z))i| . (C.24)

Since rh; 1 (2) = 1per,0(2) = Fer 0 (D AkTer 4 (2), Where Ay := —2(=iV)8k + 8*|k|?, this
gives

M} ¢ = — §den % (e (D0 (D Aker D) | (C.25)

By the rescaling relation (3.34) and (C. 25), we see that

M5,z = WU M Us - UL, = 832721 M Y g,
= 571/2| den| 7§ oer (2) Akrper.sk (2] | 12, (C. 26)

By (C. 26), notation Ay := —2(—iV)k + 821k|? and inequality (4.32), witha = 0, 1/2, we
obtain, for |k| <r,

M5 g I~ S 8712 671242,

=812+ 8. (C.27)

By (3.38) and (C. 23), Eq. (C. 27) shows that
1M PVl 2 S 87 (C.28)
This bound, the observation that || P, V™! s < r~1 (see (3.37)) and the definition r = als 2
1/6 imply Eq. (C. 4). O
This completes the proof of Proposition C.1. O

We use Proposition C.1 to prove the following

Proposition C.4 Ler Assumption [Al] hold and let Be~ "8 < 1 (which is weaker than
Assumption [A3]). Then the operator My is bounded as

IVTUBMs fllgn S ILf s (C.29)

Proof of Proposition C.4 Decomposing Ms according to (C. 2) and using bounds Egs. (C. 3)
and (C. 4) of Proposition C.1, we see that

IV B My Pl 2 < IV PMG Pl 2 + IV B M Pl

STV I 2 + 1V fll 2, (C. 30)
where V is givenin (4.28). Using ||Vl 2, = IVIZZ IV and the definition m := |V | L
cr per er
in (C. 30) gives
1A 2 e
IV B Ms flln S IVIRE m 21 f 1) + 1V e (C.31)
Lemma B.2 and definition (3.45) imply (C. 29). O
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Appendix D: Refined Nonlinear Estimates
Let Ns be given implicitly by (3.31) and recall the definition of the B, s norm from (3.45).
Let H? = L. In this section we prove estimates on Nj.

Proposition D.1 Let Assumption [Al] hold. If ||¢1 ||, ;. @215, ; = 0(871/2), then we have
the estimate

[INs(@1) — Ns(@2) |l 12
S e Pm™ 387 2ol s, 5 + ll@2llB, ) 01 — @2l 1. (D.1)

We derive Proposition D.1 from its version with § = 1 by rescaling. For § = 1, we have
the following result.

Proposition D.2 Let Assumption [Al] hold ||¥||;2 = o(1). Then N := Ns=| satisfies the
estimate

2
INGD = N@)l2 S |:(||1//j||H1)||‘/fl — V2l

j=1
1/3 2/3

+e P (I I I 12519 = Wall
1 gl — Yl 19 — wznj/f)]. (D2)

The derivation of Proposition D.1 from Proposition D.2 is same as that of Proposition 5.1
from Proposition 5.2 and we omit it here.

Proof of Proposition D.2 Let hper and rper(z) be given in (3.8). We use the relations (5.6)—
(5.12) in the proof of Proposition 5.2. Following the latter proof we see that it suffices to
improve the estimate of Ny () in Proposition 5.3, to which we proceed. O

Proposition D.3 Let Assumption [Al] hold and let Ny be given by (5.12). Assume that
IVY |12 = o(1), then, for any k > 2, we have the estimate

_ 4/3 2/3
I den[Ne(W)]llz2 S IVWIE + e Pyl )5 1w 1258 2. (D.3)

where the constants associated with < are independent of B and 8k is the Kronecker delta.

Proof We begin with k = 2. To improve upon estimate (5.13), we, following [8], use the
partition of unity

P+ P, =1, with P := Xhper <t and P := Khper > (D.4)

Let R; = R;(z) = rper(z) P where i = 1,2, P; and rper(z) are given in (D.4) and (3.8).
Recalling definition (5.12) of Ny () and inserting the partition of unity, P; 4+ P> = 1, after
each R in the integrand of (5.12), we arrive at

Ny = Y N, (D.5)

a,b,c=1,2

where the Nz”h”(llf), for a, b, c = 1, 2, denote the operators

NS ) = § RpRo R .6
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We estimate the terms individually. Below, we use the estimate (see (4.32))
10 = AR Sd" S 1, i =12, (D.7)
fora € [0, 1] and z € T", where
1
d = d(z) := dist(z, 0 (hper)) = e (D.8)

Case 1 (121) and (212). We estimate the case for (121), the other case is done similarly.
Since Py P, = 0, we write

NP () = 7§ RiY Ry Pay/ R (D.9)

_ y§ Ri[PL W1Pa Ry Pa[, PLIR) . (D.10)

Applying Lemma 2.1 and Eq. (D.7) to the r.h.s. and using that the operator norm is bounded
by the 2 norm, we find

I den[N32V (@)]lllz2 S (1= A)Y4+ NSV ()| 52 (D.11)
< ‘yg‘d*nm, V1PaI5e. (D.12)

where, recall,
W izﬁfrdzlfr(z = Wl (D.13)

A key observation allowing us to obtain an improved estimate is that the commutators lead
to gradient estimates:

Lemma D.4 Let Assumption [Al] hold, we have the estimate
0P vlllse S IV lL2, i =1,2. (D.14)

Proof of Lemma D.4 Since the identity commutes with any operator and P, = 1 — Pj (see
(D.4)), we prove the lemma for P; only. Since hper (see (3.8)) has a gap at u, the Cauchy
integral formula implies

1
Py (2 = hiper) ™! = 5 / Fper (2) (D.15)
I

- 27 Jr,

where I'y is the contour {r +i; —c <t < u}U{t—i; —c <t < u}U{—c—it+ {1 —-1)i:t €
[0, 1}U{u—it+ (1 —1)i : t € [0, 1]}, where ¢ > 0is any constant such that hpe; > —c+1,
and the contour is traversed counter-clockwise. We see that

1
[P, Y] = T/ [rper(2), ¥/] (D.16)
L Jry

B 1
T 2mi

A ”per(Z)[V" Vl/f]”per(z)
1

1
+ o /F @OV V). (D.17)

Lemma D.4 is now proved by an application of the Kato—Seiler—Simon inequality ((2.14))
to (D.17) and noting that I'{ is compact and has length O(1). O
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998 I. Chenn, I. M. Sigal

Using Lemma D.4 and estimates (3.6) and (D.8) in (D.12) yields that
I den[NS"* ()il 2 S IV 2, - (D.18)

Case 2: (112), (211), (122), (221) We estimate the case for (112), the other cases are done
similarly. Again, since P; P, = 0, we write

NP ) = f RiYRIY Ry (D.19)
= f Riy R [, PR, . (D.20)

Using Lemma 2.1 as in with N{'*" () in (D.11), we estimate (D.20) as
I denN"™ @)1l 2 < ‘ f ‘dlnzm [y, PR g2 (D.21)

where |g§| is defined in (D.13). By the inequality ||A|| < ||All;», for any p < oo for any
operator A on L2(R?), and the Kato-Seiler—Simon inequality (2.14), we find |[Y Ry <
v Rillgs < 1Yl 6. Using this, together with Lemma D.4, in (D.21), we obtain

Il den[ Ny (W1l 2 S ’ }5 ’ AWl sV 2 (D.22)

Combining this with (3.6), (D.8) and Hardy-Littlewood’s inequality (2.18) gives
I den[Ny"™2 @)1l 2 SNV 12, (D.23)
Case 3 (111) and (222). We use the L2172 duality to estimate the L? norm of

den[N7%? (y)], ¢ = 1,2. We have, by (2.5) and definition (5.12),

I den[ N9 9? ()1l = sup
I£1l,2=1

= s [TlfN )
Il 2=1

f fden[Né‘”q)(wn‘

= sup . (D.24)

Il 2=1

TR YRR,

(In the last two lines, f is considered as a multiplication operator.) To show that the integral
on the r.h.s. converges absolutely, we follow the arguments in (5.17)—(5.20) to prove, for
q=0,1,
_ 4/3 2/3
Te(f Ry R)D)| Sd™ UL N 219915 1w 1135 (D.25)

Due to definition (D.8) of d = d(z), this shows that the integral on the r.h.s. of (D.24)
converges absolutely.

LemmaD.5 Forqg = 1,2, we have
fTr[fRquRthPq]

1
=5 / (fr(z) — DTe[fRP,gRP;hP,]. (D.26)
Tl Ty
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Proof Note that the contour I' in Fig. 2 is the union of two disjoint contours, I' = I'y U Ty,
with I'1 being the closed contour and Iy unbounded one (i.e. the parts of I" with Rez < p
and Re z > w). We first note that, by Bloch’s theory,

J

Computing the trace in the complete orthonormal basis of eigenvectors ¢, x of (R P;)x (with
eigevalues A,, 1) and inserting the complete orthonormal bases of eigenvectors ¢, x, and ¢, ,
of (RPy)r, and (R P,)i, (with eigevalues A, x, and A, x,) into (D.28), we see that

dzTr[fRquRthPq]:/ dz/ dikdkydky (D.27)
Fq ( *)?

q

X TrL%cr Si—ky (RPy)k; 8ky—ko (RPy )iy iy —k (R Py ). (D.28)

/Tr[fRquRthPq]: Z/ dikdkdk, (D.29)
Iy m,n,r (@3
X APk Sfr—ky Pndey Pk » ki —ky Pr o ) Pr ey » Py — ke Pim ) (D.30)
1
x/ dz . (D.31)
I (Z - )\m,k)(z — kn,k|)(z - )\r,kz)

q

Since Py projects to the spectrum of /e on the left of 11, we see that Ay, k, An ks Arky < p.In
particular, these eigenvalues are in the left closed contour in Fig. 2. Consequently, Cauchy’s
integral formula shows that the term in the large bracket in (D.31) is identically zero. Similar
argument applies to P>. This shows that

— | Tr[fRP,gRP;hP,]1=0. (D.32)
2mi r,

Thus (D.26) follows. O

Using the explicit form of the Fermi—Diract distribution f7 in (1.2), we see that
ePRez—1)

lfr(@—pn) =1 = T4 ePGm]”

(D.33)

By condition (1.26) and by the choice of the contour, I', in Fig. 2, we see that the if z € T,
then Re z is at least at the distance > 1 from . Hence, for z in a contour I', (D.33) implies
that

lfr(z—p) —1] Se P (D.34)

Applying estimates (D.34) and (D.25) to the r.h.s. of (D.26) and recalling the definition
(D.B)ofd =d(z) > 1,
we arrive at the inequality

’fTr[fRquRthPq]
_ 4/3 2/3
S e PULNIVYIS w2 (D.35)
This inequality, together with the relation (D.24), gives
_ 4/3 2/3
|dentng P @11| , e IvoILL 1813 (D36)

Inequalities (D.18), (D.23) and (D.36) imply estimate (D.3) for k = 2.
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1000 I. Chenn, I. M. Sigal

Now we estimate Nj for k > 2. By (3.6) and (3.10), it suffices to estimate den[R(¢pR)*]
where R = rper(z) is given in (3.8). Using Lemma 2.1, we see that

Il den[R(@R) 12 SI(1— A HR@GR) | 2 (D.37)
SI@R) 152 (D.38)

Using Holder’s inequality with % = % + % + %4— another k terms of é (D.38) becomes

| den[R(¢ R 12 <RI IpRIF (D.39)

<lpRIlk. (D.40)

where the last line follows since || - || < || - ||s» for p < co. Combining with Kato—Seiler—
Simon’s inequality (2.14) and Hardy-Littlewood’s inequality (2.18), (D.40) implies (D.3) for
k>3. O

The rest of the proof of Proposition D.1 proceeds as the proof of in Proposition 5.3. O
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