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Abstract
Starting from the microscopic reduced Hartree–Fock equation, we derive the macroscopic
linearized Poisson–Boltzmann equation for the electrostatic potential associated with the
electron density.

Keywords Density functional theory · Kohn–Sham equation ·Microscopic limit · Partial
differential equations of quantum physics · Poisson–Boltzmann equation · Electrostatics

1 Introduction

1.1 The Reduced Hartree–Fock Equation

The success of the Hartree–Fock and density functional theories in revealing the electronic
structure of matter warrants their use as a starting point in the derivation of emergent macro-
scopic properties of quantum matter.

Here, one of the central problems is the derivation of macroscopic Maxwell’s equations in
dielectrics. The first attack on such a derivation was made in the pioneering works of Cancès,
Lewin and Stoltz and E and Lu and their collaborators [5–9,15–17,17]. These works deal
with the reduced Hartree–Fock equation (REHF)1 and the Kohn–Sham equation (KSE) of
the density functional theory (DFT) at zero temperature. The first treatment of the positive
temperature REHF was given by Levitt [23] (see also [13]).

In this paper, we consider the REHF at positive temperature, which is also a simplified
DFT equation, and derive from it the linearized effective Poisson–Boltzmann equation of
electrostatics, widely used in molecular and structural biology (see e.g. [19]).

For a positive temperature T and with the electron charge set to e = −1, REHF can
be written in terms of the one-particle negative charge (or probability) density ρ(x) of the

1 The REHF obtained from the Hartree–Fock equation (HFE) by omitting the exchange term, see below.

Communicated by Ivan Corwin.

To Joel with friendship and admiration.

B I. M. Sigal
im.sigal@utoronto.ca

1 Dept of Mathematics, MIT, Cambridge, MA, USA

2 Dept of Mathematics, Univ of Toronto, Toronto, Canada

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10955-020-02562-8&domain=pdf
http://orcid.org/0000-0001-7514-7056


On Derivation of the Poisson–Boltzmann Equation 955

electron (or generally any Fermi) gas, as

ρ = den[ fT (hρ − μ)], (1.1)

where den : A → ρA is the map from operators, A, to functions ρA(x) := A(x, x) (here
A(x, y) stands for the integral kernel of an operator A), fT (λ) is the Fermi–Dirac distribution,

fT (λ) := fF D(λ/T ), fF D(λ) = 1

eλ + 1
(1.2)

(due to the Fermi–Dirac statistic), μ is the chemical potential and hρ is a self-adjoint one-
particle Hamiltonian depending on the density ρ (self-consistency). Since hρ is self-adjoint
the r.h.s. of (1.1) is well defined. Assuming the electrons are subject to an external potential
due to a positive charge distribution κ (say, due to positive ions), hρ is given by

hρ := −�− v ∗ (κ − ρ) , (1.3)

where v is an inter-particle pair potential. It is taken to be the electrostatic potential, as
specified below.

Let L2
loc ≡ L2

loc(R
d) denote the space of locally square integrable functions. We fix a

lattice L ⊂ R
d and let L2

per be the space of L2
loc, periodic w.r.t. L functions. Finally, let

(L2
per)
⊥ be the orthogonal complement of the constant functions in L2

per. In what follows, we

assume ρ − κ ∈ L2 + (L2
per)
⊥ and v is the electrostatic potential, v(x) = 1

4π |x | in 3D, or,
generally,

v ∗ f = (−�)−1 f ,

for f ∈ L2 + (L2
per)
⊥, so that �−1 is well-defined.2 For ρ’s and κ’s specified above, the

operator hρ is self-adjoint.
The positive temperature, reduced Hartree–Fock equation (1.1) will be abbreviated, with

the view to readability, as the TREHF.
For T = 0, function (1.2) becomes the characteristic function of the interval (−∞, 0) and

Eq. (1.1) becomes just the REHF.

1.2 Electrostatic Potential

Due to the choice v ∗ f = (−�)−1 f , the electrostatic potential φ = v ∗ (κ − ρ) satisfies the
Poisson equation

−�φ = (κ − ρ). (1.4)

Plugging ρ from (1.1) into this equation and taking v ∗ (κ − ρ) = φ in (1.3), we find the
equation for φ

−�φ = (κ − den[ fT (hφ − μ)]), (1.5)

2 The decomposition L2 + L2
per is unique: if f ∈ L2 + L2

per , then the periodic part, fper , of f is given by
the Fourier coefficients

f̂per(k) := lim
n→∞

1

|�n | (2π)−d/2
∫
�n

eik·x f (x)dx, k ∈ L∗,

where �n := ∪λ∈Ln (	 + λ), with Ln := L ∩ [−n, n]d and 	 an arbitrary fundamental cell of L, and L∗
is the reciprocal lattice. Hence L2 + L2

per is a Hilbert space with the inner product which is sum of the inner

products in L2 and L2
per . The operator � on L2 + L2

per is self-adjoint on the natural domain (i.e. H2 + H2
per)

and is invertible on the subspace L2 + (L2
per)
⊥.
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956 I. Chenn, I. M. Sigal

where

hφ = −�− φ. (1.6)

We can recover ρ from φ via Eq. (1.4) or the equation

ρ = den[ fT (hφ − μ)]. (1.7)

Let Hs and Hs
per be the Sobolev spaces corresponding to L2 and L2

per. If κ, ρ ∈ L2+ L2
per,

φ ∈ H2 + H2
per and φ and ρ − κ satisfy (1.4), then

∫
	

ρper =
∫

	

κper, (1.8)

where 	 is an arbitrary fundamental cell of L and the subindex ‘per’ denotes the periodic
part of the corresponding function (∈ L2 + L2

per). Indeed, let �n := ∪λ∈Ln (	 + λ), where

Ln := L ∩ [−n, n]d . Integrating (1.4) over the domain �n and using the Stokes’ theorem,
we find ∫

∂�n

∇φ =
∫

�n

(κ − ρ).

Since limn→∞ 1
|�n |

∫
∂�n
∇φ = 0 and limn→∞ 1

|�n |
∫
�n

(κ − ρ) = ∫
	
(ργ − κ)per, the last

relation gives (1.8).
Equation (1.8) shows that ρ− κ ∈ L2+ (L2

per)
⊥, i.e. it satisfies the conditions mentioned

in the paragraph after (1.3).
Equation (1.8) determines the chemical potential μ and expresses the conservation of the

charge per fundamental cell of L. It is considered as the solvability condition and should be
added to (1.1) in the periodic case.

In what follows we associate with a solution ρ of (1.1) the electrostatic potential

φρ = (−�)−1(κ − ρ) , (1.9)

and with a solution φ of Eq. (1.5), the charge density ρ according to (1.4), or (1.7).

1.3 Relation to the TEHF and KSE

The key positive temperature HFE is given by

γ = fT (hγ − μ), (1.10)

where fT (λ) is as above and, for an external charge distribution κ ,

hγ := −�− v ∗ (κ − ργ )+ ex(γ ) . (1.11)

Here, recall, ργ (x) := γ (x, x) and v ∗ f = (−�)−1 f , and ex(γ ) (the exchange term) is
the operator with the integral kernel ex(γ )(x, y) := −v(x − y)γ (x, y), where γ (x, y) is the
integral kernel of γ . Observing that hγ

∣∣
ex(γ )=0 = hργ , where hρ is given in (1.3), one sees

that (1.10) with ex(γ ) = 0 implies the equation

γ = fT (hργ − μ). (1.12)

Equation (1.12) is equivalent to Eq. (1.1). Indeed, applying the map den to Eq. (1.12) gives
(1.1). In the opposite direction, if ρ solves (1.1), then the density operator

γ = fT (hρ − μ), (1.13)
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On Derivation of the Poisson–Boltzmann Equation 957

acting on L2(Rd), solves (1.12). Thus, (1.12) is the TREHF in terms of the density operator
γ .

By replacing ex(γ ) in (1.11) by a local exchange-correlation termxc(ρ) and then applying,
as above, the map den to the resulting equation, one obtains the natural extension of the
original Kohn–Sham equation to positive temperatures:

ρ = den[ fT (hKS
ρ − μ)], (1.14)

hKS
ρ := −�− v ∗ (κ − ρ)+ xc(ρ) . (1.15)

1.4 The Origin of the TEHF/TREHF Equations

As the TEHF and TREHF arise in the same way, in order to avoid repetitions, we consider
here only the later.

Equation (1.12) originates from the static version

[hργ , γ ] = 0 (1.16)

of the time dependent RHF equation (see e.g. [12] for a review)

∂tγ = i[hργ , γ ] . (1.17)

Indeed, ignoring symmetries and accidental divergence, γ solves (1.16) if and only if γ solves
γ = f ((hργ − μ)/T ) for some reasonable function f . (The parameters T and μ are of no
significance at this stage; they are introduced for future reference.)

The selection of f is done on physics grounds, either bringing the system in question in
contact with a thermal reservoir at temperature T and the chemical potential μ, or passing to
the thermodynamic limit. This leads to Eq. (1.12).

As we discuss below, Eq. (1.12) is the Euler-Lagrange equation for the natural free energy.

Remark If the particles in question were bosons, then fF D would be replaced by the
Bose–Einstein distribution

fB E (λ) = 1

eλ − 1
. (1.18)

1.5 Results

We are interested in the dielectric response in a medium subjected to a local deformation of
the crystalline structure. To formulate our results we introduce some notation and definition.

In what follows, we assume that d = 3 and let L be a (crystalline) Bravais lattice in R
3.

We also define the Hilbert space of L-periodic functions
L2
per ≡ L2

per(R
3) = { f ∈ L2

loc(R
3) : f is L-periodic }, (1.19)

with the inner product 〈 f , g〉 = ∫
	

f̄ g and the norm ‖ f ‖2
L2
per
= ∫

	
| f |2 for some arbitrary

fundamental domain 	 of L. We denote by Hs
per ≡ Hs

per(R
3) and ‖ · ‖Hs

per
the associated

Sobolev spaces and their norms, while the standard Sobolev spaces and their norms are
denoted by Hs ≡ Hs(R3) and ‖ · ‖Hs .

Crystals We consider a background charge distribution, κ(y) ≡ κper(y), periodic with
respect to the lattice L (crystal). Here y stands for the microscopic coordinate.
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958 I. Chenn, I. M. Sigal

We think of L and κper as a crystal lattice and the ionic charge distribution of L. An
example of κper is

κper(y) =
∑
l∈L

κa(y − l) , (1.20)

where κa denotes an ionic (“atomic”) charge distribution.

Dielectrics Next, we describe a model of the (crystalline) dielectric.

Definition 1.1 We say that anL-periodic background charge density κper ∈ L2
per is dielectric,

if TREHF (1.1), with κ = κper, has an L-periodic solution (ρper, μper), with the following
properties:

(a) the periodic one-particle Schrödinger operator

hper := hφper = −�− φper, with (1.21)

φper := 4π(−�)−1(κper − ρper), (1.22)

acting on L2 ≡ L2(R3) is self-adjoint and has a gap in its spectrum;
(b) μper is in this gap;
(c) φper ∈ H2

per and ‖φper‖H2
per

t |μper| ≤ �per , independently of T .

An existence result for the dielectrics is discussed in Remarks 6 and 7 after the next
theorem. In particular, Proposition 1.3 shows that the set of dielectric charge densities κper
is robust. Moreover, (1.5) can be reformulated so that only φper and μper, but not κper, enter
it explicitly, see (1.44). So these are the only inputs of our analysis

Dielectric responseWe consider a macroscopically deformed microscopic crystal charge
distribution,

κδ(y) = κper(y)+ δ3κ ′(δy), (1.23)

where δ is a small parameter which stands for the ratio of microscopic and macroscopic
scale and κ ′(x) ∈ L2 is a small local perturbation living on the macroscopic scale. By y and
x = δy, we denote the microscopic and macroscopic coordinates, respectively. Thus, the
microscopic scale is y ∼ 1 and x ∼ δ and the macroscopic one, y ∼ 1/δ and x ∼ 1.

We formulate the conditions for our main result. We introduce the homogeneous Sobolev
spaces

Ḣ s ≡ Ḣ s(R3) = {
f measurable on R3 : ‖ f ‖Ḣ s <∞}

(1.24)

for s ≥ 0 with the associated norm

‖ f ‖2
Ḣ s =

∫
|(−�)s/2 f (k)|2 . (1.25)

[A1] (Dielectricity) κper is dielectric.

Let hper and hper,0 denote operators given by expression (1.21) acting on L2(R3) and
L2
per(R

3), respectively. These operators are self-adjoint and the latter has a purely discrete
spectrum. By Assumptions [A1], μper is in a gap of hper. For notational convenience, we
rescale our problem so that

η := dist(μper, σ (hper)) = 1. (1.26)
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On Derivation of the Poisson–Boltzmann Equation 959

It follows the Bloch–Floquet decomposition results in Sect. 2.4 below that the gaps of hper

are contained in the resolvent set of hper,0, so that

η0 := dist(μper, σ (hper,0)) ≥ 1. (1.27)

[A2] (Perturbation κ ′)

κ ′ ∈ H1 ∩ Ḣ−1.

In what follows, the inequalities A � B and A � B mean that there are constants C and
c independent of T and δ, s.t. A ≤ C B and A ≥ cB and similarly for A � B and A � B.
Our main result is

Theorem 1.2 Let Assumptions [A1]–[A2] hold and let (φper, μper) be the electrostatic and
chemical potentials associated with κper (entering [A1]) as per Definition 1.1.

There is α = α(�per) > 0 sufficiently small, s.t., if

[A3] (Regime) The parameters T > 0 and δ > 0 satisfy

cT := T−1e−η0/T ≤ α, c−8/9T δ ≤ α, (1.28)

then the following statements are true

1. Electrostatic TREHF (1.5), with κ = κδ given in (1.23) and μ = μper , has a unique
solution φδ ∈ H2

per + H1;
2. The potential φδ(y) is of the form

φδ(y) = φper(y)+ δψ(δy)+ ϕrem(δy), (1.29)

where ϕrem(x) ∈ H1 and obeys the estimates (with Ḣ0 = L2)

‖ϕrem‖Ḣ i � α
1
4− 1

2 i (c−1/2T δ)2−i , (1.30)

with α given in (1.28), and ψ(x) ∈ H1 and satisfies the equation

(ν − ∇ · ε∇)ψ = κ ′, (1.31)

with a positive number ν > 0 and a constant real, symmetric 3 × 3 matrix, ε ≥
1− O(c2T );

3. ε ≡ ε(T ) and ν ≡ ν(T , δ) are given explicitly by (1.35)–(1.37) and (1.32)–(1.33),
below.

We discuss Assumptions [A1] and [A3] in Remarks 6 and 10 and the statements of the
theorem, in Remarks 1-4, below.

1.6 Discussion

(1) Theorem 1.2(1) and Eq. (1.9) connecting the charge density ρ with φ imply that RHF
equation (1.1), with (1.23) and μ = μper, has a unique solution ρδ ∈ L2

per + Ḣ−1.
(2) The quantity ν ≡ ν(T , δ) is defined as

ν = δ−2|	|−1(m + O(c2T )), (1.32)

m = −Tr	
[

f ′T (hper,0 − μ)
]

> 0. (1.33)
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960 I. Chenn, I. M. Sigal

Lemmas B.1 and B.2 of Appendix B imply the estimates

0 < cT � m � cT . (1.34)

By (1.34) and (1.28), m is the leading term in (1.32) and ν � δ−7/8.
(3) The 3× 3 matrix, ε, in (1.31) is given explicitly by

ε := 1+ ε′ − ε′′, (1.35)

ε′ = − 1

|	|TrL2
per

∮
r2per,0(z)(−i∇)rper,0(z)(−i∇)rper,0(z), (1.36)

ε′′ = 1

|	| 〈ρ
′, K̄−10 ρ′〉L2

per
, (1.37)

where rper,0(z) := (z − hper,0)
−1 and hper,0 denotes the restriction of hper := hφper =

−�+ φper to L2
per, K̄0 is the operator defined in (4.11), and

ρ′ = 2 den
∮

r2per,0(z)(−i∇)rper,0(z) . (1.38)

(4) Equations (1.31), (1.32) and (1.34) imply that

‖ψ‖Ḣ i = O([δ|	|1/2m−1/2]2−i ), i = 0, 1,

and therefore, by (1.28), (1.30) and (1.34), we have

‖ϕrem‖L2 � α1/4(m−1/2δ)2 � ‖ψ‖L2 .

Hence ψ is a subleading term in (1.29) in the L2-norm.
(5) (1.31) is the linearized Poisson–Boltzmann equation used extensively in physical chem-

istry and molecular biology (see e.g. [19]). ε is an effective permittivity matrix and
√

ν

and 1/
√

ν are the Debye-Hückel parameter and the Debye length, respectively.

The screening term ν in (1.31) is due to the electrons at the tail of the Fermi–Dirac
distribution being at the conduction band. (In the macroscopic regime, the Fermi–Dirac
distribution becomes the (Maxwell-) Boltzmann distribution.)

(6) (Existence of crystalline dielectrics) We say that the potential φ is gapped if the
Schrödinger operator −�− φ has a gap in its continuous spectrum.

Proposition 1.3 For any L-periodic, gapped potential φper ∈ Hk
per , k ≥ 2, and any real

number μper in a gap of hper := −� − φper , there is κper ∈ Hk−2
per such that Eq. (1.1), with

κ = κper , has the solution (ρ = ρper ∈ Hk−2
per , μ = μper) with the associated (according

to (1.4)) electrostatic potential exactly φper . Moreover, the pair (φper, μper) satisfies the
electrostatic Eq. (1.5) with this κper .

Proof Let φper be such that hper := −� − φper has a gap. We choose μper to be in this gap
and define (see (1.6)–(1.7))

ρper := den[ fT (hper − μper)]. (1.39)

Next, we define

κper := −�φper + ρper. (1.40)

Then, it is straightforward to check that (ρper, μper) is a solution of Eq. (1.1) with background
potential κper. By construction, hper has a gap and μper is in this gap. ��
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One can extend Proposition 1.3 to construct pairs (hper = −� − φper, μper) having any
desired property P. Following Proposition 1.3, we construct ρper, φper, and κper via (1.39)
and (1.40) in this order. Then (ρper, μper) is a solution of Eq. (1.1) with background potential
κper. By construction, hper has property P.

The proposition above shows that for any positive η and T , we can find κper ∈ Hk−2
per such

that the solution of Eq. (1.1) with κ = κper and T gives the gap η.

(7) (General dielectrics) We say that a background charge density κ is dielectric if Eq. (1.1)
with background charge distribution κ has a solution (ρ, μ), with ρ in an appropriate
space, say, H2

loc ∩ L∞, and having the following properties:

(a) the one-particle Schrödinger operator, defined for this solution,

hφ := −�− φ, with φ := 4π(−�)−1(κ − ρ), (1.41)

acting on L2, is self-adjoint and has a gap in its spectrum;
(b) μ is in this gap.

By the remark at the end of the previous item we have

Proposition 1.4 (Existence of general dielectrics) For any gapped potential φ ∈ H2
loc ∩ L∞

and any number μ in a gap of hφ := −� − φ, there is κ ∈ L2
loc ∩ L∞ s.t. Eq. (1.1), with

these κ ∈ L2
loc ∩ L∞ and μ, has the solution ρ, whose the electrostatic potential (according

to (1.4)) is φ.

(8) (Existence of ideal crystals) The existence of periodic solutions to Eq. (1.1) (equilibrium
crystalline structures exists at T > 0) is shown in the following:

Theorem 1.5 Let d = 3 and κper ∈ H2
per . Then Eq. (1.1), with the L−periodic background

charge density κ = κper has a solution (ρper, μper), with ρper periodic and satisfying
√

ρper ∈
H1
per .

We give references to the proof of this theorem below.

(9) In the limit T → 0, our expression for the dielectric constant ε agrees with [7] (see
Appendix A below).

(10) (Physical dimensions) The physical cell size of common crystals is on the order of
10−10 ( [35]). This gives δ ∼ 10−10. The gap size, η0, is on the order 1eV [35]. Since
the Boltzmann constant, kB , is of the order 10−4eV /K , this gives η0/kB ∼ 104K .
Thus, though we do not compute actual constants in our estimate, we expect that the
allowed values of δ and T are within physically interesting ranges.

(11) (Energy) The evolution (1.17) conserves the number of particles NX (γ ) := TrX (γ )

and the energy

EX (γ ) := TrX
(
(−�)γ

)+ 1

2

∫
X

σγ v ∗ σγ , (1.42)

where X is either Rd or a fundamental cell 	 of L, with TrX defined accordingly, and
σγ := κ − ργ .
Equation (1.12) is the Euler–Lagrange equation for the free energy functional

FT (γ ) := EX (γ )− T SX (γ )− μNX (γ ), (1.43)

where SX (γ ) = −Tr	(γ ln γ + (1− γ ) ln(1− γ )) is the entropy.

To obtain the HF (free) energy functional, one should add to (1.42) ((1.43)) the HF exchange
energy term Ex(γ ) := 1

2

∫
X

∫
X |v(x − y)γ (x, y)|2.
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Literature The relation of the HF theory to the exact quantum many-body problem was
established rigorously in [26].

For T = 0, the existence theory for the RHFE and HFE was developed in [1,11,21,26,29],
see [22,25,28], for reviews. For the Hartree–Fock equation (1.10) with periodic κ = κper,
the existence of periodic solutions from certain trace classes was obtained in [10] and [11].

Results for T = 0, similar and related to Theorem 1.2, were proven in [5–9,15–17].
For the case where T > 0, F. Nier [32] proved the existence and uniqueness of the

TRHF (1.1) via variational techniques. Later, Prodan and Nordlander [33] provided another
existence and uniqueness resultwith the exchange-correlation term in the casewhere κ = κper
is small. In this case, the associated potential term φper + xc(ρper), where xc(ρ) is a local
exchange-correlation term, see (1.15), is small as well. (As was pointed by A. Levitt, a result
for small κ = κper would not work in Theorem 1.2 above as Assumption [A1] fails for it.)

The results given in Theorem 1.5 is taken from [13]. Papers [1,10,11,13] use variational
techniques and did not provide uniqueness results. A. Levitt [23] proved the screening of
small defects for the TRHFE.

Approach As in [23], our starting point is Eq. (1.5) for the electrostatic potential φ. We also
use some important ideas from [8]. However, our approach to proving Theorem 1.2 is fairly
novel. Rather that employing variations-based techniques, we use the Lyapunov–Schmidt
reduction, which also allows us to estimate the remainders.

The starting equation of our analysis can be formulated as follows. Let (φper(x), μper) be
the solution of (1.5), with κ(x) = κper(x), and let κδ be given in (1.23). Define ψ by the
equality

φ = φper + ψ.

Plugging this decomposition into (1.5), with κ = κδ and μ = μper, and using that hφ =
hφper − ψ , we arrive at the equation for ψ :

−�ψ = (κ ′δ − den[gφ′per (ψ)]), (1.44)

where φ′per := φper + μper, gφ′per (ψ) := fT (hφ′per −ψ)− fT (hφ′per ) and κ ′δ(y) := δ3κ ′(δy).
This is a nonlinear and nonlocal Poisson equation for ψ . We see that only φ′per := φper +

μper, but not κper, enters Eq. (1.44) explicitly.
Though we deal with the simplest microscopic model—the reduced HF equation—our

techniques are fairly robust and would work for the full-fledged DFT. Also, we favoured
rough estimates to more precise but lengthier ones which produce better bounds on β in
(1.28), see Appendix D below.

The paper is organized as follows. After presenting preliminarymaterial on charge density
estimates and the Bloch–Floquet decomposition in Sect. 2, we prove Theorem 1.2 in Sects.
3–5. Section 3 contains the main steps of the proof of Theorem 1.2. Section 5 covers fairly
straightforward technical estimates of the nonlinearity.
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2 Densities and Bloch–Floquet Decomposition

2.1 Locally Trace Class Operators

Let Cc ≡ Cc(R
3) denote the space of compactly supported continuous functions on R3. An

operator A on L2 is said to be locally trace class if f A and A f are trace class for all f ∈ Cc.
(For the proofs below, it suffices to require that f A is trace class.)

Let L be a Bravais lattice on R3 and 	 a fundamental domain of L as in Sect. 1.5. Denote
|S| to be the volume of a measurable set S ⊂ R

3 and note that |	| is independent of the
choice of the fundamental cell 	. Let Ts be the translation operator

Ts : f (x) �→ f (x − s). (2.1)

We say that a function f : R3 → C is L-periodic if and only if it is invariant under the
translations action of Ts for all lattice elements s ∈ L. We define the space

L p
per ≡ L p

per(R
3) = { f ∈ L p

loc(R
3) : f is L-periodic}, (2.2)

with the norm of L p(	) for some	. The norms for L p
per and L p ≡ L p(R3) are distinguished

by the subindices L p
per and L p .

We say that a bounded operator A on L2 is L-periodic if and only if [A, Ts] = 0 for all
s ∈ L where Ts is the translation operator defined in (2.1).

Let S p be the standard p-Schatten space of bounded operators on L2 with the p-Schatten
norm

‖A‖p
S p :=TrL2((A∗A)p/2). (2.3)

Next, let χQ denote the characteristic function of a set Q ⊂ R
3 and let S p

per be the space of
bounded, L-periodic operators A on L2 with ‖A‖S p

per
<∞ where

‖A‖p
S p
per
:=Tr	((A∗A)p/2) := 1

|	|TrL2(χ	(A∗A)p/2χ	). (2.4)

We remark that the S2
per norm does not depend on the choice of 	 since A is L-periodic.

We have the following estimates for the densities in terms of Schatten norms.

2.2 Densities

For a locally trace class operator A, we define its density den[A] to be a regular countably
additive complex Borel measure satisfying∫

den(A) f = Tr( f A), (2.5)

for every f ∈ Cc. If Tr( f A) is continuous in f in the Cc-topology, then the Riesz repre-
sentation theorem shows that (2.5), for every f ∈ Cc, define den[A] uniquely. In our case,
we will frequently stipulate stronger regularity assumptions on A, implying that den[A] is
actually in a reasonable function space. (e.g. Lemma 2.1 below).

If an operator A has an (distributional) integral kernel, A(x, y), with the diagonal, A(x, x),
being a regular countably additive complex Borel measure, then

den(A)(x) = A(x, x). (2.6)
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964 I. Chenn, I. M. Sigal

Finally, den is a linear map on locally trace class operators with the property that for any
f ∈ Cc,

den( f A) = f den(A). (2.7)

Lemma 2.1 Let A be a locally trace class operator on L2 and ε > 0. We have the following
statements.

(1) If (1−�)3/4+ε A ∈ S2, resp. S2
per , then den[A] ∈ L2, resp. L2

per . Moreover, respectively,

‖ den[A]‖L2 � ‖(1−�)3/4+ε A‖S2 , (2.8)

‖ den[A]‖L2
per

� |	|1/2‖(1−�)3/4+ε A‖S2per
(2.9)

(2) If (1−�)1/4+ε A ∈ S6/5, then den[A] ∈ Ḣ−1 (where Ḣ s is defined in (1.24)). Moreover,

‖ den[A]‖Ḣ−1 � ‖(1−�)1/4+ε A‖S6/5 (2.10)

Proof We prove (2.9) and (2.10) only; (2.8) is similar and easier. We begin with (2.9). Since
the operator (1−�)1/4+ε A is L-periodic, its density, if it exists, is also L-periodic. By the
L2
per-L

2
per duality, relation (2.5), den[A] ∈ L2

per and (2.9) holds if and only if

|Tr	( f A)| � |	|1/2‖ f ‖L2
per
‖(1−�)3/4+ε A‖Sper2

(2.11)

for all f ∈ L2(R3) with support in 	, where we recall ‖ f ‖L2
per
= ‖ f χ	‖L2 . Since the

support of f is in 	, by the Hölder’s inequality for the trace-per-volume norm,

1

|	| |Tr	( f A)| = 1

|	| |Tr(χ	 f Aχ	)| (2.12)

� ‖A(1−�)3/4+ε‖S2per
‖(1−�)−3/4−ε f ‖S2per

. (2.13)

By the Kato–Seiler–Simon inequality

‖ f (x)g(−i∇)‖S p � ‖ f ‖L p‖g‖L p (2.14)

for 2 ≤ p < ∞ (see [36]; one can also replace S p and L p by their periodic versions S p
per

and L p
per, respectively.), we obtain (2.11). Thus, (2.9) is proved.

Now we prove (2.10) as above. By the Ḣ1-Ḣ−1 duality, it suffices to show that

|Tr( f A)| � ‖ f ‖Ḣ1‖(1−�)1/4+ε A‖S6/5 (2.15)

for all f ∈ Ḣ1 ∩ Cc and for ε > 0. So, we estimate |Tr( f A)|. By the non-abelian Hölder
inequality with 1 = 1

6 + 1
6/5 ( [36]),

|Tr( f A)| � ‖ f (1−�)−1/4−ε‖S6‖(1−�)1/4+ε A‖S6/5 . (2.16)

The Kato–Seiler–Simon inequality (2.14) shows

|Tr( f A)| � ‖ f ‖L6‖(1−�)1/4+ε A‖S6/5 . (2.17)

Now, applying the Gagliardo–Nirenberg–Sobolev inequality (for d = 3; see [24])

‖ f ‖L6 � ‖∇ f ‖L2 (2.18)

to ‖ f ‖L6 in (2.17), we obtain (2.15). The proof of Lemma 2.1 is completed by the Ḣ1-Ḣ−1
duality and the fact that Ḣ1 ∩ Cc is dense in Ḣ1. ��
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On Derivation of the Poisson–Boltzmann Equation 965

2.3 Bloch–Floquet Decomposition

Let L∗ denote the lattice reciprocal to L, with the reciprocity relation between bases for L
and L∗ given by ωi · ω∗j = 2πδi j . Define the (fiber integral) space

H⊕L = { f ∈ L2
loc(R

3
k × R

3
x ) : T x

s f = f (2.19)

and T k
r f = e−ir ·x f , ∀s ∈ L, ∀r ∈ L∗}, (2.20)

where T k
s is the translation in the k-variable by s and T x

r is the translation in the x-variable
by r (see (2.1)). We write f = fk(x) ∈ H⊕L as

f =
∫ ⊕
R3/L∗

fk dk̂ =
∫ ⊕

	∗
fk dk̂, (2.21)

for some choice of a fundamental cell 	∗ of the reciprocal lattice L∗ and dk̂ := |	∗|−1dk.
We use the Bloch–Floquet decomposition UBF mapping from L2(R3) into H⊕L as

UBF f :=
∫ ⊕

	∗
dk̂ fk , (2.22)

fk(x) :=
∑
t∈L

e−ik(x+t) f (x + t) (2.23)

and the inverse Bloch–Floquet transform

U−1BF

(∫ ⊕
	∗

dk̂ fk

)
(x) :=

∫
	∗

dk̂ eikx fk(x), ∀x ∈ R
3. (2.24)

Lemma 2.2 We have, for any f ∈ L2,∫
	

fk(x)dx = f̂ (k) (2.25)

Proof By (2.23) and a change of variable, we see that∫
fk(x)dx :=

∫
	

∑
t∈L

e−ik(x+t) f (x + t)dx (2.26)

=
∑
t∈L

∫
t+	

e−ikx f (x)dx (2.27)

=
∫

e−ikx f (x)dx . (2.28)

Equation (2.25) follows from the definition of the Fourier transform. ��
Let 〈 f 〉S = |S|−1

∫
S f (x)dx , the average of f on a set S, and χS be the indicator (char-

acteristic) function of S.

Lemma 2.3 Let f ∈ L2 and fk be its k-th fiber L-Bloch–Floquet decomposition. Then for
any S ⊂ 	∗,

χS(−i∇) f = U−1BF

∫ ⊕
S

dk̂ 〈 fk〉	. (2.29)
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966 I. Chenn, I. M. Sigal

Proof Let f ∈ L2 with the k-th fiber fk . Then Lemma 2.2 shows that

〈 fk〉	 = |	|−1 f̂ (k). (2.30)

Using the definition of the inverse Bloch transform in (2.24) and (2.30), we see that

U−1BF

(∫ ⊕
S

dk̂ 〈 fk〉	
)
=

∫
	∗

dk̂ eikx 〈 fk〉	δ

=
∫

S
dk̂ |	|−1eikx f̂ (k) (2.31)

Since dk̂ = |	∗|−1dk = |	|dk, the last equation yields

U−1BF

∫ ⊕
S

dk̂ 〈 fk〉	 =
∫

S
dk eikx f̂ (k) = χS(−i∇) f , (2.32)

which gives (2.29). ��

Let Pr = χB(r)(−i∇)where B(r) is the ball of radius r centered at the origin (see (3.37)).
Lemmas 2.2 and 2.3 imply

Corollary 2.4 Let f ∈ L2 and B(r) ⊂ 	∗, then

(Pr f )k = |	|−1 f̂ (k)χB(r)(k). (2.33)

Any L-periodic operator A has a Bloch–Floquet decomposition [34] in the sense that

A = U−1BF

∫ ⊕
	∗

dk̂ AkUBF, (2.34)

where Ak are operators (called k-fibers of A) on L2
per and the operator

∫ ⊕
	∗ dk̂ Ak acts on∫ ⊕

	∗ dk̂ fk ∈ H⊕L as

∫ ⊕
	∗

dk̂ Ak ·
∫ ⊕

	∗
dk̂ fk =

∫ ⊕
	∗

dk̂ Ak fk . (2.35)

Definitions (2.34) and (2.35) implies the following relations for any L-periodic operators
A and B

(A f )k = Ak fk, (2.36)

(AB)k = Ak Bk, (2.37)

‖A‖ = sup
k∈	∗
‖Ak‖. (2.38)

Furthermore, we have

Lemma 2.5 Let A be anL-periodic operator and Ak, its k-fibers in its Bloch–Floquet decom-
position. Then

Ak = e−i xk A0eixk .
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Proof We compute (A f )k . Let Ts denote the translation operator (2.1). Let A0 denote the
0-th fiber of A in its Bloch–Floquet decomposition. By (2.23) and the periodicity of A,

(A f )k =
∑
t∈L

e−ik(x+t)T−t A f =
∑
t∈L

e−ikx Ae−ikt T−t f (2.39)

= e−ikx A0eikx
∑
t∈L

e−ik(x+t)T−t f (2.40)

= e−ikx A0eikx fk . (2.41)

��
Now, we have the following result.

Lemma 2.6 Let A be anL-periodic operator and Ak, its k-fibers in its Bloch–Floquet decom-
position and let r be such that B(r) ⊂ 	∗. Then

Pr APr = b(−i∇)Pr (2.42)

where b(k) = 〈Ak1〉	, 1 ∈ L2
per(R

3) is the constant function 1.

Proof Let fk be the k-th fiber of the Bloch–Floquet function f . We apply Lemma 2.3 with
S = B(r) and f = APrϕ (so that χS(−i∇) = Pr ) to obtain

Pr APrϕ = U−1BF

∫ ⊕
	∗

dk̂ 〈(APrϕ)k〉	. (2.43)

By Corollary 2.4 and Eq. (2.43), we find

Pr APrϕ = |	|−1U−1BF

∫ ⊕
B(r)

dk̂ 〈Ak1〉	ϕ̂(k), (2.44)

where 1 ∈ L2
per,δ is the constant function equal to 1. Using the definition (2.24) of the inverse

Bloch–Floquet transform and that dk̂ = |	|−1dk, we deduce (2.48). ��

2.4 Passing to theMacroscopic Variables

Define the microscopic lattice Lδ := δL and let L∗δ be its reciprocal lattice. Define the
rescaling operator

Uδ : f (x) �→ δ−3/2 f (δ−1x) (2.45)

mapping from the microscopic to the macroscopic scale. A change of variable in (2.5) gives
the following

Lemma 2.7 For any operator A on L2, we have

δ−3/2Uδ den[A] = den[Uδ AU∗δ ]. (2.46)

Finally, note that

A is L-periodic iff Uδ AU∗δ be Lδ-periodic. (2.47)

Lemma 2.6 implies
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Lemma 2.8 Let A be anL-periodic operator and Ak, its k-fibers in its Bloch–Floquet decom-
position and let r be such that B(δr) ⊂ 	∗. Then

Pr Uδ AU∗δ Pr = b(−iδ∇)Pr (2.48)

where b(k) = 〈Ak1〉	, 1 ∈ L2
per is the constant function 1.

Proof By U∗δ Pr Uδ = Pδr and Lemma 2.6, we have

Pr Uδ AU∗δ Pr = Uδ Pδr APδr U∗δ = Uδb(−i∇)Pδr U∗δ .

Relations Uδ Pδr U∗δ = Pr and Uδb(−i∇)U∗δ = b(−iδ∇) yield (2.48). ��

3 Dielectric Response: Proof of Theorem 1.2

In this section,we proveTheorem1.2modulo several technical (though important) statements
proved in Sects. 4 and 5.

3.1 LinearizedMap

Our starting point is Eq. (1.5), which we reproduce here

−�φ = (κ − den[ fT (hφ − μ)]), (3.1)

where, recall, fT (λ) is given in (1.2) and, recall,

hφ := −�− φ. (3.2)

We consider (3.1) on the function space φ ∈ H2
per + Ḣ1. For such φ’s, the operator hφ is

self-adjoint and bounded below so that functions of hφ above are well-defined by the spectral
theory.

Our first step is to investigate the linearization of the map on the r.h.s. of (3.1)

M := dφ den[ fT (hφ − μ)]∣∣
φ=φper

. (3.3)

To derive basic properties of M , we find an explicit formula for it. Recalling the relation
fT (λ) := fF D(λ/T ), see (1.2), and assuming that φ is close to φper, we write fT (hφ − μ)

using the Cauchy-integral formula

fT (hφ − μ) = 1

2π i

∫
�

dz fT (z − μ)(z − hφ)−1 (3.4)

where � is a positively oriented contour around the spectrum of hφ not containing the poles
of fT which are located at μ+ iπ(2k + 1)T , k ∈ Z (see Fig. 2 below), in which ε satisfies

ε < T π and − 1 < cos(με). (3.5)

Here we use that hφ is bounded from below and, due to the definition fT (λ) = 1
eλ/T+1 (see

(1.2)) and the relation |Imz| ≤ π/4T ,

| fT (z − μ)| � min(1, e−(Rez−μ)/T )) (3.6)

assuring the convergence of the integral. (Note that we do not use that hφ has a gap and that
μ is in the gap.)

123



On Derivation of the Poisson–Boltzmann Equation 969

x

y

(−c, 1)

(−c,−1)

(µ, 0)

(µ )

(µ,− )

(µ− 1, 1) (µ + 1, 1)

(µ− 1,−1) (µ + 1,−1)

Γ

Fig. 1 The contour �. It depends on ε satisfying (3.5)

To simplify the expressions below, we will introduce the following notation

∮
:= 1

2π i

∫
�

dz fT (z − μ) (3.7)

where � is the contour given in Fig. 1, with the positive orientation.
Recall the notation for the L-periodic Hamiltonian and introduce one for the L-periodic

resolvent:

hper := hφper = −�− φper, rper(z) = (z − hper)
−1. (3.8)

By Theorem 1.5, the electrostatic potential, φper(y) associated with the solution ρper(y) (c.f.
(1.9)) satisfies

φper ∈ H2
per. (3.9)

Hence the operator hper is self-adjoint and the operator functions above are well-defined.
Moreover, under Assumption [A1],

sup
z∈�
‖(z − hper)

−1‖∞ = O(1). (3.10)

Finally, for any operator h, we denote hL : α→ hα and h R : α→ αh.
The next proposition gives an explicit form for M and states its properties (also see [7]).
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Proposition 3.1 Let Assumption [A1] hold. Then

(1) The operator M has the following explicit representation

M f = − den
[ ∮

rper(z) f rper(z)
]

(3.11)

= −1

2
den

[ tanh( 1
2T (hL

per − μ))− tanh( 1
2T (h R

per − μ))

hL
per − h R

per
f
]
, (3.12)

where f ∈ L2 on the right hand side is considered as a multiplication operator.
(2) The operator M is bounded, self-adjoint, positive on L2 and L-periodic (c.f. Sect. 2.2)

and satisfies

‖M‖ � 1. (3.13)

Proof of Proposition 3.1 In this proof, we omit the subscript “per” in hper and rper(z). We
begin with item (1). Equation (3.11) follows from definition (3.3), the Cauchy formula (3.4)
and a simple differentiation of the resolvent.

Now, we use (3.11) to derive (3.12). By the definition of hL and h R and the second
resolvent identity, we have, for any operator α,

(z − h)−1α(z − h)−1 = (z − hL)−1(z − h R)−1α
= (hL − h R)−1((z − hL)−1 − (z − h R)−1)α. (3.14)

Using the Cauchy integral formula and the definition (3.7) and the choice of the contour �

i(see Fig. 1), we observe that∮
(z − h)−1α(z − h)−1 = (hL − h R)−1

× 1

2π i

∫
�

dz fT (z − μ)((z − hL)−1 − (z − h R)−1)α

= (hL − h R)−1( fT (hL − μ)− fT (h R − μ))α. (3.15)

Now, by definition (1.2), fT (λ) := 1
eλ/T+1 and therefore fT (λ) = 1

2 (1+ tanh(λ/2T )). This
relation, together with (3.15), gives∮

(z − h)−1α(z − h)−1

= 1

2

tanh( 1
2T (hL − μ))− tanh( 1

2T (h R − μ))

hL − h R
α. (3.16)

This, together with (3.11), gives (3.12). Item (1) is now proved.
Now we prove item (2). Since h = hper is self-adjoint and bounded below, we can pick

c > 0 sufficiently large, s.t. h ≥ −c+ 1. Then, in particular, h+ c is invertible and, for each
function f ∈ L2(R3), we define the operator

α f := (c + h)−1/2 f (c + h)−1/2. (3.17)

The Kato–Seiler–Simon inequality (2.14) shows that α f is Hilbert–Schmidt and

‖α f ‖S2 � ‖ f ‖L2 (3.18)

(the S2 norm is given in (2.3)). Using (3.11), together with (2.5), we write 〈 f , Mg〉
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= − ∮
Tr( f̄ r(z)gr(z)), which can be transformed to

〈 f , Mg〉 = −
∮

Tr(α∗f (c + h)r(z)αgr(z)(c + h)) . (3.19)

Moreover, by (3.16), we have that

〈 f , Mg〉 = Tr
(
α∗f G(hL , h R)αg

)
, (3.20)

G(x, y) := −1

2

tanh( 1
2T (x − μ))− tanh( 1

2T (y − μ))

(x + c)−1 − (y + c)−1
. (3.21)

Since the function G : R2 → R is bounded on the set x, y ≥ −c + 1, we see that M is
bounded due to (3.18) and (3.20).

Moreover, we can also see from expressions (3.20) - (3.21) that M is symmetric since G
is real and hL and h R are self-adjoint in the space S2. Since M is bounded, it is self-adjoint.
Since the function G in (3.21) is positive for x, y ≥ −c+ 1, Eq. (3.20) and spectral theorem

on S2 show that 〈 f , M f 〉 = Tr
(
α∗f G(hL , h R)α f

)
> 0 for any nonzero f ∈ L2(R3). This

shows that M is positive.
Finally, formula (3.11) and the fact h = hper and r = rper(z) are L-periodic show that M

is L-periodic.
To prove bound (3.13), we use (3.11) and (2.8) to find

‖M f ‖L2 � ‖(1−�)

∮
r(z) f r(z)‖S2 (3.22)

�
∣∣
∮ ∣∣‖(1−�)r(z)‖2‖ f (1−�)−1‖S2 . (3.23)

Now, writing −� = h − z + φper + z, for z ∈ �, and using the uniform boundedness of
‖φper‖H2 which follows from Assumption [A1], we derive the estimate

‖(1−�)r(z)‖ � 1, (3.24)

which, together with (3.23) and the Kato-Seiler-Simon inequality (2.14), gives bound (3.13).
The proof of Proposition 3.1 is now complete. ��

3.2 Scaling and Splitting

This step is to pass from the microscopic coordinate y to the macroscopic one, x = δy
passing to the macroscopic quantities (with superscripts δ) which are related the microscopic
quantities (with subscripts δ) as

κδ = δ−3/2Uδκδ, φδ(x) = δ1/2(Uδφδ)(x) = δ−1φδ(δ
−1x), (3.25)

κδ
per(x) := δ−3κper(δ−1x) = (δ−3/2Uδκper)(x), (3.26)

where Uδ : f (x) �→ δ−3/2 f (δ−1x), the L2(R3)-unitary scaling map, see (2.45) (note that
the L1-norm, hence total charge, is preserved under this scaling). Let

κδ(x) = κδ
per(x)+ κ ′(x) (3.27)

be the macroscopic perturbed background potential. Accordingly, we rescale equation
(3.1) by applying δ−3/2Uδ to it. Using Lemma 2.7 and relations Uδ fT(hφ − μ)U∗δ =
fT(UδhφU∗δ − μ) and
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UδhφU∗δ = −δ2�− δφδ,

we arrive at the rescaled electrostatic potential equation

−�φδ = κδ − Fδ(φ
δ), (3.28)

Fδ(φ) = den[ fT (−δ2�− δφ − μ)]. (3.29)

We will consider (3.28) on the space H2
per + Ḣ1.

Let φδ
per = δ1/2Uδφper, where φper is the periodic potential associated to the periodic

solution (ρper, μper) of (1.1) with periodic background charge κper given in Theorem 1.5. We
split the solution φδ into the big part φδ

per and the fluctuation

ϕ ≡ ϕδ := φδ − φδ
per. (3.30)

We rewrite Eq. (3.28) by expanding the r.h.s. around φδ
per to obtain

Kδϕ = κ ′ + Nδ(ϕ) (3.31)

where Nδ is defined by this expression and

Kδ =−�+ Mδ , with Mδ = dφ Fδ(φ
δ
per). (3.32)

Note that the inputs into this equation are φper, μ = μper and κ ′ (cf. (1.44)).
As was mentioned in the introduction, we prove Theorem 1.2 by decomposing ϕ in (3.30)

in small and largemomentum parts (c.f. [8]).We use rough estimates for highmomenta while
we expand in δ and use a perturbation argument for low momenta.

We begin with a discussion of the linearized map, Kδ . Since we rescaled equation (1.1)
by applying δ−3/2Uδ to it and rescaled the microscopic potentials via (3.25), it follows that

Fδ = δ−3/2Uδ ◦ F ◦ (δ−1/2U∗δ ) (3.33)

where F = Fδ=1. Thus, by the definition of Mδ in (3.32) and the fact it is linear, it can be
written as

Mδ = δ−2Uδ MU∗δ , (3.34)

where M := Mδ=1 and is given by (3.3).
Recall that an operator A on L2(R3) is said to beL-periodic if and only if it commutes with

the translations Ts (see (2.1)) by all lattice elements s ∈ L. As an immediate consequence of
Proposition 3.1, representation (3.11), and the rescaling (3.34), we have the following result

Proposition 3.2 Let Assumption [A1] hold. Then Mδ is Lδ-periodic, positive (so that
Kδ = −� + Mδ > −�), bounded on L2 with an O(δ−2) bound, and has the following
representation

Mδϕ = −δ den

[∮
r δ
per(z)ϕr δ

per(z)

]
, (3.35)

where the resolvent operator r δ
per(z) acting on L2(R3) is given by

r δ
per(z) = (z − hδ

per)
−1, hδ

per = −δ2�− δφδ
per. (3.36)
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3.3 Lyapunov–Schmidt Decomposition

To separate small and large momenta, we now perform a Lyapunov–Schmidt reduction.
Let χQ be the characteristic function of a set Q ⊂ R

3. Let 	∗δ denote the fundamental
domain of L∗δ as in Sect. 2.4. We recall the definition of the orthogonal projection onto low
momenta (as [8])

Pr = χB(r)(−i∇) , (3.37)

where B(r) is the ball of radius r centred at the origin. With m given in (1.33) and estimated
in (1.34), we choose r such that B(r) ⊂ 	∗δ and

a := δr = O(1) small, but a4 � m, (3.38)

is independent of δ and T (or m) and is fixed. Below, we use the convention that � is
independent of r , δ and T . Let

P̄r = 1− Pr (3.39)

be the orthogonal projection onto the large momenta. We decompose

ϕ = ϕs + ϕl , (3.40)

where ϕs = Prϕ and ϕl = P̄rϕ. Here s stands for small momentum and l stands for large
momenta. We split (3.31) as

Pr Kδ(ϕs + ϕl) = Prκ
′ + Pr Nδ(ϕ), (3.41)

P̄r Kδ(ϕs + ϕl) = P̄rκ
′ + P̄r Nδ(ϕ) . (3.42)

We solve (3.42) for ϕl in the ball

Bl,δ :={ϕ ∈ P̄r H1 : ‖ϕ‖Ḣ1 ≤ cl}, (3.43)

while keeping ϕs fixed in the (deformed) ball

Bs,δ := {ϕ ∈ Pr H1 : ‖ϕ‖δ ≤ cs}, (3.44)

with the norm ‖ϕ‖δ given by

‖ϕ‖2δ :=
1∑
0

ζ 2(i−1)‖∇ iϕ‖2L2 , ζ := δm−1/2. (3.45)

The constants cs and cl above (should not be confused with the estimating function cT which
appeared in Theorem 1.2) are chosen to satisfy the conditions

ζ � cs � cl � θ−3/2ζ, (3.46)

where θ := m−8/9δ and, recall, ζ := δm−1/2.
The latter condition can be satisfied, provided

θ := m−8/9δ � 1. (3.47)

Due to estimate (1.34), this is equivalent to condition (1.28).
We see that, while our model is parametrized by δ and β satisfying (1.28), our method is

determined by the parameters a, cs and cl , satisfying (3.38) and (3.46).
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The subleading term, ψ , in (1.29) just fits into Bs,δ: ‖ψ‖δ ∼ ζ � cs . Finally, we note
that since ∇−1 P̄r ≤ r−1 P̄r ,∇−1 := ∇�−1, r = a/δ, we have

‖ϕ‖L2 � m1/2ζ‖ϕ‖Ḣ1 , ‖ϕ‖δ � ‖ϕ‖Ḣ1 , ∀ϕ ∈ Ran P̄r . (3.48)

Equation (3.48) shows that, if m1/2ζ = δ � cs/cl , then, in the L2-norm, Bl,δ is much
smaller that Bs,δ .

In the proofs below, we will use the convention ‖ · ‖Ḣ0 ≡ ‖ · ‖L2 and the estimates of
the nonlinearity Nδ (defined implicitly through (3.31)) proved in Proposition 5.2 in Sect. 5
below, under Assumption [A1]:

‖Nδ(ϕ1)− Nδ(ϕ2)‖L2

� m−
1
3 δ−1/2(‖ϕ1‖δ + ‖ϕ2‖δ)‖ϕ1 − ϕ2‖δ. (3.49)

Proposition 3.3 Let Assumptions [A1]–[A3] hold. Assume ϕs ∈ Bs,δ and that (3.38) holds.
Then Eq. (3.42) on Bl,δ has a unique solution ϕl = ϕl(ϕs) ∈ Bl,δ .

Proof of Proposition 3.3 We use that, by Proposition 3.2, K̄δ := P̄r Kδ P̄r is invertible on the
range of P̄r (see (3.39)) to convert (3.42) into a fixed point problem

ϕl = �l(ϕl) = �′l +�′′l (ϕl), (3.50)

where

�′l := K̄−1δ (−Mδϕs + P̄rκ
′), (3.51)

�′′l (ϕl) := K̄−1δ P̄r Nδ(ϕs + ϕl). (3.52)

Given ϕs , this is a fixed point problem for ϕl . We will solve this problem in the ball Bl,δ

defined in (3.43)). Let Ḣ0 ≡ L2. We begin with the following simple but key lemma

Lemma 3.4 Let Assumption [A1] hold and let cT := T−1e−η0/T � 1 (which is weaker than
Assumption [A3]). Then, for f ∈ L2(R3),

‖K̄−1δ f ‖Ḣ k−i � r−2+k‖ f ‖Ḣ−i , i ≤ k, k = 0, 1 (3.53)

‖K̄−1δ Mδ Pr f ‖L2 � ‖ f ‖L2 , (3.54)

‖K̄−1δ Mδ Pr f ‖Ḣ1 � ‖ f ‖δ. (3.55)

Proof of Lemma 3.4 Since −�P̄r ≥ r2 P̄r , we have the inequality r2‖ f ‖2 � 〈 f , K̄δ f 〉 ≤
‖ f ‖‖K̄δ f ‖, which gives r2‖ f ‖ � ‖Kδ f ‖, which implies (3.53) for k = i = 0.

Since K̄δ P̄r ≥ −�P̄r , we have ‖P̄r f ‖2
Ḣ1 � 〈 f , K̄δ f 〉 ≤ ‖P̄r f ‖‖K̄δ f ‖. This inequality

and ‖P̄r f ‖ = ‖∇−1 P̄r∇ f ‖ ≤ r−1‖∇ f ‖, where
∇−1 := ∇(−�)−1, (3.56)

give ‖P̄r f ‖Ḣ1 � r−1‖K̄δ f ‖, which implies (3.53) for k = 1.
Inequality (3.53), with i = 0, and the bound ‖Mδ‖ � δ−2, proven in Proposition 3.2,

yield

‖K̄−1δ Mδ Pr f ‖Ḣ k � rk‖ f ‖L2 , (3.57)

for k = 0, 1, which for k = 0 implies (3.54).
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Finally, we prove more subtle (3.55). Using ∇−1 from (3.56), we write ∇ K̄−1δ Mδ f =
∇ K̄−1δ ∇ · (∇−1Mδ) f . Proposition 3.2 shows that ∇ K̄−1δ ∇ ≤ 1. It follows

‖∇ K̄−1δ Mδ f ‖L2 � ‖P̄r∇−1Mδ f ‖L2 . (3.58)

This bound and Proposition C.4 of Appendix C imply (3.55). ��
Definition (3.51) and Eqs. (3.55) and (3.53), with k = 1, i = 0, show that

‖�′l‖Ḣ1 � ‖ϕs‖δ + r−1‖κ ′‖L2 . (3.59)

For the nonlinear term, �̄′′l (ϕl) := K−1δ P̄r Nδ(ϕs + ϕl) (see (3.52)), Eqs. (3.53), with
k = 1, i = 0, (5.1) and the inequality ‖ϕl‖s,δ � ‖ϕl‖Ḣ1 (see (3.48)) give

‖�′′l (ϕl)‖Ḣ1 � r−1m−
1
3 δ−1/2(‖ϕs‖δ + ‖ϕl‖Ḣ1)

2. (3.60)

Since ‖ϕs‖δ ≤ cs and ‖ϕl‖δ ≤ cl for ϕs ∈ Bl,δ and ϕs ∈ Bs,δ (see (3.44) and (3.43)) and,
due to our assumption (3.46), we have

δ‖κ ′‖L2 + cs + δ1/2m−1/3(cs + cl)
2 � cl , (3.61)

(3.59)–(3.61) show that �l maps Bl,δ into itself.
Once more, by Eqs. (3.48), (3.53), with k = 1, i = 0, (3.49) and (3.55), we see that �l

satisfies

‖�l(ϕ1)−�l(ϕ2)‖Ḣ1

� r−1m−
1
3 δ−1/2(‖ϕ1‖δ + ‖ϕ2‖δ)‖ϕ1 − ϕ2‖δ (3.62)

and therefore, since r = a/δ, is a contraction on Bl,δ for m− 1
3 δ1/2cl � 1, which follows

from (3.46). Proposition 3.3 now follows by applying the fixed point theorem on Bl,δ . ��
Let ϕl = ϕl(ϕs) be the solution to Eq. (3.42) given in Proposition 3.3 with ϕs ∈ Bs,δ .

Later on we will need a Lipschitz estimate on the solution, ϕl(ϕs) ∈ Bl,δ .

Lemma 3.5 If ϕ,ψ ∈ Bs,δ , then the solution, ϕl(ϕs) ∈ Bl,δ , to (3.42) given in Proposition
3.3 satisfies the estimate

‖ϕl(ϕ)− ϕl(ψ)‖Ḣ1 � ‖ϕ − ψ‖δ. (3.63)

Proof Since ϕl(ϕ), ϕl(ψ) satisfy (3.42) (and therefore (3.50)), we see that

ϕl(ϕ)− ϕl(ψ) = −K̄−1δ Mδ(ϕ − ψ)

+ K̄−1δ P̄r (Nδ(ϕ + ϕl(ϕ))− Nδ(ψ + ϕl(ψ))). (3.64)

Using Eqs. (3.64), (3.53), with k = 1, i = 0, and (3.55) and nonlinear estimate (3.49) and
going through the same arguments as in the proof of Proposition 3.3, we show (3.63). ��

We substitute ϕl = �l(ϕl) (see (3.50)), with�l(ϕl) given by (3.50)–(3.52) into Eq. (3.41)
and note that Pr Kδ P̄r = Pr Mδ P̄r to arrive at the following equation

�ϕs = Qκ ′ + QN (ϕ(ϕs)), (3.65)

where ϕ(ϕs) = ϕs + ϕl(ϕs) with ϕl(ϕs) being the solution of (3.42), and

� := Pr Kδ Pr − Pr Mδ K̄−1δ Mδ Pr , (3.66)

Q := Pr − Pr Mδ K̄−1δ . (3.67)
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Note that � is the Feshbach–Schur map of Kδ := −�+ Mδ with projection Pr .
In Sect. 3.4 below, we prove the following

Proposition 3.6 Under Assumption [A1], Eq. (3.65) has a unique solution ϕs ∈ Bs,δ .

As a consequence of Propositions 3.3 and 3.6 and Eqs. (3.40) and (3.48), Eq. (3.31) has
the unique solution ϕ = ϕs + ϕl ∈ H1(R3), with the estimate

‖ϕ‖δ ≤ cs + cl .

This proves the existence and uniqueness of the solution φδ ∈ (H2
per + H1)(R3) of (3.28)

(and therefore of (1.5)) with κ given in (1.23). This completes the proof of Theorem 1.2(1).
��

Now, we address Theorem 1.2(2). Below, we let β = T−1, so that

cT = βe−βη0 =: sβ .

We begin with a result, proven in Sect. 4, which gives a detailed description of the operator
�.

Proposition 3.7 On ran Pr , the operator � in (3.66) is a smooth, real, even function of −i∇
and it has the expansion

� =ν − ∇ε∇ + O(δ2(−i∇)4) (3.68)

where ν = δ−2|	|−1(m + O(s2β)), with m given in (1.33), and ε is a matrix given explicitly
in (1.35)–(1.37) and satisfies the estimate

ε ≥ 1− O(s2β). (3.69)

By Proposition 3.7 the leading order term in � is given by

�0 := ν −∇ε∇, (3.70)

where ν = δ−2|	|(m + O(s2β)), with m given in (1.33), ε ≥ 1− O(s2β).
To construct an expansion of ϕs , we let ψ be the solution to the equation

�0ψ = κ ′ (3.71)

(since ν > 0 and ε > 0, this solution exists) and write

ϕs = Prψ + ψ1 (3.72)

where ψ1 is defined by this expression. In Sect. 3.5 below to prove the following

Proposition 3.8 Under Assumption [A1], ψ1 ∈ Bs,δ obeys the estimate

‖ψ1‖δ � (m1/2 + θ1/2)ζ. (3.73)

Due to (3.40) and (3.72), the solution ϕ of Eq. (3.31) can be written as

ϕ = Prψ + ψ1 + ϕl (3.74)

with ψ1 ∈ Bs,δ , satisfying estimate (3.73), and ϕl ∈ Bl,δ .
To complete the proof of item (2) of Theorem 1.2, we notice that (3.30), (3.74) and the

relation Prψ = ψ − P̄rψ imply (1.29) with

ϕrem =ψ1 − P̄rψ + ϕl . (3.75)
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Thus it remains to estimate the remainders above (see (1.30)).
Equation (3.73) controls ψ1. To control the term −P̄rψ , we use (3.56) and �−10 P̄r ≤ r−2

to obtain, for i = 0, 1,

‖P̄rψ‖Ḣ i = ‖∇ i P̄r�
−1
0 κ ′‖L2 = ‖�−10 P̄r∇ iκ ′‖L2

� r−2‖κ ′‖Ḣ i . (3.76)

Since, by condition (1.28), (m1/2 + θ1/2)ζ 2−i � δ2, Eqs. (3.73) and (3.76), together with
(3.75), show that

‖ψ1 − P̄rψ‖δ � (m1/2 + θ1/2)ζ. (3.77)

By Proposition 3.3, ϕl is in the range of P̄r and bounded as ‖ϕl‖Ḣ1 � cl . Hence, using
(3.48) and taking cl = ω−1/4ζ, ω := max(θ2, m) � 1 (satisfying (3.46)) and using that
r−1ωζ = ωm1/2ζ 2 � m1/4ζ 2, gives

‖ϕl‖L2 � m1/4ζ 2, ‖ϕl‖Ḣ1 � ω−1/4ζ. (3.78)

By (1.34), Eqs. (3.77) and (3.78) imply part (2) of Theorem 1.2.
Finally, part (3) of Theorem 1.2 follows from Proposition 3.7 and Eqs. (3.70) and (3.71).

��

3.4 Small Quasi-momenta: Proof of Proposition 3.6

Our starting point is Eq. (3.65). By Proposition 3.7, the operator � given in (3.66) is invertible.
Hence we can rewrite (3.65) as the fixed point problem:

ϕs = �s(ϕs), �s(ϕs) := −�−1Q(κ − N (ϕ(ϕs))), (3.79)

where ϕ(ϕs) = ϕs+ϕl(ϕs)with ϕl(ϕs) being the solution of (3.42), and Q is given in (3.67).
First, we estimate the operator �−1Q in �s . Recall, m is given in (1.33).

Lemma 3.9 Assume (3.38) and, recall, ζ := δm−1/2. Then

‖�−1Q f ‖δ � ζ‖ f ‖L2 . (3.80)

Proof By the choice a := δr = O(1) (see (3.38)), we have that that

O(δ2(−i∇)4) = O(a2(−i∇)2) on Ran Pr .

By Proposition 3.7, we have that ν = δ−2|	|−1(m+O(s2β)), which, together with the lower
bound in (1.34), implies

ν � δ−2|	|−1m = |	|−1ζ−2. (3.81)

These two facts and Eq. (3.68) imply ∇k�−1 � ζ 2−k, k = 0, 1, 2, which gives

‖∇k�−1‖ � ζ 2−k, k = 0, 1, 2, (3.82)

for the L2-operator norm. Furthermore, we claim the bound

‖∇k�−1Pr Mδ K̄−1δ ‖ � ζ 2−km1/2. (3.83)

123



978 I. Chenn, I. M. Sigal

Indeed, decomposing Mδ according to (C. 2)–(C. 4) of Proposition C.1 and using bound Eqs.
(3.82), we find

‖∇k�−1Pr Mδ∇−1 P̄r‖
≤ ‖∇k�−1Pr M ′δ Pr‖ + ‖∇k�−1∇Pr∇−1M ′′δ ∇−1 P̄r‖
� ζ 2−kδ−1m1/2 + ζ 1−k, (3.84)

where ‖ · ‖ is the operator norm in L2. Since ζ := δm−1/2, this implies

‖∇k�−1Pr Mδ∇−1 P̄r f ‖L2 � a−1ζ 1−k‖ f ‖L2 . (3.85)

Equation (3.53), with k = 1, i = 0, and (3.85), togetherwith the insertion of 1 = ∇−1∇ =
�−1∇∇ between Mδ and K̄−1δ , imply (3.83).

Using (3.82) and (3.83) and recalling the definition Q := Pr − Pr Mδ K̄−1δ (see (3.67)),
we find that

‖∇k�−1Q‖ � ζ 2−k, k = 0, 1, 2, (3.86)

which, due to the definition of the norm ‖ f ‖δ �∑1
0 ζ k−1‖∇kϕ‖L2 in (3.45), implies Lemma

3.9. ��
Lemma 3.9 and nonlinear estimate (5.1), together with ζ δ−1/2 = m−1/2δ1/2, imply that,

under Assumption [A1],

‖�−1Q[Nδ(ϕ)− Nδ(ψ)]‖δ
� m−5/6δ1/2(‖ϕ‖δ + ‖ψ‖δ)‖ϕ − ψ‖δ. (3.87)

Equation (3.79), Lemma 3.5 and estimate (3.87) imply, for ϕ,ψ ∈ Bs,δ ,

‖�s(ϕs)‖δ � ζ‖κ ′‖L2 + m−5/6δ1/2c2s , (3.88)

‖�s(ϕs)−�s(ϕ
′
s)‖δ � m−5/6δ1/2cs‖ϕs − ϕ′s‖δ. (3.89)

These inequalities, together with the inequality m5/6δ−1/2 = θ−3/2ζ � cs � ζ , which
follows from assumption (3.46), yield that �s(ϕs) is a contraction on Bs,δ and therefore has
a unique fixed point. This proves Proposition 3.6. ��

3.5 Proof of Proposition 3.8

In view of Proposition 3.7, we write

� = �0 + �′, (3.90)

where �0 is defined (3.70), and �′ is defined by this expression. By Proposition 3.7, �′ =
O(δ2(−i∇)4) on the range of Pr .

Inserting (3.72) into Eq. (3.65) and using (3.90) and the relations �Prψ = Prκ
′ + �′Prψ

and −Prκ
′ + Qκ ′ = −Pr Mδ K̄−1δ κ ′, we obtain the equivalent equation for ψ1:

�ψ1 = −�′Prψ − Pr Mδ K̄−1δ κ ′ + QNδ(ϕ̃) , (3.91)

ϕ̃ = ϕ̃(ψ1) := Prψ + ψ1 + ϕl(Prψ + ψ1), (3.92)

with ϕl = ϕl( f ) the solution to Eq. (3.42) given by Proposition 3.3 with ϕs replaced by
f ∈ Bs,δ .
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By Proposition 3.7, the operators � and �0 are invertible.We invert �0 (see (3.70)) in (3.71)
to obtain

ψ := �−10 κ ′ . (3.93)

Furthermore, we invert � (see (3.66)) in Eq. (3.91) and use (3.95) to find

ψ1 =�1(ψ1) = �′1 +�′′1(ϕ̃) , (3.94)

where ϕ̃ is given in (3.92), and, with Q given in (3.67),

�′1 := −�−1[�′�−10 κ ′ + Pr Mδ K̄−1δ κ ′], (3.95)

�′′1(ϕ̃) := �−1QN (ϕ̃). (3.96)

(3.94) is a fixed point equation for ψ1. However, we do not have to solve it since we have
already proved the existence of ψ1. We use (3.94) to estimate ψ1.

Next, by Proposition 3.7, Eq. (3.81) and the relation O(δ2(−i∇)4) = O(a2(−i∇)2) on
Ran Pr (see the definition of Pr in (3.37)), valid due to the choice a := δr = O(1) (see
(3.38)), we have that the operators �, �0, �

′ given in (3.66), (3.70), and (3.90), respectively,
satisfy

|�′| � δ2(−i∇)4, (3.97)

�0 � −�+ ζ−2, (3.98)

� � −�+ ζ−2, (3.99)

where, recall, ζ := m−1/2δ, with m given in (1.33), (cf. (3.82)).
Using (3.97)–(3.99) and the fact �, �0, �

′ are self-adjoint and are functions of −i∇ and
therefore mutually commute, and using (3.83), we find that

‖�′1‖Ḣ i � δ2‖κ ′‖Hi + m1/2ζ 2−i‖κ ′‖L2 , i = 0, 1. (3.100)

By the choice of the Bs,δ norm (see (3.45)) and since δ2 � m1/2ζ 2−i (by (3.46), or (1.28)),
we see that

‖�′1‖δ � m1/2ζ‖κ ′‖L2 . (3.101)

Now, we turn our attention to the map �(ϕ̃) := �−1QN (ϕ̃) (see (3.96)). The definition
of �(ϕ̃) and Eq. (3.87) give

‖�′′1(ϕ̃)‖δ � m−5/6δ1/2‖ϕ̃‖2δ . (3.102)

Next, we estimate ϕ̃ = ϕ̃(ψ1) := Prψ + ψ1 + ϕl(Prψ + ψ1) = ϕs + ϕl (see (3.92)). By
Propositions 3.3 and 3.6, ‖ϕl‖δ ≤ cl and ‖Prψ + ψ1‖δ � cs and therefore ‖ϕ̃‖δ � cs + cl .
This, together with (3.102) and condition (3.46) and inequality (3.48), yields

‖�′′1(ϕ̃)‖δ � m−5/6δ1/2c2l . (3.103)

Equations (3.101) and (3.103) and the relation m−5/6δ1/2 = θ3/2ζ−1 imply

‖�1(ψ1)‖δ � m1/2ζ‖κ ′‖L2 + θ3/2ζ−1c2l . (3.104)

By condition (3.46) and our choice cl = ωζ, ω := min(θ−1/2, m−1/4), we see that (3.104)
implies

‖�1(ψ1)‖δ � (a−2m1/2 + θ1/2)ζ.

Since ψ1 = �1(ψ1) and, the above estimate gives (3.73), proving Proposition 3.8. ��
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4 Analysis of the Operator �. Proof of Proposition 3.7

The goal of this section is to prove Proposition 3.7. The proof follows readily from Lemmas
4.1, 4.3 and 4.4 below. Throughout this section, we suppose Assumption [A1] holds, without
mentioning this explicitly.

Let Mk and K̄k be the k-th Bloch–Floquet fibers of M ≡ Mδ=1 and K̄ ≡ K̄δ=1 (see
(2.34), not to be confused with Mδ and K̄δ). Since, by Proposition 3.2, K̄ is invertible, then
so is K̄k and K̄−1k = (K̄−1)k (see (2.37)). We have

Lemma 4.1 The operator �, defined in (3.66), is of the form

� =δ−2b(−iδ∇)Pr , (4.1)

where b(k) is a smooth, even function of −iδ∇ given explicitly as:

b(k) =|	|−1〈1, (|k|2 + Mk − Mk K̄−1k Mk)1
〉
L2
per

. (4.2)

Proof Since Mδ is Lδ-periodic by Proposition 3.2, Eq. (3.66) implies that so is �. Moreover,
(3.66) and (3.34) yield

� =Pr [δ−2Uδ(−�+ M)U∗δ ]Pr − Pr [δ−2Uδ MU∗δ ]
× P̄r [δ−2Uδ(−�+ M)U∗δ ]−1 P̄r [δ−2Uδ MU∗δ ]Pr ,

where, recall, M ≡ Mδ

∣∣
δ=1, which implies that

� = δ−2Uδ�
∣∣
δ=1U∗δ . (4.3)

The last two properties and Lemma 2.8 show that � is a function of −iδ∇ of the form (4.1),
where b(k) = 〈(�|δ=1)k1〉	, with (� |δ=1)k being the Bloch–Floquet fibres of � |δ=1 and 1
standing for the constant function, 1 ∈ L2

per(R
3). Using Eqs. (2.37), (3.66) and �k1 = 0, we

find explicit form (4.2) of b(k).
The next proposition gives the Bloch–Floquet decomposition of the operator M .

Proposition 4.2 The operator M has a Bloch–Floquet decomposition (2.34) whose k−fiber,
Mk, acting on L2

per is given by

Mk f =− den

[∮
rper,0(z) f rper,k(z)

]
(4.4)

where f ∈ L2
per and, on L2

per ,

rper,k(z) = (z − hper,k)
−1, (4.5)

hper,k = (−i∇ − k)2 − φper . (4.6)

Proof of Proposition 4.2 Let Ts be given in (2.1) and ϕ ∈ L2. To compute k-fibers of M , we
note T−t den[A] = den

[
T ∗t ATt

]
and [Tt , rper(z)] = 0 for all t ∈ L. Using these relations,

the definition of the Bloch–Floquet decomposition (2.23) and Eq. (3.11), we obtain

(Mϕ)k(x) = −
∑
t∈L

e−ik(x+t)
∮

T−t den
[
rper(z)ϕrper(z)

]

= −
∑
t∈L

e−ik(x+t)
∮

den
[
T ∗t rper(z)ϕrper(z)Tt

]
. (4.7)
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Since rper(z) is L-periodic, (4.7) shows
(Mϕ)k(x)

= −
∑
t∈L

e−2π ik(x+t)
∮

den
[
rper(z)(T−tϕ)rper(z)

]
. (4.8)

Using that den[A] f = den[A f ] = den[ f A] for any operator A on L2(R3) and any suffi-
ciently regular function f on R3, we insert the constant factor of e−ikt into den in (4.8). We
obtain

(Mϕ)k(x)

= −e−ikx
∮

den

[
rper(z)

∑
t∈L

e−ikt (T−tϕ)rper(z)

]
. (4.9)

This and the definition of the Bloch–Floquet decomposition of ϕ, (2.23), imply

(Mϕ)k(x) =−
∮

den
[
rper(z)ϕkeikxrper(z)e

−ikx
]
. (4.10)

Since eikx (−i∇)e−ikx = −i∇ − k, and therefore eikxrper(z)e−ikx = rper,k(z), this gives
(4.4). ��

Since the resolvents rper,k(z) are smooth in k (see (4.5)–(4.6)), then, by (4.4), Mk is also
smooth in k. Hence, by (4.2), b(k) is smooth in k.

Since the operator Mk − Mk K̄−1k Mk in (4.2) is self-adjoint, the function b(k) is real. By
Lemma 4.2 and the properties r̄per,k(z) := Crper,k(z)C = rper,−k(z̄), where C is the complex
conjugation, and the contour of integration in (4.4) is symmetric w.r.to the reflection z → z̄,
we have b(k) = b̄(k) = b(−k), i.e. b(k) is even. ��

Let K0 = Kk=0 denote the 0-fiber of K , acting on L2
per(R

3). We also let �0 denote the

projection onto constant functions on L2
per(R

3) and �̄0 := 1−�0. Finally, we define

K̄0 := �̄0K0�̄0. (4.11)

Recall the abbreviation sβ := βe−η0β . With this notation, we have

Lemma 4.3 Let m be given in (1.33). The function b(k) given in (4.2) satisfies

b(k) = |	|−1(m + O(s2β))+ k · εk

+ k · O(sβ)k + O(|k|4), (4.12)

where m is a scalar given by (1.33) and ε is a real matrix given by (1.35)–(1.37).

Proof of Lemma 4.3 First, we use (4.2) to write b(k) as

b(k) = b1(k)− b2(k), (4.13)

b1(k) := |k|2 + |	|−1 〈1, Mk1〉L2
per

, (4.14)

b2(k) := |	|−1〈1, Mk K̄−1k Mk1〉L2
per

. (4.15)

We begin with b1(k). We claim that

b1(k) =|	|−1m + ε′1|k|2 + k · (1+ ε′)k + O(|k|4), (4.16)
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where m and ε′ are given in (1.33) and (1.36), respectively, and ε′1 is a real, symmetric matrix
satisfying ε′1 = O(sβ), contributing to the third term on the r.h.s. of (4.12).

Using definition of b1 in (4.14) and Proposition 4.2, we see that

b1(k) = −|	|−1〈1, den
∮

rper,0(z)1rper,k(z)〉L2(	) (4.17)

= −|	|−1Tr	
∮

rper,0(z)rper,k(z), (4.18)

where 1 is the constant function 1 ∈ L2
per and 	 is an arbitrary fundamental cell of L. To

begin with, using the Cauchy-formula for derivatives, we obtain

b1(0) =− |	|−1Tr	
∮

r2per,0(z) = |	|−1m. (4.19)

Next, recall that hper,k = (−i∇ − k)2 − φper (see (4.6)). We have, by the resolvent identity,
that

rper,k(z)− rper,0(z) = rper,k(z)[2(−i∇) · k − |k|2]rper,0(z). (4.20)

Applying this identity to (4.18) and using that b1(k) is even, we obtain (4.16), with ε′1 :=−|	|−1TrL2
per

∮
r3per,0(z) and ε′ given by (1.36).

Using the Cauchy-integral formula, we rewrite ε′1 as

ε′1 =−
1

2
TrL2

per
f ′′T (hper − μ). (4.21)

Then following the proof of LemmaB.2with f ′FD replaced by f ′′FD, we show that ε′1 = O(sβ).
This proves (4.16).

Next, we prove the expansion

b2(k) = k · ε′′k + k · ε′′1 k + O(|k|4)+ O(s2β), (4.22)

where ε′′ is given in (1.37), ε′′1 is a real matrix satisfying ε′′1 = O(sβ) (contributing to the
third term on the r.h.s. of (4.12)). First, we recall from (4.15)

b2(k) = |	|−1〈1, (M K̄−1M)k1〉L2
per

(4.23)

= |	|−1〈Mk1, K̄−1k Mk1〉L2
per

, (4.24)

where, recall, Mk, Kk and K̄k are the k-th Bloch–Floquet fiber of M ≡ Mδ=1, K ≡ Kδ=1
and K̄ ≡ K̄δ=1. Letting

ρk = (P̄a)k Mk1 ∈ L2
per , (4.25)

where L2
per is given in (1.19), a is given in (3.38), and Pa is defined in (3.37), we find

b2(k) = |	|−1〈ρk, K̄−1k ρk〉L2
per

. (4.26)

Now, we expand ρk in k. By (4.4), we have Mk=01 = − den
[∮

r2per,0(z)
]
. Next, recall∮ := 1

2π i

∫
�

dz fT (z − μ) (see (3.7)) to obtain

Mk=01 = − den f ′T (hper,0 − μ). (4.27)
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Since f ′F D ≤ 0, we have Mk=01 > 0. Introduce the function

V (x) = − den
[

f ′T (hper,0 − μ)
]
(x) ≥ 0. (4.28)

By definition (4.25) and Eqs. (4.4), (4.27) and (4.28), we have

ρk = (P̄a)k V + ρ′k, (4.29)

ρ′k := (P̄a)k den
∮

r2per,0(z)(2(−i∇)k + k2)rper,k(z). (4.30)

Inserting the decomposition (4.29) into (4.26) gives

|	|b2(k) =〈V , K̄−1k V 〉 + 2Re〈V , K̄−1k ρ′k〉 + 〈ρ′k, K̄−1k ρ′k〉. (4.31)

We expand the third term on the r.h.s. on (4.31). First, we give a rough bound. For z ∈ �, we
claim the estimates

‖(1−�)αrper,k(z)‖
≤ ‖(1−�)αrper(z)‖ � dα−1 � 1, (4.32)

for α = 0, 1/2, where d ≡ d(z) := dist(z, σ (hper)) ≥ 1
4 . The first estimate follows from

(2.38). The second estimate is straightforward for α = 0, 1, which by interpolation, gives
it for all α ∈ [0, 1]. For α = 1/2, it can be also proven directly as ‖(−�)1/2 f ‖2 =
〈 f , (hper − z + φper + z) f 〉. Taking f = rper(z)u, we arrive at the second estimate in
(4.32) for α = 1/2.

By the second resolvent identity (4.20) and estimates (4.32), we have the expansion

rper,k(z) = rper,0(z)+ O(|k|d−3/2 + |k|2d−2).

Using this expansion in (4.30), we find

ρ′k = ρ′ · k + O(|k|2),

where ρ′ is given in (1.38). Using the latter relation, the relation K̄−1k = K̄−10 + O(k) and
the fact that, since on L2

per the spectrum of −i∇ is discrete, (P̄a)k=0 = (P̄a=0)k=0 for a is
sufficiently small, we obtain

|	|−1〈ρ′k, K̄−1k ρ′k〉 = −kε′′k + O(k4), (4.33)

for ε′′ is given in (1.37), where the power of the remainder comes from the fact b2(k) is
even which is shown by the same argument that was used in demonstration that b(k) is even.
Equations (4.31) and (4.33) show that

b2(k) = b2(0)− kε′′k + O(k4)+ Rem, (4.34)

Rem := 〈V , [K̄−1k − K̄−10 ]V 〉 + 2Re〈V , K̄−1k ρ′k〉, (4.35)

with b2(0) := |	|−1〈V , K̄−1k V 〉. To estimate b2(0) and the terms in (4.35), we use Eq. (3.53)
and the relation ‖K̄−1‖ = supk ‖K̄−1k ‖ (see (2.38)) to obtain

‖K̄−1k ‖ � 1.
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We use this bound, Lemma B.2, (4.30) and the fact that b2(k) is even in k, to obtain

|	||Rem| � (‖V ‖2L2
per
+ ‖V ‖L2

per
)|k|2

= O(sβ |k|2), (4.36)

|	|b2(0) = O(‖V ‖2L2
per

) = O(s2β). (4.37)

We identify the first, third and fourth terms on the r.h.s. of (4.34) with the fourth, third and
second terms in (4.22), respectively. Equations (4.34)–(4.36) imply (4.22).

Equations (4.13), (4.16), and (4.22) yield equation (4.12), with ε′1 + ε′′1 making up the
third term on the r.h.s. of (4.12). This completes the proof of Lemma 4.3. ��
Lemma 4.4 The 3× 3 matrix ε entering (4.2) is symmetric and satisfies

ε ≥ 1− O(s2β). (4.38)

Proof We prove this lemma using the Feshbach–Schur map. Let P = Ps (see (3.37)) for
some real number s > 0, unrelated to r and satisfying B(δs) ⊂ 	∗. For any projection P
and operator H on L2(R3), the Feshbach–Schur map FP (H) is defined as

FP (H) := P H P − P H P̄ H̄−1 P̄ H P. (4.39)

where P̄ = 1− P , H̄ = P̄ H P̄ , and H̄−1 is defined on the range of P̄ . The Feshbach–Schur
map has the property [20]

−λ /∈ σ(H) ⇐⇒ −λ /∈ σ(FP (H + λ)− λP). (4.40)

for any λ ≥ 0. That is, for all λ > 0,

H ≥ 0 ⇐⇒ FP (H + λ)− λP ≥ 0. (4.41)

With the Laplacian �, we define

Kc,δ = Kδ + c�. (4.42)

Since Mδ > 0 by Proposition 3.1, we have that Kc,δ > 0 for all c ∈ [0, 1). Consequently,
(4.41) shows that, for any λ > 0,

FP (Kc,δ + λ)− λP ≥ 0. (4.43)

Using definition (4.39) and the resolvent identity, we obtain

FP (Kc,δ + λ)− λP (4.44)

= P Kc,δ P − P Mδ(K̄c,δ + λP̄)−1Mδ P (4.45)

= FP (Kc,δ)+ λP Mδ K̄−1c,δ (K̄c,δ + λP̄)−1Mδ P (4.46)

= FP (Kc,δ)+ λP Mδ K̄−2c,δ Mδ P

− λ2P Mδ(K̄c,δ)
−2(K̄c,δ + λP̄)−1Mδ P. (4.47)

By the choice of P = Ps (see (3.37)), we see that K̄c,δ � s2. Since Mδ � δ−2, we see that
the last term in (4.47) is bounded by O(λ2δ−4s−6). Thus, (4.44) - (4.47) implies

FP (Kc,δ + λ)− λP = FP (Kc,δ)+ λW + O(λ2δ−4s−6)P, (4.48)
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where W := P Mδ(K̄c,δ)
−2Mδ P . To estimate W , we proceed as in the proof of Lemma 4.1.

First, since Mδ is Lδ-periodic by Proposition 3.2, W is Lδ-periodic. Moreover, the definition
W := P Mδ(K̄c,δ)

−2Mδ P and (3.34) yield

W = Ps(δ
−2Uδ M1U∗δ )P̄s[δ−2Uδ(−�+ M1)U

∗
δ ]−2 P̄s(δ

−2Uδ M1U∗δ )Ps

= Pδs M1 P̄δs K̄−11 P̄δs M1Pδs,

which implies that

W = UδW
∣∣
δ=1U∗δ . (4.49)

((K̄c,δ)
−1 entering W in the second power eats up δ−2 compared to (4.3).) Since B(δs) ⊂ 	∗,

the last two properties and Lemma 2.8 show that W is a function of −iδ∇ of the form

W =w(−iδ∇)P, (4.50)

where w(k) = 〈Wk1〉	, with Wk being the Bloch–Floquet fibers of W and 1 standing for
the constant function, 1 ∈ L2

per(R
3). Using Eq. (2.37), we find, as in (4.1)–(4.2), the explicit

form of w(k):

w(k) =|	|−1〈1, Mk K̄−2k Mk1
〉
L2
per

, (4.51)

where Mk and K̄k are the k-th Bloch–Floquet fibres of Mδ=1 and K̄δ=1.
Since the operator Mk K̄−2k Mk in (4.2) is self-adjoint, the functionw(k) is real. Arguing as

with b(k) in the proof of Lemma 4.1, we conclude thatw(k) is even and smooth. Furthermore,
as with b2(k) in the proof of Lemma 4.3, we expand w(k) in k to the fourth order to obtain

W = O(s2β)− δ2∇ε3∇P + O(δ4(−i∇)4P), (4.52)

ε3 := |	|−1〈ρ′, K̄−2c,0ρ
′〉L2

per
> 0, (4.53)

where ρ′ is given in (1.38), Kc,0 ≡ Kc,δ=1,k=0 is the 0-th fiber of Kc,δ=1, and K̄c,0 =
�̄0Kc,0�̄0. Here �̄0 = 1−�0 and �0 is the projection in L2

per onto constants. The inverse

K̄−2c,0 is taken on the range of �̄0. Equations (4.48) and (4.52) imply that

FP (Kc,δ + λ)− λP = FP (Kc,δ)+ O(s2β)− λδ2∇ε3∇P

+ O(δ4(−i∇)4P)+ O(λδ−4s−6P). (4.54)

Now, we use definition (4.42) to expand the term FP (Kc,δ) in (4.54) in c. A simple
computation shows that

FP (Kc,δ) = FP (Kδ)+ c�P (4.55)

−
∑
n≥1

cn P Mδ(K̄−1δ (−�))n K̄−1δ Mδ P. (4.56)

Since K̄δ ≥ 0, (4.56) is negative, we conclude

FP (Kc,δ) ≤ FP (Kδ)+ c�P. (4.57)

Since FP (Kδ) = � for r = s (see (3.66)), we see, by Lemma 4.3, that

FP (Kδ) =− ∇ε∇P + O(δ2(−i∇)4P, (4.58)
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with ε defined there. We use that O(δ4(−i∇)4P) = O(ã2(−i∇)2P), where ã := δs (which
is unrelated to the a in (3.38)) and (4.57) and (4.58) to obtain

FP (Kc,δ) ≤ −∇(ε − c + O(ã2))∇P. (4.59)

Setting ε4 := O(ã2)+ λδ2ε3, we see that Eqs. (4.54), (4.43) and (4.59) imply

− ∇(ε + ε4 − c)∇P + O(λδ−4s−6)P + O(s2β)P

≥ FP (Kc,δ + λ)− λP ≥ 0. (4.60)

Inequality (4.60) holds for all s ∈ (0, δ−1). Taking s = δ−3/4, we find

−∇ε∇P ≥ [(c − O(δ1/2))�− O(λδ1/2)− O(s2β)]Pδ,

where Pδ := Ps=δ−3/4 . Since this holds for every δ > 0, since P ≡ Ps converges strongly to
1, as s →∞, and since the expression for ε given in Lemma 4.3 is independent of δ, we see
that

−∇ε∇ ≥ −c�− O(s2β),

for every c ∈ [0, 1). Passing to the Fourier transform gives ξ · εξ ≥ c|ξ |2−O(s2β),∀ξ ∈ R
3.

For ξ ∈ R
3, with |ξ | ≥ 1, this implies ξ · εξ ≥ (c − O(s2β))|ξ |2, which is equivalent to

(4.38). ��

5 Nonlinear Estimates

Let Nδ be given implicitly by (3.31) and recall the definition of the Bs,δ norm from (3.45).
Let Ḣ0 ≡ L2. In this section we prove estimates on Nδ .

Proposition 5.1 Let Assumption [A1] hold. If ‖ϕ1‖Bs,δ , ‖ϕ2‖Bs,δ = o(δ−1/2), then we have
the estimate

‖Nδ(ϕ1)− Nδ(ϕ2)‖L2

� m−1/3δ−1/2(‖ϕ1‖Bs,δ + ‖ϕ2‖Bs,δ )‖ϕ1 − ϕ2‖Ḣ1 . (5.1)

In Appendix D, we prove a more refined estimate. We derive Proposition 5.1 from its
version with δ = 1 by rescaling. For δ = 1, we have the following result.

Proposition 5.2 Let Assumption [A1] hold and either ‖ψ‖L2 = o(1) or ‖∇ψ‖L2 = o(1).
Then N := Nδ=1 satisfies the estimate

‖N (ψ1)− N (ψ2)‖L2 �
2∑

j=1

[
(‖ψ j‖Ḣ1)‖ψ1 − ψ2‖Ḣ1

+ (‖ψ j‖1/3Ḣ1 ‖ψ j‖2/3L2 ‖ψ1 − ψ2‖Ḣ1

+ ‖ψ j‖Ḣ1‖ψ1 − ψ2‖1/3Ḣ1 ‖ψ1 − ψ2‖2/3L2

)]
. (5.2)

We first derive Proposition 5.1 from Proposition 5.2 and then prove the latter statement.
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Proof of Proposition 5.1 By (3.33), Nδ and the unscaled nonlinearity N = Nδ=1 are related
via

Nδ(ϕ) = δ−3/2Uδ N (ψ), ψ = δ−1/2U∗δ ϕ, (5.3)

where Uδ is given in (2.45). Equations (5.2) and (5.3) the relation ‖U∗δ ϕ‖L2 = ‖ϕ‖L2 and
the notation ψ j = δ−1/2U∗δ ϕ j imply

‖Nδ(ϕ1)− Nδ(ϕ2)‖L2 � δ−3/2
2∑

j=1

[
‖ψ j‖Ḣ1‖ψ1 − ψ2‖Ḣ1

+ ‖ψ j‖1/3Ḣ1 ‖ψ j‖2/3L2 ‖ψ1 − ψ2‖Ḣ1

+ ‖ψ j‖Ḣ1‖ψ1 − ψ2‖1/3Ḣ1 ‖ψ1 − ψ2‖2/3L2

]
. (5.4)

Furthermore, using the relation ‖ψ j‖Ḣ k = δ−1/2‖U∗δ ϕ j‖Ḣ k = δk−1/2‖ϕ‖Ḣ k , we find

‖Nδ(ϕ1)− Nδ(ϕ2)‖L2 � δ−3/2
2∑

j=1

[
δ‖ϕ j‖Ḣ1‖ϕ1 − ϕ2‖Ḣ1

+ δ
1
3
(‖ϕ j‖1/3Ḣ1 ‖ϕ j‖2/3L2 ‖ϕ1 − ϕ2‖Ḣ1

+ ‖ϕ j‖Ḣ1‖ϕ1 − ϕ2‖1/3Ḣ1 ‖ϕ1 − ϕ2‖2/3L2

)]
. (5.5)

To estimate the terms on the r.h.s. of (5.5) we use the inequality a1/3b2/3 ≤ 2
3 (a + b), with

a := ‖ϕ‖Ḣ1 and b := m1/2δ−1‖ψ‖L2 , to obtain

‖ϕ‖1/3
Ḣ1 ‖ψ‖2/3L2 ≤ 2

3
(m−1/2δ)2/3(‖ϕ‖Ḣ1 + m1/2δ−1‖ψ‖L2).

With the definition of the norm ‖ · ‖δ in (3.45), this yields δ
1
3 ‖ϕ‖1/3

Ḣ1 ‖ϕ‖2/3L2 ‖χ‖Ḣ1

≤ 2
3m−1/3δ‖ϕ‖δ‖χ‖Ḣ1 . Since ‖χ‖Ḣ1 ≤ ‖χ‖δ , this in turn implies

δ
1
3 ‖ϕ‖1/3

Ḣ1 ‖ϕ‖2/3L2 ‖χ‖Ḣ1 ≤ 2

3
m−1/3δ‖ϕ‖δ‖χ‖δ.

Applying this inequality to (5.5), we arrive at (5.1). ��
Proof of Proposition 5.2 Let hper and rper(z) be given in (3.8). First we observe that Eqs.
(3.28)–(3.32), with δ = 1, read

N (ψ) = F(φ)− F(φper)− dϕ F(φper)ψ, (5.6)

F(φ) = den[ fT (hφ − μ)], (5.7)

where ψ := φ − φper and, recall, hφ := −� − φ = hper − ψ . Next, using Eqs. (3.4) and
(3.7) and expanding (z − hφ)−1 = (z − hper + ψ)−1 to the second order, we find

N (ψ) := den[Ñ2(ψ)], (5.8)

where

Ñk(ψ) :=
∮

(z − hper + ψ)−1[(−ψ)rper(z)]k, (5.9)
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x

y

(µ− 1/2, 0)

(µ + 1/2, 0)

(µ− 1/2, 1) (µ + 1/2, 1)

(µ− 1/2,−1) (µ + 1/2,−1)

Γ

Fig. 2 The deformation of the contour � is indicated by the blue dashed line. The spectrum of hper is denoted
by solid black line. The poles of fT (z − μ) are denoted by the black dots. The number c denotes the lower
bound hper > −c + 1

with
∮
given by

∮ := 1
2π i

∫
�

dz fT (z−μ), where � is the contour given in Fig. 1 (see (3.7)),
equipped with the positive orientation.

We deform the contour � given in Fig. 1 into the contour indicated in Fig. 2 by the blue
dashed line and consisting of two separate contours traversed counter-clockwise.

By the formal resolvent expansion (without justifying the convergence)

(z − hper + ψ)−1 =
∞∑

k=2
rper(z)[(−ψ)rper(z)]k , (5.10)

we see that N (ψ) can be written as the formal series

N (ψ) =
∞∑

k=2
den[Nk(ψ)], (5.11)

where

Nk(ψ) :=
∮

rper(z)[(−ψ)rper(z)]k . (5.12)

Proposition 5.3 Let Assumption [A1] hold and let N2 be given by (5.12). Assume that
‖∇ψ‖L2 = o(1), then we have the estimate

‖ den[Nk(ψ)]‖L2 � ‖∇ψ‖4/3
L2 ‖ψ‖2/3L2 ‖ψ‖k−2

H j , j = 0, 1, (5.13)

where the constants associated with � are independent of β.
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Proof Below, we use the notation r = rper(z), where rper(z) is given in (3.8), and the estimate
(see (4.32))

‖(1−�)αr‖ � dα−1 � 1, (5.14)

for α ∈ [0, 1] and z ∈ �, where

d ≡ d(z) := dist(z, σ (hper)) ≥ 1

4
. (5.15)

We use the L2–L2 duality to estimate the L2 norm of den[Nk(ψ)]. We have, by (2.5) and
definition (5.12),

‖ den[Nk(ψ)]‖L2 = sup
‖ f ‖L2=1

∣∣∣∣
∫

f den[Nk(ψ)]
∣∣∣∣

= sup
‖ f ‖L2=1

|Tr[ f Nk(ψ)]|

= sup
‖ f ‖L2=1

∣∣∣∣
∮

Tr( f r(ψr)k)

∣∣∣∣ . (5.16)

(In the last two lines, f is considered as a multiplication operator.)
Let f ∈ L2 and recall the Schatten norm ‖ · ‖S p defined in (2.3). Using the non-abelian

Hölder’s inequality 1 = 1
2 + 1

6 + 1
3 + 1

∞ , we see that, for k ≥ 2,

|Tr( f r(ψr)k)| �‖ f r‖S2‖ψr‖S6‖ψr‖S3‖ψr‖k−2 . (5.17)

Next, we use the operator trace-class estimate ‖A‖3
S3
= Tr(|A|3) ≤ ‖A‖Tr(|A|2) =

‖A‖‖A‖2
S2
≤ ‖A‖S6‖A‖2

S2
to obtain

‖A‖S3 ≤ ‖A‖1/3
S6
‖A‖2/3

S2
. (5.18)

Using this equality to estimate the third factor in (5.17) and the standard relative bounds
‖ψr‖ � ‖ψ‖L2 and ‖ψr‖ � ‖ψ‖L6 � ‖ψ‖Ḣ1 , we bound the r.h.s. of (5.17) as

|Tr( f r(ψr)k)| �‖ f r‖S2‖ψr‖4/3
S6
‖ψr‖2/3

S2
‖ψ‖k−2

Ḣ i , i = 0, 1. (5.19)

For a typical term on the r.h.s., we have ‖gr‖S p ≤ ‖g(1 − �)−αp‖S p‖(1 − �)αp r‖, with
3/(2p) < αp < 1, p > 3/2, which, together with Kato–Seiler–Simon’s inequality (2.14)
and inequality (5.14), gives

‖gr‖S p � ‖g‖L p dαp−1, 3/(2p) < αp < 1, p > 3/2.

Applying this estimate to each of the first three factors on the r.h.s. of (5.19) and using the
Gagliardo–Nirenberg–Sobolev inequality (2.18), we find

∣∣Tr( f r(ψr)k)
∣∣ �d−4/3‖ f ‖L2‖∇ψ‖4/3

L2 ‖ψ‖2/3L2 ‖ψ‖k−2
Ḣ j , (5.20)

for j = 0, 1. Recalling definition (5.15) of d ≡ d(z), we see that the integral on the r.h.s. of
(5.16) converges absolutely. Equations (5.20), (5.15), (3.7) and (3.6) give∣∣∣∣

∮
Tr( f r(ψr)k)

∣∣∣∣ �‖ f ‖L2‖∇ψ‖4/3
L2 ‖ψ‖2/3L2 ‖ψ‖k−2

Ḣ j , (5.21)

for j = 0, 1. Equations (5.16) and (5.21) imply (5.13). ��
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Now, we complete the proof of Proposition 5.2. Proposition 5.3 shows that if ‖ψ‖L2 <∞
and either ‖ψ‖L2 = o(1) or ‖ψ‖Ḣ1 = o(1), then series (5.11) converges absolutely in L2.

Now, using series (5.11), we write

N (ψ1)− N (ψ2) =
∑
k≥2

den[Nk(ψ1)− Nk(ψ2)] . (5.22)

By definition (5.12), Nk(ψ) is an k-th degreemonomial inφ. Hence, we can expand Nk(ψ1)−
Nk(ψ2) in the following telescoping form

xk − yk = xk−1(x − y)+ xk−2(x − y)y + · · · + (x − y)yk . (5.23)

The proof of Proposition 5.2 follows by applying appropriate and straightforward extension
of Proposition 5.3 to each term in the expansion of Nk(ψ1)− Nk(ψ2) given in (5.23). ��
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Appendix A: �(T) → �(0) as T → 0

Lemma A 1 Let xc = 0. Then ε ≡ ε(T ) → ε(0) as T → 0, where ε(0) is the dielectric
constant for T = 0 obtained in [7].

Proof We see from (1.35) below that ε(T ), T = 1/β, is of the form

ε(T ) = 1

2π i

∫
�

fT (z − μ)X(z) (A.1)

where X(z) is some holomorphic function onC\R, independent of β, and remains holomor-
phic on the real axis where the gap of hper occurs. On R, we note that fFD(βx) converges to
the indicator function χ(−∞,0) as β →∞. If we take β →∞, the integral

1

2π i

∫
�

fT (z − μ)X(z) (A.2)

converges to 1
2π i

∫
G1

X(z) where G1 is any contour around the part of the spectrum of hper

that is less than μper. This is the same expression as in [7] after inserting 1 = ∑
i |ϕi 〉〈ϕi |

for each resolvent of hper in X(z) where the ϕi ’s are eigenvectors of hper. ��

Appendix B: Bounds onm and V

In this section, we prove bounds on m and V given (1.33) and (4.28). Note that m = ‖V ‖L1
per
.

Since f ′T < 0 (T = 1/β), (4.28) implies that V > 0 and therefore, by (4.28), ‖V ‖L1
per
=∫

	
V , where 	 is a fundamental domain of L (see Sect. 1.5), which yields

m =
∫

	

V = −TrL2
per

f ′T (hper,0 − μ), μ = μper. (B.1)
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Lemma B.1 Let Assumption [A1] hold and η0 be given in (1.27). Then

m = ‖V ‖L1
per
≥ 1

4
βe−βη0 , (B.2)

where η0 is given in (1.27).

Proof Using that η0 is the smallest distance betweenμ = μper and the spectrum of hper,0 (see
(1.27)) and Eq. (B.1) and replacing TrL2

per
f ′T (hper,0−μ) by the contribution of the eigenvalue

of hper,0 closest to μ, we find

m ≥− f ′T (η0) = β
eβη0

(1+ eβη0)2
≥ 1

4
βe−βη0 . (B.3)

This gives (B.2). ��
Lemma B.2 Let Assumption [A1] hold. Then, for 1 ≤ p ≤ ∞,

‖V ‖L p
per

� βe−η0β . (B.4)

Proof We do the case for p = 1 and p = ∞, and conclude the lemma by interpolation. By
Assumption [A1], the potential φper is bounded. Thus, hper,0 has only discrete spectrum on
L2
per(R

3) and

1

β
‖V ‖L1

per
=

∑
λ∈σ(hper,0)

eβ(λ−μ)

(1+ eβ(λ−μ))2
(B.5)

≤
∑

μ>λ∈σ(hper,0)

eβ(λ−μ) +
∑

μ<λ∈σ(hper,0)

e−β(λ−μ) (B.6)

=
∑

λ∈σ(hper,0)

eβ|λ−μ|. (B.7)

Again, we use that η0 is the smallest distance between μ = μper and the spectrum of hper,0

(see (1.27)). Peeling the eigenvalue(s) closest to μ and letting η0 + ξ stand for the distance
between μ and the rest of the spectrum σ(hper,0), we find, for some constant c,

∑
λ∈σ(hper,0)

eβ|λ−μ| = ceβη0 +
∑

λ∈σ(hper,0),|λ−μ|≥η0+ξ

eβ|λ−μ|. (B.8)

We estimate the sum on the r.h.s. by an integral as follows. Since the potential φper is infinites-
imally bounded with respect to −�, the eigenvalues of hper,0 go to infinity at a similar rate
as those of−� (on L2

per(R
3)), i.e. as n2. Thus, assuming that for λ sufficiently large, the nth

eigenvalue λn ≈ n2 has the degeneracy of the order O(nk), k ≥ 0, we conclude that

∑
μ<λ∈σ(hper,0)

e−β(λ−μ) �
∫

x2≥μ+η0+ξ

xke−β(x2−μ)dx

= 1

2

∫
y≥η0+ξ

(y + μ)
k−1
2 e−β ydy � 1

β
μ

k−1
2 e−β(η0+ξ). (B.9)

For the first sum in (B.6), we consider separately the cases μ � 1 and μ� 1 and, in the 2nd
case, break the sum into the sums over λ � 1 and λ � 1. In the first three situations, the
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estimate is straightforward and in the last one, we proceed as in (B.9) to obtain
∑

μ−η0−ξ≥λ∈σ(hper,0)

eβ(λ−μ) � 1

β
μ

k−1
2 e−βη0 .

This proves the lemma for p = 1.
Let W 4,1

per be the usual Sobolev space associated to L1
per involving up to 4 derivatives. For

the case p = ∞, we use the Sobolev inequality

‖ f ‖∞ � ‖ f ‖W 4,1
per

(B.10)

for f ∈ W 4,1
per . Thus, it suffices for us to estimate ‖∇ j V ‖L1

per
, j = 0, . . . , 4. To this end, we

note that

∇ den(A) = den([∇, A]) (B.11)

for an operator A on L2
per(R

3). Thus, it suffices that we estimate the trace 1-norm of

∇s f ′T (hper,0 − μ)∇4−s on L2
per(R

3) for s = 0, . . . , 4. Since the potential φper is bounded
together with all its derivatives, we have, for s = 0, . . . , 4,

‖∇sh−s/2‖ � 1, (B.12)

where h := hper,0 + c, with c > 0 s.t. hper,0 + c > 0. Indeed, to fix ideas, consider
one of the terms, say, ‖∇3h−3/2‖. We have ‖∇3 f ‖2 ≤ ‖(−�)3/2 f ‖2 = 〈 f , (h + φper −
c)3 f 〉. Taking f = h−3/2u, expanding the binomial (h + φper − c)3 and commuting the
operator h in the resulting terms h2φper and φperh2 to the right and left, respectively, and
estimating the resulting commutators, [h, φ] and [φper, h] = −[h, φper], we arrive at the
estimate ‖∇3h−3/2‖ � 1 as claimed. (B.12) implies also that ‖h−2+s/2∇4−s‖ � 1, for
j = 0, . . . , 4. As the result, we have

‖∇s f ′T (hper,0 − μ)∇4−s‖S1 � ‖g(hper,0)‖S1 ,

where g(x) := −(x + c)s/2 f ′T (x − μ)(x + c)2−s/2 ≥ 0. Hence, it suffices to estimate
‖g(hper,0)‖S1 = Tr[g(hper,0)]. The latter can be done the same way as the case for p = 1 by
summing eigenvalues of hper,0 and the lemma is proved. ��

Appendix C: Bound onMı

In an analogy to L2
per ≡ L2

per(R
3) given in (1.19), we let

L2
per,δ ≡ L2

per,δ(R
3) := { f ∈ L2

loc(R
3) : f is Lδ-periodic }. (C. 1)

Moreover, we recall ∇−1 := ∇(−�)−1 (see (3.56)). The main result of this appendix is the
following

Proposition C.1 Let Assumption [A1] hold. Then the operator Mδ can be decomposed as

Mδ = M ′δ + M ′′δ , (C. 2)

with the operator M ′δ and M ′′δ satisfying the estimates

‖P̄r∇−1M ′δ Prϕ‖L2 � δ−1‖V ‖L2
per
‖Prϕ‖L2 , (C. 3)

‖P̄r∇−1M ′′δ Pr∇−1ϕ‖L2 � ‖Prϕ‖L2 . (C. 4)
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Proof of Proposition C.1 Proposition 4.2 and the rescaling relation (3.34) imply the explicit
form for the k-fibers of Mδ:

Lemma C.2 Then Mδ has a Bloch–Floquet decomposition (2.34) withL = Lδ , whose k−fiber
Mδ,k acting on L2

per,δ is given by

Mδ,k f =− δ den

[∮
r δ
per,0(z) f r δ

per,k(z)

]
(C. 5)

where f ∈ L2
per,δ and, on L2

per,δ ,

r δ
per,k = (z − hδ

per,k)
−1, hδ

per,k = δ2(−i∇ − k)2 + δφδ
per. (C. 6)

We decompose the operator Mδ,k acting on L2
per,δ as

Mδ,k =: Mδ,0 + M ′′δ,k , (C. 7)

where Mδ,0 = Mδ,k=0 and M ′δ,k is defined by the expression (C. 7). We define operators M ′δ
and M ′′δ on L2(R2) via

M ′δ :=
∫ ⊕

	∗δ
dk̂ Mδ,0ϕ, (C. 8)

M ′′δ :=
∫ ⊕

	∗δ
dk̂ M ′′δ,kϕ , (C. 9)

where	∗δ is a fundamental cell of the reciprocal lattice toLδ and dk̂ = |	∗δ |−1dk. By Lemma
C.2 and definition (C. 7), the latter operators satisfy (C. 2).

Lemma C.3 M ′δ (see (C. 8)) restricted to the range of Pr is a multiplication operator given
by

(M ′δ Prϕ)(x) = Vδ(x)(Prϕ)(x), (C. 10)

where

Vδ(x) = −δ−2 den
[

f ′T (hper,0 − μ)
]
(δ−1x) , (C. 11)

with hper,0 given in (4.6) (with k = 0).

Proof By (C. 5) and definition of M ′δ in (C. 8), we see that

M ′δ Prϕ = −
∫ ⊕

	∗δ
dk̂ δ den

[∮
r δ
per,0(z)(Prϕ)kr δ

per,0(z)

]
. (C. 12)

By Corollary 2.4 and the Cauchy integral formula,

M ′δ Prϕ = −
∫ ⊕

	∗δ
dk̂ δ den

[∮
(r δ

per,0(z))
2
]
|	δ|−1ϕ̂(k) (C. 13)

= −
∫ ⊕

	∗δ
dk̂ den[ f ′T (hδ

per,0 − μ)]|	δ|−1ϕ̂(k). (C. 14)
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where r δ
per,0(z) and hδ

per,0 are given in (C. 6). Applying the inverse Bloch–Floquet transform
(2.24), (C. 14) implies

M ′δ Prϕ = −δ den[ f ′T (hδ
per,0 − μ)]

∫
	∗δ

dk̂ e−ikx |	δ|−1ϕ̂(k). (C. 15)

Since dk̂ is normalized by the volume |	∗δ | (which is independent of the choice of the cell),
(C. 15) shows

M ′δ Prϕ =− δ den
[

f ′T (hδ
per,0 − μ)

]
Prϕ. (C. 16)

By Lemma 2.7 and recalling the definition of Uδ from (2.45), we see that

δ den
[

f ′T (hδ
per,0 − μ)

]
= δ den

[
Uδ f ′T (hper,0 − μ)U∗δ

]
(C. 17)

= δ−2 den
[

f ′T (hper,0 − μ)
]
(δ−1x) , (C. 18)

where hper,0 = hδ=1
per,0, which together with (C. 16) gives (C. 10)–(C. 11). ��

Proof of (C. 3) Let Vδ be given in (C. 11). Since the Bloch–Floquet decomposition is unitary,
we see, by Lemma C.3 and Corollary 2.4, that

‖M ′δ Prϕ‖2L2 =‖Vδ Prϕ‖2L2 =
∫

	∗δ
dk̂‖Vδ|ϕ̂(k)||	δ|−1‖2L2

per,δ
, (C. 19)

where L2
per,δ is given in (C. 1). Using the fact that dk̂ = |	∗δ |−1dk and |	δ| = δ3|	|, (C. 19)

implies

‖M ′δ Pr‖2L2 =δ−3|	|‖Vδ‖2L2
per,δ
‖Prϕ‖2L2 . (C. 20)

By a change of variable, we see that ‖Vδ‖L2
per,δ
= δ−1/2‖V ‖L2

per
, where V is given by (4.28).

Combing with (C. 20), the fact P̄r (−i∇)−1 � r−1 (where ∇−1 is given in (3.56)) and
r−1 = a−1δ � δ (see (3.38)) yields Eq. (C. 3). ��
Proof of (C. 4) Let M ′′δ be given by (C. 9) and k−1 := k/|k|2. Let ϕ ∈ L2(R3). By Corollary
2.4, we have

(Pr∇−1ϕ)k = k−1ϕ̂(k)|	δ|−1χB(r)(k). (C. 21)

This gives M ′′δ Pr∇−1ϕ = |	δ|−1
∫ ⊕

B(r)
dk̂ M ′′δ,kk−1ϕ̂(k). Since the Bloch–Floquet decompo-

sition is unitary, we see, using (C. 21), that

‖M ′′δ Pr∇−1ϕ‖2L2

= |	δ|−2
∫

Br

dk̂ ‖M ′′δ,k1‖2L2
per,δ
|k|−2|ϕ̂(k)|2. (C. 22)

Since dk̂ = |	∗|−1dk = |	|dk and |	δ| = δ3|	|, (C. 22) is bounded as
‖M ′′δ Pr∇−1ϕ‖2L2

� δ−3 sup
k∈Br

(
‖M ′′δ,k1‖2L2

per,δ
|k|−2

)
‖Prϕ‖2L2 , (C. 23)

where 1 ∈ L2
per,δ is the constant function 1 and L2

per,δ is given in (C. 1).
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By (C. 5) and (C. 7), we have, for M ′′δ,k given in (C. 7), that

M ′′δ,kϕ =− δ den

[∮
rper,0(z)ϕ(r δ

per,k(z)− r δ
per,0(z))

]
. (C. 24)

Since r δ
per,k(z) − rper,0(z) = r δ

per,0(z)Akr δ
per,k(z), where Ak := −2(−i∇)δk + δ2|k|2, this

gives

M ′′δ,kϕ =− δ den
∮ [

r δ
per(z)ϕr δ

per(z)Akr δ
per,k(z)

]
. (C. 25)

By the rescaling relation (3.34) and (C. 25), we see that

‖M ′′δ,k1‖L2
per,δ
= ‖U∗δ M ′′δ,kUδ ·U∗δ 1‖L2

per
= δ3/2−2‖M ′′1,k1‖L2

per

= δ−1/2
∥∥ den [ ∮

r2per(z)Akrper,δk(z)
]∥∥

L2
per

. (C. 26)

By (C. 26), notation Ak := −2(−i∇)δk + δ2|k|2 and inequality (4.32), with α = 0, 1/2, we
obtain, for |k| ≤ r ,

‖M ′′δ,k1‖L2
per
|k|−1 � δ−1/2+1 + δ−1/2+2r

= δ1/2 + δ3/2r . (C. 27)

By (3.38) and (C. 23), Eq. (C. 27) shows that

‖M ′′δ Pr∇−1ϕ‖L2 � δ−1. (C. 28)

This bound, the observation that ‖P̄r∇−1‖∞ � r−1 (see (3.37)) and the definition r = a/δ �
1/δ imply Eq. (C. 4). ��

This completes the proof of Proposition C.1. ��
We use Proposition C.1 to prove the following

Proposition C.4 Let Assumption [A1] hold and let βe−η0β � 1 (which is weaker than
Assumption [A3]). Then the operator Mδ is bounded as

‖∇−1 P̄r Mδ f ‖Ḣ1 � ‖ f ‖δ. (C. 29)

Proof of Proposition C.4 Decomposing Mδ according to (C. 2) and using bounds Eqs. (C. 3)
and (C. 4) of Proposition C.1, we see that

‖∇−1 P̄r Mδ Prϕ‖L2 ≤ ‖∇−1 P̄r M ′δ Prϕ‖L2 + ‖∇−1 P̄r M ′′δ Prϕ‖L2

� δ−1‖V ‖L2
per
‖ f ‖L2 + ‖∇ f ‖L2 , (C. 30)

where V is given in (4.28). Using ‖V ‖L2
per
≤ ‖V ‖1/2L∞‖V ‖1/2L1

per
and the definitionm := ‖V ‖L1

per

in (C. 30) gives

‖∇−1 P̄r Mδ f ‖Ḣ1 � ‖V ‖1/2L∞(δ−1m1/2‖ f ‖L2)+ ‖∇ f ‖L2 . (C. 31)

Lemma B.2 and definition (3.45) imply (C. 29). ��
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Appendix D: Refined Nonlinear Estimates

Let Nδ be given implicitly by (3.31) and recall the definition of the Bs,δ norm from (3.45).
Let Ḣ0 ≡ L2. In this section we prove estimates on Nδ .

Proposition D.1 Let Assumption [A1] hold. If ‖ϕ1‖Bs,δ , ‖ϕ2‖Bs,δ = o(δ−1/2), then we have
the estimate

‖Nδ(ϕ1)− Nδ(ϕ2)‖L2

� e−βm−1/3δ−1/2(‖ϕ1‖Bs,δ + ‖ϕ2‖Bs,δ )‖ϕ1 − ϕ2‖Ḣ1 . (D.1)

We derive Proposition D.1 from its version with δ = 1 by rescaling. For δ = 1, we have
the following result.

Proposition D.2 Let Assumption [A1] hold ‖ψ‖L2 = o(1). Then N := Nδ=1 satisfies the
estimate

‖N (ψ1)− N (ψ2)‖L2 �
2∑

j=1

[
(‖ψ j‖Ḣ1)‖ψ1 − ψ2‖Ḣ1

+ e−β
(‖ψ j‖1/3Ḣ1 ‖ψ j‖2/3L2 ‖ψ1 − ψ2‖Ḣ1

+ ‖ψ j‖Ḣ1‖ψ1 − ψ2‖1/3Ḣ1 ‖ψ1 − ψ2‖2/3L2

)]
. (D.2)

The derivation of Proposition D.1 from Proposition D.2 is same as that of Proposition 5.1
from Proposition 5.2 and we omit it here.

Proof of Proposition D.2 Let hper and rper(z) be given in (3.8). We use the relations (5.6)–
(5.12) in the proof of Proposition 5.2. Following the latter proof we see that it suffices to
improve the estimate of Nk(ψ) in Proposition 5.3, to which we proceed. ��
Proposition D.3 Let Assumption [A1] hold and let Nk be given by (5.12). Assume that
‖∇ψ‖L2 = o(1), then, for any k ≥ 2, we have the estimate

‖ den[Nk(ψ)]‖L2 � ‖∇ψ‖k
L2 + e−β‖∇ψ‖4/3

L2 ‖ψ‖2/3L2 δk,2, (D.3)

where the constants associated with � are independent of β and δk,2 is the Kronecker delta.

Proof We begin with k = 2. To improve upon estimate (5.13), we, following [8], use the
partition of unity

P1 + P2 = 1, with P1 := χhper<μ and P2 := χhper≥μ. (D.4)

Let Ri ≡ Ri (z) = rper(z)Pi where i = 1, 2, Pi and rper(z) are given in (D.4) and (3.8).
Recalling definition (5.12) of Nk(ψ) and inserting the partition of unity, P1 + P2 = 1, after
each R in the integrand of (5.12), we arrive at

N2(ψ) =
∑

a,b,c=1,2
N abc
2 (ψ) , (D.5)

where the N abc
2 (ψ), for a, b, c = 1, 2, denote the operators

N abc
2 (ψ) =

∮
RaφRbψ Rc . (D.6)
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We estimate the terms individually. Below, we use the estimate (see (4.32))

‖(1−�)α Ri (z)‖ � dα−1 � 1, i = 1, 2, (D.7)

for α ∈ [0, 1] and z ∈ �, where

d ≡ d(z) := dist(z, σ (hper)) ≥ 1

4
. (D.8)

Case 1 (121) and (212). We estimate the case for (121), the other case is done similarly.
Since P1P2 = 0, we write

N (121)
2 (ψ) =

∮
R1ψ R2P2ψ R1 (D.9)

=
∮

R1[P1, ψ]P2R2P2[ψ, P1]R1 . (D.10)

Applying Lemma 2.1 and Eq. (D.7) to the r.h.s. and using that the operator norm is bounded
by the I 2 norm, we find

‖ den[N (121)
2 (ψ)]‖L2 � ‖(1−�)3/4+ε N (121)

2 (φ)‖S2 (D.11)

�
∣∣∣∣
∮ ∣∣∣∣ d−3‖[P1, ψ]P2‖2S2 . (D.12)

where, recall, ∣∣∣∣
∮ ∣∣∣∣ := 1

2π

∫
�

dz| fT (z − μ)|. (D.13)

A key observation allowing us to obtain an improved estimate is that the commutators lead
to gradient estimates:

Lemma D.4 Let Assumption [A1] hold, we have the estimate

‖[Pi , ψ]‖S2 � ‖∇ψ‖L2 , i = 1, 2. (D.14)

Proof of LemmaD.4 Since the identity commutes with any operator and P2 = 1 − P1 (see
(D.4)), we prove the lemma for P1 only. Since hper (see (3.8)) has a gap at μ, the Cauchy
integral formula implies

P1 = 1

2π i

∫
�1

(z − hper)
−1 = 1

2π i

∫
�1

rper(z) (D.15)

where �1 is the contour {t+ i;−c ≤ t < μ}∪{t− i;−c ≤ t < μ}∪{−c− i t+(1− t)i : t ∈
[0, 1]}∪{μ− i t+ (1− t)i : t ∈ [0, 1]}, where c > 0 is any constant such that hper > −c+1,
and the contour is traversed counter-clockwise. We see that

[P1, ψ] = 1

2π i

∫
�1

[rper(z), ψ] (D.16)

= 1

2π i

∫
�1

rper(z)[∇·,∇ψ]rper(z)

+ 1

2π i

∫
�1

rper(z)(2∇ψ · ∇)rper(z). (D.17)

Lemma D.4 is now proved by an application of the Kato–Seiler–Simon inequality ((2.14))
to (D.17) and noting that �1 is compact and has length O(1). ��
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Using Lemma D.4 and estimates (3.6) and (D.8) in (D.12) yields that

‖ den[N (121)
2 (ψ)]‖L2 � ‖∇ψ‖2L2 . (D.18)

Case 2: (112), (211), (122), (221)We estimate the case for (112), the other cases are done
similarly. Again, since P1P2 = 0, we write

N (112)
2 (ψ) =

∮
R1ψ R1ψ R2 (D.19)

=
∮

R1ψ R1[ψ, P1]R2 . (D.20)

Using Lemma 2.1 as in with N (121)
2 (ψ) in (D.11), we estimate (D.20) as

‖ den[N (112)
2 (ψ)]‖L2 �

∣∣∣∣
∮ ∣∣∣∣ d−1‖ψ R1‖‖[ψ, P1]R2‖S2 . (D.21)

where
∣∣∮ ∣∣ is defined in (D.13). By the inequality ‖A‖ ≤ ‖A‖I p , for any p < ∞ for any

operator A on L2(R3), and the Kato–Seiler–Simon inequality (2.14), we find ‖ψ R1‖ ≤
‖ψ R1‖S6 � ‖ψ‖L6 . Using this, together with Lemma D.4, in (D.21), we obtain

‖ den[N (112)
2 (ψ)]‖L2 �

∣∣∣∣
∮ ∣∣∣∣ d−2‖ψ‖L6‖∇ψ‖L2 . (D.22)

Combining this with (3.6), (D.8) and Hardy–Littlewood’s inequality (2.18) gives

‖ den[N (112)
2 (ψ)]‖L2 �‖∇ψ‖2L2 . (D.23)

Case 3 (111) and (222). We use the L2–L2 duality to estimate the L2 norm of
den[N (qqq)

2 (ψ)], q = 1, 2. We have, by (2.5) and definition (5.12),

‖ den[N (qqq)
2 (ψ)]‖L2 = sup

‖ f ‖L2=1

∣∣∣∣
∫

f den[N (qqq)
2 (ψ)]

∣∣∣∣
= sup
‖ f ‖L2=1

∣∣∣Tr[ f N (qqq)
2 (ψ)]

∣∣∣

= sup
‖ f ‖L2=1

∣∣∣∣
∮

Tr( f Rqψ Rqψ Rq)

∣∣∣∣ . (D.24)

(In the last two lines, f is considered as a multiplication operator.) To show that the integral
on the r.h.s. converges absolutely, we follow the arguments in (5.17)–(5.20) to prove, for
q = 0, 1,

∣∣Tr( f Rq(ψ Rq)2)
∣∣ �d−4/3‖ f ‖L2‖∇ψ‖4/3

L2 ‖ψ‖2/3L2 . (D.25)

Due to definition (D.8) of d ≡ d(z), this shows that the integral on the r.h.s. of (D.24)
converges absolutely.

Lemma D.5 For q = 1, 2, we have∮
Tr[ f R Pq gR Pq h Pq ]

= 1

2π i

∫
�q

( fT (z)− 1)Tr[ f R Pq gR Pq h Pq ]. (D.26)
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Proof Note that the contour � in Fig. 2 is the union of two disjoint contours, � = �1 ∪ �2,
with �1 being the closed contour and �1 unbounded one (i.e. the parts of � with Re z < μ

and Re z > μ). We first note that, by Bloch’s theory,∫
�q

dz Tr[ f R Pq gR Pq h Pq ] =
∫

�q

dz
∫

(	∗)3
dk̂dk̂1dk̂2 (D.27)

× TrL2
per

fk−k1(R Pq)k1gk1−k2(R Pq)k2hk2−k(R Pq)k . (D.28)

Computing the trace in the complete orthonormal basis of eigenvectors ϕm,k of (R Pq)k (with
eigevalues λm,k) and inserting the complete orthonormal bases of eigenvectors ϕn,k1 and ϕr ,k2
of (R Pq)k1 and (R Pq)k2 (with eigevalues λn,k1 and λr ,k2 ) into (D.28), we see that

∫
�1

Tr[ f R Pq gR Pq h Pq ] =
∑

m,n,r

∫
(	∗)3

dk̂dk̂1dk̂2 (D.29)

× 〈ϕm,k, fk−k1ϕn,k1〉〈ϕn,k1 , gk1−k2ϕr ,k2〉〈ϕr ,k2 , hk2−kϕm,k〉 (D.30)

×
∫

�q

dz
1

(z − λm,k)(z − λn,k1)(z − λr ,k2)
. (D.31)

Since P1 projects to the spectrum of hper on the left ofμ, we see that λm,k, λn,k1 , λr ,k2 < μ. In
particular, these eigenvalues are in the left closed contour in Fig. 2. Consequently, Cauchy’s
integral formula shows that the term in the large bracket in (D.31) is identically zero. Similar
argument applies to P2. This shows that

1

2π i

∫
�q

Tr[ f R Pq gR Pq h Pq ] = 0. (D.32)

Thus (D.26) follows. ��
Using the explicit form of the Fermi–Diract distribution fT in (1.2), we see that

| fT (z − μ)− 1| = eβ(Re z−μ)

|1+ eβ(z−μ)| . (D.33)

By condition (1.26) and by the choice of the contour, �, in Fig. 2, we see that the if z ∈ �,
then Re z is at least at the distance ≥ 1 from μ. Hence, for z in a contour �, (D.33) implies
that

| fT (z − μ)− 1| � e−β . (D.34)

Applying estimates (D.34) and (D.25) to the r.h.s. of (D.26) and recalling the definition
(D.8) of d ≡ d(z) ≥ 1

4 ,
we arrive at the inequality ∣∣∣∣

∮
Tr[ f R Pq gR Pq h Pq ]

∣∣∣∣
� e−β‖ f ‖L2‖∇ψ‖4/3

L2 ‖ψ‖2/3L2 . (D.35)

This inequality, together with the relation (D.24), gives∥∥∥den[N (qqq)
2 (φ)]

∥∥∥
L2

�e−β‖∇φ‖4/3
L2 ‖φ‖2/3L2 . (D.36)

Inequalities (D.18), (D.23) and (D.36) imply estimate (D.3) for k = 2.
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Now we estimate Nk for k > 2. By (3.6) and (3.10), it suffices to estimate den[R(φR)k]
where R = rper(z) is given in (3.8). Using Lemma 2.1, we see that

‖ den[R(φR)k]‖L2 �‖(1−�)4/3+ε R(φR)k‖S2 (D.37)

�‖(φR)k‖S2 . (D.38)

Using Hölder’s inequality with 1
2 = 1

6 + 1
6 + 1

6+ another k terms of 1
∞ , (D.38) becomes

‖ den[R(φR)k]‖L2 ≤‖φR‖3S6‖φR‖k−3 (D.39)

≤‖φR‖k
S6 , (D.40)

where the last line follows since ‖ · ‖ ≤ ‖ · ‖S p for p < ∞. Combining with Kato–Seiler–
Simon’s inequality (2.14) and Hardy-Littlewood’s inequality (2.18), (D.40) implies (D.3) for
k ≥ 3. ��

The rest of the proof of Proposition D.1 proceeds as the proof of in Proposition 5.3. ��
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