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Abstract
We present the complete theory for the decay rates of non-equilibrium fluctuations in a
ternary liquid mixture subjected to a stationary temperature gradient, when the quiescent
non-convective state is stable. In the most general case, within Boussinesq approximation,
four fluctuating modes exist. Depending on the parameter values, propagative modes may
be present, and we discuss numerically some cases where that is so. We complete the work
with a discussion of symmetry upon changes in concentration representation, as well as
examination of some limiting cases with practical relevance for which analytical progress is
possible. We make contact with previous publications, which were based on some kind of
approximation.

Keywords Fluctuating Hydrodynamics · Non-equilibrium fluctuations · Ternary systems ·
Stochastic processes · Onsager regression hypothesis

1 Introduction

The intensity of fluctuations in liquids in non-equilibrium (NE) states, like when subjected
to a temperature gradient, can be orders of magnitude larger than around the equivalent
equilibrium state at the average temperature [1,2]. This is physically due to a coupling
between the temperature fluctuations and the velocity fluctuations parallel to the gradi-
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ent, the latter mixing regions with different local temperature [1,3]. This NE-enhancement
of fluctuations was originally predicted on the basis of kinetic theory [4], and later con-
firmed by fluctuating hydrodynamics [5]. These theoretical predictions were soon verified by
dynamic light-scattering experiments in one-component liquids [6], i.e., through the analysis
of temperature fluctuations; and, later, also in binary liquid mixtures. In mixtures, a NE-
enhancement of concentration fluctuations is due to the presence of a concentration gradient,
as it exists in transient free-diffusion processes [7], or as induced by thermodiffusion [8,9].
When external forces like gravity (buoyancy) are present, the existence of gradients (NE
conditions) not only affects the intensity of fluctuations, but also their dynamics. Again, this
has been first discussed in one-component liquids [10] and later in binary mixtures, both
theoretically [11] and experimentally [7,12]. On this regard, the dynamic analysis of the
NE fluctuations has been proposed as a novel experimental technique for the simultaneous
measurement of diffusion and thermodiffusion coefficients in liquid mixtures [13,14].

The natural continuation of all these studies on NE fluctuations in one-component liquids
and binarymixtures is to consider the case of a ternary liquidmixture, which is the topic of the
present work. The theoretical study of hydrodynamic fluctuations in ternary liquid mixtures
considered first equilibrium states (homogeneous temperature, concentrations and pressure),
which has been the topic of various investigations over the years.Afirst analysiswas presented
by Lekkerkerker and Laidlaw [15] who considered the most general case of a compressible
fluid in which fluctuations in five independent variables, i.e., velocity, temperature, two
concentrations and pressure, are coupled. This pioneering studywas focused on the dynamics
of the fluctuations. Later, van der Elsken and Bot [16] considered not only the decay times,
but also the intensity of fluctuations in multicomponent mixtures in equilibrium, deriving an
expression for the ratio of the Rayleigh and Brillouin components of the scattering spectrum.
More recently, Ivanov and Winkelmann [17] re-derived the expressions of Lekkerkerker and
Laidlaw [15] for the Rayleigh peak of a ternary mixture, and studied the slowing-down
of the concentration fluctuations close to a critical consolute point but without including
a discussion of the statics of the fluctuations. Finally, among the equilibrium studies, we
mention Bardow [18] who combined previous works, considering both the statics and the
dynamics of fluctuations in equilibrium ternary systems,while adopting someapproximations
adequate for mixtures in the liquid state, in particular the fact that concentration fluctuations
in liquids relax much slower than temperature fluctuations. This approach is equivalent to the
large Lewis number approximation, introduced by Velarde and Schechter [19], to simplify
the calculation of the convection threshold in binary fluids. The equilibrium results of Bardow
[18]were later reproduced on the basis of Fluctuating hydrodynamics [20] and experimentally
confirmed by Heller et al. with dynamic light scattering [21].

The first attempt to evaluate the NE spectrum of thermodynamic fluctuations when a
ternary mixture layer is subjected to a stationary temperature gradient, so that a composition
gradient is induced by thermodiffusion, considered the case of no external forces (micro-
gravity) [22]. This case is simpler because the dynamics of NE fluctuations in microgravity
is the same as the dynamics of the equilibrium ones. Also, microgravity results [22] turn to
be more useful than initially appears since, as explicitly shown for binary mixtures [23,24],
they also apply to ground conditions in the asymptotic limit of fluctuations of very small
lateral size, i.e., with wave number q → ∞. Actually, these [22] first theoretical results
at q → ∞ have been used to analyze laboratory experiments with some success [25,26].
In a subsequent investigation [27], buoyancy effects were considered, as required to under-
stand ground experiments at intermediate q . However, to simplify the working equations,
this research [27] adopted a large Lewis number, Le, approximation, which is equivalent to
assume that temperature fluctuations decay so fast, as compared to concentration fluctua-
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Non-equilibrium Fluctuations in a Ternary Mixture 3

tions, that their coupling can be neglected. This large Le approach is normally adequate for
liquid mixtures and has been widely used in the literature [18,19,28]. However, as recently
demonstrated for binary mixtures [29], neglecting temperature fluctuations one cannot cor-
rectly describe the dynamics of sufficiently large fluctuations (small q) where propagative
modes (oscillating time correlation functions) do appear. Hence, for a fully understanding
of the dynamics of NE fluctuations in a ternary mixture it is required to extend the theory
currently available [22,27] to finite Lewis numbers Le �= ∞. This is the main purpose of
this work. It should be mentioned that, very recently, a preliminary presentation of the theory
to be developed here has appeared [12] but that publication was mostly experimental and
centered in the existence of propagative modes also in ternary mixtures. Hence, we shall
present here the complete theory that was preliminarily sketched elsewhere [12], giving all
the details and completing the discussion.

We shall proceed by first presenting in Sect. 2 the hydrodynamic theory on which is based
the evaluation of the decay rates of NE fluctuations in a ternary mixture where a composition
gradient is induced by the Soret effect. It is evident that the mathematical expression of
the decay rates cannot depend on the representation chosen for the composition, whether
mass fraction, mole fraction or other possibilities. This important symmetry property is
thoroughly discussed in Sect. 3. The decay rates of fluctuations are presented as the roots of
a fourth-order polynomial. Although analytical formulas exist for them, they are so clumsy
that it results more practical a numerical evaluation in some representative cases, that is the
purpose of Sect. 4. Although in the most general case only a numerical evaluation is feasible,
further analytical progress is possible by considering some limits with practical relevance, as
presented in Sect. 5. We finalize by summarizing and presenting some concluding remarks
in Sect. 6.

2 Hydrodynamic Theory

We consider a layer of a ternary liquid mixture subjected to a stationary temperature gradient
in the same direction as gravity. We adopt a system of reference where gravity is in the
negative z-axis. The liquid layer is bounded by two horizontal planes, perpendicular to the
direction of gravity and parallel to the xy-direction, located at z = ±L/2, where L is the
vertical thickness of the layer. A temperature difference ΔT is maintained between these
bounding planes, so that the stationary temperature gradient is ∇T = ΔT /L . Because of
Soret effect (thermodiffusion) [30,31] the imposition of an external temperature gradient
causes concentration gradients to develop in the ternary fluid mixture. After some transient,
if the system is convection-free,1 steady concentration gradients appear in the system, ∇wi

if mass fractions wi are used to represent concentrations or ∇xi if mole fractions xi are used
to represent the composition. Thermodiffusion in ternary liquid mixtures can be quantified
either by two frame-dependent [32] thermodiffusion coefficients, Dw

T ,i if mass fractions wi

are used to represent concentrations or Dx
T ,i if mole fractions xi are used to represent the

composition; or by a pair of frame-independent [33] thermodiffusion coefficients DT ,i . Then,
the relationship between the stationary temperature and composition gradients is given by:

[∇w1

∇w2

]
= [Dw]−1 ·

[
Dw
T ,1

Dw
T ,2

]
∇T = [Dw]−1 · W ·

[
DT ,1

DT ,2

]
∇T (1)

1 We always assume in this paper that the system is convection-free.
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4 J.M. Ortiz de Zárate et al.

or [∇x1
∇x2

]
= [Dx]−1 ·

[
Dx
T ,1

Dx
T ,2

]
∇T = [Dx]−1 · X ·

[
DT ,1

DT ,2

]
∇T (2)

where Dw is the diffusion matrix in the mass frame of reference (barycentric) and Dx the
diffusion matrix in the mole frame of reference [34], while the concentration matrices are
[33]:

X =
[
x1(1 − x1) −x1x2

−x1x2 x2(1 − x2)

]
, W =

[
w1(1 − w1) −w1w2

−w1w2 w2(1 − w2)

]
. (3)

In the context of the present paper, the xi and wi in Eq. (3) are to be understood as the
average values through the liquid layer. It is important to distinguish between properties that
depend on the concentration representation adopted, whether mole or mass fractions, so that
superscripts ‘x’ or ‘w’ (in upright roman typeface) will be introduced when required. Later
on, we will also introduce a third concentration representation, namely, the mass fractions
making diagonal thematrixDw, properties pertaining to this third composition representation
will be denoted by primes. Quantities that are independent of the concentration representation
will be denoted without any superscript.

The stability of the quiescent solution to the hydrodynamics, as given by Eqs. (1)–(2), has
been thoughtfully studied in the context of Rayleigh–Bénard convection in ternary mixtures
[35–37].We are not giving here further details, but simplymention that the quiescent solution
is indeed stable in an ample parameter range, in particular for negative Rayleigh numbers
(heating from above) and positive net separation ratio [37]. The focus of our work is on hydro-
dynamic NE fluctuations around the quiescent solution. Fluctuations which, eventually, will
decay and vanish, as long as the quiescent state is stable. In particular, we are interested in the
decay rate of theseNEfluctuations as experimentally observable by the dynamic shadowgraph
technique [29]. According to the Onsager’ regression hypothesis [38], hydrodynamic fluctu-
ations decay by the same hydrodynamic equations as macroscopic perturbations. Although
this hypothesis was originally formulated for fluctuations around thermodynamic equilib-
rium states, progress in recent decades [1] has shown that Onsager regression hypothesis can
be extended to fluctuations around non-equilibrium steady states. Hence, for our present pur-
pose, the working equations for the spatiotemporal evolution of NE fluctuations are exactly
the same used in the linear stability studies [35–37] (onset of convection) of the quiescent
solution. In general, there will be velocity fluctuations δv(r, t), temperature fluctuations
δT (r, t) and two independent concentrations which, for the time being, we specify in mass
fractions δw1(r, t) and δw2(r, t). As discussed in the relevant literature [35–37], in general,
the spatio-temporal evolution of all these independent fluctuations will be coupled. However,
in the configuration we consider here, by applying a double rotational to the Navier–Stokes
equation only the velocity component parallel to the gradient (and to gravity) couples with the
other fluctuation fields. As a summary of all previous considerations, the temporal evolution
of these NE fluctuation fields is described, in the most general case by:

∂t (∇2δvz) = ν∇2(∇2δvz) + g(∂2x + ∂2y )[α δT − βw
1 δw1 − βw

2 δw2], (4a)

∂t δT + ∇T δvz = a ∇2δT , (4b)

∂t δw1 + ∇w1 δvz = Dw
11∇2δw1 + Dw

12∇2δw2 + Dw
T ,1 ∇2δT , (4c)

∂t δw2 + ∇w2 δvz = Dw
21∇2δw1 + Dw

22∇2δw2 + Dw
T ,2 ∇2δT , (4d)

where, as explained above, Eq. (4a) is obtained by applying a double rotational to Navier–
Stokes equation. Here ν represents the kinematic viscosity of the mixture, α the thermal
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Non-equilibrium Fluctuations in a Ternary Mixture 5

expansion coefficient and βw
i the solutal expansion coefficients defined for concentrations in

mass fraction:

βw
1 = 1

ρ

(
∂ρ

∂w1

)
T ,p,w2

, βw
2 = 1

ρ

(
∂ρ

∂w2

)
T ,p,w1

, (5)

with ρ themass density of the fluidmixture. Note in Eq. (4) the use of Boussinesq approxima-
tion, i.e., all thermodynamic properties are assumed as constants (independent of temperature
or concentrations), except for the density in the buoyancy term of the Navier–Stokes equa-
tion (4a). As a consequence [39], the dependence of density ρ on pressure is ignored. Flow
motions δv are limited to velocities much lower than the speed of sound in the liquid and,
hence, incompressibility ∇ · δv implicitly applies in addition to Eq. (4). Equation (4b) is the
heat equation with a representing the thermal diffusivity of the mixture, note that Dufour
effect has been discharged, since it is only relevant for gas mixtures [40]. Expressions (4c)–
(4d) are the two independent equations representing mass balance in a ternary mixture, here
Dw
i j are the four components of the diffusion matrix Dw in the barycentric frame of reference

[34] and Dw
T ,i the thermodiffusion coefficients in the same frame of referencewhich, since the

concentration gradients are induced by thermodiffusion, also appeared in Eq. (1). In Eq. (4)
composition of the mixture is expressed in mass fractions δwi . Of course, any measurable
quantity, like the decay rates of the fluctuations, cannot depend on whether composition is
represented in mass or mole fractions, we shall return to this point later in Sect. 3.

One difference between studies on fluctuations and on linear stability (convection) lies on
the boundary conditions. Generically, convection thresholds depend critically on the bound-
ary conditions adopted for the disturbance fields. It is also true that boundary conditions
(confinement effects) not only affect the intensity, but also the decay rate of the fluctuations,
as experimentally and theoretically analyzed elsewhere for binary mixtures [41,42]. How-
ever, these confinement effects only manifest for fluctuations of a very large size, qL � 5.11
for binary mixtures [41,42], where q is the (lateral) spatial wave number of the fluctuation.
In typical dynamic shadowgraph experiments, there is a minimum detectable wave number,
qmin, which is determined by the size of the detector [29]. That means confinement effects
will only be observable for thin layers, of the order L � 5.11/qmin, which for experiments
without magnification translates into a few mm. Hence, from a practical point of view, and
for layers of a thickness above 5 mm, one can completely disregard confinement effects
(boundary conditions) on the decay rate of the fluctuations [29]. In that case, to solve Eq. (4),
one can apply a 3D spatial Fourier transform to the evolution of the fluctuations, obtaining
in matrix form:

∂t

⎡
⎢⎢⎣

δvz
δT
δw1

δw2

⎤
⎥⎥⎦ = −

⎡
⎢⎢⎣

νq2 −gα q2‖/q2 gβw
1 q

2‖/q2 gβw
2 q

2‖/q2

∇T aq2 0 0
∇w1 Dw

T ,1q
2 Dw

11q
2 Dw

12q
2

∇w2 Dw
T ,2q

2 Dw
21q

2 Dw
22q

2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

δvz
δT
δw1

δw2

⎤
⎥⎥⎦ (6)

where q2‖ = q2x +q2y is the component of the fluctuations wave vector in the horizontal plane.
Physical optics theory of shadowgraphy [43] shows that experimental signals are obtained
upon integration of the fluctuating fields over the height of the layer. Since in the shadowgrah
experiments considered here, the height of the layer is several times 1/qmin, integration in real
space over z from −L/2 to L/2 is approximatively equal to take q⊥ � 0 in Fourier space
[1,44]. Hence, following previous works and for the rest of this paper the approximation
q‖ ∼= q applies. Next, as shown elsewhere [18,27,36,37] the working equations simplify
by performing a (linear) change of variables in the concentration representation, so as to
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6 J.M. Ortiz de Zárate et al.

diagonalize the diffusion matrix. After such change to diagonal (primed) concentrations, we
obtain:

∂t

⎡
⎢⎢⎣

δvz
δT
δw′

1
δw′

2

⎤
⎥⎥⎦ = −

⎡
⎢⎢⎣

νq2 −αg βw′
1 g βw′

2 g
∇T aq2 0 0
∇w′

1 Dw′
T ,1q

2 D̂1q2 0
∇w′

2 Dw′
T ,2q

2 0 D̂2q2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

δvz
δT
δw′

1
δw′

2

⎤
⎥⎥⎦ , (7)

where D̂i are the eigenvalues of the diffusion matrix, which are invariant in the mass and in
the mole frames of reference [34]. The relation between variables with and without prime is
expressed by the transformation matrix [18,27]:

U =

⎡
⎢⎢⎢⎣

1
Dw
22 − D̂2

Dw
21

Dw
11 − D̂1

Dw
12

1

⎤
⎥⎥⎥⎦ . (8)

Then, we have:

UT ·
[
βw′
1

βw′
2

]
=
[
βw
1

βw
2

]
,

[∇w′
1∇w′
2

]
= U ·

[∇w1

∇w2

]
, (9a)

[
Dw′
T ,1

Dw′
T ,2

]
= U ·

[
Dw
T ,1

Dw
T ,2

]
, U−1 ·

[
Dw
11 Dw

12
Dw
21 Dw

22

]
· U =

[
D̂1 0
0 D̂2

]
. (9b)

Next, we switch to dimensionless variables, we adopt L as unit of length and L2/D̂1 as unit
of time, where D̂1 is the smaller (slower) eigenvalue; while α and βw′

i are used to make
dimensionless temperature and (diagonal) concentration fluctuations. Hence, dimesionless
variables are:

q̃ = qL, δṽz = L

D̂1
δvz, δT̃ = α

gL3

D̂2
1

δT ,

δw̃′
1 = β ′

1
gL3

D̂2
1

δw′
1, δw̃′

2 = β ′
2
gL3

D̂2
1

δw′
2, (10)

where the dimensionless number gL3/D̂2
1 is used to further simplify the resulting equations.

Notice that here we adopt as unit of time D̂1, while other authors [37] prefer to use the
kinematic viscosity, ν. In the new dimensionless (tilde) variables above, Eq. (7) reads

∂t̃

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

δṽz

δT̃

δw̃′
1

δw̃′
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= −

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

νq̃2

D̂1
−1 1 1

αgL4 ∇T

D̂2
1

a

D̂1
q̃2 0 0

β ′
1gL

4 ∇w′
1

D̂2
1

β ′
1

α D̂1
Dw′
T ,1 q̃

2 q̃2 0

β ′
2gL

4 ∇w′
2

D̂2
1

β ′
2

α D̂1
Dw′
T ,2 q̃

2 0
D̂2

D̂1
q̃2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

δṽz

δT̃

δw̃′
1

δw̃′
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (11)
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Non-equilibrium Fluctuations in a Ternary Mixture 7

Next, we introduce the Lewis (Le), Prandtl (Pr), diffusion eigenvalue ratio (Dr) and Rayleigh
(Ra) dimensionless numbers, namely [45]:

Le = a

D̂1
, Pr = ν

a
, Dr = D̂2

D̂1
, Ra = −αgL4 ∇T

νa
. (12)

Notice that here we define a single Lewis number for a ternary mixture, using the smaller
eigenvalue of the diffusionmatrix (in consistencywith the adopted dimensionless time).Other
authors [37] have used various Lewis numbers for ternary mixtures, defined according to the
different components of the diffusion matrix. In addition to the dimensionless quantities of
Eq. (12), for the diagonal concentrations, one can define separation ratios in the barycentric
frame of reference as:

ψw′
i = βw′

i

α D̂i
Dw′
T ,i . (13)

The steady concentration gradients are induced by thermodiffusion, hence, in diagonal con-
centrations one has:

∇w′
i = −Dw′

T ,i

D̂i
∇T , (14)

which can be also obtained by switching Eq. (1) to diagonal concentrations with the trans-
formation matrix U of Eq. (8). Substitution of Eqs. (12)–(14) into Eq. (11) finally gives:

∂t̃

⎡
⎢⎢⎣

δṽz

δT̃
δw̃′

1
δw̃′

2

⎤
⎥⎥⎦ = −

⎡
⎢⎢⎣

LePr q̃2 −1 1 1
−PrLe2Ra Le q̃2 0 0
PrLe2Ra ψw′

1 ψw′
1 q̃2 q̃2 0

PrLe2Ra ψw′
2 Drψw′

2 q̃2 0 Dr q̃2

⎤
⎥⎥⎦

⎡
⎢⎢⎣

δṽz

δT̃
δw̃′

1
δw̃′

2

⎤
⎥⎥⎦ . (15)

Starting here, all following development are in the dimensionless variables defined by
Eq. (10), so that since there is no possible confusion and for lighten notation, we shall
drop from here on the tildes from the corresponding variables. Equation (15) shows that, in
general, the temporal evolution of fluctuations with wave number q will be given as the sum
of four exponentials, or four modes. The corresponding four (dimensionless) decay rates,
Γi (q) will be the eigenvalues of the matrix:

M(q) =

⎡
⎢⎢⎣

LePr q2 −1 1 1
−PrLe2Ra Le q2 0 0
PrLe2Ra ψw′

1 ψw′
1 q2 q2 0

PrLe2Ra ψw′
2 Drψw′

2 q2 0 Dr q2

⎤
⎥⎥⎦ . (16)

Hence, the four Γi (q) are the roots of the algebraic equation:

det [M(q) − Γ (q) 1] = 0, (17)

which turns out to be a polynomial of the 4th degree in Γ with real coefficients. Note from
Eq. (15) that, as long as the real part of the four roots of Eq. (17) is positive, any fluctuations
around the quiescent state of Eq. (1) will eventually decay to zero. Of course, this is exactly
the same condition as for (linear) stability of the quiescent state against convection [35–37].
However, a direct comparison is not possible because we are not considering here boundary
conditions. All developments in this paper are valid only when the real part of the four roots
Γi of Eq. (17) is positive.
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8 J.M. Ortiz de Zárate et al.

Equation (17), with M(q) given by Eq. (16), represents the main result of this paper.
In what follows, we shall discuss its solutions Γi , as a function of q . First, in Sect. 4, by
numerically solving Eq. (17) for different values of the five mixture parameters: Dr , Le,
Pr , ψw′

1 , ψw′
2 and Ra. Later, in Sect. 5 in some particular cases where further analytical

progress is possible. But before that, we first discuss the issue of the invariance of Γi (q)

upon concentration representation, an important theme of the present work.

3 Symmetry in the Concentration Representation

Although, initially, decay rates Γi (q) can be obtained by solving Eqs. (16) and (17), it turns
out that further simplification is still possible by an additional change of variables in the
concentration representation. Indeed, if instead of using variables δw′

1 and δw′
2, one uses

δw′
1 + δw′

2 and Dr δw′
1 + δw′

2, to obtain the decay rates of the fluctuations one needs to
compute the eigenvalues of the matrix:

M′(q) =

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 1
0 0 Dr 1

⎤
⎥⎥⎦ · M(q) ·

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 1
0 0 Dr 1

⎤
⎥⎥⎦

−1

(18)

or

M′(q) =

⎡
⎢⎢⎣

LePr q2 −1 1 0
−PrLe2Ra Le q2 0 0
PrLe2Raψ [(Dr + 1)ψ − ψ̂]q2 (Dr + 1)q2 −q2

PrLe2Raψ̂ Drψ q2 Dr q2 0

⎤
⎥⎥⎦ , (19)

which has the same number of zeros as the original matrix M(q). The advantage of Eq. (19)
is to show that decay rates Γi (q) do actually depend only on two concentration-dependent
parameters, namely the net separation ratio ψ = ψw′

1 + ψw′
2 [37] and the combination

ψ̂ = Drψw′
1 +ψw′

2 , which are invariant when changing from real to diagonal concentrations.
Indeed, using Eq. (9) and after some algebra it may be shown that [27]:

ψ ≡ ψw′
1 + ψw′

2 = 1

α

[
βw′
1 βw′

2

] [D̂1 0
0 D̂2

]−1 [
Dw′
T ,1

Dw′
T ,2

]

= 1

α

[
βw
1 βw

2

] [Dw
11 Dw

12
Dw
21 Dw

22

]−1 [Dw
T ,1

Dw
T ,2

]
= 1

α

[
(βw)T · [Dw]−1 · Dw

T

]
= ψ,

(20)

so that the net separation ratio is a quantity invariant upon change between concentrations
with andwithout primes. Similarly, the quantity (Drψw′

1 +ψw′
2 ) is also invariant upon change

to diagonal concentrations, since:

Drψw′
1 + ψw′

2 = D̂2

α

[
βw′
1 Dw′

T ,1

D̂2
1

+ βw′
2 Dw′

T ,2

D̂2
2

]
= D̂2

α

[
βw′
1 βw′

2

] [D̂1 0
0 D̂2

]−2 [
Dw′
T ,1

Dw′
T ,2

]

= D̂2

α

[
βw
1 βw

2

] [Dw
11 Dw

12
Dw
21 Dw

22

]−2 [Dw
T ,1

Dw
T ,2

]

= D̂2

α

[
(βw)T · [Dw]−2 · Dw

T

]
≡ ψ̂.

(21)
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As already anticipated, this property is expected, i.e., the expression of physicallymeasurable
quantities (the decay times) cannot depend on whether normal or diagonal concentrations
are used in the theory. The Γi (q) should only depend on quantities that are invariant upon
change in the concentration representation. Hence, evaluation of the eigenvalues of thematrix
in Eq. (19) stresses that decay times do only depend on parameters invariant upon switching
between real or diagonal concentrations.

In this paper we are using thermodiffusion coefficients and corresponding separation
ratios in the barycentric frame of reference. It is interesting to represent the two parameters,
net separation ratio ψ and ψ̂ , in terms of the frame-invariant thermodiffusion coefficients
introduced in Ref. [33] and reviewed at the beginning of Sect. 2, around Eq. (1). For that
purpose, we first note that the concentrationmatrices defined by Eq. (3) can be used to change
derivatives with respect to mass fraction to derivatives with respect to mole fraction [33],
then the relation between solutal expansion coefficients in the two frames of reference is:

βx = X−1 · W · βw. (22)

In addition, from Eq. (1) we have that the frame-invariant thermodiffusion coefficients are
given by:

DT = X−1 · Dx
T = W−1 · Dw

T . (23)

Hence, the net separation ratio ψ of Eq. (20) can be expressed as:

αψ =
{
(βw)T · [Dw]−1 · Dw

T

}
=
{
(βw)T · [Dw]−1 · W · DT

}

=
{
(βx)T · X · W−1 · [Dw]−1 · W · X−1 · X · DT

}
=
{
(βx)T · [Dx]−1 · X · DT

}

=
{
(βx)T · [Dx]−1 · Dx

T

} (24)

where use has been made of Eq. (20) in Ref. [33] for the relationship between Fick diffusion
matrices in themass andmole frame of reference and the fact that bothX andW are symmetric
matrices. Hence, according to Eq. (24), we conclude that the net separation ratioψ is invariant
not only when switching between real and diagonal concentrations, but also when switching
from concentrations in mass fraction to concentrations in mole fraction. Although we are not
giving here the details, a calculation similar to that displayed in Eq. (24) shows that the same
happens for ψ̂ . Of course, these are expected results: The final theoretical expression for
physically measurable quantities, like the decay rates of fluctuations, must be independent
of whether, in the development of the theory, the composition of the mixtures is expressed
in mass or mole fraction.

4 Numerical Evaluation of the Decay Rates of Non-equilibrium
Fluctuations

As demonstrated in Sect. 2 the (dimensionless) decay rates are obtained by evaluating the
roots,Γi (q), of Eq. (17). Although an analytical solution is in principle possible, the formulas
for the roots of a quartic polynomial are so unwieldy that in practice is preferable to discuss
Γi (q) numerically in some representative cases. That is the purpose of this section.

We start by noting that in the limit of large wave number, q → ∞, simple inspection of
the matrix M(q) of Eq. (16) shows that the four decay rates of the fluctuations will be:

Γ1 = q2, Γ2 = Dr q2, Γ3 = Le q2, Γ4 = LePr q2, (25)
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10 J.M. Ortiz de Zárate et al.

in increasing order, since the parameters Dr , Le and Pr are generically larger than 1 for
a ternary liquid mixture. Note that, in this limit, the four decay rates are real and positive.
Hence, the quiescent solution is stable against fluctuations of very small size (with q → ∞).
The modes with large-q decay rates equal to q2 and Dr q2 are the two concentration modes
(slow and fast) of a ternarymixture (the particular case Dr = 1will be discussed in Sect. 5.3).
The third mode of Eq. (25), with decay rate Le q2 corresponds to temperature fluctuations
and the fourth one, with decay rate LePr q2 to viscous (wall-normal velocity) fluctuations.
Since refractive index depends on temperature and concentrations, but not on fluid velocity,
this fourth mode is not directly observable optically.

For decreasing values of q , a numerical investigation of Eq. (17) shows that the decay rates
Γi (q) progressively deviate from the asymptotic values of Eq. (25). In particular for positive
ψ and negative Ra and small enough q , see Sect. 5.1, two of the roots of Eq. (17) form
a pair of complex conjugate numbers with positive real part. This means that fluctuations,
before decaying eventually to zero, exhibit oscillatory behavior. It is customary to refer to
this situation as propagating, or propagative, hydrodynamic modes [10,46–48]. For typical
values of the parameters of a ternary mixture the two modes that mix to become propagative
are the ones corresponding to temperature fluctuations and viscous fluctuations. One example
of this situation is shown in the left panel of Fig. 1, where the inverse real part of the four
Γi (q) (the so-called decay times, τi (q)) and the imaginary part are plotted as a function of
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Fig. 1 (Color online) Left panel: Inverse real part of the dimensionless decay rates (i.e., dimensionless decay
times, at top) and imaginary part of the dimensionless decay rates (i.e., oscillatory frequency, at bottom) of
the four decay modes of fluctuations in a ternary mixture subjected to a stationary temperature gradient, as
a function of the dimensionless q. Mixture parameters are: Le = 25, Pr = 9.5, Dr = 6.0, ψw′

1 = 1.2 and

ψw′
2 = 0.7 and the Rayleigh number Ra = −104. Right panel: Same as in left panel, but for parameters

ψw′
1 = 2.0 and ψw′

2 = −0.1, note in this case the appearance of two zones of propagative modes, one due to
the mixing of the two concentration modes
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q . The plot in left panel of Fig. 1 is for a mixture with Le = 25, Pr = 9.5, Dr = 6.0,
ψw′
1 = 1.2 and ψw′

2 = 0.7 and a Rayleigh number Ra = −104, which roughly correspond
to a low molecular weight polymer dissolved in a mix solvent [12]. We found numerically
that, when the two separation ratios ψw′

i are positive, the behavior of Γi (q) is qualitatively
similar to that shown in the left panel of Fig. 1. This situation has been recently observed
experimentally [12].

However, in some cases the Γi (q) scenario is a bit different and somewhat more compli-
cated. We have found numerically that when the separation ratio ψw′

2 corresponding to the
fastest concentration mode is negative, the two concentration modes may mix to become a
propagative pair for a ‘window’ of intermediate wave numbers. An example of this situation
is shown in the right panel of Fig. 1, which contains the same information as the left panel of
Fig. 1, but for a mixture with ψw′

1 = 2.0 and ψw′
2 = −0.1. Note that the net separation ratio

ψ is the same for the two mixtures represented in right and left panels of Fig. 1. Notice in the
right panel of Fig. 1 the mixing, at intermediate values of q , of the two concentration modes
to become a propagative pair. This mixing only occurs in a finite range of wave numbers,
while at smaller q the regular situation (see Sect. 5.1) of mixing between the temperature
and the viscous modes is recovered. To our knowledge, this situation of intermediate mixing
of the two concentration modes has not been observed experimentally yet.

We finalize this section by the following consideration: Fitting experimental decay rates
for a ternary mixture to the numerical solution of Eq. (17), in addition to Le, Pr and Ra,
provides two diffusion eigenvalues, D̂1 and D̂2, and two separation ratios, let’s say the
two invariants ψ and ψ̂ . Actually, a preliminary study in this direction has been recently
published [12]. However, with only these four parameters one cannot reconstruct the whole
diffusion matrix and the two thermodiffusion coefficients in an arbitrary reference frame,
which amounts to six independent coefficients. Namely, one cannot invert Eqs. (20)–(21) for
ψ and ψ̂ , plus the two equations for the eigenvalues D̂i , to obtain the four Dw

i j and the two
Dw
T ,i . There are four equations for six unknowns. We conclude that dynamic shadowgraph

alone cannot give a complete characterization of diffusion and thermodiffusion in a ternary
mixture, opposite to the case of a binary mixture where a complete characterization by
shadowgraphy is possible [12,13]. However, the two frame-independent separation ratios,
ψ and ψ̂ , can indeed be obtained from monochromatic dynamic shadowgraph in a ternary
mixture. Since, as elucidated in Sect. 3, these two parameters are the most relevant for the
description of thermodiffusion in ternary mixtures, the utility of the dynamic shadowgraph
technique is clear.

5 Analytical Evaluation of the Decay Rates in Different Limits

As discussed in the previous section, in the most general case, only a numerical evaluation of
the decay rates is feasible. However, further analytical progress in the solution of Eq. (17) for
the decay rates Γi (q) is still possible by considering specific limits with practical relevance.
This is the purpose of the present section. In Sect. 5.1 we consider the case of fluctuations
with large lateral size (small q). Next, in Sect. 5.2 the case of large Lewis number, where we
also make contact with previous works [27]. Finally, in Sect. 5.3 we deal with the particular
cases Dr = 1 and Dr = 0, which turn out to be relevant in some practical circumstances.
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12 J.M. Ortiz de Zárate et al.

5.1 Decay Rates for Small q

We consider first the case of small values of q , where it is possible to obtain analytically the
first terms of the power expansions of Γi (q). For that, one substitutes into Eq. (17):

Γ (q) = Γ0 + Γ1q
2 + Γ2q

4 + · · · , (26)

expands in powers of q2 the resulting expression, and cancels termby term.By this procedure,
we have calculated up to order q2 the four roots of Eq. (17). For the stable conditions ofψ > 0
and Ra < 0 [35–37] we obtain:

Γ1(q) = 0 + 1

2

[
Dr + 1 + ψ Le

1 + ψ

]
(27)

×
⎧⎨
⎩1 −

√
1 − 4(1 + ψ)[Dr(1 + ψ) + ψ̂Le]

[(Dr + 1)(1 + ψ) + ψ Le]2

⎫⎬
⎭ q2 + O(q4)

Γ2(q) = 0 + 1

2

[
Dr + 1 + ψ Le

1 + ψ

]
(28)

×
⎧⎨
⎩1 +

√
1 − 4(1 + ψ)[Dr(1 + ψ) + ψ̂Le]

[(Dr + 1)(1 + ψ) + ψ Le]2

⎫⎬
⎭ q2 + O(q4)

Γ3(q) = +iLe
√−(1 + ψ)Pr Ra + 1 + Pr(1 + ψ)

2(1 + ψ)
Le q2 + O(q4) (29)

Γ4(q) = −iLe
√−(1 + ψ)Pr Ra + 1 + Pr(1 + ψ)

2(1 + ψ)
Le q2 + O(q4) (30)

We observe that the real part of the four decay rates at small q displays a diffusive behavior,
i.e., they are proportional to q2 physically meaning that the larger (spatially) a fluctuation is,
the more slowly it decays. This can be also observed in the top panels of Fig. 1 where the
decay times (inverse of the real part of the decay rates) were plotted in a double logarithmic
scale. Equations (29)–(30) give a simple analytical expression for the oscillation frequency
of large fluctuations (small q) which reaches a limiting value independent of their size, as
also clearly observed in the bottom panels of Fig. 1. Equations (29)–(30) also show that, for
small q , the temperature and the viscous mode always mix to form a propagative pair.

Note that Eqs. (27)–(30) represent the mathematical limit at q → 0 of the solutions to
Eq. (17), hence, they are physically valid as long as Eq. (17) is valid itself. In particular,
small q in this context means large (spatial) fluctuations, but not too large for confinement
effects to become relevant, see discussion before Eq. (6) in Sect. 2. To describe the dynamics
of extremely large fluctuations, boundary conditions need to be implemented in the theory,
and deviations with respect to Eqs. (27)–(30) are expected.

5.2 Large Lewis Number Limit

Liquidmixtures typically display large values of the Lewis, Le, and the Prandtl, Pr , numbers.
This fact has been used in the past [27] to develop a simplified theory that only pertains to
the decay rates of the two concentration modes. Of course, the results of Ref. [27] can also
be obtained as a limiting case of the more complete theory presented here. In particular, one
can look perturbatively for large-Le solutions Γi (q) to Eq. (17) by expressing the roots Γi (q)
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Non-equilibrium Fluctuations in a Ternary Mixture 13

as a series in powers of Le−1, namely

Γ (q) = Le
{
Γ0(q) + Γ1(q)Le−1 + Γ2(q) Le−2 + · · · } . (31)

In addition, it should be noted that the results of Ref. [27] were expressed in terms of the
net solutal Rayleigh number, Ras = RaLeψ (see Sect. 5.3), instead of the thermal Rayleigh
number Ra adopted here. That means previous approximations [27] are equivalent to take the
Le → ∞ of the complete theory as presented in this paper, everywhere except in the RaLe
combination. Then, substituting into Eq. (17), Γ (q) by Eq. (31) and the product RaLe by
Ras/ψ , with Ras the net solutal Rayleigh number2 and expanding the resulting expression
in powers of Le−1, to cancel the leading O(Le−4) term one obtains four solutions

Γ0(q) =

⎡
⎢⎢⎣

q2

Pr q2

0
0

⎤
⎥⎥⎦ . (32)

The solution at Le → ∞ of the temperature and viscous mode are the same as the asymptotic
expressions of Eq. (25). The two solutions with Γ0(q) = 0 in Eq. (32) correspond to the two
concentration modes. To obtain the first non-vanishing term in the large-Le expansion of
these two modes one needs to cancel theO(Le−3) in the power series expansion of Eq. (17),
arriving readily at:

Γ1(q) = q2

2

(
Dr + 1 − Ras

q4

)
⎡
⎢⎢⎢⎢⎢⎢⎣
1 ∓

√√√√√√√√√1 −
4Dr

(
1 − ψ̂Ras

Drψq4

)

(
Dr + 1 − Ras

q4

)2

⎤
⎥⎥⎥⎥⎥⎥⎦

, (33)

which is exactly the same as Eq. (26) of Ref. [27]. To compare both expressions it should be
reminded that here we are using dimensionless decay rates with L2/D̂1 as unit of time, and
that in Ref. [27], actually two solutal Rayleigh numbers, Ra1 and Ra2, were used, whose
equivalence with the parameters preferred here is:

D̂i Rai = D̂1Ra1 + D̂2Ra2 = D̂1Leψ Ra = D̂1Ras,

Ra1 + Ra2 = Leψ̂

Dr
Ra = ψ̂Ras

Drψ
.

(34)

In conclusion, we find consistency between the full theory of hydrodynamic fluctuations in
a ternary liquid subjected to a steady temperature gradient, as presented here, and previ-
ous approximations based in the large Lewis number approach [27]. It is preferable to apply
approximations first, in order to simplify the set of hydrodynamic equations, instead of work-
ing out the solution to the complete set hydrodynamic equations and apply the approximation
at the final result. The simpler route (approximations first) was the one adopted in Ref. [27],
while here we have demonstrated the equivalence of the two approaches and made contact
with the previous results.

2 The solutal Rayleigh number is, initially, defined for a binary mixture. Here we extend the concept to a
ternary mixture by substituting the single separation ratio of a binary with the net separation ratio.
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14 J.M. Ortiz de Zárate et al.

5.3 The Particular Cases of Dr = 1 and Dr = 0

In shadowgraph experiments with some ternary mixtures it is difficult to separate experi-
mentally the two independent concentration modes [25,26]. Hence, it is convenient from a
practical point of view to provide expressions for the decay rates in the limit Dr → 1, or
D̂1 = D̂2. Note that Dr = 1 also means that ψ = ψ̂ and, as a consequence, Γ1 = q2 is an
exact solution of Eq. (17) for the eigenvalues of the matrix M(q), namely:

det [M(q) − Γ 1] = (Γ − q2){Γ 3 − [Le(Pr + 1) + 1]q2Γ 2 + A1(q) q4Γ + A0(q)}
(35)

with

A1(q) = PrLe2 + (Pr + 1)Le − (ψ + 1)RaPr
Le2

q4
,

A0(q) = PrLe2 − (ψLe + ψ + 1)RaPr
Le2

q4
.

(36)

Comparing with the complete theory for binary mixtures [29], one finds that the third-degree
polynomial in the right-hand side of Eq. (35) here is exactly the same as Eq. (7) of Ref. [29].
Hence, in addition to Γ1 = q2, the other three decay rates of a ternary mixture with Dr = 1
will be identical to those of a binary mixture with the same parameter values (Le, Pr , ψ ,
Ra). In other words, the other three decay rates correspond to an hypothetical binary mixture
with diffusion coefficient D = D̂1 = D̂2. Hence, we refer to the relevant literature [29] for
a deeper discussion of the other three decay rates. For illustration purpose we show here, in
Fig. 2, a representative case, for parameter values Le = 25, Pr = 9.5, ψ = ψ̂ = 1.50 and
the Rayleigh number Ra = −104. We observe in Fig. 2 that, except for Γ1 = q2, the decay
rate scenario corresponds to that of the left panel of Fig. 1, that is, for large fluctuation size
(small q) a mixing of the temperature and viscous mode appears, giving a pair of complex
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Fig. 2 (Color online) Left: Inverse real part of the dimensionless decay rates (i.e., dimensionless decay times) of
the four decaymodes of fluctuations in a ternarymixturewith Dr = 1 and subjected to a stationary temperature
gradient, as a function of the dimensionless q. Note that Γ1 = q2 (black line) is an exact solution. Right:
Imaginary part of the dimensionless decay rates (i.e., oscillatory frequency) as a function of the dimensionless
q. Other Mixture parameters are: Le = 25, Pr = 9.5, ψ = ψ̂ = 1.90 and the Rayleigh number Ra = −104
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conjugate Γ -roots to Eq. (35) and, thus, the presence of propagative modes. For the case of
actual binary mixtures, this scenario has been experimentally verified [29]. Of course, for
this particular case of Dr = 1, the small-q behavior of the decay rates can also be obtained
by simply taking Dr = 1 in Eqs. (27)–(30), with the result:

Γ1(q) = 0 + q2 (37)

Γ2(q) = 0 +
[
1 + ψ Le

1 + ψ

]
q2 + O(q4) (38)

Γ3(q) = +iLe
√−(1 + ψ)Pr Ra + 1 + Pr(1 + ψ)

2(1 + ψ)
Le q2 + O(q4), (39)

Γ4(q) = −iLe
√−(1 + ψ)Pr Ra + 1 + Pr(1 + ψ)

2(1 + ψ)
Le q2 + O(q4), (40)

where, as explained above, all higher order terms in Γ1(q) vanish, while Eqs. (38)–(40) here
exactly reproduce Eqs. (8) in Ref. [29]. For such a comparison, please note that Eqs. (8) in
Ref. [29] are written in terms of the solutal Rayleigh number, Ras = LeψRa.

We finalize by considering the case of Dr = 0 and ψ ′
2 = 0, which represents the binary

mixture limit. One can readily see that, in that particular case, it vanishes one of the four
eigenvalues of the hydrodynamic matrix M(q) of Eq. (16), while the other three coincide
with the decay rates of a binary mixture with D = D̂1 and ψ = ψ ′

1. Decay rates of non-
equilibrium fluctuations in a binary mixture have been investigated in a previous publication
[29] to which we refer the interested reader.

6 Concluding Remarks

The present paper presents a complete theory for the dynamics of spontaneous thermody-
namic fluctuations in a ternary liquid mixture subjected to a stationary temperature gradient,
and under the action of gravity for a liquid layer with thickness large enough to be insensi-
tive to confinement effects. We consider, at linear order, all the four hydrodynamic modes
contributing to the Rayleigh spectrum, with all their respective couplings. The only approx-
imations adopted in the hydrodynamic equations are Boussinesq and neglecting of Dufour
effect, which are supposed to be well justified for liquids.

The decay rates are theoretically obtained as the roots of a quartic equation. Hence, it is
more practical to investigate them numerically, what we did in Sect. 4. For realistic parameter
values of a ternary mixture, positive ψ and negative Ra, we have identified two different
scenarios for the dependence of decay rates on the fluctuations wave number, summarized
in Fig. 1. In both cases, and depending on q , propagative modes are observed. One of the
scenarios, where temperature and viscous fluctuationsmix and become propagative, has been
recently observed experimentally [12]. The second scenario, where the two concentration
modes mix and become propagative, is described here for the first time and is yet to be
observed.

Throughout this paper it has been assumed that the concentration gradients existing in
the NE ternary mixture are induced by the Soret effect. However, the results presented in
this paper for the decay times can easily be adapted, as is the case in binary mixtures [7],
to situations where concentration gradients are present due to other causes, like during free-
diffusion. We note that propagative modes in isothermal free diffusion in binary mixtures
were predicted [49] some time ago and recently computationally observed [48]. In this case
propagative modes arise because of a coupling between concentration and viscous modes.
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16 J.M. Ortiz de Zárate et al.

We expect the developments presented in this paper to be useful for scientist dealing
with NE fluctuations in complex systems as, for instance, the ones involved in the recently
approved space mission Giant Fluctuations, to be conducted by ESA at the ISS [50,51].
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