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Abstract
We study the nonlinear Schrödinger equation (NLS) with bounded initial data which does
not vanish at infinity. Examples include periodic, quasi-periodic and random initial data. On
the lattice we prove that solutions are polynomially bounded in time for any bounded data. In
the continuum, local existence is proved for real analytic data by a Newton iteration scheme.
Global existence for NLS with a regularized nonlinearity follows by analyzing a local energy
norm.

Keywords Propagation speed · Well-posedness · Local conservation laws · Newton iteration

1 Introduction

The aim of this note is to study nonlinear Schrödinger type equations on Z and on R with
initial data that are bounded, and do not vanish at infinity. Examples include periodic, quasi-
periodic and random data. We present some modest results describing the dynamics for such
data. Although we shall phrase our results in one dimension, most of our methods can be
adapted to higher dimensions.
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There is an extensive literature on space periodic data, with bounds on the Sobolev norms
as a function of time [2,3,5]. More recently, localized perturbations of periodic initial data
have been studied [7,12]. The periodic case appears naturally in nonlinear optics, describing
periodic signal propagating through a fiber, and local perturbationswould correspond to noise
and modulation due to information carrying signal.

Much less is known about quasi-periodic and random cases. The quasi-periodic data
arises when there is another periodic signal, not commensurate with the periodic signal. The
nonlinearity then will produce a solution with arbitrary number of frequencies. In the case
of the KdV equation, Damanik at al. [1,9] have proved the global existence of uniformly
bounded almost periodic solutions for certain small amplitude quasi-periodic initial data.
This remarkable result uses the integrability of KdV and the fact that the corresponding
Schrödinger operator has only absolutely continuous spectrum. The case of global existence
of large initial data has not yet been understood. For non-integrable NLS, Oh [19], proved
the existence of solutions for quasi-periodic data for short time. He also proved that solutions
exist for all time for limit-periodic data, [18]. The global existence of special space-time
quasi-periodic solutions was recently established by Wang [21] by using Bourgain’s semi-
algebraic set methods together with a Newton iteration scheme. It is generally believed that
typical solutions to non-integrable equations are not uniformly bounded in time unless the
maximum is controlled by a conservation law. Note that in one dimension, the maximum of
a solution of NLS with periodic data is bounded by the energy.

In this paper we consider the nonlinear Schrödinger equation

iψt + ∂xxψ = |ψ |2ψ, ψ : R1+1 → C, ψ : R × Z → C, ψ(0, x) = ψ0(x), (1.1)

with data which are locally in Hs , with uniform bounds over the reals. The case when
ψ : R × Z → C corresponds to a nonlinear Schrödinger equation on the one dimensional
lattice with ∂xx given by the discrete Laplacian. The case whenψ : R×R → C corresponds
to a nonlinear Schrödinger equation in the continuum. What makes the NLS hard to analyze
on R is the lack of a finite propagation speed. The speed of a signal is proportional to the
derivative of the solution. In contrast to the nonlinear Schrödinger equation, the nonlinear
wave equation,

utt − uxx + u3 = 0, u : R1+1 → R, u(0, x) = u0, ut (0, x) = u1, (1.2)

has a finite propagation speed. This means that at time t the solution u(t, x) depends only on
data in the backward light cone {x ′ : |x ′ − x | ≤ t}. The rest of the data can be set to 0. Hence
the solution exists for all time by standard arguments. The following Proposition shows how
finite propagation speed enables one to get bounds on the time evolution in one dimension.

Proposition 1 If u(t, x) is a solution to the cubic nonlinear wave equation in one dimension,
(1.2) with initial conditions which are uniformly C1(R) × C0(R), then

|u(t, x)| ≤ Ct1/3. (1.3)

Proof For any x0 ∈ R and t ∈ [0,∞), if χ(x) is a smooth cutoff function,

χ(x) =
{
1 if |x | ≤ 1
0 if |x | > 2,

(1.4)

if v(t, x) is the solution to (1.2) with u0 replaced with χ( x−x0
T )u0 and u1 replaced with

χ( x−x0
T )u1, then by finite propagation speed, v(t, x0) = u(t, x0) for all 0 ≤ t ≤ T . The

123



912 B. Dodson

solution to (1.2) has the conserved energy

E(u, ut ) = 1

2

∫
(∂xu(t, x))2dx + 1

2

∫
(ut (t, x))

2dx + 1

4

∫
u(t, x)4dx . (1.5)

By direct computation,

E(χu0, χu1) � T
(‖u0‖2L∞ + ‖∂xu0‖2L∞ + ‖u1‖2L∞

)
. (1.6)

Then by the Sobolev embedding theorem,

|u(t, x0)|3 = |v(t, x0)|3 � ‖∂xv(t)‖L2‖v(t)‖2L4 � E(v, vt )

� T
(‖u0‖2L∞ + ‖∂xu0‖2L∞ + ‖u1‖2L∞

)
.

(1.7)

This proves the proposition. �	

Remark If the nonlinearity in (1.2) is replaced by u2p+1, we would observe a growth rate

bounded by Cpt
1

p+2 .
For the solution to the NLS on the lattice, ψ : R× Z → C, it is easy to prove that global

solutions exist for all uniformly bounded initial data and that the solution grows at most

like Ct
1
2 . The nonlinear Schrödinger equation on the lattice may be thought of as having

approximate finite propagation speed since derivatives are uniformly bounded. The bound

Ct
1
2 may be proved for the nonlinear Schrödinger equation on the lattice with either focusing

or defocusing nonlinearity. However, observe that the proof of Proposition 1 uses the fact
that the wave equation is defocusing. For the defocusing, nonlinear Schrödinger equation on

the lattice, we may improve the bounds to Ct
1
4 . See Sec 2.

Remark The solution to the 1D linear Schrödinger with initial dataψ0(x) = ∑
j a j e−(x− j)2 ,

j ∈ Z is given by

C
∑
j

a j
e

−(x− j)2

4i t+1

(4i t + 1)1/2
.

It is easy to show that if the |a j | are uniformly bounded, then the sup norm of this solution
is bounded by Ct1/2. The phases in the exponential can be cancelled by the a j so this is the
best one can do. On the other hand, if the a j are independent complex random variables such
that E|a j |2 = 1, then E|eit�ψ0|2(x) ≤ C . On the lattice, the upper bound t1/2 follows from
Proposition 2 and a t1/2 lower bound is proved in the Appendix for particular a j .

We also study a simplified model of NLS in which the nonlinearity is regularized. The
Hamiltonian of the nonlinear interaction we consider has the form

∫ |uφ(x, t)|4dx where uφ

denotes the convolution of u with a smooth positive function φ(x) of compact support. In this
case we prove that solutions exist for all time and are polynomially bounded for uniformly
smooth initial data. See Theorem 2 in Sec 3.

The global existence for NLS with bounded smooth initial data is still open. However in
the last section we extend the local time results of T. Oh for quasi-periodic initial to the real
analytic setting by developing a Newton iteration for the short time evolution. This is partly
inspired by work of Greene and Jacobowitz [10] on analytic embedding. In particular we can
include data of the form

∑
j a j e−(x− j)2 where j ∈ Z and |a j | ≤ 1. The a j may be random.
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Remark Besides global existence a natural questionwould be to prove that the time average of
the energy per unit volume of space is uniformly bounded and then to consider the possibility
that the limit of the average exists as time goes to infinity. Partial answer is given in Section
two, for the case of the NLS on the lattice.

1.1 Invariant Measures for NLS Equations

In many cases there exists an invariant measure which helps to control and describe the time
evolution. The work of Lebowitz et al. [14] on the Gibbs measure for the focussing NLS on
the circle is the foundational paper in this field. The construction of invariant measures for the
NLS is directly related to the statistical mechanics problem with the NLS energy functional
defining the theory. This equilibrium measure may also describe a soliton gas of NLS. This
work was extended by Bourgain [3,4] who also studied the time evolution for rough data in
the support of this measure. Recent works of Lebowitz et al. [13] as well as Carlen et al. [6]
describe the rate of equilibration to the Gibbs measure when a suitable noise perturbation
is added. More closely related to this note is Bourgain’s work on NLS in the defocussing
dynamics in a periodic box as the period goes to infinity [5]. He proves that weak limits
of solutions as L goes to infinity converge to a unique distributional solution in C(Hs), for
s < 1

2 , which depends continuously on initial data in compact space time regions.
Let us now consider the NLS on a periodic lattice of length L. There is an equilibrium

Gibbs measure given by

Z−1
L exp

⎛
⎝−

L∑
j

|∇φ|2( j) ±
L∑
j

|φ( j)|4
⎞
⎠ .

The + and - sign are the focussing and defocussing cases respectively. Let 〈·〉 be the transla-
tion invariant expectation and define φ(t, j, ω) to be the solution of the periodic NLS with
random initial data distributed by the Gibbs measure. Then since the total energy is con-
served and

〈|φ(t, j)|4〉 is independent of j, we conclude that 〈|φ(t, 0)|4〉 is uniformly bounded
independently of L. This shows that averaging gives good control of the time evolution. We
speculate that the time average of the local energy at 0 is bounded. In addition one would
like to describe its time fluctuations. But this is far beyond the scope of this note. In [15],
Lukkarinen and Spohn investigated the dynamics of the lattice NLSwith initial data governed
by the infinite volume Gibbs measure. They proved that as the coupling goes to 0, the time
rescaled solution to NLS obeys a kinetic equation. Recent work of Mendl and Spohn [17]
describes equilibrium time correlations on a one dimensional lattice. On the 3 dimensional
lattice, Chatterjee and Kirkpatrick [8], studied the statistical mechanics with the focussing
non linearity. They prove that as the density is varied, a first order phase transition occurs
corresponding to soliton collapse.

Remark In [20] the detailed dynamics of a gas of solitons of the Ginzburg-Landau equation
is studied. In particular, it is shown that there are solutions in which pairs of coupled solitons
and separated from others is a possible class of (chaotic) solutions. The approach in this
paper is based on the analysis of the infinite system of coupled ODE’s corresponding to the
internal degrees of freedom of the soliton pairs (center of mass, relative phase, amplitude). It
should be pointed out that this system is not Hamiltonian, as it corresponds to the complex
NLS.
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914 B. Dodson

2 Dynamics of NLS on the Lattice

The Schrödinger equation on the lattice has properties similar to the nonlinear wave equation.
In this section let −� = ∂∗∂ be the finite difference Laplacian on Z. Here

∂ f (x) = f (x + 1) − f (x), and ∂∗ f (x) = f (x − 1) − f (x) (2.1)

The lattice NLS is given by

i
∂

∂t
ψ(t, x) = iψ̇(t, x) = −�ψ(t, x) + |ψ |2ψ(t, x), x ∈ Z (2.2)

Proposition 2 If |ψ(0, x)| ≤ A then there exists a constant C such that for any x0 ∈ Z and
t0 ≥ 1, we have |ψ(t0, x0)| ≤ CA t1/20 , and

1

t0

∑
|x−x0|≤t0

|ψ(t0, x)|2 � A2. (2.3)

Proof The proof of local existence and uniqueness is an application of Picard iteration on
the space l∞(Z) since the linear operator � is bounded on l∞(Z), the Taylor series for eit�

is uniformly bounded for times 0 ≤ t ≤ 1.
To get a bound on the solution at arbitrary time t0 near x0, where t0 is possibly large, we

define

F(t, x) = [(x − x0)2 + 1]1/2
R(2t0 − t + 1)

, (2.4)

with R ≥ 1, and let the local mass be given by

M(t) =
∑
x

|ψ(t, x)|2e−F(x,t) (2.5)

By using ∂∗ is the adjoint of ∂ , and summation by parts, we have

dM(t)/dt = −
∑
x

{
|ψ(t, x)|2e−F(t,x)(Ḟ ) + i[∂ψψ̄ − ∂ψ̄ψ] ∂e−F(x,t)

}
(2.6)

The first term inside the braces is positive. To estimate the last term note that

∂e−F(x,t) ≈ e−F(x,t)∂F ≈ e−F(x,t)/R(2t0 − t + 1) . (2.7)

Since

|∂ψ(x)ψ̄(x) − ∂ψ̄(x)ψ(x)| ≤ |ψ(x + 1)|2 + |ψ(x)|2 (2.8)

and ∑
x

|ψ(x + 1)|2e−F(x,t) =
∑
x

|ψ(x)|2e−F(x−1,t)

≤
∑
x

|ψ(x)|2e−F(x,t)
(
1 + 1

R(2t0 − t + 1)

)

we get the inequality for t0 ≥ t

dM(t)/dt ≤ 3M(t)/R(2t0 − t + 1) (2.9)
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This implies M(t0) ≤ 3 ln(2)
R M(0), and Proposition 2 follows from

∑
x

e
− [(x−x0)2+1]1/2

R(t0+1) |ψ(t0, x)|2 ≤ C
∑
x

e
− [(x−x0)2+1]1/2

R(2t0+1) A2 ≤ CRA2t0. (2.10)

Taking R = 1 completes the proof. �	
If we replace the local mass by the local energy |∇ψ |2(x) + |ψ(x)|4 in (2.5) we can get a

improved estimate on the time growth t1/4, compatible with Proposition 2. This result only
holds for the defocussing case, and would not hold in the focussing case, unlike the proof of
Proposition 2.

Proposition 3 If |ψ(0, x)| ≤ A, then for R ≥ 1, |ψ(t0, x0)| ≤ CAt1/40 , for any x0 ∈ Z, and
when t0 ≥ 1,

1

t0

∑
|x−x0|≤t0

|ψ(t0, x)|4 � A4. (2.11)

Proof Define the localized energy,

E(t) = 1

2

∑
x

|ψ(t, x + 1) − ψ(t, x)|2e−F(t,x) + 1

4

∑
x

|ψ(t, x)|4e−F(t,x). (2.12)

If we set 〈v,w〉 = Re vw̄, then by direct computation,

dE

dt
= −1

2

∑
x

|ψ(t, x + 1) − ψ(t, x)|2e−F(t,x) Ḟ(t, x) − 1

4

∑
x

|ψ(t, x)|4e−F(t,x) Ḟ(t, x)

+
∑
x

〈∂∗∂ψe−F , ψ̇〉 +
∑
x

〈∂ψ∂∗e−F , ψ̇〉 +
∑
x

〈e−F |ψ |2ψ, ψ̇〉

≤
∑
x

〈iψ̇, e−F ψ̇〉 +
∑
x

〈∂ψ∂∗e−F , ψ̇〉 =
∑
x

〈∂ψ∂∗e−F , ψ̇〉

=
∑
x

〈∂ψ∂∗e−F , i�ψ(t, x) − i |ψ |2ψ(t, x)〉.

(2.13)

Using the fact that ∂ and ∂∗ are bounded operators on the lattice, (2.7) implies that
∑
x

〈∂ψ∂∗e−F ,−i |ψ |2ψ〉 �
∑
x

1

R(2t0 + 1 − t)
e−F |ψ |4

� 1

R(2t0 + 1 − t)
E(t). (2.14)

Also, since ∂ and ∂∗ are bounded operators,
∑
x

〈∂ψ∂∗e−F , i�ψ(t, x)〉 �
∑
x

1

R(2t0 + 1 − t)
e−F(t,x)|ψ(t, x + 1) − ψ(t, x)|2

� 1

R(2t0 + 1 − t)
E(t). (2.15)

In particular, this implies that E(t0) �R E(0). Therefore,

∑
x

e
− [(x−x0)2+1]1/2

R(t0+1) |ψ(t0, x)|4 ≤ C
∑
x

e
− [(x−x0)2+1]1/2

R(2t0+1) A4 ≤ CRA4t0 . (2.16)

Taking R = 1 proves the Proposition. �	
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916 B. Dodson

Remark In Propositions 2 and 3 we can bound the time derivative | ∂ψ
∂t | by O(t3/2) and

O(t3/4) respectively.

Remark This argument could be generalized to the defocussing equation

i∂/∂t ψ(t, x) = iψ̇(t, x) = −�ψ(t, x) + |ψ |pψ(t, x), x ∈ Z. (2.17)

In that case |ψ(t, x)| � t
1

p+2 .

3 Regularized Nonlinearity

Next, we study the regularized nonlinear Schrödinger equation,

iut + uxx = N (u) = φ ∗ (|φ ∗ u|2(φ ∗ u)), u : R × R → C, u(0, x) = u0, (3.1)

where φ is a real valued, symmetric Schwartz function, and ∗ indicates the usual convolution

( f ∗ g)(x) =
∫

f (y)g(x − y)dy. (3.2)

Remark The operator f �→ φ ∗ f is a smoothing operator. One important example of such
an operator is the Fourier truncation operator. Since the solution to iut + uxx = 0 travels at
velocity ξ at frequency ξ , truncating the nonlinear term in Fourier space allows us to treat
(3.1) using a finite propagation speed argument.

A solution to (3.1) conserves the quantities mass,

M(u(t)) =
∫

|u(t, x)|2dx, (3.3)

and energy,

E(u(t)) = 1

2

∫
|∂xu(t, x)|2dx + 1

4

∫
|φ ∗ u|4dx . (3.4)

Remark Both quantities could be infinite in this section.

3.1 LocalWell-Posedness

Local well-posedness may be proved using perturbative arguments, for data lying in a large
function space.

Theorem 1 If u0 lies inC2(R), then (1.1)hasa local solution for T (φ, ‖u0‖L∞ , ‖∇2u0‖L∞) >

0. The solution u is bounded and uniformly continuous on [0, T ] × R.

Proof This proof would work equally well in the focussing or defocussing cases. We first
prove

‖eit�u0‖L∞ � (1 + t3/2)(‖u0‖L∞ + ‖∇u0‖L∞ + ‖∇2u0‖L∞), (3.5)

by using stationary phase.Without loss of generality, it suffices to show that eit�u0 is bounded
at the origin by the right hand side of (3.5). Using the stationary phase kernel of eit�,

eit�u0(0) = 1

Ct1/2

∫
e−i y

2

4t u0(y)dy. (3.6)
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Let χ be as in (1.4). Integrating by parts,

1

Ct1/2

∫
e−i y

2

4t (1 − χ(y))u0(y)dy = 1

Ct1/2

∫
2i t

y

d

dy

(
e−i y

2

4t

)
(1 − χ(y))u0(y)dy

= O(t1/2‖u0‖L∞) + Ct1/2
∫

e−i y
2

4t
1

y
(1 − χ(y))u′

0(y)dy.

(3.7)

Making another integration by parts argument shows that the second term on the right hand
side of (3.7) is also bounded by the right hand side of (3.5).

Now then, by the fundamental theorem of calculus,

χ(y)u0(y) = χ(y)u0(0) + χ(y)(u0(y) − u0(0)) = χ(y)u0(0) + χ(y)
∫ y

0
u′
0(s)ds. (3.8)

Since χ(y) is smooth and compactly supported, ‖χ(y)u0(0)‖H1 � ‖u0‖L∞ , and therefore
by the Sobolev embedding theorem and the fact that eit� is a unitary operator for L2-based
Sobolev spaces,

‖eit�(χ(y)u0(0))‖L∞ � ‖u0‖L∞ . (3.9)

Finally, as in (3.7),

1

Ct1/2

∫
e−i y

2

4t χ(y)(u0(y) − u0(0))dy

= 1

Ct1/2

∫
2i t

y

d

dy

(
e−i y

2

4t

)
χ(y)(u0(y) − u0(0))dy

= Ct1/2
∫

d

dy

(
e−i y

2

4t

)
χ(y)

∫ 1

0
u′
0(sy)dsdy

(3.10)

The right hand side of (3.10) is also bounded by the right hand side of (3.5). This finally
proves that (3.5) holds.

A similar argument may also be made for the Duhamel term
∫ t

0
ei(t−τ)�N (u)dτ. (3.11)

Since φ ∗ u is a smoothing operator, Theorem 1 also implies

‖ei(t−τ)�N (u)‖L∞ �φ (1 + |t − τ |3/2)‖u‖3L∞ . (3.12)

Therefore, Theorem 1 holds by straightforward Picard iteration. To see this, let

X = {
u : ‖u‖L∞

t,x ([0,T ]×R) ≤ 2C(φ)(‖u0‖L∞ + ‖∇u0‖L∞ + ‖∇2u0‖L∞)
}
, (3.13)

where C(φ) also depends on the implicit constant appearing in (3.5) when T ≤ 1. Then
define the operator


(u(t)) = eit�u0 − i
∫ t

0
ei(t−τ)�N (u)dτ. (3.14)

Then by (3.5) and (3.12), if u ∈ X ,

‖
u(t)‖L∞
t,x ([0,T ]×R) ≤C(‖u0‖L∞ + ‖∇u0‖L∞ + ‖∇2u0‖L∞)

+ 8C3T (‖u0‖L∞ + ‖∇u0‖L∞ + ‖∇2u0‖L∞)3.
(3.15)
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918 B. Dodson

Then for T sufficiently small,


 : X → X . (3.16)

Moreover,

‖
(u(t)) − 
(v(t))‖L∞
t,x ([0,T ]×R) � T ‖u − v‖L∞

t,x ([0,T ]×R)(‖u‖2L∞
t,x ([0,T ]×R)

+‖v‖2L∞
t,x ([0,T ]×R)), (3.17)

which proves that for T sufficiently small, 
 is a contraction. �	

3.2 GlobalWell-Posedness

The proof of global well-posedness for (3.1) relies on mass and energy conservation laws.
Although it is not in general true that a function in L∞(R) will lie in L2(R), it is true that
such embeddings do hold on any bounded set. We therefore use local conservation laws to
prove global well-posedness.

Theorem 2 If u0 lies in C4(R), then (3.1) has a global solution whose local energy (see
(3.18) with R = t8) is a quantity bounded by Ct8 when t is large. Moreover, we show that
|u(t, x)| � t8/3.

Proof Define the local energy

E(x0, t) =
∫

χ

(
x − x0

R

)2 [
1

2
|ux |2 + 1

4
|φ ∗ u|4 + 1

2
|u|2

]
. (3.18)

Remark Observe that we rely heavily on the fact that the local energy is positive definite.
In the case of finite mass, (3.3)< ∞, we could prove global well-posedness for both the
focussing and defocussing problems. Here, we only prove global well-posedness for the
defocussing problem.

We may compute

d

dt
E(x0, t) =

∫
χ

(
x − x0

R

)2 [〈ux , uxt 〉 + 〈|φ ∗ u|2(φ ∗ u), φ ∗ ut 〉 + 〈u, ut
〉] (3.19)

=
∫

χ

(
x − x0

R

)2

[−〈uxx , ut 〉 + 〈N (u), ut 〉 + 〈u, ut 〉]

− 2

R

∫
χ

(
x − x0

R

)
χ ′

(
x − x0

R

)
〈ux , ut 〉 +

∫
〈([φ, χ2]ut ), |φ ∗ u|2(φ ∗ u)〉.

(3.20)

Here we are using the inner product

〈 f , g〉 = Re( f (x)g(x)), (3.21)

and the commutator is given by

[φ, χ2]u =
∫ [

χ2
(
y − x0

R

)
− χ2

(
x − x0

R

)]
φ(x − y)u(y)dy. (3.22)
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Using (3.1) and the fact that 〈ut , iut 〉 = 〈ut ,−uxx + N (u)〉 = 0,

d

dt
E(x0, t) =

∫
χ

(
x − x0

R

)2

〈u, ut 〉 − 2

R

∫
χ

(
x − x0

R

)
χ ′

(
x − x0

R

)
〈ux , ut 〉

+
∫

〈([φ, χ2]ut ), |φ ∗ u|2(φ ∗ u)〉 = A + B + C . (3.23)

Observe that if χ( x−x0
R ) were replaced by 1, the local energy (3.18) would be exactly

equal to the mass in 1
2× (3.3) plus the energy in (3.4). It is also clear that in the case that

χ = 1, χ ′(x) = 0 and [φ, χ2] = 0, so the last two terms in (3.23) would drop out. The first
term in (3.23) would also be zero due to the conservation of mass calculations. For the local
energy, we will exploit the fact that a 1

R appears in− 2
R

∫
χ( x−x0

R )χ ′( x−x0
R )〈ux , ut 〉, and also

in
∫ 〈([φ, χ2]ut ), |φ ∗u|2(φ ∗u)〉. Meanwhile, E(x0, 0) = O(R), so terms depending on the

size of u itself will grow as R increases.Wewill show that for any 0 < R < ∞, we are able to
win the tug of war that develops between 1

R and the nonlinear terms for a time that increases
as R increases. Taking R → ∞ we shall prove global well-posedness and |u(t, x)| � t8/3.
Term A: Since ut = iuxx − iN (u),

A =
∫

χ

(
x − x0

R

)2

〈u, ut 〉 =
∫

χ

(
x − x0

R

)2

〈u, iuxx − iN (u)〉 = A1 + A2.

(3.24)

Integrating by parts,

A1 =
∫

χ

(
x − x0

R

)2

〈u, iuxx 〉 = − 2

R

∫
χ

(
x − x0

R

)
χ ′

(
x − x0

R

)
〈u, iux 〉

� 1

R
‖χ

(
x − x0

R

)
u‖L2‖χ ′

(
x − x0

R

)
ux‖L2 � 1

R
E(x0, t)

1/2‖χ ′
(
x − x0

R

)
ux‖L2 .

(3.25)

By the definition of χ ,

|χ ′(x)| � |χ(x)| + |χ(x − 1)| + |χ(x + 1)|. (3.26)

Therefore,

A1 � 1

R
E(x0, t)

1/2‖χ ′
(
x − x0

R

)
ux‖L2 � 1

R
E(x0, t)

1/2(sup
x0

E(x0, t)
1/2). (3.27)

Next,

A2 = −
∫

χ2
(
x − x0

R

)
〈u, iN (u)〉 =

∫
〈φ ∗ χ2

(
x − x0

R

)
u, i |φ ∗ u|2(φ ∗ u)〉

=
∫

〈[φ, χ2]u, i |φ ∗ u|2(φ ∗ u)〉. (3.28)

The last equality follows from the fact that
∫

χ2
(
x − x0

R

)
Re(−i |φ ∗ u|4) = 0. (3.29)
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To analyze the commutator [φ, χ2], first consider |x − x0| > 4R. In that case,

(3.22) = [φ, χ2] =
∫

χ2
(
y − x0

R

)
φ(x − y)u(y)dy

=
∫

1

1 + |x − y|2 (1 + |x − y|2)φ(x − y)χ2
(
y − x0

R

)
u(y)dy.

(3.30)

Since φ is a Schwartz function,

‖|x − x0|2
∫

χ2
(
y − x0

R

)
φ(x − y)u(y)dy‖L4(|x−x0|≥4R) �φ ‖χ

(
y − x0

R

)
u‖L2 . (3.31)

Therefore,

∫
|x−x0|≥4R

〈[φ, χ2]u, i |φ ∗ u|2(φ ∗ u)〉dx

�φ ‖χ
(
x − x0

R

)
u‖L2‖ 1

|x − x0|2 |φ ∗ u|3‖L4/3(|x−x0|≥4R)

� E(x0, t)
1/2

⎛
⎝ ∑

| j |≥3

1

j2R2 ‖χ
(
x − x0 − j R

R

)
(φ ∗ u)‖3L4

⎞
⎠

� 1

R
E(x0, t)

1/2(sup
x0

E(x0, t)
3/4).

(3.32)

For |x − x0| ≤ 4R observe that by the fundamental theorem of calculus,

|χ2
(
y − x0

R

)
− χ2

(
x − x0

R

)
| � 1

R
|x − y|. (3.33)

Then,

∫
|x−x0|≤4R

〈[φ, χ2]u, i |φ ∗ u|2(φ ∗ u)〉dx

� 1

R
‖φ ∗ u‖3L4(|x−x0|≤4R)

‖
∫

|x − y||φ(x − y)||u(y)|dy‖L4(|x−x0|≤4R)

� 1

R
(sup
x0

E(x0, t)
3/4)‖

∫
|x − y||φ(x − y)||u(y)|dy‖L4(|x−x0|≤4R).

(3.34)

Once again, since φ is a Schwartz function, by Young’s inequality,

‖
∫

|x − y||φ(x − y)||u(y)dy‖L4(|x−x0|≤4R)

� ‖
∫

1

1 + |x − y|2 |u(y)|dy‖L4(|x−x0|≤4R) �
(
sup
x0

‖χ
(
x − x0

R

)
u‖L2

)
.

(3.35)

Therefore,

A2 ≤
∫

〈[φ, χ2]u, i |φ ∗ u|2(φ ∗ u)〉 � 1

R
(sup
x0

E(t, x0)
5/4). (3.36)
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Term B: Split

− 2

R

∫
χ(

x − x0
R

)χ ′
(
x − x0

R

)
〈ux , ut 〉

= − 2

R

∫
χ

(
x − x0

R

)
χ ′

(
x − x0

R

)
〈ux , iuxx 〉

+ 2

R

∫
χ

(
x − x0

R

)
χ ′

(
x − x0

R

)
〈ux , iN (u)〉 = B1 + B2.

(3.37)

Decompose

B1 = − 2

R

∫
χ

(
x − x0

R

)
χ ′

(
x − x0

R

)
〈ux , iuxx 〉

= − 2

R

∫
χ

(
x − x0

R

)
χ ′

(
x − x0

R

)
〈ux , ieit∂xx uxx (0)〉

− 2

R

∫
χ

(
x − x0

R

)
χ ′

(
x − x0

R

)
〈ux , i∂xx (u − eit∂xx u(0))〉.

(3.38)

Using (3.5) and the fact that ∂x commutes with eit∂xx ,

− 2

R

∫
χ

(
x − x0

R

)
χ ′

(
x − x0

R

)
〈ux , ieit∂xx uxx (0)〉

� 1

R1/2 ‖χ
(
x − x0

R

)
ux‖L2‖eit∂xx uxx (0)‖L∞

� (1 + t3/2)
1

R1/2 E(x0, t)
1/2‖u0‖C4(R).

(3.39)

Next observe that by Duhamel’s formula,

u − eit∂xx u(0) = i
∫ t

0
ei(t−τ)∂xxN (u)dτ. (3.40)

Next,

χ ′
(
x − x0

R

)
∂xx

∫ t

0
ei(t−τ)∂xxN (u)dτ

= χ ′
(
x − x0

R

) ∫ t

0
ei(t−τ)∂xx φxx ∗ (|φ ∗ u|2(φ ∗ u))dτ.

(3.41)

Now then, by Strichartz estimates and the fact that φ is a Schwartz function, and thus in L1,

‖χ ′
(
x − x0

R

) ∫ t

0
ei(t−τ)∂xx φxx ∗ χ

(
x − x0
4R

)
(|φ ∗ u|2(φ ∗ u))dτ‖L2(R)

�φ

(∫ t

0
‖χ

(
x − x0
4R

)
(|φ ∗ u|2(φ ∗ u))‖8/7

L4/3dτ

)7/8

�
(∫ t

0
(sup
x0

E(x0, τ ))6/7dτ

)7/8

.

(3.42)
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Meanwhile, computing the kernel for a generic function f ,

χ ′
(
x − x0

R

) ∫ t

0
ei(t−τ)∂xx φxx ∗

(
1 − χ

(
x − x0
4R

))
f dτ

= χ ′
(
x − x0

R

) ∫ t

0

∫ ∫
e−i (x−y)2

4(t−τ) φ(2)(y − z)

(
1 − χ

(
z − x0
4R

))
f (z)dτdydz.

(3.43)

Sinceχ ′( x−x0
R ) is supportedon |x−x0| ≤ 2R and (1−χ( z−x0

4R )) is supportedon |z−x0| > 4R,
|x − z| > 2R in (3.43). In the region where |y − z| > |x − y|, using the fact that φ is a
Schwartz function and Young’s inequality,

‖χ ′
(
x − x0

R

) ∫ t

0

∫ ∫
|y−z|>|x−y|

e−i (x−y)2

4(t−τ) φ(2)(y − z)

(
1 − χ

(
z − x0
4R

))
f (z)dτdydz‖L2

� ‖χ ′
(
x − x0

R

) ∫ t

0

∫ ∫
|y−z|>|x−y|

1

1 + |x − y|2 · 1

1 + |x − z|2

× |φ(2)(y − z)(y − z)4|
(
1 − χ

(
z − x0
4R

))
| f (z)|dzdydτ‖L2

�φ

∑
j �=0

1

1 + j2R2

∫ t

0
‖χ

(
x − x0 − j R

R

)
f ‖L4/3dτ � 1

R2

∫ t

0

(
sup
x0

‖χ
(
x − x0

R

)
f ‖L4/3

)
.

(3.44)

Next, consider the case when |x − y| > |y − z|. In this case we use the fact that

e−i (x−y)2

4(t−τ) = 2i(t − τ)

(y − x)

d

dy

(
e−i (x−y)2

4(t−τ)

)
. (3.45)

Then let ψ be a smooth, compactly supported function, ψ(x) = 1 for |x | ≤ 1, and ψ

supported on |x | ≤ 2. Using (3.45) and integrating by parts,

χ ′
(
x − x0

R

) ∫ t

0

∫ ∫
ψ

(
y − z

x − y

)
e−i (x−y)2

4(t−τ ) φ(2)(y − z)

(
1 − χ

(
z − x0
4R

))
f (z)dτdydz

= χ ′
(
x − x0

R

) ∫ t

0

∫ ∫
2i(t − τ)

(y − x)2
ψ

(
y − z

x − y

)
e−i (x−y)2

4(t−τ ) φ(2)(y − z)

(
1 − χ

(
z − x0
4R

))
f (z)dτdydz

− χ ′
(
x − x0

R

) ∫ t

0

∫ ∫
2i(t − τ)

(y − x)
ψ ′

(
y − z

x − y

)
·
(

1

x − y
+ y − z

(x − y)2

)

× e−i (x−y)2

4(t−τ ) φ(2)(y − z)

(
1 − χ

(
z − x0
4R

))
f (z)dτdydz

− χ ′
(
x − x0

R

) ∫ t

0

∫ ∫
2i(t − τ)

(y − x)
ψ

(
y − z

x − y

)
e−i (x−y)2

4(t−τ ) φ(3)(y − z)

(
1 − χ

(
z − x0
4R

))
f (z)dτdydz. (3.46)
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Applying (3.45) and integrating by parts three more times, and then making the argument in
(3.42)–(3.44) with x − y and y − z reversed, implies that

‖(3.41)‖L2 �φ

(∫ t

0
(sup
x0

E(x0, τ ))6/7dτ

)7/8

+ (1 + t4)

R2

∫ t

0
(sup
x0

‖χ
(
x − x0

R

)
(φ ∗ u)‖3L4)dτ. (3.47)

Then consider

B2 = 2

R

∫
χ

(
x − x0

R

)
χ ′

(
x − x0

R

)
〈ux , iN (u)〉. (3.48)

We can compute

B2 � 1

R
‖χ

(
x − x0

R

)
ux‖L2‖χ ′

(
x − x0

R

)
φ ∗ (|φ ∗ u|2(φ ∗ u))‖L2

� 1

R
E(t, x0)

1/2‖χ ′
(
x − x0

R

)
φ ∗ (|φ ∗ u|2(φ ∗ u))‖L2 .

(3.49)

To simplify notation let f = |φ ∗ u|3. Since φ is a Schwartz function,

‖χ ′
(
x − x0

R

)
φ ∗ f ‖L2

� ‖
∫

χ ′
(
x − x0

R

)
|φ(x − y)(x − y)2| 1

|x − y|2 | f (y)|dy‖L2

�φ

∑
j

1

1 + j2R2 ‖χ
(
x − x0 − j R

R

)
f ‖L4/3 �

(
sup
x0

‖χ
(
x − x0

R

)
(φ ∗ u)‖3L4

)
.

(3.50)

Term C: For this term as well, split ut = iuxx − iN (u).

∫
〈([φ, χ2]ut ), |φ ∗ u|2(φ ∗ u)〉 =

∫
〈([φ, χ2]iuxx ), |φ ∗ u|2(φ ∗ u)〉

−
∫

〈([φ, χ2]iN (u)), |φ ∗ u|2(φ ∗ u)〉 = C1 + C2.

(3.51)

Once again we use the definition of the commutator in (3.5). Integrating by parts,

C1 =
∫ [

χ2
(
y − x0

R

)
− χ2

(
x − x0

R

)]
φ(x − y)(iuxx (t, y))(|φ ∗ u|2(φ ∗ u))(t, x)dydx

= − 2

R

∫
χ

(
y − x0

R

)
χ ′

(
y − x0

R

)
φ(x − y)(iux (t, y))(|φ ∗ u|2(φ ∗ u))(t, x)dydx

−
∫ [

χ2
(
x − x0

R

)
− χ2

(
y − x0

R

)]
φ′(x − y)(iux (t, y))(|φ ∗ u|2(φ ∗ u))(t, x)dydx .

(3.52)
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Since φ is a Schwartz function,

2

R

∫
χ

(
y − x0

R

)
χ ′

(
y − x0

R

)
φ(x − y)(iux (t, y))(|φ ∗ u|2(φ ∗ u))(t, x)dydx

� 1

R

∫
|χ

(
y − x0

R

)
||χ ′

(
y − x0

R

)
| 1

1 + |x − y|2 · (1 + |x − y|2)|φ(x − y)|
× |φ ∗ u(t, x)|3|ux (t, y)|dydx,

(3.53)

so by Young’s inequality,

�φ

1

R

∑
j

1

1 + j2R2 ‖χ
(
x − x0 − j R

R

)
|φ ∗ u|‖3L4‖χ

(
x − x0

R

)
ux‖L2

� 1

R
(sup
x0

E(x0, t)
5/4). (3.54)

Next, consider the term

∫ [
χ2

(
x − x0

R

)
− χ2

(
y − x0

R

)]
φ′(x − y)(iux (t, y))(|φ ∗ u|2(φ ∗ u))(t, x)dydx .

(3.55)

Integrating by parts again, if the derivative falls on χ2(
y−x0
R ), then it is possible to proceed

as above, only with ux replaced by u. Therefore, it is left to estimate

∫ [
χ2

(
x − x0

R

)
− χ2

(
y − x0

R

)]
φ′′(x − y)(iu(t, y))(|φ ∗ u|2(φ ∗ u))(t, x)dydx .

(3.56)

To estimate this integral, it is useful to split the integral into three regions, |x − x0| ≤ 4R and
|y − x0| ≤ 4R, |x − x0| > 4R, and |y − x0| > 4R. When |x − x0| ≤ 4R and |y − x0| ≤ 4R,
then using (3.33) and Young’s inequality,

∫ [
χ2

(
x − x0

R

)
− χ2

(
y − x0

R

)]
φ′′(x − y)(iu(t, y))(|φ ∗ u|2(φ ∗ u))(t, x)dydx

�φ

1

R

∫ ∫
|x−x0|≤4R,|y−x0|≤4R

|x − y||φ′′(x − y)||u(t, y)||φ ∗ u(t, x)|3dxdy

� sup
x0

‖χ
(
y − x0

R

)
u‖L2‖χ

(
x − x0

R

)
(φ ∗ u)‖3L4 � sup

x0
E(x0, t)

5/4.

(3.57)

If |x − x0| > 4R,

χ2
(
x − x0

R

)
− χ2

(
y − x0

R

)
= −χ2

(
y − x0

R

)
. (3.58)
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Then,
∫

|x−x0|>4R
χ2

(
y − x0

R

)
|φ′′(x − y)||u(t, y)||φ ∗ u(t, x)|3dxdy

=
∫

|x−x0|>4R
χ2

(
y − x0

R

)
|φ′′(x − y)(x − y)2| 1

|x − y|2 |u(t, y)||φ ∗ u(t, x)|3dxdy

�φ

∑
j �=0

1

j2R2 ‖χ
(
x − x0 − j R

R

)
u‖L2‖χ(

y − x0
R

)|φ ∗ u|3‖L4/3 � 1

R2 sup
x0

E(x0, t)
5/4.

(3.59)

A similar computation may be made for |y − x0| > 4R, since in that case,

χ2
(
x − x0

R

)
− χ2

(
y − x0

R

)
= χ2

(
x − x0

R

)
. (3.60)

Therefore,

C1 =
∫

〈([φ, χ2]iuxx , |φ ∗ u|2(φ ∗ u)〉 � 1

R
E(x0, t)

5/4. (3.61)

Finally, consider the contribution of C2. If |y − x0| > 4R,

∫
|y−x0|>4R

[
χ2

(
y − x0

R

)
− χ2

(
x − x0

R

)]
φ(x − y)

× (φ ∗ |φ ∗ u|2(φ ∗ u)(t, x))(i |φ ∗ u|2(φ ∗ u))(t, y)dydx

= −
∫

|y−x0|>4R
χ2

(
x − x0

R

)
φ̃(x − y)|φ ∗ u|2(φ ∗ u)(t, x)(i |φ ∗ u|2(φ ∗ u))(t, y)dydx

(3.62)

� ‖χ
(
x − x0

R

)
|φ ∗ u|2(φ ∗ u)‖L4/3‖

∫
|y−x0|>4R

χ

(
x − x0

R

)
|φ̃(x − y)||φ ∗ u|3dy‖L4

� (sup
x0

E(x0, t)
3/4)‖

∫
|y−x0|>4R

χ

(
x − x0

R

)
|φ̃(x − y)||φ ∗ u|3dy‖L4 . (3.63)

Because φ is a symmetric, real valued, Schwartz function,

φ̃(x − y) =
∫

φ(x − z)φ(z − y)dz =
∫

φ(x − z)φ(y − z)dz =
∫

φ(x − y − z)φ(z)dz

(3.64)

is also a symmetric, real valued, Schwartz function. Therefore,

‖χ
(
x − x0

R

) ∫
|y−x0|>4R

|φ̃(x − y)||φ ∗ u|3dy‖L4

= ‖χ
(
x − x0

R

) ∫
|y−x0|>4R

|φ̃(x − y)||x − y|2 1

|x − y|2 |φ ∗ u|3dy‖L4

�φ

∑
j �=0

1

j2R2 ‖χ
(
x − x0 − j R

R

)
|φ ∗ u|3‖L4/3 � 1

R2 (sup
x0

E(x0, t)
3/4).

(3.65)
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By symmetry of arguments, a similar estimate could also be obtained when |x − x0| > 4R.
Finally, consider the case when |x − x0| ≤ 4R and |y − x0| ≤ 4R. By (3.33),∫ ∫

|x−x0|≤4R,|y−x0|≤4R

[
χ2

(
y − x0

R

)
− χ2

(
x − x0

R

)]
φ(x − y)

× (φ ∗ |φ ∗ u|2(φ ∗ u)(t, x))(i |φ ∗ u|2(φ ∗ u))(t, y)dydx

� 1

R

∫
|x−x0|≤4R

∫
|y−x0|≤4R

|x − y||φ̃(x − y)||φ ∗ u(t, x)|3|φ ∗ u(t, y)|3dxdy

�φ

1

R
(sup
x0

E(t, x0)
3/2). (3.66)

Therefore,

C2 =
∫

〈([φ, χ2]iφ ∗ |φ ∗ u|2(φ ∗ u)), |φ ∗ u|2(φ ∗ u)〉 � 1

R
E(x0, t)

3/2. (3.67)

Therefore, combining the above estimates on A+B+C we have proved

d

dt
E(x0, t) � 1

R
(sup
x0

E(x0, t)) + 1

R
(sup
x0

E(x0, t)
5/4) + (1 + t3/2)

E(x0, t)1/2

R1/2 ‖u0‖C4

+
(∫ t

0
(sup
x0

E(x0, τ ))6/7dτ

)7/8

+ 1 + t4

R2

∫ t

0
(sup
x0

E(x0, τ )3/4)dτ

+ 1

R
(sup
x0

E(x0, t)
3/2). (3.68)

By Hölder’s inequality,

sup
x0

E(x0, 0) � R. (3.69)

Making a bootstrap argument, suppose [0, T ] is an interval for which supt,x0 E(x0, t) � R,
and also T ≤ R1/8. Then for any t ∈ [0, T ],

(3.68) � 1 + R1/4 + (1 + t3/2)‖u0‖C4 + R3/4t7/8 + 1 + t5

R5/4
+ R1/2. (3.70)

Integrating the right hand side of (3.70) on the interval [0, T ],∫ T

0
1 + R1/4 + (1 + t3/2)‖u0‖C4 + R3/4t7/8 + 1 + t5

R5/4
+ R1/2dt

� R63/64 + R5/32‖u0‖C4 � R. (3.71)

Making a bootstrap argument, this proves supx0 E(x0, t) � R for all t ∈ [0, T ]. This proves
Theorem 2. Using (1.7), we obtain |u(t, x)| � t8/3. �	
Remark If we assumed smooth initial data, we could combine the previous proof with Gron-
wall’s inequality to prove bounds on higher order derivatives of the solution.

4 Real Analytic Local Well-Posedness

In this sectionwe prove a local result for the one dimensional, nonlinear Schrödinger equation

i
∂ψ

∂t
= −�ψ + |ψ |2ψ, ψ(0, x) = ψ0. (4.1)
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TOh [19] proved localwell-posedness for almost periodic data.As a simple example consider

ψ0(x) = cos(x) + cos(
√
2x). (4.2)

Such an initial value problem cannot be solved directly using the usual methods of Strichartz
estimates combined with the fact that the initial data is in an L2-based space. Moreover,
the fact that the data (4.2) consists of two periodic functions whose periods are not rational
multiples of one another prevents the study of (4.1) on a torus.

In this note, we study (4.1) for initial data that is real analytic in a strip of width 3, that is,
the set

� = {z : z = x + iy, |y| < 3}. (4.3)

For example, the initial data

ψ0(x) =
∑
n∈Z

ane
−(x−n)2 , |an | ≤ 1 (4.4)

satisfies this condition. In fact, (4.4) is an entire function since if z = x + iy,

ψ0(z) =
∑
n∈Z

ane
−(z−n)2 = ey

2 ∑
n∈Z

ane
−(x−n)2e−2iy(x−n), (4.5)

so the sum (4.5) converges uniformly in any compact subset of C, proving that ψ0(x) is an
entire function.

We prove the local well-posedness result for real analytic data. We suspect that Gevrey
or very smooth data will suffice to get the existence of local solutions by using Moser’s
regularization [16]. See Hörmander [11] for an abstract version of the Newton-Nash implicit
function.

Theorem 3 The initial value problem (4.1) is locally well-posed on some interval
[−T (ψ0), T (ψ0)], where u0 is real analytic in the strip (4.3).

Proof Define the formal iteration as follows. First let

ψ1(t, x) = eit�ψ0. (4.6)

Next, define ξ2(t, x), to be the linear correction to ψ1 given by

i
∂ξ2

∂t
= −�ξ2 + 2|ψ1|2ξ2 + ψ2

1 ξ̄2 + R1, ξ2(0, x) = 0, (4.7)

and

R1 = −i
∂ψ1

∂t
− �ψ1 + |ψ1|2ψ1 = |ψ1|2ψ1. (4.8)

and set

ψ2(t, x) = ψ1(t, x) + ξ2(t, x). (4.9)

In general, iteratively define

ψn+1 = ψn + ξn+1, (4.10)

where

i
∂ξn+1

∂t
= −�ξn+1 + 2|ψn |2ξn+1 + ψ2

n ξ̄n+1 + Rn, ξn+1(0, x) = 0, (4.11)
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and when n > 1,

Rn = −i
∂ψn

∂t
− �ψn + |ψn |2ψn = 2|ξn |2ψn−1 + ξ2n ψ̄n−1 + |ξn |2ξn . (4.12)

The rapid convergence of the Newton iteration relies on the fact that Rn is quadratic in ξn .
For any n > 1, arguing by induction,

i
∂ψn

∂t
+ �ψn = i

∂

∂t

(
ψ1 +

n∑
m=2

ξm

)
+ �

(
ψ1 +

n∑
m=2

ξm

)
= |ψn |2ψn − Rn+1. (4.13)

Therefore, if we can show that ξn → 0 and Rn → 0 in a suitable Banach space as n → ∞,
we are done.

It is convenient to rewrite (4.11) and (4.12) in matrix notation. Let

un =
(

ξn
ξ̄n

)
, bn =

(
Rn

−R̄n

)
, M0 =

(−� 0
0 �

)
, Vn(t, x) =

(
2|ψn |2 ψ2

n
−ψ̄2

n −2|ψn |2
)

.

(4.14)

Then (4.11) has the form

i
∂un+1

∂t
= Mn(t, x)un+1 + bn, Mn = M0 + Vn . (4.15)

Let 
(t, t1) be the fundamental solution operator to this equation,

i
∂
(t, t1)

∂t
= Mn
n(t, t1), 
n(t1, t1) = I d. (4.16)

Formally, 
n(t, t1) can be expressed as a time ordered integral


n(t, t1) = T exp(−i
∫ t

t1
M(s)ds). (4.17)

Then the solution to (4.15) is given by

un+1 = −i
n(t, 0)
∫ t

0

n(s, 0)

−1bn(s)ds. (4.18)

Indeed, under (4.18), un+1(0) = 0, and

i
∂un+1

∂t
= bn(t) + Mnun+1. (4.19)

Lemma 1 (Properties of 
) Let

|Vn(t)| = sup
s≤t,x

|V (s, x)|. (4.20)

Then,

‖
n f ‖L2(R) ≤ e|t ||Vn(t)|‖ f ‖L2(R). (4.21)

Proof 
n is the solution operator to (4.15) with bn = 0. Standard local well-posedness
arguments show that (4.15) has a solution. Next, (4.21) holds for the interval of existence
via Gronwall’s inequality. The estimates (4.20) and (4.21) combine to show that 
n(t, t1) is
well-defined for all t, t1 ∈ R. �	
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Lemma 2 (More properties of 
)[
d

dx
,
n(t2, t1)

]
= −i

∫ t2

t1

n(t2, s)

d

dx
Vn(s, x)
n(s, t1)ds, (4.22)

and

[x,
n(t2, t1)] = 2i
∫ t2

t1

n(t2, s)

d

dx

n(s, t1)ds. (4.23)

Proof Without loss of generality suppose t1 = 0 and t2 = 1. Then for any N ,


n(1, 0) = 
n

(
1, 1 − 1

N

)
◦ · · · ◦ 
n

(
1

N
, 0

)
. (4.24)

Therefore, by direct computation,

[
d

dx
,
n(1, 0)

]
=

N∑
j=1


n

(
1, 1 − 1

N

)
◦ · · · ◦

[
d

dx
, 
n

(
j

N
,
j − 1

N

)]
◦ · · · ◦ 
n

(
1

N
, 0

)
.

(4.25)

Then compute, [
d

dx
,
n

(
j

N
,
j − 1

N

)]
∼ − i

N

d

dx
Vn

(
j − 1

N
, x

)
. (4.26)

Similarly, [
x,
n

(
j

N
,
j − 1

N

)]
∼ 2i

1

N

d

dx
. (4.27)

This proves the lemma. �	
By taking the time derivative of 
(t)−1
(t) = I d ,

d

dt
(
(t)−1) = −i
(t)−2
(t)M(t) = −i
(t)−1M(t), 
(t) = T exp(−i

∫ t

0
M(s)ds).

(4.28)

Next, if f is a real analytic function, making a Taylor expansion,

ea
d
dx f =

∞∑
n=0

an

n! f (n)(x) = f (x + a). (4.29)

Therefore, we have the identity,

ea
d
dx 
n,0 f = 
n,ae

a d
dx f , (4.30)

where 
n,a is the fundamental solution for M0 + Vn(t, x + a).
The norm that will be used to control the iteration is given by

‖ f ‖(r , p) = sup
x

∑
n≥0,0≤q≤p

| f
(n+q)(x)

n! |rn . (4.31)

The following general lemma relates different norms.
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Lemma 3 Let rn+1 < rn and set δn = rn − rn+1. Then,

‖ f ‖(rn+1, p) �p ‖ f ‖(rn, 0)δ−p
n . (4.32)

Proof We consider the simplest form of the estimate

‖ f ‖(rn+1, 1) � ‖ f ‖(rn, 0)δ−1
n . (4.33)

‖ f ‖(rn+1, 1) = sup
x

∑
m≥0

| f (m+1)(x)|
(m + 1)! rm+1

n

[
(m + 1)

rmn+1

rm+1
n

]
. (4.34)

The inequality follows since the factor in brackets is uniformly bounded by δ−1
n . The case

for general p may proved the same way. �	
Remark It may be possible to refine the estimates to bound the implicit constant in (4.32)
to q!, which would agree with Cauchy integral formula. However, it is not too important to
determine the exact constant here.

The proof of the convergence of the Newton iteration relies on the bound for the operator

n(t, s), where |t |, |s| ≤ 1.

Lemma 4 For |t | ≤ 1 and any rn+1 > 0,

‖
n(t, 0)bn‖(rn+1, 0) � et |Vn(t)|‖bn‖(rn+1, 3)(1 + ‖Vn‖(rn+1, 3) + ‖Vn‖(rn+1, 3)
2).

(4.35)

Proof As in the previous section we have

‖eit�ψ0‖(r ,0) � (1 + t3/2)(‖ψ0‖(r ,0) + ‖∇ψ0‖(r ,0) + ‖∇2ψ0‖(r ,0)). (4.36)

This takes care of the case when Vn ≡ 0. When Vn is not identically equal to zero, we
use (4.30) and the commutator estimates in Lemma 2. Let χ j be a partition of unity, where∑

j χ(x − j) = ∑
j χ j (x) = 1 for any x ∈ R, and set

gn, j = [1 + (x − j)2]
n(t, 0)χ j bn . (4.37)

Therefore,

‖
n(t, 0)bn‖(rn, 0) = ‖
∑
j

(1 + (x − j))−2gn, j‖(rn, 0) ≤ sup
j

‖gn, j‖(rn, 0). (4.38)

To simplify notation, let f = χ j bn . Also, without loss of generality suppose that j = 0.
Then,

x2
n(t, 0) f = x
n(t, 0)x f + x
∫ t

0

n(t, s)

d

dx

n(s, 0) f ds

= x
n(t, 0)x f + x
∫ t

0

n(t, 0)

(
d

dx
f

)
ds

+ x
∫ t

0

n(t, s)

∫ s

0

n(s, s1)

(
d

dx
Vn(s1, s)

)

n(s1, 0) f ds1ds

= x
n(t, 0)x f + t x
n(t, 0)

(
d

dx
f

)

+ x
∫ t

0

∫ s

0

n(t, s1)

(
d

dx
Vn(s1, s)

)

n(s1, 0) f ds1ds.

(4.39)
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Making a similar calculation,

x
n(t, 0)x f = 
n(t, 0)x
2 f + t
n(t, 0)

(
d

dx
(x f )

)

+
∫ t

0

∫ s

0

n(t, s1)

(
d

dx
Vn(s1, s)

)

n(s1, 0)(x f )ds1ds.

(4.40)

Then, remembering that f = χ j bn , since 0 ≤ t ≤ 1,

‖x
n(t, 0)x f ‖L2 ≤et |Vn(t)|‖x2 f ‖L2 + tet |Vn(t)|‖ f ‖L2

+ tet |Vn(t)|‖x d

dx
f ‖L2 + et |Vn || d

dx
Vn |‖x f ‖L2

�e|Vn(1)|
(
1 + | d

dx
Vn(1)|

)
‖bn‖(rn+1, 1).

(4.41)

By a similar calculation, since 0 ≤ t ≤ 1,

‖t
n(t, 0)

(
d

dx
(x f )

)
‖L2 � e|Vn(1)|

(
1 + | d

dx
Vn(1)|

)
‖bn‖(rn+1, 2). (4.42)

Finally,

x
∫ t

0

∫ s

0

n(t, s1)

(
d

dx
Vn(s1, s)

)

n(s1, 0) f ds1ds

=
∫ t

0

∫ s

0

n(t, s1)

(
d

dx
Vn(s1, s)

)
x
n(s1, 0) f ds1ds

+
∫ t

0

∫ s

0

∫ t

s

n(t, τ )

d

dx

n(τ, s1)

(
d

dx
Vn(s1, s)

)

n(s1, 0) f ds1ds.

(4.43)

Also, by (4.22),∫ t

0

∫ s

0

∫ t

s

n(t, τ )

d

dx

n(τ, s1)

(
d

dx
Vn(s1, s)

)

n(s1, 0) f ds1ds

=
∫ t

0

∫ s

0

∫ t

s

n(t, τ )
n(τ, s1)

d

dx

[(
d

dx
Vn(s1, s)

)

n(s1, 0) f

]
ds1dsdτ

+
∫ t

0

∫ s

0

∫ t

s

n(t, τ )

∫ τ

s1

n(τ, τ̃ )

(
d

dx
Vn(τ̃ , x)

)

n(τ̃ , s1)

(
d

dx
Vn(s1, s)

)

n(s1, 0) f ds1dsdτd τ̃ .

(4.44)

The L2 norm of the last term is bounded by

et |Vn(t)|‖Vn‖(rn+1, 3)
2‖ f ‖L2 . (4.45)

The other remaining terms,∫ t

0

∫ s

0

n(t, s1)

(
d

dx
Vn(s1, s)

)
x
n(s1, 0) f ds1ds, (4.46)

and ∫ t

0

∫ s

0

∫ t

s

n(t, τ )
n(τ, s1)

d

dx

[(
d

dx
Vn(s1, s)

)

n(s1, 0) f

]
ds1dsdτ, (4.47)
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may be handled in a similar manner.
Finally, using the Sobolev embedding theorem,

‖gn, j‖L∞ � ‖gn, j‖L2 + ‖∇gn, j‖L2 , (4.48)

completes the proof of the lemma. �	
Newton iteration: The induction argument makes use of the fact that if bn is real analytic,

then un+1, given by (4.18), is also real analytic. Additionally, a product of two real analytic
functions is real analytic, as well as the complex conjugate of a real analytic function is real
analytic.

We start the induction by assuming

ε1 = ‖u1‖(r1, 0) � 1, (4.49)

and define

εk = ‖uk‖(rk, 0), k ≥ 2. (4.50)

It is always possible to assume (4.49) after rescaling. By Lemmas 3 and 4,

ε2 = ‖u2‖(r2, 0) ≤ C‖ψ1‖(r2, p)3 ≤ C[‖ψ1‖(r1, 0)δ−p
1 ]3 = [Cε1δ

−p
1 ]3. (4.51)

In general, the remainder bn is quadratic in un by (4.12), and therefore, for any n,

εn+1 ≤ C[Cεnδ
−p]2(Cε1δ

−p). (4.52)

If ε1 > 0 is sufficiently small, p = 3 and δn = n−2,

εn+1 ≤ Cε2nn
4 ≤ Cn(n!)4ε2n1 → 0, (4.53)

as n → ∞. Thus, ψn converges as n → ∞.
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5 Appendix: Linear Schrödinger Time Evolution onZ

Let ψ(t, n) = eit�ψ0(n) where ψ0 = ∑
j a jδ j and � is the finite difference Laplacian.

Lemma A We can choose an, |a j | ≤ 1 so that |ψ(t, 0)| ≥ δt1/2, δ > 0.

Proof The fundamental solution to the lattice Schrödinger equation can be expressed in terms
of the integral

Fn(t) = (2π)−1
∫ 2π

0
eit cos(θ)+inθdθ, n ∈ Z ,

which is closely related to the Bessel function. This integral has two saddle points θs, π − θs
where sin(θs) = n/t, cos(θs) = [1− (n/t)2]1/2. By classical stationary phase, if |n| ≤ t/2

Fn(t) ≈ [t cos(θs)]−1/2 cos(φ(t, n)(1 + O(1/t))
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when n is even and

F(t, n) = i[t cos(θs)]−1/2 sin(φ(t, n)(1 + O(1/t)),

when n is odd. Here

φ(t, n) = π/4 + t cos(θs) + nθs .

Since |ψ(t, 0)| = | ∑n an Fn(t)| we will choose an so that the sum equals
∑

|n|≤t/2

|F(t, n)| ≥ δt1/2 .

To prove this lower bound note that if | cos(φ(t, n))| is small when n is even then | sin(φ(t, n+
1))| ≥ 1/4 since |φ(t, n + 1) − φ(t, n)| ≈ |θs | = arcsin n/t ≤ δt1/2. �	
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