
Journal of Statistical Physics (2020) 180:873–895
https://doi.org/10.1007/s10955-020-02549-5

Fluctuation Theory in the Boltzmann–Grad Limit

Thierry Bodineau1 · Isabelle Gallagher2 · Laure Saint-Raymond3 · Sergio Simonella4

Received: 30 March 2020 / Accepted: 7 April 2020 / Published online: 3 May 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
We develop a rigorous theory of hard-sphere dynamics in the kinetic regime, away from
thermal equilibrium. In the low density limit, the empirical density obeys a law of large
numbers and the dynamics is governed by the Boltzmann equation. Deviations from this
behaviour are described by dynamical correlations, which can be fully characterized for short
times. This provides both a fluctuating Boltzmann equation and large deviation asymptotics.

Keywords Kinetic theory · Hard sphere dynamics · Low density limit · Boltzmann
equation · Fluctuations · Large deviations · cumulants

1 Introduction

In this note we report on some recent progress on the origins of the fluctuation theory from
the fundamental laws of motion. For states far from equilibrium, the macroscopic fluctuation
theory has been investigated intensively, but microscopic derivations are mainly focused on
stochastic lattice gases (see e.g. [3,12,32]). We study here classical deterministic particles
in a rarefied gas. In its rigorous version, the issue is then connected with the problem of the
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mathematical validity of the Boltzmann equation, in the limit introduced by Grad [16]. This
limit procedure states that in a Hamiltonian system of N particles, strongly interacting at
distance ε, the particle density approximates the solution to the Boltzmann equation when
N → ∞, ε → 0, in such a way that the collision frequency (proportional to Nεd−1 in
dimension d = 2, 3) remains bounded; the volume density scales like ε, and both collisions
and transport have a finite effect in the limit.

The Boltzmann gas is a simple case featuring a nonlinear dynamics, and a rich structure
for the fluctuations. At the macroscopic scale, typical particles behave as i.i.d. variables.
Small fluctuations admit already an interesting theory. In particular, they exhibit spatial
correlations, and noise originating from (deterministic) collisions [13,31]. Moreover, rare
fluctuations satisfy a large deviation principle. We refer to the companion work by Bouchet
[7], where the large deviation theory for the Boltzmann equation has been discussed first.

On the mathematical side, the only result we are aware of in this direction, is the conver-
gence of the secondmoment of the small fluctuations proved by Spohn in [30]. Similar results
are available for linear regimes close to equilibrium, both for short [2] and for large times [4].
As suggested in [31], the fluctuation theory should not be merely a phenomenological theory,
but a rigorous consequence of the laws of mechanics. Our aim is to support this assertion,
providing a robust mathematical framework.

We shall state several theorems (Theorems1, 3, 4) describing the behaviour of the empirical
density

πε
t := 1

με

N∑

i=1

δzεi (t) , με = ε−(d−1) (1.1)

for a Newtonian evolution of N particles with positions and velocities

zε
i (t) = (xε

i (t), v
ε
i (t)
)

, i = 1, . . . , N .

We assume that the particles are approximately Poisson-distributed at time t = 0, with
(random) total number of particles N and regular phase-space density f 0 = f 0(x, v).
Probability and expectation with respect to this initial measure are denoted by Pε and Eε.
Then, in the Boltzmann–Grad limit ε → 0, Eε (N ) /με → 1, the following properties hold.

1. Law of large numbers:
πε

t → ft , t ∈ [0, T �] (1.2)

weakly (in probability) for some T � > 0, where ft is the solution of

∂t f + v · ∇x f = C( f , f ) (1.3)

with initial datum f 0 and C is Boltzmann’s collision operator [21]; in particular, the
chaos property of the initial measure propagates in time (rescaled correlation functions
converge to a tensor product).

2. Central limit theorem: the fluctuation field

ζ ε
t := √

με

(
πε

t − Eε

(
πε

t

))
(1.4)

describing the small deviations of the empirical density from its average, converges in
law on [0, T �] to the Gaussian process ζt governed by the fluctuating Boltzmann equation

dζt = Lt ζt dt + dηt , (1.5)

where Lt is Boltzmann’s operator linearized around ft , and dηt is Gaussian noise (with
covariance defined in (5.2)), as predicted in [30].

123



Fluctuation Theory in the Boltzmann–Grad Limit 875

3. Large deviations are exponentially small in με and characterized, at least in a regime of
strong regularity, by the same large deviation functional as heuristically derived in [7]
(and previously obtained, rigorously, in [28] from a one-dimensional stochastic process).
That is, the probability of observing a path ϕt = ϕ(t, x, v) satisfies

Pε

(
πε

t ≈ ϕt , t ∈ [0, T �]) � exp
(−με F(T �, ϕ)

)
, (1.6)

where F is defined as the Legendre transform of a functional J = J (T �, ϕ), solution
of a Hamilton–Jacobi equation.

The Boltzmann equation is naturally suited to a probabilistic interpretation, and its math-
ematical validity can be based on the construction of a stochastic particle system mimicking
themicroscopic collisions. The basic example is the Kacmodel [17], fromwhich the spatially
homogeneous Boltzmann equation can indeed be recovered. Fluctuations in this type of pro-
cess can also be analysed (see e.g. [18,19,23]), including large deviations ([22]) and spatially
inhomogeneous variants ([27,28]). Our results show that the analogy between the determin-
istic hard-sphere dynamics and the stochastic model goes far beyond the typical behavior
as it remains valid for extremely rare events. The statistical behavior of the hard-sphere gas
described above is in fact the same as the one derived in [27,28]. For physical observables
as the empirical measure, the deterministic dynamics and the stochastic approximation (as
often used in simulations) cannot be distinguished, even at the level of fluctuations.

Our main restriction is the smallness of the time T �. This time (depending only on f 0) is
actually a fraction of the time of validity of the Boltzmann equation obtained by Lanford in
[21]. We will further restrict to a gas of hard spheres, though we believe that the results could
be proved for smooth and compactly supported interactions, adopting known techniques [14,
20,25].

The Hamilton–Jacobi equation determiningJ (Theorem 2) is our ultimate point of arrival
in the derivation from amicroscopic mechanical model. A stationary solution of this equation
is given by the (dual) Boltzmann’s H functional, which describes large deviations of the
equilibrium state. Moreover, F has an invariance encoding the microscopic reversibility, a
symmetry inherited from the equality between the probability of a path and the probability of
the time-reversed path. This is an indication on the amount of recovered information which
was “lost” in Lanford’s Theorem, proving the transition from a reversible to a dissipative
model.

Our method is far from standard approaches to a large deviation problem. For stochastic
dynamics, large deviations can be evaluated by modifying the underlying stochastic process
in a time dependent way in order to produce an atypical trajectory. The optimal cost for
inducing such a bias on the stochastic dynamics is precisely the large deviation rate. For
hard-sphere systems, there is no underlying stochastic dynamics as all the randomness lies
in the initial data. It seems exceedingly hard to figure out a way to bias the initial probability
measure in order to produce a given admissible path ϕt . Indeed, the deterministic dynamics
is responsible for an intricate relation between the path and the initial distribution of spheres.

We therefore turn back to the more modest problem of analysing the error in (1.2).1 It
is already evident in Lanford’s proof, that the dynamical information lives on precise little
regions of the j−particle phase space, converging to measure-zero sets as ε → 0, for any
finite j . In little regions of the same size, correlations are generated by the collision events,
which break the propagation of chaos (see e.g. [5]). These correlation sets do not encode the
most probable future dynamics and they can be neglected when proving (1.2). However we

1 For previous quantitative investigations of the correlation error, we refer to [14,26].
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can extract muchmore information, by looking for mathematically tractable quantities which
are concentrated exactly on these sets, and retaining the information which is lost in (1.2).

A natural candidate is provided by cumulants, which can be obtained by the series expan-
sion of the generating function


ε
t (h) := 1

με

logEε

(
exp

( N∑

i=1

h
(
zε

i (t)
)
))

(1.7)

where h is any test function. The order n in this expansion is given by a function f ε
n = f ε

n (t)
on the n−particle phase space (formula (4.6)) describing a cluster of particles mutually
correlated by a chain of interactions. It has been noted in [13] that the hierarchy of cumulants
determines all the properties of the fluctuations in a gas, and that their exact computation
furnishes a theory of fluctuations at the same time. In order to prove rigorous results and
reach large deviations, we will construct the limit of the exponential moment (1.7), and link
it to the function J .

The expansion of (1.7) leads to a combinatorial problem, which can be dealt with by the
cluster expansion method [29]. Indeed this method fits very well with the dynamics at low
density, when combined with geometrical estimates on hard-sphere trajectories.

We organize the paper as follows. Section 2 is a brief introduction to our strategy. Sec-
tion 3 presents the model and the fundamental result leading to (1.2), and explains the basic
dynamical formula expressing the main quantities of interest in terms of the initial data. In
Sect. 4 we state our main results on the dynamical correlations and their limiting structure,
and derive the Hamilton–Jacobi equation. Finally, the last two sections are devoted to the
fluctuating Boltzmann equation and the large deviations respectively. In this paper we shall
only sketch the proof of our results, the complete version of which will be provided in a
longer publication [6].

2 Strategy

Lanford’s method [21] is based on the BBGKY hierarchy governing the evolution of the
family of (properly rescaled) correlation functions

(
Fε

n

)
n≥1. This hierarchy is completely

equivalent to the Liouville equation describing interacting transport of N hard spheres. In
the Boltzmann–Grad limit, the probability densities concentrate on an infinite-dimensional
space, and the BBGKY hierarchy is convenient to capture the relevant information. One thus
introduces the (rescaled) correlation functions Fε

n (t, Zn) such that

Eε

( ∑

i1,...,in
i j 
=ik , j 
=k

hn
(
zε

i1(t), . . . , z
ε
in

(t)
)) = μn

ε

∫

Dn
d Zn Fε

n (t, Zn) hn(Zn) ,

for any test function hn , where D is the 1-particle phase space. The family
(
Fε

n

)
n≥1 is suited

to the description of typical events: in the limit ε → 0, Fε
n → f ⊗n so that everything is

coded in f (solution of (1.3)), no matter how large n.
We need to go beyond the BBGKY hierarchy and turn to a more powerful representation

of the dynamics. We shall replace the family
(
Fε

n

)
n≥1 with an equivalent family of (rescaled)

truncated correlation functions
(

f ε
n

)
n≥1, called cumulants. Their role is to grasp information

on the dynamics on finer and finer scales. Loosely speaking, f ε
n will collect events where n

particles are “completely connected” by a chain of interactions. We shall say that the n
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particles form a connected cluster. Since a collision between two given particles is typically
of order μ−1

ε (the size of the “collision tube” spanned by one particle in time 1), a complete

connection would account for events of probability of order μ
−(n−1)
ε . We therefore end up

with a hierarchy of rare events, which we would like to control at arbitrary order. At variance
with

(
Fε

n

)
n≥1, even after the limit με → ∞ is taken, the cumulant f ε

n cannot be trivially
obtained from the cumulant f ε

n−1. Each step entails extra information, and events of increasing
complexity, and decreasing probability.

Unfortunately, the equations for
(

f ε
n

)
n≥1 are difficult to handle. But the moment-to-

cumulant relation
(
Fε

n

)
n≥1 → (

f ε
n

)
n≥1 is a bijection and, in order to construct f ε

n (t), we can

still resort to the same solution representation of [21] for the correlation functions
(
Fε

n (t)
)

n≥1.
This formula is an expansion over collision trees, meaning that it has a geometrical represen-
tation as a sum over binary tree graphs, with vertices accounting for collisions (see Sect. 3).
Two particles are correlated if their generated trees are connected by a “recollision”, which
is an event of weight μ−1

ε (see Sect. 3.3.3 for a precise notion of recollision).
In Proposition 2 we will state the main technical advance of this paper: the cumulant

(rescaled by the factor μn−1
ε ) grows as nn−2 in L1-norm. This estimate is intuitively simple.

We have at disposal a geometric notion of correlation as a link between two collision trees.
Based on this notion, we can draw a random graph on n vertices telling us which particles
are correlated and which particles are not (each collision tree being one vertex of the graph).
Since the cumulant f ε

n corresponds to n completely correlated particles, there will be at least
n − 1 edges, each one of small ‘volume’ μ−1

ε . Of course there could be more than n − 1
connections (the random graph has cycles), but these are hopefully unlikely as they produce
extra smallness in ε. If we ignore all of them, we are left with minimally connected graphs,
whose total number is nn−2 by Cayley’s formula.

The limiting equations for the family
(

f ε
n

)
n≥1 form a Boltzmann cumulant hierarchy,

displaying a remarkable structure [10,13]. The first equation (n = 1) is just the Boltzmann
equation. The second equation (n = 2) is driven by a linearized Boltzmann operatorLt , plus a
singular “recollision operator”, acting on f1 only, generating the “connection” (correlation)
between two particles and suited to be interpreted as noise source [30]. The higher order
equations (n > 2) have an increasingly complex structure, combining the action of the
two operators (of standard linearized type, and of connecting type) on n different particles,
in all possible ways. But the good n-dependence of the uniform bounds allows to sum up
the cumulants into an analytic series. This finally translates the cumulant hierarchy into
the Hamilton–Jacobi equation, which stands as a compact, nonlinear representation of the
correlation dynamics.

3 Collision Trees

In this section we introduce the geometrical representation of the hard-sphere dynamics with
random initial data, which will be our basic tool.

3.1 Hard-Sphere Model

The microscopic model consists of N identical hard spheres of unit mass and of diame-
ter ε. Their motion is governed by a system of ordinary differential equations, which are set
in D

N := (Td × R
d)N where Td is the unit d-dimensional periodic box:
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Fig. 1 Transport and collisions in
a hard-sphere gas

dxε
i

dt
= vε

i ,
dvε

i

dt
= 0 as long as |xε

i (t) − xε
j (t)| > ε for 1 ≤ i 
= j ≤ N , (3.1)

with specular reflection at collisions:

(
vε

i

)′ := vε
i − 1

ε2
(vε

i − vε
j ) · (xε

i − xε
j ) (xε

i − xε
j )

(
vε

j

)′ := vε
j + 1

ε2
(vε

i − vε
j ) · (xε

i − xε
j ) (xε

i − xε
j )

⎫
⎪⎬

⎪⎭
if |xε

i (t) − xε
j (t)| = ε . (3.2)

The sign of the scalar product (vε
i − vε

j ) · (xε
i − xε

j ) identifies post-collisional (+) and pre-
collisional (−) configurations. This flow does not cover all possible situations, as multiple
collisions are excluded. But one can show (see [1]) that, for almost every initial configuration
(xε0

i , vε0
i )1≤i≤N , there are neither multiple collisions, nor accumulations of collision times,

so that the dynamics is globally well defined (Fig. 1).
Below, we shall denote collections of positions and velocities respectively by X N :=

(x1, . . . , xN ) ∈ T
d N and VN := (v1, . . . , vN ) ∈ R

d N , and we set Z N := (X N , VN ) ∈
(Td × R

d)N , Z N = (z1, . . . , zN ).
Let f 0 be a probability density on D with Gaussian decay in velocity

| f 0(x, v)| + |∇x f 0(x, v)| ≤ C0 exp

(
−β0

2
|v|2
)

, (3.3)

where C0, β0 > 0. Because of the condition of hard-sphere exclusion, the positions of the
particles cannot be independent of each other. To better focus on the dynamical issue, we
shall choose, as initial measure, the N -particle distribution with minimal correlations. In
particular, to avoid spurious correlations due to a given total number of particles, we shall
consider a grand canonical state. The initial probability density of finding N particles in Z N

is given by

1

N ! W ε0
N (Z N ) := 1

Zε

μN
ε

N ! 1Dε
N

N∏

i=1

f 0(zi ) (3.4)
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where the domain encodes the exclusion:

Dε
N := {Z N ∈ D

N
∣∣ ∀i 
= j, |xi − x j | > ε

}
,

and the normalization constant Zε is given by

Zε := 1 +
∑

N≥1

μN
ε

N !
∫

DN
d Z N 1Dε

N

N∏

i=1

f 0(zi ) .

With this definition, if

μεε
d−1 = 1 ,

then the average number of particles satisfies

lim
ε→0

Eε (N ) εd−1 = 1

(Boltzmann–Grad scaling).
The rescaled n-particle correlation function is defined by

Fε0
n (Zn) := μ−n

ε

∞∑

p=0

1

p!
∫

dzn+1 . . . dzn+p W ε0
n+p(Zn+p) . (3.5)

For any symmetric test function hn : Dn → R, one can check that

Eε

( ∑

i1,...,in
i j 
=ik , j 
=k

hn
(
zε0

i1 , . . . , zε0
in

)) = μn
ε

∫

Dn
d Zn Fε0

n (Zn) hn(Zn) . (3.6)

Moreover one can prove that, in the Boltzmann–Grad limit,

∀n ≥ 1 , Fε0
n (Zn) −→

n∏

i=1

f 0(zi ) as ε → 0

on the set {xi 
= x j , ∀i 
= j}. That is, at leading order, the initial distribution is chaotic.
Starting from the dynamical equations (3.1) we get that, for each fixed N , the probability

density at time t > 0 is determined by the Liouville equation

∂t W
ε
N + VN · ∇X N W ε

N = 0 on Dε
N , (3.7)

with specular reflection (3.2) on the boundary |xi − x j | = ε.
By integration of the Liouville equation for fixed ε, we get that the one-particle correlation

function Fε
1 satisfies an equation

∂t Fε
1 + v · ∇x Fε

1 = Cε
1,2Fε

2 (3.8)

where the collision operator comes from the boundary terms in Green’s formula (using the
reflection condition to rewrite the gain part in terms of pre-collisional velocities):

(Cε
1,2Fε

2 )(x, v) :=
∫

Fε
2 (x, v′, x + εω,w′)

(
(w − v) · ω

)
+ dωdw

−
∫

Fε
2 (x, v, x + εω,w)

(
(w − v) · ω

)
− dωdw ,

with

v′ = v − (v − w) · ω ω, w′ = w + (v − w) · ω ω .
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As in (3.6), Fε
1 (t) describes the average behavior of (identical) particles at time t :

Eε

(
1

με

N∑

i=1

h
(
zε

i (t)
)
)

=
∫

Fε
1 (t, z) h(z) dz ,

for any test function h : D → R. Similarly for any test function h2 : D2 → R, the two-particle
correlation function satisfies

Eε

⎛

⎝ 1

μ2
ε

∑

i 
= j

h2
(
zi (t), z j (t)

)
⎞

⎠ =
∫

Fε
2 (t, Z2) h2(Z2) d Z2 .

3.2 Law of Large Numbers

The issue with equation (3.8) is that it is not closed: it involves Fε
2 . At the level of (3.8),

Boltzmann’s main assumption would correspond to the replacement

Fε
2 (t, x1, v1, x2, v2) ∼ Fε

1 (t, x1, v1)Fε
1 (t, x2, v2) , as ε → 0 ,

when |x1 − x2| = ε , (x1 − x2) · (v1 − v2) < 0 .

In other words, particles are assumed to be statistically independent, at least in pre-collisional
configurations. This very strong chaos property (which we assumed at time 0) is supposed
to be valid for all times.

In the Boltzmann–Grad limit ε → 0, we then expect Fε
1 to be well approximated by the

solution to the Boltzmann equation

∂t f + v · ∇x f = C( f , f ) (3.9)

with

C( f , f )(t, x, v)

:=
∫

Rd

∫

Sd−1

(
f (t, x, w′) f (t, x, v′) − f (t, x, w) f (t, x, v)

)
((v − w) · ω)+ dω dw .

The claim by Boltzmann that the particle density is well approximated by Eq. (3.9) has
been made rigorous by Lanford for short times.

Theorem 1 (Lanford, [21]) Consider a gas of hard spheres initially distributed according
to (3.4). Then, in the Boltzmann–Grad limit με → ∞ with μεε

d−1 = 1, the 1-particle
distribution Fε

1 converges, uniformly on compact sets, towards the solution f of the Boltzmann
equation (3.9) on a short time interval [0, T �] (where T � depends on the initial distribution
f 0 through C0, β0 in (3.3)).

Furthermore for each n, the n-particle correlation function Fε
n (t) converges almost every-

where to f ⊗n(t) on the same time interval.

The propagation of chaos obtained in Lanford’s theorem implies in particular that the
empirical measure πε

t , defined by (1.1), concentrates on the solution to the Boltzmann equa-
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tion. Indeed computing the variance we get, for any test function h, that

Eε

((
πε

t (h) −
∫

Fε
1 (t, z) h(z) dz

)2)

= Eε

( 1

μ2
ε

N∑

i=1

h2(zε
i (t)
)+ 1

μ2
ε

∑

i 
= j

h
(
zε

i (t)
)
h
(
zε

j (t)
))−

( ∫
Fε
1 (t, z) h(z) dz

)2

= 1

με

∫
Fε
1 h2 dz1 +

∫
Fε
2 h⊗2 d Z2 −

( ∫
Fε
1 h dz

)2
(3.10)

which converges to 0 as ε → 0 since Fε
2 converges to f ⊗2 and Fε

1 to f . This computation
can be interpreted as a law of large numbers.

Theorem 1 entails a drastic loss of information, which (as becomes clear from the proof)
is retained in particular in “recollision sets” of measure zero. Some of the microscopic time-
reversible structure can be recovered by looking at correlations on finer scales. This is the
role played by the rescaled dynamical cumulants, defined by

f ε
n (t, Zn) := μn−1

ε

n∑

s=1

∑

σ∈Ps
n

(−1)s−1(s − 1)!
s∏

i=1

Fε|σi |(t, Zσi ) . (3.11)

Here we denoted by Ps
n the set of partitions of {1, . . . , n} in s parts, Ps

n � σ = (σ1, . . . , σs),
by |σi | the cardinality of the set σi and by Zσi = (z j ) j∈σi . This formula is cooked up to
extract the effect of recollisions and therefore to obtain the detailed correlation structure at
arbitrarily small scales. Note that, for fixed ε > 0,

(
Fε

n

)
n≥1 and

(
f ε
n

)
n≥1 provide the same

amount of information, as shown by the inversion formula :

Fε
n (t, Zn) =

n∑

s=1

∑

σ∈Ps
n

μ−(n−s)
ε

s∏

i=1

f ε|σi |(t, Zσi ) . (3.12)

Before passing to the investigation of (3.11), we need to recall the main features of the
proof of Theorem 1 (see [9,14,32] for more details).

3.3 Hierarchy and Pseudotrajectories

The starting point is the equation (3.8) for the 1-particle correlation function Fε
1 . In order to

get a closed system, we write similar equations for all correlation functions Fε
n

∂t Fε
n + Vn · ∇Xn Fε

n = Cε
n,n+1Fε

n+1 on Dε
n , (3.13)

with specular boundary reflection as in (3.7) [8]. As Cε
1,2 above, Cε

n,n+1 describes collisions
between one “fresh” particle (labelled n + 1) and one given particle i ∈ {1, . . . , n}.

We denote by Sε
n the group associated with free transport in Dε

n (with specular reflection
at collisions). Iterating Duhamel’s formula, we can express the solution as a sum of operators
acting on the initial data :

Fε
n (t) =

∑

m≥0

Qε
n,n+m(t)Fε0

n+m , (3.14)

where we have defined for t > 0

Qε
n,n+m(t)Fε0

n+m :=
∫ t

0

∫ t1

0
. . .

∫ tm−1

0
Sε

n(t − t1)C
ε
n,n+1Sε

n+1(t1 − t2)C
ε
n+1,n+2

. . . Sε
n+m(tm)Fε0

n+m dtm . . . dt1
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882 T. Bodineau et al.

and Qε
n,n(t)Fε0

n := Sε
n(t)F0

n , Qε
n,n+m(0)Fε0

n+m := δm,0Fε0
n+m .

In the following, we shall label 1∗, . . . , n∗ the n particles with configuration Zn at time t ,
and 1, . . . , m the m “fresh” particles which are added by the collision operators. The configu-
ration of the particle labeled i∗ will be denoted indifferently z∗

i = (x∗
i , v∗

i ) or zi∗ = (xi∗, vi∗).

3.3.1 The Tree Structure

Each term of the series expansion (3.14) (after inserting the explicit definition of the collision
operators) can be represented by a collision tree a = (ai )i=1,...,m , which records the combina-
torics of collisions : the colliding particles at time ti are i andai ∈ {1∗, . . . , n∗}∪{1, . . . , i−1}.
We define the setAn,m of all possible such trees. Note that |An,m | = n(n+1) . . . (n+m −1).
Note also that, graphically, a ∈ An,m is represented by n binary tree graphs (below, we will
call collision tree both a ∈ An,m and each of its n components).

For all collision trees a ∈ An,m and all parameters (ti , ωi , vi )i=1,··· ,m with t1 > t2 >

· · · > tm , one constructs pseudo-trajectories on [0, t]
Ψ ε

n,m = Ψ ε
n,m

(
Z∗

n , (ai , ti , ωi , vi )i=1,...,m

)

iteratively on i = 1, 2, . . . , m (denoting by Zn,m(τ ) = (
Z∗

n(τ ), Zm(τ )
)
the coordinates of

particles at time τ ≤ tm):

– starting from (Z∗
n) at time t =: t0,

– transporting all existing particles backward on [ti , ti−1] (onDε
n+i−1 with specular reflec-

tion at collisions),
– adding a new particle i at time ti , with position xai (ti ) + εωi and velocity vi ,
– and applying the scattering rule (3.2) if

(
xai (ti ), vai (t

+
i ), xai (ti ) + εωi , vi

)
is a post-

collisional configuration.

We discard non admissible parameters for which this procedure is ill-defined; in particular we
exclude values of ωi corresponding to an overlap of particles (two spheres at distance strictly
smaller than ε). In the following we denote by Gε

m(a, Z∗
n) the set of admissible parameters.

Figure 2 is an example of such flow (for n = 1, m = 4).

Fig. 2 The tree structure of
collisions
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With these notations, one gets the following geometric representation of the correlation
function Fε

n :

Fε
n (t, Z∗

n) =
∑

m≥0

∑

a∈An,m

∫

Gε
m (a,Z∗

n )

dTmdΩmdVm

(
m∏

i=1

(
vi − vai (t

+
i )
) · ωi

)
Fε0

n+m

(
Ψ ε0

n,m

)
,

where (Tm,Ωm, Vm) := (ti , ωi , vi )1≤i≤m , and Ψ ε0
n,m is the (n + m)-particle configuration of

the pseudo-trajectory at time zero. Or, in short,

Fε
n (t, Z∗

n) =
∫

μ(dΨ ε
n ) C(Ψ ε

n

)
1Gε (Ψ ε

n

)
Fε0(Ψ ε0

n

)

with μ(dΨ ε
n ) :=

∑

m

∑

a∈An,m

dTmdΩmdVm, C(Ψ ε
n ) :=

m∏

i=1

(
vi − vai (t

+
i )
) · ωi (3.15)

1Gε (Ψ ε
n

) := 1Gε
m (a,Z∗

n ), and Fε0
(
Ψ ε0

n

)
the initial correlation function evaluated on the con-

figuration at time 0 of the pseudo-trajectory (including n + m particles). From now on, we
will indicate by Ψ ε

n a generic pseudo-trajectory with n particles at time t = t0.

3.3.2 A Short Time Estimate

Each elementary integral corresponding to a collision tree with m branching points involves
a simplex in time (t1 > t2 > · · · > tm). Thus, if we replace, for simplicity, the cross-section
factors C(Ψ ε

1 ) by a bounded function (cutting off high energies), we immediately get that the
integrals for n = 1 are bounded, for each fixed tree a ∈ A1,m , by

∣∣∣∣
∫

dTmdΩmdVm C(Ψ ε
1 ) 1Gε (Ψ ε

1

)
Fε0(Ψ ε0

1

)∣∣∣∣ ≤
(C ′

0t)m

m! ,

where C ′
0 > 0 depends only on C0, β0 of (3.3). Since |A1,m | = m!, the series expansion

is therefore absolutely convergent for short times, uniformly in ε. A similar estimate holds
for n > 1. Moreover in presence of the true factors C(Ψ ε

n ), the result remains valid (with a
slightly different value of the convergence radius), though the proof requires some extra care
[20].

Hence it is enough to study the convergence of each elementary term in the Boltzmann–
Grad limit ε → 0.

3.3.3 Removing Recollisions

When the size ε of the particles goes to 0, we expect the pseudo-trajectory Ψ ε
1 to converge

to a limiting Ψ1, defined iteratively on i = 1, 2, · · · , m:

– starting from z∗
1 at time t = t0,

– transporting all existing particles backward on [ti , ti−1] (by free transport),
– adding a new particle i at time ti , exactly at position xai (ti ) and with velocity vi ,
– and applying the scattering rule (3.2) if

(
vi − vai (t

+
i )
) · ωi > 0 (post-collisional config-

uration).

The main obstacle to the convergence Ψ ε
1 → Ψ ε

1 are the so-called recollisions. In the
language of pseudo-trajectories, a recollision is a collision between pre-existing particles
(see Fig. 3), namely a collision which does not correspond to the addition of a fresh particle.
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Fig. 3 An example of recollision

It is easy to realize that, in the absence of recollisions, Ψ ε
1 and Ψ1 differ only by small shifts

in the positions.
A careful geometric analysis of recollisions shows that they can happen only for a small

set of parameters, which is negligible in the limit ε → 0. Roughly, if particles p and q are
at positions x p, xq with x p 
= xq at time τ > 0, then a recollision between these particles
implies that there is a time trec < τ such that x p − xq − (vp − vq)(τ − trec) = O(ε). As a
consequence, vp − vq is constrained to be in a small cone of opening ε, and the integration
parameters in (3.15) lie in a small set. Thanks to the uniform bounds, one concludes that
pseudo-trajectories involving recollisions give an overall vanishing contribution to Fε

1 .
A similar analysis can be performed to study higher order correlation functions. However,

in this case the convergence is slightly more subtle. Notice that, for the n-particle correla-
tion function, the convergence will fail on some sets of parameters of volume μ−1

ε , which
correspond to particles of different trees colliding in the backward dynamics (see e.g.Fig.
4). These “external recollisions” are apparently innocent, as they correspond again to small
volume sets which do not contribute to the limit. On the other hand, it is the little failure of
convergence of the Fε

n which prevents Lanford’s theorem from being “reversible”, i.e. from
being applicable to the state at time t > 0 with reversed velocities [2,5]. This suggests that
the relevant information to go backwards is hidden in singular directions where different
trees merge. In Sect. 4, we will show that the dynamical cumulants f ε

n defined by (3.11)
“live” in these singular directions, thus allowing to investigate the n-particle correlations
more precisely.

3.3.4 Averaging Over Trajectories

We conclude this section with a generalization of the previous discussion, which will be
important in the following.

So far we discussed correlations in phase space, at a given time t . But clearly, spatio-
temporal correlations are also of interest. We therefore need to study trajectories of particles,
and not only their distribution at a given time. Pseudo-trajectories provide a geometric repre-
sentation of the iterated Duhamel series, but they are not physical trajectories of the particle
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system.Nevertheless, the probability of trajectories of n particles can be represented as above,
by conditioning the Duhamel series.

Proposition 1 [6] Let Hn be a bounded measurable function on the Skorokhod space of
trajectories over Dn in [0, t]. Define

Fε
n,[0,t](Hn) :=

∫
d Z∗

n

∫
μ(dΨ ε

n ) C(Ψ ε
n

)
1Gε (Ψ ε

n

)
Hn
(
Z∗

n([0, t]))Fε0(Ψ ε0
n

)
, (3.16)

where Z∗
n([0, t]) are the trajectories of the n ∗-tagged particles in the pseudo-trajectory Ψ ε

n .
Then,

Eε

( ∑

i1,...,in
i j 
=ik , j 
=k

Hn
(
zε

i1([0, t]), . . . , zε
in

([0, t]))
)

= μn
ε Fε

n,[0,t](Hn) ,

where zε
i1
([0, t]), . . . , zε

in
([0, t]) is the sample path of n hard spheres labeled i1, . . . , in ,

among the N hard spheres randomly distributed at time zero.

This generalizes (3.6) and the representation (3.15), in the sense that, for Hn(Z∗
n([0, t])) =

hn(Z∗
n(t)), we obtain

Fε
n,[0,t](Hn) =

∫
Fε

n (t, Z∗
n)hn(Z∗

n)d Z∗
n .

4 Dynamical Correlations

4.1 Recollisions and Overlaps

We start from the representation (3.16) of Fε
n,[0,t](Hn) in terms of collision trees and pseudo-

trajectories. We assume that

Hn = H⊗n

with H a measurable function on the Skorokhod space of trajectories D([0, t]) in D, and we
abbreviate

H(Ψ ε
n

) := H⊗n(Z∗
n([0, t])) .

Recall that there are two types of interactions between particles:

– a collision correspond to the addition of a new particle;
– recollisions occurring when two pre-existing particles collide.

The elementary integrals in the series expansion of Fε
n,[0,t](Hn) can be decomposed

depending on whether collision trees are correlated or not by recollisions (see Fig. 4). We
then have a partition of {1, . . . , n} into a certain number (say �) of forests (λi )i=1,...,�, and we
shall denote by ΔΔλi the characteristic function of the forest λi . Namely, ΔΔλi = 1 if and only
if any two elements of λi are connected (through their collision trees) by a chain of recolli-
sions. We say that ΔΔλi = 1 is supported on clusters of size |λi |, formed by |λi | “recolliding”
collision trees. We will further indicate the decomposition in forests by λ = (λi )i=1,...,�.

Formula (3.16) can then be rewritten as a partially factorized expression:

Fε
n,[0,t](H⊗n) =

∫
d Z∗

n

n∑

�=1

∑

λ∈P�
n

∫
Kλ

(
Ψ ε

λ

)
Φ� Fε0(Ψ ε0

n

)
(4.1)
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Fig. 4 Recollisions connect trees into forests

where

Kλ

(
Ψ ε

λ

) =
�∏

i=1

[
μ(dΨ ε

λi
)ΔΔλi C

(
Ψ ε

λi

)
1Gε

(
Ψ ε

λi

)H(Ψ ε
λi

)]
,

andΦ� = Φ�

(
λ1, . . . , λ�

)
is the indicator function that particles belonging to different forests

keep mutual distance larger than ε. Here and below, we indicate by Ψ ε
α the pseudo-trajectory

constructed starting from Z∗
α , for any α subset of {1, . . . , n}.

Although there cannot be any recollision between particles of different forests λi , such
particles are not yet independent, as the parameters of the pseudo-trajectories are con-
strained precisely by the fact that no recollision should occur. The characteristic function
Φ� = Φ�

(
λ1, . . . , λ�

)
expresses this no-recollision condition. Next, we write its cumulant

expansion (the analogue of (3.12)):

Φ� =
�∑

r=1

∑

ρ∈Pr
�

ϕρ . (4.2)

ϕρ =
r∏

i=1

ϕρi .

This formula reorganizes the � forests into a group of r jungles ρ = (ρi )i=1,...,r .
By construction, particles belonging to different forests will never collide among them-

selves. However they are allowed to “overlap”. We say that two different forests λi and λ j

overlap if two particles, belonging to the pseudo-trajectories Ψ ε
λi
and Ψ ε

λ j
respectively, touch

each other (without colliding) and cross each other freely. Standard combinatorial arguments
show then that the cumulant ϕs of order s is supported on clusters of size s, formed by s
overlapping forests (namely any two forests are connected by a chain of overlaps).

The last source of correlation in (3.16) comes from the initial data. For each given ρ, we
introduce a cumulant expansion of the initial data associated with ρ:

Fε0(Ψ ε0
n

) =
r∑

s=1

∑

σ∈Ps
r

f ε0
σ , f ε0

σ =
s∏

i=1

f ε0
σi

, f ε0
σi

= f ε0 (Ψ ε0
σi

)
. (4.3)

Here and below, by abuse of notation, the partitions σ, ρ are also interpreted as a partition
of {1, . . . , n}, coarser than the partition λ; the relative coarseness will be denoted by λ ↪→
ρ ↪→ σ . Therefore f ε0

(
Ψ ε0

σi

)
is the time-zero block cumulant evaluated on the configuration

(at time 0) of the pseudo-trajectory starting from Z∗
σi
.

We end up with a cluster structure on collision trees, of the form depicted in Fig. 5.
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λ1 λ2 λ3 λ4 λ5 λ6

σ1 σ2

ρ1 ρ2 ρ3

Fig. 5 Clustering structure due to recollisions, overlaps and initial correlations

Replacing (4.2) and (4.3) into (4.1),we arrive to the followingdecomposition of correlation
functions :

Fε
n,[0,t](H⊗n) =

∫
d Z∗

n

∑

λ,ρ,σ
λ↪→ρ↪→σ

∫
Kλ ϕρ f ε0

σ , (4.4)

where λ is the partition of {1, . . . , n} into � forests of recolliding trees, ρ is the partition
of {1, . . . , �} into r jungles of overlapping forests, and σ is the partition of {1, . . . , r} into
initially correlated clusters.

4.2 Cumulants and Clusters

Comparing formula (4.4) with (3.12), we finally identify the rescaled dynamical cumulants
(averaged over trajectories):

f ε
n,[0,t](H⊗n) = μn−1

ε

∫
d Z∗

n

n∑

�=1

∑

λ∈P�
n

�∑

r=1

∑

ρ∈Pr
�

∫
Kλ ϕρ f ε0{1,...,r}(Ψ ε0

ρ1
, . . . , Ψ ε0

ρr
) . (4.5)

This result shows that the cumulant of order n is geometrically represented by connected
clusters of size n : f ε

n,[0,t] corresponds to pseudo-trajectories where the n collision trees are
connected by recollisions, overlaps, or initial correlations. This graphical representation of
cumulants leads to the following result.

Proposition 2 (Convergence of dynamical cumulants, [6])Consider a gas of hard spheres ini-
tially distributed according to (3.4). Let H be a bounded continuous functional on D([0, T �]).
Define the rescaled cumulant f ε

n,[0,t](H⊗n) by (4.5). Then,

– there exists a positive constant C such that the following uniform a priori bound holds

| f ε
n,[0,t](H⊗n)| ≤ Cn‖H‖n∞(t + ε)n−1n!

uniformly in ε and n, for any t ≤ T �;
– when ε → 0, in the same time interval, f ε

n,[0,t](H⊗n) converges to a limiting
fn,[0,t](H⊗n), which is represented by a sum over minimally connected graphs, and
by pseudo-trajectories with exactly n − 1 pointwise recollisions or overlaps.

The key point to obtain the right scaling of cumulants is to identify “independent” cluster-
ing constraints : for fixed λ, ρ, collision parameters a and (Tm,Ωm, Vm) and initial velocities
V ∗

n :
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– we extract a sequence of |λi | − 1 clustering recollisions in each forest λi , a sequence
of |ρ j | − 1 clustering overlaps in each jungle ρ j , and a sequence of r − 1 clustering
initial correlations, and prove that the factor n! accounts for the combinatorics of these
clustering constraints;

– we then show that the clustering constraints can be expressed as n − 1 conditions on
the positions at time t of the particles of the pseudo-trajectory (x∗

j ) j=1,...,n , which are

satisfied on a set of volume O(μ
−(n−1)
ε ).

These estimates being essentially uniformwith respect to the collision parameters (a, Tk,Ωk,

Vk), we can sum/integrate to get the L1-bound.
There is a subtle point here: a brute expansion of the overlap constraint ϕs defined by

(4.2), leads to 2s2 terms, and cancellations need to be exploited to show that the effective
number is bounded by s!. How to do this is known by cluster expansion techniques (see
e.g. [15,24,29]). In fact, ϕs can be regarded as an Ursell function ([29]) by writing formally
“Φ�(λ1, · · · , λ�) = exp (−U�(λ1, · · · , λ�))” and interpreting U as a hard core interaction
on dynamical collision trees.

The proof of the second statement of Proposition 2 is very similar to Lanford’s proof.
We first discard the contribution of initial correlations (which are of order O(εd) instead of
O(εd−1)). We then prove (as discussed in Sect. 3.3.3) that any recollision which is not of
clustering type will create some extra smallness, giving a vanishing contribution to the limit.

4.3 Cumulant Generating Function

The cumulants allow to characterize exponentialmoments of the empiricalmeasure, as shown
by the following identity :


ε[0,t](H) := 1

με

logEε

(
exp

( N∑

i=1

H
(
zε

i ([0, t])
))

=
∞∑

n=1

1

n! f ε
n,[0,t]

(
(eH − 1)⊗n) , (4.6)

valid for functionals H : D([0, t]) → R such that the series is absolutely convergent. In
order to describe the asymptotic behavior of these exponential moments, we need to obtain
dynamical equations for the limiting cumulant generating function

∞∑

n=1

1

n! fn,[0,t]
(
(eH − 1)⊗n) , (4.7)

which is well defined (as a corollary of Proposition 2) for t ∈ [0, T �] provided that H is a
continuous functional satisfying a suitable bound:

∣∣∣
(

eH
(

z([0,t])
)

− 1
)⊗n∣∣∣ ≤ exp

(
α0n + β0

4
sup

s∈[0,t]
|Vn(s)|2

)
,

for some α0 (related to the constant C0 in (3.3) and to T �).
We shall notwrite here the hierarchical equations for the family of cumulants at equal times

( fn(t))n≥1, obtained by choosing H(z([0, t])) = h(z(t)) in (4.6). This hierarchy (mentioned
in Sect. 2 as “Boltzmann cumulant hierarchy”) is derived and analysed in [13]. Our purpose is
to focus directly on the full series (4.7), which we study for a class of regular test functionals.
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For t ∈ [0, T �], denote by J (t, ϕ, γ ) the limiting cumulant generating function (4.7)
associated with

eH
(

z([0,t])
)

= γ
(
z(t)
)
exp

(
−
∫ t

0
ϕ
(
s, z(s)

)
ds
)

,

where (ϕ, γ ) belong to

B :=
{
(ϕ, γ ) ∈ C1([0, t] × D;C) × C1(D;C)

∣∣

|γ (z)| ≤ e
1
2 (α0+ β0

4 |v|2), sup
s∈[0,T �]

|ϕ(s, z)| ≤ 1

2T �

(
α0 + β0

4
|v|2
)}

.

We shall be interested in functions of the form

ϕ = Dsh ≡ (∂s + v · ∇x )h and γ = exp(h(t)) ,

therefore we simplify notation by setting

J (t, h) := J (t, Dh, γ )|γ=exp(h(t)) .

We set B := {
h
∣∣ (Dt h, exp(h(T �))) ∈ B } . With these notations, the following result

holds.

Theorem 2 (Hamilton–Jacobi equations, [6]) The functional J is analytic with respect to γ

on B, and it satisfies on [0, T �] the Hamilton–Jacobi equation

∂tJ (t, h) = 1

2

∫
∂J (t, h)

∂γ
(z1)

∂J (t, h)

∂γ
(z2)

×
(

eh(t,z′
1)+h(t,z′

2) − eh(t,z1)+h(t,z2)
)

dμ(z1, z2, ω) , (4.8)

where
dμ(z1, z2, ω) := δ(x1 − x2) ((v1 − v2) · ω)+dωdv1dv2dx1dx2 . (4.9)

The local existence and uniqueness of a solution for this Hamilton–Jacobi equation relies
on a Cauchy–Kowalewski argument in a functional space, encoding the loss continuity esti-
mates due to the divergence of the collision cross section (4.9) at large velocities.

5 The Fluctuating Boltzmann Equation

Describing the fluctuations around the Boltzmann equation is a first way to capture part of the
information which has been lost in the limit (1.2). As in the standard central limit theorem,
we expect these fluctuations to be of order 1/

√
με . We therefore define the fluctuation field

ζ ε by (see (1.4))

ζ ε
t

(
h
) := √

με

(
πε

t (h) −
∫

Fε
1 (t, z) h

(
z
)

dz

)
,

for any test function h : D → R.
It is easy to check that, in our assumptions, the empirical measure starts close to the density

profile f 0 and that ζ ε
0 converges to a Gaussian white noise ζ0 with covariance

E (ζ0(h1) ζ0(h2)) =
∫

h1(z) h2(z) f 0(z) dz .
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Moreover, it follows from Proposition 2 that ζ ε converges to a solution of the fluctuating
Boltzmann equation

dζt = Lt ζt dt + dηt , (5.1)

where Lt is the linearized Boltzmann operator around the solution f of the Boltzmann
equation (3.9)

Lt h(x, v) := − v · ∇x h(x, v) +
∫

Rd

∫

Sd−1
dω dw ((v − w) · ω)+

(
f (t, x, w′)h(x, v′)

+ f (t, x, v′)h(x, w′) − f (t, x, v)h(x, w) − f (t, x, w)h(x, v)
)
,

and dηt (x, v) is a Gaussian noise with zero mean and covariance

E

(∫
dt1 dz1 h1(z1) ηt1(z1)

∫
dt2 dz2 h2(z2) ηt2(z2)

)

= 1

2

∫
dt
∫

f (t, z1) f (t, z2)Δh1 Δh2 dμ(z1, z2, ω) (5.2)

with notation (4.9) and

Δh(z1, z2, ω) := h(x1, v
′
1) + h(x2, v

′
2) − h(x1, v1) − h(x2, v2) . (5.3)

Our main result is then the following.

Theorem 3 (FluctuatingBoltzmann equation, [6])Consider a system of hard spheres initially
distributed according to (3.4). Then, in the Boltzmann–Grad limit με → ∞, the fluctuation
field

(
ζ ε

t

)
t≥0 converges in law on [0, T �] to the solution (ζt )t≥0 of the fluctuating Boltzmann

equation (5.1).

The convergence towards the limiting process (5.1) was conjectured by Spohn in [31] and
the non-equilibrium covariance of the process at two different times was obtained in [30].
The noise emerges after averaging the deterministic microscopic dynamics. It is white in
time and space, but correlated in velocities so that momentum and energy are conserved.

We further recall a few properties (referring to [13,30,31] for details).

– In the equilibrium case ( f 0(x, v) = Mβ(v) where Mβ is a Maxwellian with inverse
temperature β) the noise term compensates the dissipation induced by the (stationary)
linearized collision operator L, and the covariance of the noise can be predicted heuris-
tically by using the invariant measure.

– Out of equilibrium, on the one hand, the noise covariance (5.2) can be simply understood
as a generalization of the covariance at equilibrium, based on the assumption (which can
be proved for short times [32]) that the system is locally Poisson distributed; i.e. on a
small cube around x at time t we see a uniform ideal gas with density

∫
f (t, x, v)dv

and velocity distribution f (t, x, v)/
∫

f (t, x, v∗)dv∗. The noise being delta-correlated
in space and time, its structure is obtained from the equilibrium case after the replacement
Mβ(v) → f (t, x, v).

– On the other hand, the covariance of the fluctuation field out of equilibrium has a subtle
microscopic structure originating from recollisions in the Newtonian dynamics. To see
this, it is enough to compute the covariance of the fluctuation field at time t by using
(3.10) :
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or

Fig. 6 Trajectories contributing to the equal time covariance at two different points in space (case of m = 3
collisions with fresh particles): clustering recollisions or clustering overlaps

Eε

(
ζ ε

t

(
h
)2) =

∫
Fε
1 (t, z1) h2(z1) dz1

+
∫

με

(
Fε
2 (t, Z2) − Fε

1 (t, z1)Fε
1 (t, z2)

)
h(z1)h(z2) d Z2

=
∫

f ε
1 (t, z1) h2(z1) dz1 +

∫
f ε
2 (t, Z2) h(z1)h(z2) d Z2

where, in the second equality, we used the first two cumulants as defined by (3.12). The
last term is zero at equilibrium, while out of equilibrium describes correlations visible at
macroscopic distance in space. But, asmade apparent from the geometrical representation
(4.5), f ε

2 records the effect of one recollision/overlap; meaning precisely that the pseudo-
trajectories contributing to f ε

2 have the form in Fig. 6. Contrary to the typical behavior of
the hard sphere gas for which recollisions can be neglected, the covariance of the limiting
Gaussian process encodes exactly the effect of a single recollision.

The uniform bounds on the cumulants discussed in the previous section are considerably
better than what is required to obtain Theorem 3. The proof amounts indeed to looking at a
characteristic function living on larger scales. A more technical part concerns the tightness
of the process. This can be achieved adapting a Garsia–Rodemich–Rumsey’s inequality on
the modulus of continuity, to the case of a discontinuous process. We omit the details, and
focus on the characteristic function only.

Consider the function H defined by

H(z([0, t])) =
P∑

p=1

h p
(
z(θp)

)
(5.4)

for a finite sequence of times (θp)1≤p≤P and weights (h p)1≤p≤P . The characteristic function
can be rewritten in terms of the empirical measure

logEε

⎛

⎝exp
( P∑

p=1

ζ ε
θp

(h p)
)
⎞

⎠ = με

∞∑

n=1

1

n! f ε
n,[0,t]

((
e

H√
με − 1

)⊗n
)

− √
με

P∑

p=1

∫
Fε
1 (θp, z)h p(z) dz .

At leading order, only the terms n = 1 and n = 2 will be relevant in the limit since

∣∣∣ f ε
n,[0,t]

((
e

H√
με − 1

)⊗n
) ∣∣∣ ≤ Cn

∥∥∥∥e
H√
με − 1

∥∥∥∥
n

∞
n! .
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Expanding the exponential with respect to με , we also notice that the term of order
√

με

cancels and we find

logEε

⎛

⎝exp
( P∑

p=1

ζ ε
θp

(h p)
)
⎞

⎠ = 1

2
f ε
1,[0,t]

(
H2)+ 1

2
f ε
2,[0,t]

(
H⊗2)+ O

(
1√
με

)
.

Then the characteristic function Eε

(
exp

(∑P
p=1 ζ ε

θp
(h p)

))
converges to the characteristic

function of a Gaussian process.
From the equations on f1 and f2, we deduce that the limiting covariance C = C(s, t, ϕ, ψ)

satisfies the following dynamical equations, for test functions ϕ,ψ on D :
⎧
⎪⎪⎨

⎪⎪⎩

∂tC(s, t, ϕ, ψ) = C(s, t, ϕ,L∗
t ψ) ,

∂tC(t, t, ϕ, ψ) = C(t, t, ϕ,L∗
t ψ) + C(t, t,L∗

t ϕ,ψ) + Covt (ψ, ϕ) ,

C(0, 0, ϕ, ψ) =
∫

ϕ(z)ψ(z) f 0(z)dz ,

where

Covt (ϕ, ψ) := 1

2

∫
dμ(z1, z2, ω) f (t, z1) f (t, z2)ΔψΔϕ

with notation (4.9) and (5.3), and L∗
t := v · ∇x + L∗

t with

L∗
t ϕ(v) :=

∫

Rd

∫

Sd−1
dω dw ((v − w) · ν)+ f (t, w)Δϕ .

The covariance of the fluctuating Boltzmann equation (5.1) satisfies the same equations, and
we conclude by a uniqueness argument that both processes coincide.

6 Large Deviations

While typical fluctuations are of order O(μ
−1/2
ε ), larger fluctuations may sometimes happen,

leading to an evolution which is different from the typical one given by the Boltzmann
equation. A classical problem is to evaluate the probability of such atypical events, namely
that the empirical measure πε

t , defined in (1.1), remains close to a probability density ϕt

during the time interval [0, T �].
In the Gärtner-Ellis theory of large deviations [11], the large deviation functional is given

as the Legendre transform of the limiting cumulant generating function. The outcome of
the cumulant analysis was the existence of the limiting exponential moment J (t, h) and its
characterization via the Hamilton–Jacobi equation in Theorem 2. For any t ≤ T �, we then
define the large deviation functional on the time interval [0, t] as

F(t, ϕ) := sup
h∈B

{
−
∫ t

0

∫

D

ϕ(s, z)Dsh(s, z)dzds

+
∫

D

ϕ(t, z)h(t, z)dz − J (t, h)
}

. (6.1)

Since the supremum is restricted, for technical reasons, to the test functions in B, we do not
expect F to be the correct large deviation functional. However the following theorem shows
that the functional F fully describes the large deviation behavior for densities ϕ such that
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the supremum in (6.1) is reached for some h ∈ B. This restricted set of densities ϕ will be
called R.

A different, explicit formula for the large deviation functional was obtained by Rezakhan-
lou [28] in the case of a one-dimensional stochastic dynamics mimicking the hard-sphere
dynamics, and then conjectured for the three-dimensional, deterministic hard-sphere dynam-
ics by Bouchet [7] :

F̂(t, ϕ) :=F̂(0, ϕ0)

+ sup
p

{∫ t

0
ds

[∫

Td
dx
∫

Rd
dv p(s, x, v) Dsϕ(s, x, v) − H(ϕ(s), p(s)

)]}
,

(6.2)

where the supremum is taken over boundedmeasurable functions p growing at most quadrat-
ically in v, the Hamiltonian is given by

H(ϕ, p) := 1

2

∫
dμ(z1, z2, ω)ϕ(z1)ϕ(z2)

(
exp

(
Δp
)− 1

)

and F̂(0, ·) stands for the large deviation functional on the initial data

F̂(0, ϕ0) =
∫

dz

(
ϕ0 log

(
ϕ0

f 0

)
− ϕ0 + f 0

)
. (6.3)

Let R̂ denote the set of densities ϕ such that the supremum in (6.2) is reached for some
p ∈ B.

Let M(D) be the set of probability measures on D.
Our main result is then the following.

Theorem 4 (Large deviations, [6]) Consider a system of hard spheres initially distributed
according to (3.4). In the Boltzmann–Grad limit με → ∞, the empirical measure πε satisfies
the following large deviation estimates for any t ∈ [0, T �].

– For any compact set F of the Skorokhod space D([0, T �],M),

lim sup
με→∞

1

με

logPε

(
πε ∈ F

) ≤ − inf
ϕ∈FF(T �, ϕ) . (6.4)

– For any open set O of the Skorokhod space D([0, T �],M),

lim inf
με→∞

1

με

logPε

(
πε ∈ O

) ≥ − inf
ϕ∈O∩RF(T �, ϕ) . (6.5)

Moreover, for any ϕ ∈ R ∩ R̂ and t sufficiently small, one has that F(t, ϕ) = F̂(t, ϕ).

Given our precise control of the exponentialmoments, the large deviation proof is standard.
Note that, in absence of global convexity, we cannot succeed in proving a full large deviation
principle. However, restricting to a class of regular profiles, the variational problem defining
the dual of F̂ can be uniquely solved and identified with the solution of the Hamilton–Jacobi
equation (4.8). The result then follows from a uniqueness property of (4.8).
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