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Abstract
We consider the crystallization problem for a finite one-dimensional collection of identical
hard spheres in a periodic energy landscape. This issue arises in connection with the inves-
tigation of crystalline states of ionic dimers, as well as in epitaxial growth on a crystalline
substrate in presence of lattice mismatch. Depending on the commensurability of the radius
of the sphere and the period of the landscape, we discuss the possible emergence of crystal-
lized states. In particular, we prove that crystallization in arbitrarily long chains is generically
not to be expected.

Keywords Crystallization · Hard spheres · Periodic landscape · Ionic dimers · Epitaxial
growth

Mathematics Subject Classification 82D25

1 Introduction

The emergence of crystalline states at low temperatures is a common phenomenon inmaterial
systems. Its rigorous mathematical description poses severe mathematical challenges even
at the quite simplified setting of Molecular Mechanics, where configurations of particles
interacting via classical potentials are considered [10,16].Here, crystallization corresponds to
the periodicity of ground state configurations, an instance which in many cases is still eluding
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Fig. 1 A 4-crystal and a 7-crystal

a completemathematical understanding. In fact, rigorousmathematical crystallization results
are scarce and often limited to very specific choices of data [4]. Specifically, interactions with
the environment are usually neglected or assumed to be homogeneous.

We intend to progress in this quest by addressing here the case of finite one-dimensional
crystallization in a periodic, possibly nonconstant energy landscape. Given the configuration
{x1, . . . , xn} ⊂ R

n , we consider the energy

E =
∑

i

v1(xi ) + 1

2

∑

i �= j

v2(|xi − x j |). (1)

The landscape potential v1 : R → [0,∞) is assumed to be 1-periodic, piecewise continuous,
and lower semicontinuous with min v1 = 0. The interaction potential v2 : R+ → R ∪ {∞}
is of hard-sphere type at distance α > 0, namely v2 = ∞ on [0, α), v2(α) = −1, and
v2 = 0 on (α,∞), see [13]. A collection of n particles is called an n-crystal (or, simply,
crystal) if it is of the form {x, x + α, . . . , x + α(n − 1)} for some x ∈ R, see Fig. 1. If all
ground-state n-particle configurations are n-crystals, we say that n-crystallization holds. We
call crystallization the case when n-crystallization holds for all n.

The aim of this note is to investigate crystallization under different choices for v1 and α.
Our main result states that crystallization does not generically hold. More precisely, we have
the following.

Theorem 1.1 (Generic noncrystallization) For all given α and v1 as above and each ε > 0,
there exist αε and vε

1 as above with |α − αε| < ε and ‖v1 − vε
1‖L∞(0,1) < ε, and a strictly

increasing sequence (nk)k∈N ⊂ N such that nk-crystallization does not hold for the energy
Eε defined from αε and vε

1 .

In addition to this generic negative result, which is proved in Sect. 5, we discuss different
nongeneric settings where crystallization does hold. Two quite different scenarios arise,
depending on the rationality of α.

In case α is rational (a nongeneric property), the crystallization problem can be solved
by localized arguments. In particular, Theorem 3.1 states that n-crystallization holds under
some specific conditions on v1 which are independent of n but only depend on the irreducible
fraction of α. In fact, we are able to present a hierarchy of sufficient conditions entailing
crystallization, see Proposition 3.2.

The case of α irrational is tackled in Sect. 4 instead. Here, the ergodic character of the map
x ∈ [0, 1) 
→ (x+α)mod 1 comes into play.We resort in using and extending some tools from
the theory of low discrepancy sequences [5], carefully quantifying the extent at which the
potential landscape v1 is explored by the latter map. Such quantitative information is instru-
mental in investigating crystallization. Here, we are able to find a specific class of landscape
potentials v1 entailing crystallization, see Theorem 4.4 and the discussion thereafter.

The specific form of the energy E is inspired by the modelization of a dimer of elements
A and B at zero temperature. By labelling the corresponding atoms as xi and y�, a possible
choice for the energy of the dimer is

1

2

∑

i �= j

vA
2 (|xi − x j |) + 1

2

∑

��=k

vB
2 (|y� − yk |) +

∑

i,�

vint2 (|xi − y�|).
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Crystallization in a One-Dimensional Periodic Landscape 487

Here, vA
2 and vB

2 are the intraspecific two-body interaction energies for atoms of type A
and B, minimized at the interaction distance 0 < α �= 1 and 1, respectively, and vint2 is
an interaction energy between types. Assume now that type B has already formed a one-
dimensional infinite rigid crystal, say Z, see [7,15] for a similar approach. By removing the
self-interacting vB

2 terms, the energy can hence be rewritten as a function of {x1, . . . , xn} in
the form of E by letting v2 = vA

2 and

v1(x) :=
∑

�∈Z
vint2 (|x − �|).

By assuming that the latter series converges for all x ∈ [0, 1), the resulting landscape potential
v1 is 1-periodic.

Energies of the type of E may also arise in modeling the epitaxial growth of a first layer of
type A on top of an underlying rigid crystal of type B in presence of lattice mismatch. Here,
the potential v1 represents the effect of the rigid substrate, with periodicity 1. The deposited
layer {x1, . . . , xn} is then expected to optimize intraspecific atomic interactions in a given
nontrivial potential landscape.

Crystallization problems have received constant attention in the last decades. The reader
is referred to the recent survey by Blanc and Lewin [4] for a comprehensive account on the
literature. To the best of our knowledge, crystallization results in periodic landscapes are
still currently unavailable. We contribute here in extending the classical one-dimensional
crystallization theory [11,12,18] toward the discussion of molecular compounds.

Numerical studies on crystallization in multicomponent systems are abundant, see [1,2,
6,15,19], just to mention a few. On the other hand, rigorous crystallization results for such
systems are scarce. A first result in this direction is due to Radin [17], who studies a specific
multicomponent two-dimensional system showing quasiperiodic ground states. Bétermin et
al. [3] investigate conditions for crystallization of alternating one-dimensional configurations
interacting via a smooth interaction density v2. Two dimensional dimer crystallization results
in hexagonal and square geometries for a hard-spheres interaction v2 are given in [8,9].

2 Preliminaries

In this section we collect some preliminary discussion and fix notation.
To start with, one can assume with no loss of generality that α < 1. Indeed, if α = 1,

then ground-state configurations are obviously n-crystals with all particles sitting at x1 + N,
where x1 ∈ [0, 1) is a minimizer of v1. Since min v1 = 0, the corresponding energy is
E = (n − 1)v2(α) = −(n − 1). On the other hand, if α > 1, we can rescale the problem by
redefining α as α/�α� ≤ 1, where �α� = min{z ∈ Z : α ≤ z}, and by replacing t 
→ v1(t)
with t 
→ v1(�α� t). We also use the notation (x)mod 1 := x − �x� for all x ∈ R, where
�x� = max{z ∈ Z : x ≥ z}. Given any A ⊂ R, we indicate by χA the corresponding
characteristic function, namely, χA(x) = 1 if x ∈ A and χA(x) = 0 elsewhere.

The total contribution of the landscape potential to the energy of the n-crystal with the
leftmost particle sitting at x (i.e., the collection of points {x, x +α, . . . , x +α(n−1)}) reads

Vn(x) :=
n−1∑

j=0

v1(x + jα).
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This is indeed the crucial object to study here, for the total energy of the n-crystal with the
leftmost particle sitting at x is readily obtained from it as

E({x, x + α, . . . , x + α(n − 1)}) = Vn(x) − (n − 1), (2)

see Definition (1) (recall that the n-crystal has n − 1 bonds, each of which contributes −1
to the energy). Let us introduce the notation V ∗

n := min Vn and indicate with x∗
n ∈ [0, 1)

(possibly not uniquely) a minimizer, i.e., V ∗
n = Vn(x∗

n ). Note that a minimizer exists since
v1 is lower semicontinuous. If an n-particle ground state is an n-crystal, then necessarily its
leftmost particle sits at a point x∗

n (possibly not unique). Note that one always has that

V ∗
p + V ∗

q ≤ V ∗
p+q ∀ p, q ∈ N (3)

as the minimization on the right-hand side is performed under an extra constraint with respect
to those on the left-hand side.

Our first aim is to elucidate the role of the somewhat opposite relation

V ∗
p+q < V ∗

p + V ∗
q + 1 ∀ p, q with p + q ≤ n. (4)

Under condition (4), one has that the splitting of an n-crystal into smaller crystals is energeti-
cally not favored. (In the following, we use the term splitting to refer to a configuration made
of different crystals.) In fact, looking back to (2), condition (4) says that it is not energetically
favorable to split a (p+q)-crystal into a p-crystal and a q-crystal. This can by generalized to
arbitrary splittings. Consider indeed an n-particles configuration made of j different crystals
{x j

1 , . . . , x j
n j } with n1 + · · · + n j = n. In case j ≥ 2, one can use (4) and min v2 = −1 in

order to get that

E ≥
∑ j

k=1
(V ∗

nk − (nk − 1))
(4)
> V ∗

n − ( j − 1) − n + j = V ∗
n − (n − 1).

The above right-hand side is the energy of the n-crystal, which is then favorable with respect
to any of its splittings, regardless of the number j ≥ 2 of splitting parts.

On the other hand, condition (4) is almost necessary for n-crystallization to hold. Indeed,
if one has

V ∗
p+q > V ∗

p + V ∗
q + 1 for some p, q with p + q = n, (5)

then n-crystals are not ground states as splitting an n-crystal into a p- and a q-crystal lowers
the energy. In case equality holds in condition (5) for some p + q = n, n-crystals and the
union of a p- and a q-crystal are equienergetic. In conclusion, we have checked the following.

Proposition 2.1 (Key condition). Condition (4) implies n-crystallization. On the other hand,
n′-crystallization for all n′ ≤ n implies (4).

Owing to the latter, in order to check for the validity of n-crystallization, one is left with
checking the key condition (4). This check is at the core of all our arguments in the remainder
of the paper. It will be investigated under different settings forα and v1. As alreadymentioned
in the Introduction, the analysis depends strongly onα being rational or not. Correspondingly,
our discussion is divided in the coming Sects. 3 (α rational) and 4 (α irrational).

Let us conclude this section by some remarks:
(a) At first, we would like to record that, differently from the trivial case v1 ≡ 0, n-

crystallization may indeed depend on the number n of particles involved. We present here an
example illustrating this fact. Let α = 1/2 and v1 be such that

v1(x) = h(1 − 4(x − 1/2)2) for x ∈ [0, 1)
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Crystallization in a One-Dimensional Periodic Landscape 489

for some h > 0. Then, one has that

V ∗
n = h�n/2� ∀ n ∈ N.

In particular, given p + q = n, there holds

h(k + j) + h� = V ∗
n , h(k + j) = V ∗

p + V ∗
q ,

where k = �p/2�, j = �q/2�, and � = �(n − 2k − 2 j)/2�. Note that � = 0 unless both p
and q are odd, in which case � = 1. Then, we conclude that the sufficient condition (4) holds
if h < 1 whereas, if h > 1, then condition (5) implies that ground states are not crystalline
for n ≥ 6 and even.

In case h = 1 and n even, crystallized states and noncrystallized states are energetically
equivalent. On the other hand, ground states are crystalline for all n ≥ 3 odd, regardless of
the value of h.

(b) One may wonder if the key condition (4) could be weakened to

V ∗
p+q < V ∗

p + V ∗
q + 1 ∀ p, q with p + q = n, (6)

namely, by restricting to the splitting into exactly two subcrystals at level n only. This is
however not the case, as the following simple example shows. Let α = 1/4, take v1 = 0
on A = {0, 1/4, 3/4}, and v1 = h > 2 out of a very small neighborhood of A. One can
readily compute that V ∗

1 = V ∗
2 = 0, V ∗

3 = V ∗
4 = V ∗

5 = h. Hence, condition (6) holds for
n = 5. In particular, no splitting of a 5-crystal into exactly two smaller crystals is favorable.
On the other hand, the ground states for n = 5 are not crystalline as one can favorably split
a 5-crystal into two 2-crystals and a 1-crystal since V ∗

1 + 2V ∗
2 + 2 = 2 < h = V ∗

5 .
(c) Eventually, we present an example showing that, in general, the minimizers x∗

p of
Vp may depend on p. Let α = 1/4, v1 = 0 only on A = {0, 1/4}, and v1 = 1 out of a
very small neighborhood of A. One readily gets that x∗

1 ∈ {0, 1/4}, x∗
2 = 0, x∗

3 ∈ {0, 3/4},
x∗
4 ∈ {0, 1/4, 1/2, 3/4}, x∗

5 ∈ {0, 1/4}, and x∗
6 = 0. In particular, the position of the leftmost

particle of a crystal ground state may depend on its length.

3 Crystallization for Rational˛

Let α be rational. By possibly rescaling, as explained at the beginning of Sect. 2, one can
assume with no loss of generality that mα = 1 for some m ∈ N. Note that in this case

V ∗
pm = pV ∗

m ∀ p ∈ N. (7)

The aim of this section is that of showing that crystallization, namely n-crystallization for
all n, can be achieved under some version of the key condition (4) which is localized with
respect to n. More precisely, we consider the condition

(p + q)
V ∗
m

m
< V ∗

p + V ∗
q + 1 ∀ p, q ∈ N with 1 ≤ p, q ≤ m − 1. (8)

The condition is in the same spirit as the key condition (4), with the difference that on
the left-hand side the minimal contribution of the landscape potential to the energy of an
(p + q)-crystal is replaced by the

minimal per-particle energy V ∗
m/m in an m-crystal times the number of particles p + q .

On the one hand, condition (8) is stronger than (4) since

(p + q)V ∗
m

(7)= V ∗
(p+q)m

(3)≥ mV ∗
p+q ,
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490 M. Friedrich, U. Stefanelli

and therefore (p + q)V ∗
m/m ≥ V ∗

p+q . On the other hand, in comparison with (4), condition
(8) involves only the energy of p-crystals of length at most m, and is thus weaker and easier
to check. In particular, it is local with respect to n.

The main result of this section is the following statement, turning the local condition (8)
on crystals of length at most m into crystallization of infinitely large crystals.

Theorem 3.1 (Crystallization). Condition (8) implies crystallization.

Proof Let us check that (4) holds for any given n ∈ N. Assume by contradiction that this is not
the case, namely that there existn′, h, � ∈ N and i, j ∈ {0, . . . ,m−1}with (h+�)m+i+ j =
n′ ≤ n such that

V ∗
hm+i + V ∗

�m+ j + 1 ≤ V ∗
n′ . (9)

We first observe that

mV ∗
n′

(3)≤ V ∗
mn′ = V ∗

m(h+�)m+mi+mj
(7)= mV ∗

hm + mV ∗
�m + iV ∗

m + jV ∗
m .

For the following, it is convenient to set V ∗
0 = 0. The previous inequality along with (9)

(multiplied by m) then yields

m
(
V ∗
hm + V ∗

i + V ∗
�m + V ∗

j + 1
) (3)≤ m

(
V ∗
hm+i + V ∗

�m+ j + 1
) ≤ mV ∗

n′

≤ mV ∗
hm + mV ∗

�m + iV ∗
m + jV ∗

m

and therefore

V ∗
i + V ∗

j + 1 ≤ (i + j)V ∗
m/m. (10)

Note that, if i or j equal zero, they can be replaced by 1 and (10) still holds as V ∗
0 = V ∗

1 = 0.
Then, (10) contradicts (8). One hence concludes that the key condition (4) holds for every
n ∈ N, and the assertion follows from Proposition 2.1. ��

We close this section by presenting a hierarchy of sufficient conditions entailing (8). Let
us start by considering the condition

V ∗
sm < V ∗

p + V ∗
q + V ∗

r + 1 ∀ p, q, r with p + q + r = sm, s = 1, 2 (11)

which means that the splitting of an m-crystal or an 2m-crystal into three splitting parts is
energetically not convenient. We check that (11) implies (8). To this end, we preliminarily
note that

V ∗
r /r ≤ V ∗

m/m ∀ 1 ≤ r ≤ m. (12)

In fact, there holds

rV ∗
m

(7)= V ∗
rm = Vrm(x∗

rm) =
m−1∑

i=0

Vr (x
∗
rm + irα),

and therefore

V ∗
r ≤ min

i∈{0,...,m−1} Vr
(
x∗
rm + irα

) ≤ m−1
m−1∑

i=0

Vr
(
x∗
rm + irα

) = rV ∗
m/m,

123



Crystallization in a One-Dimensional Periodic Landscape 491

which implies (12). Suppose now that 1 ≤ p, q ≤ m − 1 are given. Choose 1 ≤ r ≤ m such
that p + q + r = sm, s ∈ {1, 2}. Then, we get

V ∗
p + V ∗

q + 1
(11)
> V ∗

sm − V ∗
r

(12)≥ V ∗
sm − rV ∗

m/m
(7)= sV ∗

m − rV ∗
m/m = (p + q)V ∗

m/m.

This shows (8).
We now consider the following stronger albeit localized version of condition (4)

V ∗
u+v < V ∗

u + V ∗
v + 1/2 ∀ u, v with u + v ≤ 2m. (13)

Condition (11) can be deduced from the latter by subsequently splitting the sm-crystal into
a (p + q)-crystal and an r -crystal and then splitting the (p + q)-crystal into a p-crystal and
a q-crystal.

We record now different sufficient conditions entailing (13). Let us start by considering a
function v1 with Lipschitz constant

Lip v1 < α/2. (14)

Recall the definition of oscillation of a function f : R → R as osc f = supx,y | f (x) −
f (y)|. As v1 is nonnegative and min v1 = 0, we readily have that osc vi = sup v1. Since
|x − y|mod 1 ≤ 1/2 for all x, y ∈ R, we find osc v1 ≤ Lip v1/2. We then get by (14)

osc v1 < α/4. (15)

Now, by (15) and mα = 1 we obtain

osc Vp ≤
p−1∑

j=0

osc v1(· + jα) ≤ 2m osc v1 < 2mα/4 = 1/2 ∀ p ≤ 2m. (16)

Let now u + v ≤ 2m. We have that

V ∗
u+v ≤ Vu+v(x

∗
u ) = Vu(x

∗
u ) + Vv(x

∗
u + uα) = V ∗

u + Vv(x
∗
u + uα)

= V ∗
u + V ∗

v + Vv(x
∗
u + uα) − Vv(x

∗
v ) = V ∗

u + V ∗
v + ru,v

where

ru,v = Vv(x
∗
u + uα) − Vv(x

∗
v ) ≤ osc Vv.

In particular, (16) implies

ru,v < 1/2 ∀ u, v with u + v ≤ 2m (17)

which in turn entails (13). We have hence proved the following.

Proposition 3.2 (Sufficient conditions)

(14) ⇒ (15) ⇒ (16) ⇒ (17) ⇒ (13) ⇒ (11) ⇒ (8).

Note that all implications in Proposition 3.2 cannot be reversed:
As for (15) � (14), the choice v1(x) = (α/9) sin(3πx) gives osc v1 = 2α/9 < α/4 but

Lip v1 = 3πα/9 > α/2.
As for (16) � (15), one can consider v1(x) = h(1 − xm)+ for α/4 ≤ h < 1/4. Then

osc v1 = h and osc Vp ≤ 2h for all p ≤ 2m.
As for (17) � (16), one takes the sawtooth function

v1(x) = 2h

α
max

j=0,...,m−1

(α

2
−

∣∣∣x + jα − α

2

∣∣∣
)

123



492 M. Friedrich, U. Stefanelli

for h ≥ 1/(4m) and check that ru,v = 0 whereas osc V2m = 2mh ≥ 1/2.
As for (13) � (17), take α = 1/2 (i.e., m = 2), let v1 be locally minimized at 0, 1/4, and

1/2 with v1(0) = v1(1/2) = ε < 1/6, v1(1/4) = 0, and v1 = h > 1/2 out of a very small
neighborhood of {0, 1/4, 1/2}. Note that V ∗

1 = 0 and V ∗
p = εp for p ≥ 2. Then, (13) can

be readily checked as V ∗
u+v ≤ (u + v)ε ≤ V ∗

u + V ∗
v + 2ε < V ∗

u + V ∗
v + 1/2. On the other

hand, V ∗
1 = 0 and x∗

1 = 1/4, so that r1,1 = V1(x∗
1 + α) − V1(x∗

1 ) = h − 0 > 1/2.
As for (11) � (13), we take m = 2, and take v1(0) = 0 and v1 = h out of a very small

neighborhood of {0}, for any h ∈ (1/2, 1). One can easily check that V ∗
i = h�i/2� for i ∈ N.

Then, condition (11) holds since V ∗
4 = 2h < h + 1 = V ∗

2 + V ∗
1 + V ∗

1 + 1. On the other
hand, one has V ∗

2 = h > 1/2 = V ∗
1 + V ∗

1 + 1/2.
As for (8) � (11), we let α = 1/3 (i.e., m = 3), and take v1(0) = 0 and v1 = h out

of a very small neighborhood of {0}, for any h ∈ (1/2, 3/4). One can readily compute that
V ∗
p = h(p − �p/3�) for all p ∈ N. Thus, we can check that for 1 ≤ p, q ≤ 2

(p + q)
V ∗
3

3
= h((p − 1) + (q − 1)) + h

(
2 − p + q

3

)
≤ V ∗

p + V ∗
q + 4h

3
< V ∗

p + V ∗
q + 1.

However, there holds V ∗
3 = 2h > 1 = V ∗

1 + V ∗
1 + V ∗

1 + 1.
Let us conclude this discussion by remarking that condition (8) is indeed not necessary for

crystallization. More precisely, let us show that (4) � (8). Consider the previous example for
h ∈ (3/4, 1). Recall that V ∗

p = h(p − �p/3�) for all p ∈ N. Therefore, (4) can be checked
for all n ∈ N by using the fact that �x/3� + �y/3� ≤ �(x + y)/3� + 1 for all x, y ∈ N and
h < 1. On the other hand, (8) is not satisfied since (1+1)V ∗

m/m = 4h/3 > 1 = V ∗
1 +V ∗

1 +1.

4 Crystallization for Irrational˛

Assume now α to be irrational. Let us start by presenting a necessary condition for crystal-
lization.

Proposition 4.1 (Necessary condition for crystallization) If
∫ 1
0 v1(t) dt ≥ 1, one has no n-

crystallization for n large enough.

Proof The map x ∈ T := R/Z 
→ αx ∈ T is ergodic. Hence, for all x ∈ [0, 1) we have that
1

n
Vn(x) = 1

n

n−1∑

j=0

v1(x + jα) →
∫ 1

0
v1(t) dt . (18)

In case
∫ 1
0 v1(t) dt ≥ 1, one has that V ∗

n > n − 1 for n large enough. The statement follows
because splitting an n-crystal into n isolated particles lowers the energy. ��

This already shows the fundamental distinction between the rational and the irrational.
An illustration of this difference can be obtained by fixing m ∈ N and assuming to be given
v1 such that v1(i/m) = 0 for i = 0, . . . ,m − 1 and

∫ 1
0 v1(t) dt ≥ 1. Then, for all α such

that mα ∈ N we obtain crystallization. On the other hand, if α is irrational, there is no
n-crystallization for n large enough.

In case the landscape potential v1 exhibits some quantitative convergence rate in (18), one
can deduce n-crystallization under the condition

∣∣∣∣
1

r
V ∗
r −

∫ 1

0
v1(t) dt

∣∣∣∣ <
1

3r
∀ r ≤ n. (19)
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Crystallization in a One-Dimensional Periodic Landscape 493

We anticipate that potentials v1 fulfilling this condition for all n exist, as we shall see later
in Theorem 4.4. Let us start by proving the following result.

Proposition 4.2 (n-crystallization) Under (19), n-crystallization holds.

Proof For all r ≤ n, define the error

e(r) :=
∣∣∣∣V

∗
r − r

∫ 1

0
v1(t) dt

∣∣∣∣ .

Condition (19) entails that e(r) < 1/3. For all p, q ≤ n we can hence compute that

V ∗
p+q − V ∗

p − V ∗
q ≤ (p + q)

∫ 1

0
v1(t) dt − p

∫ 1

0
v1(t) dt − q

∫ 1

0
v1(t) dt

+ e(p + q) + e(p) + e(q) < 1 ∀ p, q with p + q ≤ n.

In particular, the key condition (4) holds and n-crystallization follows. ��
Note that the positive statement of Proposition 4.2 is compatiblewith the negative assertion

of Proposition 4.1: by assuming (19) for some n and choosing r = 1 ≤ n, one has that∫ 1
0 v1(t) dt < 1/3. The following proposition yields a sufficient condition for (19).

Proposition 4.3 (Control via oscillation) For all n ∈ N, there holds
∣∣∣∣
1

n
V ∗
n −

∫ 1

0
v1(t) dt

∣∣∣∣ ≤ osc Vn
n

.

Proof Since v1 is 1-periodic, we obtain

∫ 1

0
v1(t) dt = 1

n

n−1∑

j=0

∫ 1

0
v1(t + jα) dt = 1

n

∫ 1

0
Vn(x) dx .

We also observe that
∣∣∣∣
∫ 1

0
Vn(x) dx − V ∗

n

∣∣∣∣ ≤ osc Vn .

The result follows by combining the two estimates. ��
By combining Propositions 4.2 and 4.3 one gets n-crystallization if osc Vr < 1/3 holds

for all r ≤ n. In view of computation (16), this is in particular satisfied if osc v1 < 1/(3n).
The fundamental difference with respect to the result in Proposition 3.2 consists in the fact
that the bound on the oscillation depends on the number of particles n, and is violated for all
n large enough. In the following, we seek for conditions entailing n-crystallization for all n.
We present a result in this direction by focusing on a special family of piecewise constant
functions v1 which are constant on intervals of very specific length.

Theorem 4.4 (Crystallization for a special piecewise constantv1)Letα ∈ (0, 1)be irrational.
Let h > 0. For each ε ∈ (0, 1), there exists γ ∈ (0, ε] such that for each open interval
I ⊂ (0, 1) with |I | = γ the 1-periodic function v1 defined by v1(t) = hχI (t) for t ∈ [0, 1)
satisfies

∣∣∣∣
1

n
Vn(x) −

∫ 1

0
v1(t) dt

∣∣∣∣ ≤
Cεh

n
∀x ∈ [0, 1) ∀ n ∈ N,

where Cε depends on α and ε, but is independent of h and n. In particular, by Proposition
4.2 this implies that crystallization holds if h < 1/(3Cε).
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It is a standardmatter to check that the above assertion holds for functions v1 resulting from
linearly combining indicator functions of the type described in the statement of Theorem 4.4.
More precisely, crystallization holds for landscape potentials of the form

v1(x) =
N∑

j=1

h jχ(0,γ j )+N(x + x j )

for any x1, . . . , xN ∈ R and any h1, . . . , hN ∈ R with
∑N

j=1 Cε j |h j | < 1/3, where γ j ∈
(0, ε j ] and Cε j are given from Theorem 4.4, for some ε1, . . . , εN ∈ (0, 1). Apart from the
above mentioned linear combinations, the problem of determining more general classes of
potentials v1 entailing crystallization remains open. Note that, even in the case of piecewise
constant potentials, the onset of crystallization is triggered by the choice of very specific,
nongeneric interval lengths. We expect that the quest for a nontrivial continuous potential v1
entailing crystallization will be very challenging.

In order to prove Theorem 4.4 we need a technical lemma. Given an interval I ⊂ (0, 1)
and n ∈ N, the n-discrepancy of the sequence {( jα)mod 1} j∈N with respect to the interval I
is defined as

φn(I ) = 1

n

n−1∑

j=0

χN+I ( jα) − |I |. (20)

In the following, if not specified, I may be open, half-open, or closed.

Lemma 4.5 (n-discrepancy control) Let α ∈ (0, 1) be irrational. For each ε ∈ (0, 1), there
exists γ ∈ (0, ε] such that each interval I ⊂ R with |I | = γ satisfies

|φn(I )| ≤ Cε

n
∀ n ∈ N, (21)

where Cε depends on α and ε.

Proof Fix ε ∈ (0, 1) and let m ∈ N be the smallest integer such that

γ := mαmod 1 ∈ (0, ε). (22)

Note that such m exists uniquely since α is irrational. Consider the interval I = x0 + [0, γ )

for some x0 ∈ R. By choosing the constant Cε in the statement sufficiently large, we limit
ourselves in proving (21) for n ≥ m�1/γ �. Fix k ∈ N such that

m�k/γ � ≤ n < m�(k + 1)/γ �. (23)

Define Jn = ⋃n−1
j=0{ jα} and the sets

J in :=
�k/γ �−1⋃

�=0

{iα + �γ }, ∀ i = 0, . . . ,m − 1.

In view of (22) and n ≥ m�k/γ �, we obtain
(J in)mod 1 ⊂ (Jn)mod 1, ∀ i = 0, . . . ,m − 1. (24)

In a similar fashion, n < m�(k + 1)/γ � implies

#

(
Jn \

m−1⋃

i=0

J in

)
≤ m�(k + 1)/γ � − m�k/γ � ≤ m(1 + 1/γ ). (25)
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As I = x0 + [0, γ ), it is not hard to see that

k = #
(
(N + I ) ∩ J in

)
(26)

since k consecutive intervals in N + I contain exactly one element of J in . By (24) we get

m−1∑

i=0

#
(
(N + I ) ∩ J in

) ≤
n−1∑

j=0

χN+I ( jα) ≤
m−1∑

i=0

#
(
(N + I ) ∩ J in

) + #

(
Jn \

m−1⋃

i=0

J in

)
.

This, along with (25) and (26), shows
∣∣∣∣∣∣

n−1∑

j=0

χN+I ( jα) − km

∣∣∣∣∣∣
≤ #

(
Jn \

m−1⋃

i=0

J in

)
≤ m(1 + 1/γ ).

Since |km/n − |I || = |km/n − γ | ≤ m(1 + γ )/n by (23), we estimate

|φn(I )| ≤
∣∣∣∣∣∣
1

n

n−1∑

j=0

χN+I ( jα) − km

n

∣∣∣∣∣∣
+

∣∣∣∣
km

n
− |I |

∣∣∣∣

≤ m(1 + 1/γ )/n + m(1 + γ )/n ≤ 2m(1 + 1/γ )/n

so that the statement follows forCε = 2m(1+1/γ ). We point out that the proof can be easily
adapted for open or closed intervals of length γ since the endpoints of the intervals appear
at most once in the sequence ( jα) j∈N. ��
Proof of Theorem 4.4 Fix ε > 0 and choose γ ∈ (0, ε] as in Lemma 4.5. Define I = x0 +
(0, γ ) with x0 ∈ (0, 1 − γ ) and v1(t) = hχI (t) for t ∈ [0, 1). For x ∈ [0, 1), by applying
Lemma 4.5 to the interval I − x and recalling (20), we compute

∣∣∣∣
1

n
Vn(x) − h|I |

∣∣∣∣ =
∣∣∣∣∣∣
1

n

n−1∑

j=0

v1(x + jα) − h|I |
∣∣∣∣∣∣
= h

∣∣∣∣∣∣
1

n

n−1∑

j=0

χN+I−x ( jα) − |I |
∣∣∣∣∣∣
≤ Cεh

n
.

Since
∫ 1
0 v1(t) dt = h|I |, the statement follows. ��

5 Generic Noncrystallization: Proof of Theorem 1.1

This section is devoted to the proof of Theorem 1.1. In fact, we prove a more precise version
of the statement under the assumption that α is algebraic. This in turn entails Theorem 1.1
by recalling that algebraic numbers are dense in the reals. We have the following.

Theorem 5.1 (Generic noncrystallization) Let α ∈ (0, 1) be irrational and algebraic. For
each ε > 0 and each 1-periodic, piecewise continuous, and lower semicontinuous function
v1 withmin v1 = 0, there exists a 1-periodic, piecewise constant, and lower semicontinuous
function vε

1 withmin vε
1 = 0 such that ‖v1−vε

1‖L∞(0,1) ≤ ε and a strictly increasing sequence
(nk)k∈N ∈ 2N satisfying

(
V ε
nk

)∗
>

(
V ε
nk/2

)∗ +
(
V ε
nk/2

)∗ + 1,

where (V ε
nk )

∗ := min
∑nk−1

j=0 vε
1(x + jα). Consequently, it is energetically favorable to split

an nk-crystal into two nk/2-crystals and no nk-crystallization holds.
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The proof of Theorem 5.1 is split in a series of lemmas. The statement crucially relies on
some properties of the n-discrepancy of additive recurrent sequences, recall the definition
(20). Firstly, for α irrational, [5, Theorem 1.51] yields a infinite subset Nα ⊂ N such that

sup
x∈(0,1)

|φn([0, x))| ≥ C0
log n

n
∀ n ∈ Nα (27)

for a universal constant C0 > 0. Secondly, if α is also algebraic, for each η > 0 there exists
Cη > 0 such that the upper bound

sup
0<x<y<1

|φn((x, y))| ≤ Cηn
−1+η ∀ n ∈ N (28)

holds [14, Theorem 3.2 and Example 3.1, pp. 123–124].
Our first task is that of showing that, by possibly changing the constant, a lower bound

like (27) holds not only at one single specific point, but that each interval of arbitrarily small
length contains at least one point fulfilling (27).

Lemma 5.2 (Lower bound) Let α be irrational and let Nα ⊂ N as in (27). Let ε > 0. Then
there exists Nε ∈ N such that for all n ∈ Nα with n ≥ Nε each interval I ⊂ (0, 1) with
|I | ≥ ε contains a point x ∈ I with

|φn([0, x))| ≥ C0
log n

2n
. (29)

Proof Given ε > 0, choose γ ∈ (0, ε] as in Lemma 4.5. Select Nε sufficiently large such
that

log Nε ≥ 6Cε

C0γ
, (30)

where Cε is the constant of Lemma 4.5. Let n ∈ Nα with n ≥ Nε . In view of (27), we choose
x0 ∈ (0, 1) satisfying

|φn([0, x0))| ≥ C0
2 log n

3n
. (31)

Consider the collection of points xk = x0+kγ , k ∈ Z, with xk ∈ (0, 1). Note that xk ∈ (0, 1)
and x0 ∈ (0, 1) imply |k| ≤ 1/γ . For each xk ∈ (0, 1), k ≥ 1, we observe that

φn([0, xk)) = φn([0, x0)) +
k∑

l=1

φn([xl−1, xl)).

Therefore, since |φn([xl−1, xl))| ≤ Cε/n for l = 1, . . . , k by Lemma 4.5, we derive from
estimates (30), (31), and k ≤ 1/γ that

|φn([0, xk))| ≥ |φn([0, x0))| −
k∑

l=1

|φn([xl−1, xl))| ≥ C0
2 log n

3n
− Cε

nγ
≥ C0

log n

2n
.

The same estimate holds for each xk ∈ (0, 1), k ≤ −1. The result now follows from the fact
that each interval in (0, 1) of length at least ε contains at least one of the points xk . ��

Next, we show that, by possibly reducing the constant, a point fulfilling a lower bound
like (29) can be chosen independently of n.
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Lemma 5.3 (Lower bound, independent of n) Let δ ∈ (0, 1). There exists a strictly increasing
sequence of integers (nk)k∈N ⊂ N and x ∈ (0, δ) such that

|φnk ([0, x))| ≥ C0
log nk
4nk

∀ k ∈ N.

Proof We define the sequence of integers (nk)k∈N iteratively. As first step of the iteration
procedure, apply Lemma 5.2 to (0, δ) with ε = δ. This gives x1 ∈ (0, δ) and Nε such that,
by letting n1 = min{n ∈ Nα : n ≥ Nε} one has |φn1([0, x1))| ≥ C0log n1/(2n1). In case
φn1([0, x1)) > 0, define I1 := (x1, x1 + δ1) for some 0 < δ1 ≤ C0log n1/(4n1) so small
that I1 ⊂ (0, δ). We can then compute for all x ∈ I1

φn1([0, x)) = 1

n

n−1∑

j=0

χN+[0,x)( jα) − |[0, x)| ≥ 1

n

n−1∑

j=0

χN+[0,x1)( jα) − |[0, x1)| − δ1

= φn1([0, x1)) − δ1 ≥ C0
log n1
2n1

− δ1 ≥ C0
log n1
4n1

. (32)

If φn1([0, x1)) < 0 instead, we repeat the argument for I1 := (x1 − δ1, x1) ⊂ (0, δ) in place
of I1 = (x1, x1 + δ1).

Suppose now that for � ∈ N there exists a strictly increasing set of integers nk , 1 ≤ k ≤
� − 1, and nested intervals I�−1 ⊂ I�−2 ⊂ . . . I1 ⊂ (0, δ) such that

|φnk ([0, x))| ≥ C0
log nk
4nk

∀ x ∈ I�−1 ∀ 1 ≤ k ≤ � − 1. (33)

We have already checked above that (33) can be realized for � = 2.
We now define n� and I� as follows. Fix ε ≤ |I�−1|.
By applying Lemma 5.2 to interval I�−1 with ε one finds x� ∈ I�−1 and Nε such that, by

letting n� = min{n ∈ Nα : n ≥ Nε and n ≥ n�−1 + 1} one has

|φn�
([0, x�))| ≥ C0

log n�

2n�

. (34)

We now construct I� by arguing as above: ifφn�
([0, x�)) > 0, we define I� := (x�, x�+δ�)

for some 0 < δ� ≤ C0log n�/(4n�) so small that I� ⊂ I�−1. By arguing as in (32) with the
help of (34), we then compute for all x ∈ I�

φn�
([0, x)) ≥ C0

log n�

4n�

.

Alongwith the induction hypothesis (33) for �−1, this shows that (33) holds for all x ∈ I� and
all 1 ≤ k ≤ �. If φn�

([0, x�)) < 0 instead, we repeat the argument for I� := (x� − δ�, x�) ⊂
I�−1 in place of I� = (x�, x� + δ�).

By performing this construction for each k ∈ N, we obtain a sequence (xk)k∈N and nested
intervals (Ik)k∈N ⊂ (0, 1). Since |Ik | → 0, we have that xk → x , where x is the point with
{x} = ⋂∞

k=1 Ik . The statement now follows from (33) and the fact that x ∈ I� for all � ∈ N.
��

Next, we construct an approximation of v1 such that the sufficient condition for n-
crystallization (19) is violated.

Lemma 5.4 (Approximation of v1)Letα ∈ (0, 1) be irrational. There exists a strictly increas-
ing sequence of integers (nk)k∈N such that the following holds: for each ε > 0 and each
1-periodic, piecewise continuous, and lower semicontinuous function v1 with min v1 = 0,
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there exists a 1-periodic, piecewise constant, and lower semicontinuous function vε
1 with

min vε
1 = 0 such that ‖v1 − vε

1‖L∞(0,1) ≤ ε and

1

nk
(V ε

nk )
∗ −

∫ 1

0
vε
1(t) dt ≤ −C

log nk
nk

∀k ∈ N, (35)

for some C > 0 only depending on α, ε, and v1, where (V ε
nk )

∗ := min
∑nk−1

j=0 vε
1(x + jα).

Proof Our goal is approximate v1 by a piecewise constant function with the desired property.
Fix δ > 0 small. We apply Lemma 5.3 to get a sequence (nk)k∈N and x1 ∈ (0, δ) such that

|φnk ([0, x1))| ≥ C0 log nk
4nk

∀ k ∈ N (36)

holds. Moreover, we choose γ ∈ (0, δ] as in Lemma 4.5 (applied for δ in place of ε), and
we decompose the interval (0, 1) by means of the points x0 = 0 < x1 < x2 < . . . < xl = 1
such that

xi − xi−1 = γ ∀ i = 3, . . . , l.

Note that l ≤ 2 + 1/γ and that |xi − xi−1| ≤ δ for i = 1, . . . , l. Since Lemma 4.5 implies
|φnk ([xi−1, xi ))| ≤ Cδ/nk for all i = 3, . . . , l, we find

∣∣φnk ([0, x1)) + φnk ([x1, x2))
∣∣ ≤

∣∣∣∣∣

l∑

i=3

φnk ([xi−1, xi ))

∣∣∣∣∣ ≤ Cδ

γ nk
. (37)

Without restriction we treat the case φnk ([0, x1)) > 0. The other case is similar but requires
a different notational realization. We define a piecewise constant, 1-periodic function vε

1 by
setting

vε
1 = bi on (xi−1, xi ) for i = 1 . . . , l (38)

for suitable bi ∈ [0, M], where M := sup v1. The values at xi , i = 0 . . . , l − 1, can be
chosen in such a way that the function is lower semicontinuous. Recall |xi − xi−1| ≤ δ for
i = 1, . . . , l. Thus, given ε > 0, we observe that by choosing δ = δ(ε) > 0 sufficiently
small and the values bi appropriately, we can achieve ‖vε

1 − v1‖L∞(0,1) ≤ ε. Moreover, this
can be done in such a way that b1 < b2 and that mini bi = 0. We now check (35). First, in
view of definition (38) and (20), we compute

min
x∈[0,1)

1

nk

nk−1∑

j=0

vε
1(x + jα) −

∫ 1

0
vε
1(t) dt ≤ 1

nk

nk−1∑

j=0

vε
1( jα) −

∫ 1

0
vε
1(t) dt

≤
l∑

i=1

bi
( 1

nk

nk−1∑

j=0

χ[xi−1,xi )+N( jα) − |xi − xi−1|
)

=
l∑

i=1

bi φnk ([xi−1, xi )). (39)

Moreover, by maxi bi ≤ M , b1 − b2 < 0, and φnk ([0, x1)) > 0 we obtain from estimates
(36) and (37) that

l∑

i=1

bi φnk ([xi−1, xi )) ≤ (b1 − b2)φnk ([x0, x1)) + M
∣∣φnk ([x0, x1)) + φnk ([x1, x2))

∣∣
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+ M
l∑

i=3

∣∣φnk ([xi−1, xi ))
∣∣

≤ (b1 − b2)
C0 log nk

4nk
+ 2MCδ

γ nk
.

This along with (39) shows

min
x∈[0,1)

1

nk

nk−1∑

j=0

vε
1(x + jα) −

∫ 1

0
vε
1(t) dt ≤ −C

log nk
nk

for all k ∈ N for some suitable C > 0 only depending on α, δ, and v1. ��
Eventually, we establish the following upper bound.

Lemma 5.5 (Upper bound) Let α ∈ (0, 1) be irrational and algebraic. Let v1 be a 1-periodic,
lower semicontinuous function of the form v1 = ∑k

i=1 biχIi for intervals Ii ⊂ (0, 1). Then
there holds

∣∣∣∣
1

n
Vn −

∫ 1

0
v1(t) dt

∣∣∣∣ ≤ Cη n
−1+η ∀ n ∈ N,

for some Cη > 0 only depending on α, η, and v1.

Proof Arguing as in the proof of the approximation Lemma 5.4, we calculate

∣∣∣∣
1

n
Vn −

∫ 1

0
v1(t) dt

∣∣∣∣ ≤ (
max
i

bi
) k∑

i=1

|φn(Ii )|,

where φn(Ii ) is defined in (20). The statement follows from the fact that |φn(Ii )| ≤ Cηn−1+η

for all n ∈ N, see (28). ��
We are finally in the position of proving Theorem 5.1.

Proof of Theorem 5.1 Given v1, α ∈ (0, 1) irrational and algebraic, and ε > 0, we define the
piecewise constant, lower semicontinuous function vε

1 as in the approximation Lemma 5.4.
We aim at showing that for each n′ ∈ N we can find n ∈ 2N with n ≥ n′ such that it is
energetically favorable to split an n-crystal into two n/2-crystals, i.e.,

(
V ε
n

)∗
>

(
V ε
n/2

)∗ +
(
V ε
n/2

)∗ + 1. (40)

For all r ∈ N, define the error as

e(r) := (
V ε
r

)∗ − r
∫ 1

0
vε
1(t) dt . (41)

Fix n′ ∈ N. By the approximation Lemma 5.4 we find n0 ≥ n′ such that e(n0) < −C log n0
for C only depending on α, ε, and v1. We can suppose that n0 is chosen large enough such
that e(n0) ≤ −2. We claim that there exists k ∈ N such that

2 e
(
n02

k−1
)

+ 1 < e
(
n02

k
)

. (42)
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In fact, assume that this was not the case. Then, we would have 2e(n02k−1)+1 ≥ e(n02k) for
all k ∈ N. Consequently, by an iterative application of this estimate and by using e(n0) ≤ −2
we get

e
(
n02

k
)

≤ 2ke(n0) + 2k − 1 ≤ −2k ∀ k ∈ N.

This contradicts the fact that |e(n0m)| ≤ Cη(n0m)η for all m ∈ N, as predicted by the upper
bound in Lemma 5.5. Thus, (42) holds for some k ∈ N. Set now n := n02k and use (41) to
compute

(V ε
n )∗ = e(n) + n

∫ 1

0
vε(t) dt > 1 + 2

(
e(n/2) + n

2

∫ 1

0
vε
1(t) dt

)
= 1 + 2

(
V ε
n/2

)∗
.

This shows (40) and concludes the proof. ��
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