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Abstract
In this paper we show existence of all exponential moments for the total edge length in
a unit disk for a family of planar tessellations based on stationary point processes. Apart
from classical tessellations such as the Poisson–Voronoi, Poisson–Delaunay and Poisson line
tessellation, we also treat the Johnson–Mehl tessellation, Manhattan grids, nested versions
and Palm versions. As part of our proofs, for some planar tessellations, we also derive
existence of exponentialmoments for the number of cells and the number of edges intersecting
the unit disk.

Keywords Stationary point process · Poisson point process · Total edge length · Number of
cells · Number of edges · Iterated tessellation

Mathematics Subject Classification 60K05 · 52A38 · 60G55

1 Setting andMain Results

Random tessellations are a classical subject of stochastic geometry with a very wide range
of applications for example in the modeling of telecommunication systems, topological opti-
mization of materials and numerical solutions to PDEs. In this paper we focus on random
planar tessellations S ⊂ R

2 which are derived deterministically from a stationary point
process X = {Xi }i∈I . The most famous example here is the planar Poisson–Voronoi tessel-
lation.

For several decades, research has been performed to understand statistical properties of
various characteristics of S such as the degree distribution of its nodes, the distribution of
the area or the perimeter of its cells, etc. For the classical examples, where the underlying
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point process is given by a Poisson point process (PPP), it is usually possible to derive first
and second moments for these characteristics as a function of the intensity λ, see [16, Table
5.1.1] and for example [12–14]. However, to derive complete and tractable descriptions of
the whole distribution of these characteristics is often difficult.

In this paper we contribute to this line of research by proving existence of all exponential
moments for the distribution of the total edge length in a unit disk. More precisely, let
Br ⊂ R

2 denote the closed centered disk with radius r > 0 and let |S ∩ A| = ν1(S ∩ A)

denote the random total edge length of the tessellation S ⊂ R
2 in the Lebesgue measurable

volume A ⊂ R
2, where ν1 denotes the one-dimensional Hausdorff measure. We show for a

large class of tessellations that for all α ∈ R we have that

E[exp(α|S ∩ B1|)] < ∞. (1)

As a motivation, let us mention that the information on the tail behavior of the distribution
of |S ∩ B1| provided by (1) is an important ingredient for example in the large deviations
analysis of random tessellations. If additionally the tessellation has sufficiently strongmixing
properties, namely that there exists b > 0 such that |S ∩ A| and |S ∩ B| are stochastically
independent for measurable sets A, B ⊂ R

2 with dist(A, B) = inf{|x − y| : x ∈ A, y ∈
B} > b, then the cumulant-generating function

lim
n↑∞ n−2 logE[exp(−|S ∩ Bn |)]

exists, see [10, Lemma 6.1]. This can be used for example to establish the limiting behavior
of the percolation probability for the Boolean model with large radii based on Cox point
processes where the intensity measure is given by |S ∩ dx |, see [10]. Moreover, existence
of exponential moments plays a role in establishing percolation in an SINR graph based on
Cox point processes in the case of an unbounded integrable path-loss function, see [17] for
details.

1.1 Tessellations

Let ∂ A = Ā \ Ao denote the boundary of a set A ⊂ R
2 and write x = (x1, x2) for x ∈ R

2.
Apart from the classical Voronoi tessellation (VT), where

SV = SV(X) =
⋃

i∈I

∂
{

x ∈ R
2 : |x − Xi | = inf

j∈I
|x − X j |

}
,

and its dual, the Delaunay tessellation (DT), where

SD = SD(X) =
⋃

i, j∈I , s∈[0,1]

{
s Xi + (1 − s)X j : ∃x ∈ SV(X) with

|x − Xi | = |x − X j | = inf
k∈I

|x − Xk |
}
,

we also consider the line tessellation (LT), where

SL = SL(X) =
⋃

i∈I : Xi ∈R×[0,π)

{x ∈ R
2 : x1 cos Xi,2 + x2 sin Xi,2 = Xi,1}.

See Fig. 1 for realizations of the VT and the DT and their intersections with B1 in case X is
a homogeneous PPP.

The extension of the VT known as the Johnson–Mehl tessellation (JMT) is covered by
our results, see for example [1]. For this consider the i.i.d. marked stationary point process
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Fig. 1 A VT (left) and a DT (right) based on a realization of a homogeneous PPP in R
2. The unit disk, in

which we estimate the exponential moments of the total edge length, number of edges and number of cells, is
shown in red (Color figure online)

X̃ = {(Xi , Ti )}i∈I on R
2 × [0,∞) with mark measure μ(dt). We define the Johnson–Mehl

metric by

dJ((x, s), (y, t)) = |x − y| + |t − s|, (2)

where we use the same notation | · | for the Euclidean norm on R
2 and [0,∞). Then, the

JMT is given by

SJ = SJ(X̃) =
⋃

i∈I

∂{x ∈ R
2 : dJ((x, 0), (Xi , Ti )) = inf

j∈I
dJ((x, 0), (X j , Tj ))}.

We also consider the Manhattan grid (MG), see for example [9]. For this let Y = (Yv, Yh)

be the tuple where Yv = {Yi,v}i∈Iv and Yh = {Yi,h}i∈Ih are two independent simple stationary
point processes on R. Then the MG is defined as

SM = SM(Y ) =
⋃

i∈Iv, j∈Ih

(R × {Yi,h}) ∪ ({Y j,v} × R).

Note that SM is stationary, similarly to all previously defined tessellations, however, unlike
them, it is not isotropic. One can make SM isotropic by choosing a uniform random angle
in [0, 2π), independent of Y , and rotating SM by this angle. Our results for the MG will be
easily seen to hold for both the isotropic and anisotropic version of the MG.

Next, let us denote by (Ci )i∈J the collection of cells in the tessellation S, where J = J (S).
Formally, a cell Ci of S is defined as an open subset ofR2 such that Ci ∩ S = ∅ and ∂Ci ⊂ S.
In view of applications, see for example [9] or [15], it is sometimes desirable to consider
nested tessellations (NT), which we can partially treat with our techniques. For this, let So

be one of the tessellation processes introduced above, defined via the point process X (o),
with cells (Ci )i∈J , which now serves as a first-layer process. For every i ∈ J , let Si be an
independent copy of one of the above tessellation processes, maybe of the same type as So

with potentially different intensity or maybe of a different type, but all Si should be of the
same type and have the same intensity. Let X (i) denote the underlying independent point
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process of Si . Then the associated NT is defined as

SN = SN(X (o), X (1), . . . ) = So ∪
⋃

i∈J

(Si ∩ Ci ).

Here,
⋃

i∈J (Si ∩ Ci ) will be called the second-layer tessellation. This definition of a NT
originates from [19, Section 3.4.4], where this class of tessellations was defined as a special
case of iterated tessellations.

Note that all kinds of tessellations S defined in this section are stationary, i.e., S equals
S + x in distribution for any given x ∈ R

2. However, for a planar tessellation in order to be
stationary, it is not required that it is based on a stationary point process. For example, let Y
be a homogeneous Poisson process in R, and let X = {(Xi , 0) : Xi ∈ Y }. Then X is not a
stationary point process in R

2, however, the associated process {(Xi , t) : Xi ∈ Y , t ∈ R} of
infinite vertical lines is a stationary tessellation.

Finally note that all subgraphs of tessellations having the property (1) inherit this property
by monotonicity. In particular, our results cover the cases of the Gabriel graph, the relative
neighborhood graph, and the Euclidean minimum spanning tree, since they are subgraphs of
the DT, presented in decreasing order with respect to inclusion.

1.2 Assumptions

Unless noted otherwise, throughout the manuscript X = {Xi }i∈I denotes a stationary point
process on R

2 with intensity 0 < λ < ∞. Our results will use the following assumptions
on exponential moments for the number of points and void probabilities for the underlying
stationary point process. First, for the VT, we assume that

lim sup
n↑∞

|Bn+4 \ Bn |−1 logE
[
exp(β#(X ∩ Bn+4 \ Bn)

)]
< ∞, (3)

for all β > 0. Second, we assume that

lim sup
n↑∞

|Bn |−1 logP
(
#(X ∩ Bn) = 0

)
< 0. (4)

We provide the easy proof that these conditions hold for the homogeneous PPP in Sect. 1.4.
They can also be verified for example for some b-dependent Cox point processes and some
Gibbsian point processes, see also Sect. 1.4.

For the JMT,we generally assume that themark distributionμ(dt) is absolutely continuous
with respect to the Lebesguemeasure. Further, let BJ

r denote the centered ball in the JMmetric
as defined in (2). Then, in analogy to the above, we assume that

lim sup
n↑∞

|BJ
n+4 \ BJ

n |−1 logE
[
exp(β#(X̃ ∩ BJ

n+4 \ BJ
n)

)]
< ∞, (5)

for all β > 0. Second, we assume that

lim sup
n↑∞

|BJ
n |−1 logP

(
#(X̃ ∩ BJ

n) = 0
)

< 0. (6)

Again, these conditions hold if (Xi )i∈I is homogeneous PPP and μ is for example the
Lebesgue measure, see Sect. 1.4.

For the LT, we will assume that there exists β� ≤ ∞ such that the random variable
#(X ∩ ([−1, 1] × [0, 2π ])) has exponential moments up to β�, i.e.,

E
[
exp

(
β#(X ∩ ([−1, 1] × [0, 2π])))] < ∞, (7)
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for all β < β�. This condition holds for example for the homogeneous PPP with β� = ∞.
For the MG, we assume that there exist βv, βh ≤ ∞ such that the random variables

#(Yv ∩ [0, 1]) and #(Yh ∩ [0, 1]) have all exponential moments up to βv, βh, i.e.,

E[exp(β#(Yv ∩ [0, 1]))] < ∞ and E[exp(β#(Yh ∩ [0, 1]))] < ∞, (8)

for all β < βv, respectively β < βh. This condition is satisfied with βv = ∞ if Yv is a
homogeneous Poisson process, and analogously for βh.

1.3 Results

Having defined the types of tessellations we consider, we can now state our main theorem
with its proof and all other proofs presented in Sect. 2.

Theorem 1.1 We have that (1) holds for all α ∈ R if S is a

1. Voronoi tessellation, in case (3) and (4) hold for all β > 0,
2. Johnson–Mehl tessellation, in case (5) and (6) hold for all β > 0,
3. Delaunay tessellation, in case the underlying point process is a homogeneous Poisson

point process.

For the line tessellation, in case (7) holds for all β < β�, then (1) holds for all α < β�. For
the Manhattan grid, in case (8) holds for all β < βv, respectively β < βh, then (1) holds for
all α < min{βv, βh}.

Note that, using Hölder’s inequality and stationarity, the statement of Theorem 1.1 and all
subsequent results remain true if B1 is replaced by any bounded measurable subset of R2.

Let us briefly comment on the proof of Theorem 1.1. The proof of the parts for the LT
and MG is rather straightforward. As will become clear from the proof, in case of the MG,
an application of Hölder’s inequality would give the same result without the independence
assumption on the point processes Yv, Yh, but we lose some of the exponential moments.
The cases for the VT, JMT and DT are more involved. However, the statements follow
easily if exponential moments for the corresponding number of edges intersecting B1 can be
established. More precisely, let (Ei )i∈K denote the collection of edges in the tessellation S,
where K = K (S), and

W = #{i ∈ K : Ei ∩ B1 �= ∅}, (9)

the number of edges intersecting B1. In the case of tessellations consisting of infinite lines
just as the LT and the MG, one has to be careful with the definition of W . Indeed, in this
case an edge is to be understood as a maximally linear portion of a cell boundary. Hence,
each infinite line of the tessellation contains an infinite number of collinear edges, and W is
bounded from below by the number W∞ of infinite lines having a non-empty intersection
with B1.

Then, for S being a VT or a DT, the edges of S are straight line segments and hence the
intersection of each edge with B1 has length at most 2. Similarly, edges of the JMT are either
hyperbolic arcs or straight line segments, see [16, Property AW2, page 126]. By convexity,
the intersection of any Johnson–Mehl edge with B1 has length at most |∂ B1| = 2π . Hence,
for the VT, DT or JMT, if

E[exp(αW )] < ∞ (10)
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holds for all α > 0, then so does (1) for all α > 0. If (10) holds for some α > 0, then so
does (1) for some α > 0. The following result establishes exponential moments for W and
also the simple consequence that

E[exp(αV )] < ∞, (11)

for some α > 0, where

V = #{i ∈ J : Ci ∩ B1 �= ∅}, (12)

is the number of cells intersecting B1.

Proposition 1.2 (i) For Voronoi or Johnson–Mehl tessellations based on a stationary point
process that satisfies (3) and (4), respectively (5) and (6), for all β > 0, (10) holds for
all α ∈ R. For Delaunay tessellations based on a homogeneous Poisson point process,
(10) holds for some α > 0.

(ii) For Voronoi or Johnson–Mehl tessellations based on a stationary point process that
satisfies (3) and (4), respectively (5) and (6), for all β > 0, (11) holds for all α ∈ R.
For Delaunay tessellations based on a homogeneous Poisson point process, (11) holds
for some α > 0.

As mentioned above, Theorem 1.1 parts (i) and (ii) are immediate consequences of Propo-
sition 1.2 part (i) for the corresponding tessellations. However, for the case of the DT, as in
part (iii) of Theorem 1.1, we cannot use Proposition 1.2 since we do not have a statement for
all α > 0. In order to overcome this difficulty, we first estimate small exponential moments
of the total number of edges intersecting with Ba for different values of a > 0 and then use
an additional scaling argument to conclude (1) for all α > 0. Let us also emphasize that for
the DT, we establish the above results only in the case in which the underlying point process
is a PPP. It is unclear if exponential moments for the number of edges W and number of cells
V intersecting with the unit disk exist for the LT and we make no statements about them.

For the NT, existence of exponential moments for V for the first-layer tessellation can be
used to verify (1) for SN. More precisely, we have the following result.

Corollary 1.3 Consider the nested tessellation.

(i) If for the first-layer tessellation (11) holds for all α ∈ R and for the second-layer
tessellation (1) holds for all α ∈ R, then also SN satisfies (1) for all α ∈ R.

(ii) If for the first-layer tessellation (11) holds for some α > 0 and for the second-layer
tessellation (1) holds for some α > 0, then also SN satisfies (1) for some α > 0.

As we will explain in Sect. 1.5, the statement of Proposition 1.2 is false for the MG based on
independent homogeneous Poisson processes on the axes, despite the fact that (1) holds in
this case according to Theorem 1.1. However, in the special casewhere theNT is composed of
MGs in both layers and the second-layer MG is based on independent homogeneous Poisson
processes, for this SN, we still obtain (1) for all α ∈ R. This is the content of the following
result.

Proposition 1.4 Consider the nested tessellation and assume that the second-layer tessella-
tion is given by Manhattan grids based on two independent homogeneous Poisson processes
and the first-layer tessellation is also a Manhattan grid satisfying (1) for all α ∈ R. Then,
(1) holds for the nested Manhattan grid also for all α ∈ R.
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Let usmention that for the tessellations studied in Theorem 1.1, considering Palm versions
of the underlying point process, at least in the case where it is a homogeneous PPP, does
not change existence of all exponential moments. We want to be precise here since there
are multiple different possibilities to define Palm measures in this context. For the Poisson–
VT, Poisson–JMT and Poisson–DT, we denote by X∗ the Palm version of the underlying
unmarked PPP and denote by S∗ = S(X∗) its associated tessellations. For the Poisson–
LT we denote by X∗ the Palm version of the underlying PPP only with respect to the first
coordinate, i.e., X∗ = X ∪ {(0, Φ)}, where Φ is a uniform random angle in [0, π) that is
independent of X . Roughly speaking, this corresponds to S∗

L = SL(X∗) being distributed as
SL when conditioned to have a line crossing the origin o ofR2 with no fixed angle. The Palm
version of the MG is given by

S∗
M = (Yv × R, Y ∗

h × R)1
{
U ≤ λh

λh + λv

}

+ (Y ∗
v × R, Yh × R)1

{
U >

λh

λh + λv

}
, (13)

where U is an independent uniformly distributed random variable on [0, 1] and Y ∗
v and Y ∗

h
denote the Palm versions of Yv and Yh, see [9, Section III.B]. We will recall the notion of
the Palm version of a general stationary point process in Sect. 2.3. Palm distributions of NTs
can be defined correspondingly, see for example [9,19].

Corollary 1.5 Consider all the tessellations S appearing in Theorem 1.1. If the underlying
point processes are homogeneous Poisson point processes, we also have for all α ∈ R that

E[exp(α|S∗ ∩ B1|)] < ∞. (14)

To end this section with a short discussion, let us mention that it is a simple consequence of
the works [2,8,20] that for all α ∈ R

E[exp(αN∗)] < ∞, (15)

where N∗ denotes the number of Poisson–Delaunay edges originating from the origin under
the Palm distribution for the underlying PPP. The assertion (15) seems similar to the one
(14) for the Poisson–DT, however, S∗ ∩ B1 can contain segments from many edges that are
not adjacent to the origin, in particular also from edges both endpoints of which are situated
outside B1. It is an interesting open question whether it is possible to provide a simpler proof
of the assertion (14) for all α ∈ R or the assertion (1) for all α ∈ R for the Poisson–DT based
on the fact that (15) holds for all α ∈ R.

For Corollary 1.5, we provide a case-by-case proof. Let us mention that, for the reverse
implication with S∗ = S(X∗) for a homogeneous PPP X with intensity λ, using the inver-
sion formula of Palm calculus [11, Section 9.4] and Hölder’s inequality, we can derive the
following criterion,

E

[
eα|S∩B1|

]
≤ λ

∫
P(x ∈ Co)

1/2
E

[
e2α|S∗∩B1(x)|]1/2dx

= λ

∫
e−π |x |2λ/2

E

[
e2α|S∗∩B1(x)|]1/2dx,

where Co is the Voronoi cell of the origin in the VT SV(X∗).
Finally, let us comment on possible generalizations of our results to higher dimensions. In

at least three dimensions, it is still true that VTs, DTs and JMTs are exponentially stabilizing,
i.e., the probability that a point of the underlying point process outside the ball Bk influences
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the realization of the tessellation inside B1 decays exponentially fast, which is an important
argument in our proofs. However, in the planar case, given that the points inside Bk determine
the tessellation inside B1, the total number of edges intersecting with B1 can be bounded by
constant times the number of points in the region Bk (see e.g. Sect. 2.1.1 for details). This
is in general not true in higher dimensions, which yields the main obstacle for generalizing
our results. On the other hand, some of our results extend easily to higher dimensions. For
example, defining a higher-dimensional analogue of a Manhattan grid using independent
stationary point processes on all coordinate axes and connecting all these points by edges,
an analogue of Theorem 1.1 can easily be derived using arguments similar to the ones of
Sect. 2.1.5.

1.4 Examples: Poisson–, Cox– and Gibbs–Voronoi Tessellations

It is easy to check that the assumptions listed in Sect. 1.2, are satisfied if the underlying
point process is a stationary PPP. Indeed, for (3) note that by the Laplace transform, for any
measurable B ⊂ R

2

E
[
exp(β#(X ∩ B)

)] = exp
(
(eβ − 1)λ|B|).

Further, for (4) note that the void probability for the PPP is given by

P
(
#(X ∩ B) = 0

) = exp
( − λ|B|).

As for the assumptions (5) and (6), the same arguments can be applied.
It is natural to ask under what conditions existence of exponential moments for the total

edge length in the unit disk can be guaranteed for tessellations S(X) where X is not a PPP
but some different stationary planar point process. As a starting point for future studies, in
this section we present examples for the VT based on a stationary Cox point process (CPP)
and a stationary Gibbsian point process (GPP) X where our results guarantee the existence
of exponential moments.

1.4.1 Cox–Voronoi Tessellations

A Cox point process is a PPP with random intensity measure Λ(dx), see for example [6] for
details. We have the following proposition.

Proposition 1.6 Consider SV(X) where X is a stationary Cox point process with intensity
measure Λ satisfying

lim sup
n↑∞

|Bn |−1 logE
[
exp

( − Λ(Bn)
)]

< 0 and (16)

lim sup
n↑∞

|Bn+4 \ Bn |−1 logE
[
exp

(
β(Λ(Bn+4) − Λ(Bn))

)]
< ∞ (17)

for all β > 0. Then, for S = SV(X), (1) holds for all α ∈ R.

Proof of Proposition 1.6 It suffices to verify the assumptions (3) for all β > 0 and (4). For
assumption (4), note that for any measurable B ⊂ R

2

P
(
#(X ∩ B) = 0

) = E[exp(−Λ(B))]
and thus (16) is preciselywhatwe need. The same argument can be applied for assumption (3).


�
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The conditions (16) and (17) hold if Λ(Q1) has all exponential moments and Λ is b-
dependent, where we callΛ b-dependent if for any two measurable sets A, B ⊂ R

2 such that
dist(A, B) = infx∈A,y∈B |x − y| > b, the restrictions Λ|A and Λ|B of Λ to A respectively
B are independent. Indeed, by stationarity of Λ, it suffices to verify (16) and (17) with Bk

replaced by Qk = [−k/2, k/2]2 (both for k = n and k = n +4) in the limitN � k → ∞. Let
us assume that Λ is b-dependent. Then, there exists b′ = b′(b) ∈ N such that for any k ∈ N,
Qk can be partitioned into at most b′ disjoint subsets such that each of these subsets consists
of (apart from the boundaries) disjoint copies of Q1 such that the restrictions of Λ to these
copies aremutually independent. Using this independence and the existence of all exponential
moments of Λ(Q1), further applying Hölder’s inequality for the collection of partition sets,
(16) and (17) follow. A relevant example for a b-dependent and even bounded intensity
measure is the modulated Poisson point process whereΛ(dx) = dx(λ11{x ∈ Ξ}+λ21{x ∈
Ξ c}), with Ξ being a Poisson–Boolean-model with bounded radii, and λ1, λ2 ≥ 0, see [5,
Section 5.2.2]. Another example for which conditions (16) and (17) holds, and which is
unbounded, is the shot-noise field, see [5, Section 5.6], where Λ(dx) = dx

∑
i∈I κ(x − Yi )

for some integrable kernel κ : R2 → [0,∞) with compact support and {Yi }i∈I a stationary
PPP.

1.4.2 Gibbs–Voronoi Tessellations

AGibbs point process onR2 is defined via its conditional probabilities in boundedmeasurable
volumes B ⊂ R

2. They take the form of a Boltzmann weight

PB(dX B)
exp

( − γ H(X B X Bc)
)

∫ P(dX ′
B) exp

( − γ H(X ′
B X Bc)

) ,

where PB is a PPP on B with intensity λ > 0, γ ∈ R is a system parameter and H is the
Hamiltonian, which assigns some real-valued energy to the configuration X B X Bc = X B ∪
X Bc , where X Bc is a boundary configuration in Bc = R

2 \ B. For details see for instance [7].
As an example, we consider the Widom–Rowlinson model where H(X) = | ⋃Xi ∈X Br (Xi )|,
with Br (x) the ball of radius r > 0, centered at x ∈ R

2. Existence of associated point
processes on R

2 that are stationary can be guaranteed, see for example [4]. We have the
following result.

Proposition 1.7 Consider SV(X) where X is the Widom–Rowlinson model. Then, for S =
SV(X), (1) holds for all α ∈ R.

Proof of Proposition 1.7 It suffices to verify the assumptions (3) for all β > 0 and (4). For
assumption (4), note that by consistency for all bounded measurable B ⊂ R

2,

|B|−1 logP
(
#(X ∩ B) = 0

) = |B|−1 log
exp(−λ|B|) exp(−γ H(X Bc))∫ P(dX ′

B) exp(−γ H(X ′
B X Bc))

≤ −|B|−1 log
∑

n≥0

1
n! (λ|B|)n exp(−nγπr2)

= −λ exp(−γπr2) < 0,

for all r , λ, γ > 0. For assumption (3), note that for all bounded measurable sets B ⊂ R
2,

|B|−1 logE
[
exp(β#(X ∩ B))

] ≤ |B|−1 log

∑
n≥0

1
n! (λ|B|)n exp(βn)

∑
n≥0

1
n! (λ|B|)n exp(−nγπr2)
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= λ(eβ − e−γπr2) < ∞,

for all r , λ, γ, β > 0, which proves the desired result. 
�

1.5 Absence of Exponential Moments for the Number of Edges and Cells

In Proposition 1.2, we provide statements about existence of exponential moments for V , the
number of cells intersecting B1, and W , the number of edges intersecting B1. In this section
we want to exhibit one example in our family of tessellations for which exponential moments
for V do not exist. Indeed, take the MG where the underlying stationary point processes are
PPPs Yv and Yh with intensity λ. By translation invariance, we can also consider the random
variable V ′, the number of cells intersecting Q1. In order to simplify the notation, let us
write Xv = #(Yv ∩ [−1/2, 1/2]) and Xh = #(Yh ∩ [−1/2, 1/2]). These random variables
are independent and Poisson distributed with parameter λ. Then we have that

E[exp(αV ′)] = eα
E

[
exp

(
α(Xv + Xh + XvXh)

)]

= eα
∞∑

k=0

E
[
exp

(
α(k + (k + 1)Xh)

)]
P(Xv = k)

= eα
∞∑

k=0

eαk λk

k! e
−λ exp

(
λ(eα(k+1) − 1)

)

= eα−2λ
∞∑

k=0

exp
(
αk + λeα(k+1))λk

k! = ∞.

Since for the MG based on PPPs, V and the number W∞ of infinite lines intersecting with
Q1 are of the same order, further, W∞ ≤ W , it follows that E[exp(αW )] = ∞.

2 Proofs

For our results, it obviously suffices to consider α > 0 instead of α ∈ R.

2.1 Total Edge Length, Number of Edges and Cells: Proof of Theorem 1.1 and
Proposition 1.2

The proof of Theorem 1.1 and Proposition 1.2 is organized as follows. As already discussed,
for the VT and the JMT it suffices to show Proposition 1.2 part (i) for all α > 0 in order
to conclude the corresponding part of Theorem 1.1. In Sect. 2.1.1 we cary out the proof of
Proposition 1.2 part (i) for all α > 0 for the VT and in 2.1.2 for the JMT. Section 2.1.3 is
devoted to the case of the Poisson–DT. Here we first verify an extended version of Proposi-
tion 1.2 part (i) for small α > 0, and using this we verify (1) for all α > 0. The direct and
short proofs of (1) for all α > 0 for the LT and the MG can be found in Sects. 2.1.4 and
2.1.5, respectively. Given these results, we prove Proposition 1.2 part (ii) in Sect. 2.1.6.
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2.1.1 Voronoi tessellations: Proof of Proposition 1.2 part (i)

It suffices to verify (10) for all α > 0. For this we extend arguments first presented in [17,
Theorem 2.6], where E[exp(α|SV ∩ [−1/2, 1/2]2|)] < ∞ was verified for all sufficiently
small α > 0 in the case where the underlying point process is a PPP. Let us extend the notion
of W defined in (9) to balls of different radii via

Wa = #{i ∈ K : Ei ∩ Ba �= ∅}, (18)

where we recall that (Ei )i∈K is the collection of edges of SV. The following lemma states
that unless we have a void space, numbers of edges can be bounded from above by numbers
of points in bounded regions.

Lemma 2.1 Let b ≥ a > 0. If X ∩ Bb �= ∅, then we have

Wa ≤ 3#(X ∩ Bb+3a). (19)

Proof Let us assume existence of Xi ∈ X ∩ Bb. We first claim that for any edge of SV
intersecting with Ba , the corresponding edge in the dual DT connects two points in Bb+3a .
Indeed, assume otherwise, then there exists v ∈ Ba and X j ∈ X ∩ Bc

b+3a such that |v− X j | =
min{|v − Xl | : l ∈ I } and

|v − X j | ≥ dist({X j }, Ba) > (b + 3a) − a > b + a.

On the other hand,

|v − Xi | ≤ max
y∈Ba ,z∈Bb

|y − z| = 2a + (b − a) = b + a,

which is a contradiction. Thus, for any Voronoi edge intersecting with Ba ⊆ Bb, the corre-
sponding Delaunay edge has both endpoints in X ∩ Bb+3a . But since the subgraph of the
Delaunay graph spanned by the vertex set X ∩ Bb+3a is simple and planar, Euler’s formula
(see e.g. [12, Remark 2.1.4]) implies that the number of such edges is bounded by 3 times
the number of vertices in this subgraph. This implies (19). 
�

Note that Lemma 2.1 holds for any point cloud X . The proof of (10) for the VT now rests
on the assumption that it is exponentially unlikely to have large void spaces of order k2 and
existence of exponential moments for numbers of points in annuli of order k. Let

R = inf{r > 0 : Br ∩ X �= ∅} (20)

denote the distance of the closest point in X to the origin.

Proof of Proposition 1.2 part (i) In the event {R ≤ 1} we have that B1 ∩ X �= ∅, and therefore
by Lemma 2.1 applied for a = b = 1, we obtain

W ≤ 3#(X ∩ B4).

On the other hand, in the event {R ≥ 1}, we can apply Lemma 2.1 with a = 1 and b = R in
order to obtain that, almost surely,

W ≤ 3#(X ∩ BR+3) = 3 + 3#(X ∩ (BR+3 \ BR)),

where we also used that by stationarity, on ∂ BR there is precisely one point, almost surely.
By assumption (4) we have E[R] < ∞ and hence P(R < ∞) = 1. We can thus estimate for
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all α > 0,

E[exp(αW )] ≤ E
[
exp(3α#(X ∩ B4))

]

+ e3α
∑

k≥2

E
[
exp

(
3α#(X ∩ (BR+3 \ BR))

)
1{R ∈ [k − 1, k)}]

≤ E
[
exp(3α#(X ∩ B4))

]

+ e3α
∑

k≥2

E
[
exp

(
3α#(X ∩ (Bk+3 \ Bk−1))

)
1{#(X ∩ Bk−1) = 0}]

≤ E
[
exp(3α#(X ∩ B4))

]

+ e3α
∑

k≥1

E
[
exp

(
6α#(X ∩ (Bk+4 \ Bk))

)]1/2
P
(
#(X ∩ Bk) = 0

)1/2
,

(21)

where we used Hölder’s inequality in the last line. Now, by the assumptions (4) and (3), there
exist c1, c2 > 0 such that for sufficiently large k, we have

E
[
exp

(
6α#(X ∩ (Bk+4 \ Bk))

)]
P
(
#(X ∩ Bk) = 0

) ≤ exp
(
π(c1k − c2k2)

)
,

and hence summability of the right-hand side of (21) is guaranteed. This concludes the proof
of Proposition 1.2 for the number of edges and thus of Theorem 1.1 part (i). 
�

2.1.2 Johnson–Mehl Tessellations: Proof of Proposition 1.2 Part (i)

As explained in Sect. 1, Theorem 1.1 (ii) follows once we verify (10) for the JMT for all
α > 0, which is the first part of Proposition 1.2 for the JMT. The arguments are very similar
to the ones used in Sect. 2.1.1 for the VT. To start with, we have the following lemma, which
is an analogue of Lemma 2.1 in the Johnson–Mehl case. Recall that for (x, s) ∈ R

2 ×[0,∞)

and r > 0 we write BJ
r (x, s) for the closed ball of radius r around (x, s) in the Johnson–Mehl

metric, see (2).

Lemma 2.2 Let b ≥ a > 0. If X̃ ∩ BJ
b �= ∅, then SJ ∩ Ba is determined by X̃ ∩ BJ

b+3a. That is,
for any x ∈ SJ ∩ Ba, if j ∈ I is such that dJ((X j , Tj ), (x, 0)) = infk∈I dJ((Xk, Tk), (x, 0)),
then (X j , Tj ) ∈ BJ

b+3a.

Proof Assume that there exists i ∈ I such that (Xi , Ti ) ∈ BJ
b and that SJ exhibits an edge

having a non-empty intersection with Ba , and let x ∈ Ba be a point of such an edge. Then,
using the triangle inequality, since

dJ((x, 0), (Xi , Ti )) ≤ dJ((x, 0), (o, 0)) + dJ((o, 0), (Xi , Ti ))

= |x | + dJ((o, 0), (Xi , Ti )) ≤ a + b,

and for any j ∈ I with (X j , Tj ) /∈ BJ
b+3a , we have

dJ((x, 0), (X j , Tj )) = Tj + |x − X j | ≥ (Tj + |X j |) − |x | > b + 3a − a = b + 2a

> b + a ≥ dJ((x, 0), (Xi , Ti )),

and the result follows. 
�
Proof of (10) for the JMT for all α > 0. We start with two preliminary observations. First,
let E denote the set of (closed) edges of SJ. By construction of a JMT, almost surely, any
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E ∈ E has the property that there exist precisely two points (Xi , Ti ), (X j , Tj ) (depending
on E) such that for all z ∈ E

dJ((z, 0), (Xi , Ti )) = dJ((z, 0), (X j , Tj )) = inf
k∈I

dJ((z, 0), (Xk , Tk)).

In this case, we will write E = (
(Xi , Ti ); (X j , Tj )

)
. We claim that for any finite subset I0

of I ,

#{((Xi , Ti ); (X j , Tj )
) ∈ E : i, j ∈ I0} ≤ 3#I0 (22)

holds. Indeed, the set on the left-hand side of (22) is in one-to-one correspondency with
#D(I0) where

D(I0) = {(i, j) ∈ I 20 : (
(Xi , Ti ); (X j , Tj )

) ∈ E},
since (i, j) ∈ D(I0) if and only if Xi and X j are connected by an edge in the dual of the
Johnson–Mehl graph. Note that since JMT is a planar graph, so is its dual, and thus D(I0)
has cardinality at most 3#I0 thanks to the Euler formula for planar graphs.

Now, let us define the distance of the closest point to the (space-time) origin in the Johnson–
Mehl metric

R′ = inf{r > 0 : ∃i ∈ I with dJ((o, 0), (Xi , Ti )) ≤ r}. (23)

Now, in the event {R′ ≤ 1}, we have BJ
1 ∩ X̃ �= ∅, and thus an application of Lemma 2.2 for

a = b = 1 gives

W ≤ #{((Xi , Ti ); (X j , Tj )
) ∈ E : (Xi , Ti ), (X j , Tj ) ∈ BJ

4}.
Thanks to (22), the right-hand side is at most #(X̃ ∩ BJ

4). On the other hand, in the event
{R′ > 1}, we can apply Lemma 2.2 for a = 1 and b = R′, which together with the convexity
yields

W ≤ #{((Xi , Ti ); (X j , Tj )
) ∈ E : (Xi , Ti ), (X j , Tj ) ∈ BJ

R′+3}. (24)

Again, by stationarity of X and absolute continuity ofμ, almost surely, we can further bound
the right-hand side of (24) from above, which yields

W ≤ 3#(X̃ ∩ BR′+3) = 3 + 3#(X̃ ∩ (BR′+3 \ BR′)).

By assumption (6) we have E[R′] < ∞ and hence P(R′ < ∞) = 1. We can thus estimate
for all α > 0 using Hölder’s inequality,

E[exp(αW )] ≤ E
[
exp(3α#(X̃ ∩ BJ

4))
]

+ e3α
∑

k≥1

E
[
exp

(
6α#(X̃ ∩ (BJ

k+4 \ BJ
k))

)]1/2
P
(
#(X̃ ∩ BJ

k) = 0
)1/2

. (25)

As above, the assumptions (5) and (6) now guarantee summability. This proves Proposi-
tion 1.2 for the number of edges and thus of Theorem 1.1 part (ii). 
�

2.1.3 Poisson–Delaunay Tessellations: Proof of Theorem 1.1 Part (iii) and
Proposition 1.2 part (i)

The case of the DT is the most difficult one to handle, essentially since in this case, existence
of points close to the origin does not automatically eliminate the influence of other distant
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points. To keep the argument simple, we thus only treat the case here where the underlying
point process is a homogeneous PPP. Recall the definition of Wa from (18). Our first step
towards the proof of Theorem 1.1 (iii) is to verify that there exists a fixed α > 0 such that
E[exp(αWa)] < ∞ holds for any a > 0. Let us write Xλ to indicate the intensity λ in the
underlying PPP and write Sλ

D = SD(Xλ) and W λ
a for the number of edges of Sλ

D intersecting
with Ba .

Proposition 2.3 Let a > 0 and λ > 0. Then,E[exp(αW λ
a )] < ∞ holds for all α < 1

6 log
(
1+

1
72

)
.

In particular, choosing a = λ = 1, (10) follows from this proposition for the Poisson–DT
for small α > 0, which proves Proposition 1.2 part (i) for the Poisson–DT. The proof rests
on a comparison on the exponential scale.

Proof For x ∈ R
d , let Qr (x) denote the box of side length r centered at x . We define

R = min{r ∈ N : r ≥ 2a and ∀z ∈ Z
2 with ‖z‖∞ = 2, Qr (r z) ∩ Xλ �= ∅}, (26)

the finest discretization ofR2 into boxes such that every box in the 2-annulus contains points.
Note that R is almost surely finite. For k ∈ N such that k > �2a�,

P(R ≥ k) ≤ P
(∃z ∈ Z

2 with ‖z‖∞ = 2 : Qk−1((k − 1)z) ∩ Xλ = ∅)

≤
∑

z∈Z2 : ‖z‖=2

P(Qk−1((k − 1)z) ∩ Xλ = ∅)

≤ 16P(Qk−1((k − 1) · (2, 0)) ∩ Xλ = ∅)

≤ 16 exp(−λ(k − 1)2).

(27)

Note that once k > �2a�, the right-hand side of (27) does not depend on a. Since these terms
are summable from k = 1 to ∞, P(R = �2a�) tends to one and thus E[R] tends to infinity
as a → ∞.

In the event {R = k} for some k ≥ 2a, the points of ∂ Q3k(o) are within a distance at most√
2k from the centroid of their Voronoi cell. Among these Voronoi cells, the neighboring

ones are separated by a Voronoi edge and hence their cell centroids are Delaunay neighbors.
The Delaunay edges connecting the centroids of the successive cells yield a closed path in the
Delaunay graph surrounding Ba . This path defines a bounded region in which both endpoints
of any Delaunay edge intersecting Ba are located. Further, this region is fully contained
in Q3k(o) ⊕ B√

2k ⊂ Q3k(o) ⊕ Q2
√
2k(o) ⊂ Q6k(o). Hence, since the restriction of the

Delaunay triangulation is a planar graph, using Euler’s formula we arrive at

W λ
a ≤ 3#(Xλ ∩ Q6k(o)).
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Now we can use Hölder’s inequality, the Laplace transform of a Poisson random variable
and (27) to estimate

E[exp(αW λ
a )] ≤

∑

k≥2a

E
[
exp(3α#(Xλ ∩ Q6k(o)))1{R = k}]

≤
∑

k≥2a

E
[
exp(6α#(Xλ ∩ Q6k(o)))

]1/2
P(R = k)1/2

≤
∑

k≥�2a�
exp

(
36λk2(e6α − 1)

)
P(R = k)1/2

≤ exp
(
144λ(a + 1)2(e6α − 1)

)

+ 4
∞∑

k=�2a�+1

exp
(
36λk2(e6α − 1)

)
exp

( − 1

2
λ(k − 1)2

)
.

But the right-hand side is finite for α < 1
6 log

(
1 + 1

72

)
for all a > 0 and λ > 0, as asserted.


�
We have the following corollary of Proposition 2.3 for the total edge length.

Corollary 2.4 Let a > 0 and λ > 0. Then for all α < 1
12a log

(
1+ 1

72

)
,E[exp(α|Sλ

D∩ Ba |)] <

∞.

Proof Since the edges of the Poisson–DT are straight line segments, any edge contributes to
|Sλ

D ∩ Ba | by at most 2a. Hence,

|Sλ
D ∩ Ba | ≤ 2aW λ

a .

Now, E[exp(α(2aW λ
a ))] < ∞ holds once E[exp((2aα)W λ

a )] < ∞. Thanks to Proposi-
tion 2.3, this holds as soon as α < 1

12a log
(
1 + 1

72

)
, as wanted. 
�

Further, we have the following scaling relation for λ, r > 0:

|Sλ
D ∩ B1| = ∣∣Sλ/r2

D ∩ Br
∣∣/r , in distribution. (28)

Indeed, since Xλ, Xλ/r2 are homogeneous PPPs with intensities λ, λ/r2, respectively, we

have that Xλ/r2 ∩ Br equals r(Xλ ∩ B1) in distribution. Thus, Sλ/r2

D ∩ Br is equal to a rescaled
version of Sλ

D ∩ B1 in distribution where the length of each edge is multiplied by r . This
implies the statement (28).

Proof of Theorem 1.1 part (iii) Let us fix α. Using (28), it suffices to show that there exists
a > 0 such that

E

[
exp

(α

a

∣∣S1/a2

D ∩ Ba
∣∣
)]

< ∞ (29)

for some a > 0. Thus, we only have to lift Corollary 2.4 from sufficiently small α to all α.
For a > 0 let us define

αc(a) = 1

12a
log

(
1 + 1

72

)
.

Then, thanks to Corollary 2.4, E[exp(α|SD ∩ B1|)] < ∞ for all α ∈ (0, αc(1)). Let r > 0
be sufficiently large such that α/r < αc(1). Note that αc(a) = 1

a αc(1). Further, observe that
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the value αc(1) is independent of the intensity parameter of the underlying PPP. These imply
that for any λ′ > 0, we have

E

[
exp

(α

r

∣∣Sλ
D ∩ Br

∣∣
)]

< ∞.

Choosing λ = 1/r2 implies (29) with a = r everywhere. This concludes the proof. 
�

2.1.4 Line Tessellations: Proof of Theorem 1.1 Part (iv)

Proof We use the notation of Sect. 1. Since for any line

li = {x ∈ R
2 : x1 cos Xi,2 + x2 sin Xi,2 = Xi,1}

of SL we have |li ∩ B1| ≤ 2, it suffices to show that under the assumption (7) the number
of lines of SL intersecting with B1 has exponential moments up to β�. Now, a line li in R

2

intersects with B1 if and only if its distance parameter Xi,1 is at most one in absolute value,
independently of its angle parameter Xi,2 ∈ [0, 2π ]. By the assumption (7), the number of
such lines has exponential moments up to β�. 
�

2.1.5 Manhattan Grids: Proof of Theorem 1.1 for the MG

Proof Since B1 is a subset of Q1 = Q1(o), it suffices to verify the statement for Q1 instead
of B1. Note that for any edge E in SM, either E ∩ Q1 = ∅ or |E ∩ Q1| = 1. Since Yv and
Yh are independent, it follows that for all α > 0, we have

E
[
exp(α|SM ∩ Q1|)

] = E
[
exp

(
α(#(Yv ∩ [−1/2, 1/2]) + #(Yh ∩ [−1/2, 1/2])))]

= E[exp (
α#(Yv ∩ [−1/2, 1/2]))]E[exp (

α
(
#Yh ∩ [−1/2, 1/2]))].

By assumption #(Yh ∩ [−1/2, 1/2]) and #(Yv ∩ [−1/2, 1/2]) have exponential moments,
for α < βv, respectively α < βh, which implies exponential moments for SM for α <

min{βv, βh}. 
�

2.1.6 Number of Cells: Proof of Proposition 1.2 Part (ii)

Proof of Proposition 1.2 part (ii) Note that any edge of the VT, DT or JMT that intersects with
B1 is adjacent to precisely two cells intersecting with B1, whereas if W = 0, then V = 1, and
thus we have the trivial bound V ≤ 2W + 1. Thus, the assertion (11) for any given α/2 > 0
follows from the assertion (10) for the same α. 
�

2.2 Nested Tessellations: Proof of Corollary 1.3 and Proposition 1.4

Proof of Corollary 1.3. We write S′ for a fixed tessellation process that equals Si , i ∈ J , in
distribution, and we define V according to (12) for the first-layer tessellation So, so with the
index set J being such that So has cells (Ci )i∈J . For α, β > 0, let us write

Mα = E[exp(α|S′ ∩ B1|)] and Nβ = E[exp(βV )],
where Mα, Nβ are defined as elements of [0,∞]. Then, we need to show (i) that if Mα < ∞
and Nβ < ∞ for all α, β > 0, then E[exp(γ |SN ∩ B1|)] < ∞ holds for all γ > 0, and (ii)
if there exists α, β > 0 such that Mα < ∞ and Nβ < ∞, then there exists γ > 0 such that
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E[exp(γ |SN ∩ B1|)] < ∞. First, using Hölder’s inequality, we can separate the first from the
second layer process,

E[exp(α|SN ∩ B1|)] ≤ E

[
exp

(
2α

∑

i∈J : Ci ∩B1 �=∅
|Si ∩ Ci ∩ B1|

)] 1
2
E[exp(2α|So ∩ B1|)] 1

2 .

For the first factor on the right-hand side, note that we can bound

E

[
exp

(
2α

∑

i∈J : Ci ∩B1 �=∅
|Si ∩ Ci ∩ B1|

)]
= E

[
E

[
exp

(
2α

∑

i∈J : Ci ∩B1 �=∅
|Si ∩ Ci ∩ B1|

)∣∣∣So

]]

≤ E

[
E

[
exp

(
2α

∑

i∈J : Ci ∩B1 �=∅
|Si ∩ B1|

)∣∣∣So

]]

= E

[ ∏

i∈J : Ci ∩B1 �=∅
E

[
exp

(
2α|Si ∩ B1|

)∣∣∣So

]]

= E
[
MV

2α

] = E
[
exp(V log M2α)

] = Nlog M2α ,

as an inequality in [0,∞]. From this, (i) follows immediately. As for (ii), let us assume that
Mα < ∞ holds for some α > 0 and Nβ < ∞ holds for some β > 0. Then, the moment
generating function R → [0,∞], β �→ Nβ is continuous (in fact, infinitely many times
differentiable) in an open neighborhood of 0, which implies that limβ→0 Nβ = N0 = 1.
Analogous arguments imply that limα→0 log Mα = 0. Hence, there exists α > 0 such that
Nlog Mα < ∞, which implies (ii). 
�
Proof of Proposition 1.4. Weverify the statementwith B1 replacedby Q1 in (1),which suffices
thanks to the fact that B1 ⊂ Q1. According to the assumptions of the proposition, let the
first-layer tessellation So be a MG satisfying (1) for all α > 0, and let us write Y o =
(Y o

v , Y o
h ) for the corresponding pair of point processes on R. We can enumerate the points

of Y o
v ∩ [−1/2, 1/2] in increasing order as Y o

v ∩ [−1/2, 1/2] = (Pi )
Nv
i=1. Similarly, we

can enumerate the points of Y o
h ∩ [−1/2, 1/2] in increasing order as Y o

h ∩ [−1/2, 1/2] =
(Q j )

Nh
j=1. We further write P0 = Q0 = −1/2 and P Nv+1 = QNh+1 = 1/2. Note that

∑Nv+1
i=1 (Pi − Pi−1) = ∑Nh+1

j=1 (Q j − Q j−1) = 1.
Now, the collection of cells of So intersecting Q1 is given as

(Ci, j )i=1,...,Nv+1, j=1,...,Nh+1,

whereCi, j is the open rectangle (Pi−1, Pi )×(Q j−1, Q j ).Wewrite Si, j for the second-layer

tessellation corresponding to SN in the cellCi, j andY i, j = (Y i, j
v , Y i, j

h ) for the associated pair
of Poisson processes on R. Here, there exist λv, λh > 0 such that for all i ∈ {1, . . . , Nv + 1}
and for all j ∈ {1, . . . , Nh + 1}, Y i, j

v has intensity λv and Y i, j
h has intensity λh. Now note

that for all i ∈ {1, . . . , Nv + 1} and for all j ∈ {1, . . . , Nh + 1}, all vertical edges of Si, j

intersect Ci, j in a segment of length Pi − Pi−1 and all horizontal edges of Si, j intersect Ci, j

in a segment of length Q j − Q j−1. Thus, we obtain that

|SN ∩ Q1| = |So ∩ Q1| +
Nh+1∑

i=1

(Pi − Pi−1)

Nv+1∑

j=1

#
(
Y i, j
v ∩ (Q j−1, Q j )

)

+
Nv+1∑

j=1

(Q j − Q j−1)

Nh+1∑

i=1

#
(
Y i, j
h ∩ (Pi−1, Pi )

)
.

123



    0 Page 18 of 20 B. Jahnel, A. Tóbiás

By Hölder’s inequality, it suffices to verify the existence of all exponential moments for
each of the three terms on the right-hand side separately. The first term has all exponential
moments thanks to the assumption of Proposition 1.4. Further, by symmetry between the
second and the third term, it suffices to show existence of all exponential moments for one
of them; we will consider the second term.

Since for fixed i ∈ {1, . . . , Nh + 1}, #(Y i, j
v × (Q j−1, Q j )) j=1,...,Nv+1 are independent

Poisson random variables with parameters summing up to λv, it follows that their superpo-
sition Ni = ∑Nv+1

j=1 #(Y i, j
v ∩ (Q j−1, Q j ) is a Poisson random variable with parameter λv.

Further, conditional on (Pi )
Nh
i=1, (Ni )

Nh+1
i=1 are independent.

Now, fix α > 0, and let Kα > 0 be such that for all x ∈ (−∞, α] we have exp(x) − 1 ≤
Kαx . Using that Pi − Pi−1 ≤ 1 for all i and

∑Nh+1
i=1 (Pi − Pi−1) = 1, we estimate

E

[
exp

(
α

Nh+1∑

i=1

(Pi − Pi−1)

Nv+1∑

j=1

#(Y i, j
v ∩ (Q j−1, Q j ))

)]

= E

[
exp

(
α

Nh+1∑

i=1

(Pi − Pi−1)Ni

)]

= E

[
E

[
exp

(
α

Nh+1∑

i=1

(Pi − Pi−1)Ni

)∣∣∣(Pi )
Nh
i=1

]]
,

which is further equal to

E

[ Nh+1∏

i=1

E

[
exp

(
α(Pi − Pi−1)Ni

)∣∣∣(Pi )
Nh
i=1

]]

= E

[ Nh+1∏

i=1

exp
(
λv(exp(α(Pi − Pi−1)) − 1)

)]

≤ E

[ Nh+1∏

i=1

exp
(
Kαλvα(Pi − Pi−1)

)]

= E

[
exp

( Nh+1∑

i=1

Kαλvα(Pi − Pi−1)
)]

= exp
(
Kαλvα

)
.

Since the right-hand side is finite, we conclude the proof of the proposition. 
�

2.3 PalmVersions of Tessellations: Proof of Corollary 1.5

We handle each case separately.

Proof of Corollary 1.5 for the Poisson–VT Corollary 1.5 follows directly from Lemma 2.1 and
the Slivnyak–Mecke theorem (see e.g. [11, Section 9.2]). Indeed, since Lemmas 2.1 uses no
information about the distribution of X but only the definition of a Voronoi tessellation, these
lemmas remain true after replacing S∗ by S. Next, the Palm version X∗ of the underlying
PPP equals X ∪ {o} in distribution by the Slivnyak–Mecke theorem, in particular, it contains
o almost surely. Thus, using the aforementioned versions of Lemma 2.1 (for a = b = 1),
we deduce that |SV ∩ B1| is stochastically dominated by 2π(#(X ∩ B4) + 1). This random
variable has all exponential moments, hence the corollary. 
�
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Proof of Corollary 1.5 for the Poisson–JMT This is analogous to the proof for the Poisson–VT
where instead of Lemma 2.1 we use the Lemma 2.2. 
�
Proof of Corollary 1.5 for the Poisson–DT Note that the random radius R defined in (26) is
invariant under changing X to X ∩ {o} in its definition. Hence, using the Slivnyak–Mecke
theorem, one can first verify Proposition 2.3 with Wa replaced by the number of edges of
S∗
D intersecting with Ba , then one can prove that Corollary 2.4 holds with SD replaced by S∗

D
and (28) holds with Sλ

D replaced by its Palm version (Sλ
D)∗ for all λ > 0, and then one can

complete the proof of Corollary 1.5 for the Poisson–DT analogously to the final part of the
proof of Theorem 1.1 (iii). 
�
Proof of Corollary 1.5 for the Poisson–LT As already mentioned in Sect. 1, S∗ equals SL(X∗)
where X∗ = X ∪{(0, Φ)}, withΦ being a uniform random angle in [0, π) that is independent
of X .Thus, S∗ = S∪{l}, where l = {x ∈ R

2 : x1 cosΦ+x2 sinΦ = 0}.Since the intersection
of l with B1 has length 2, the corollary in the case of a Poisson–LT follows directly from
Theorem 1.1 part (iv). 
�
Proof of Corollary 1.5 for theMG We verify the statement with B1 replaced by its superset Q2.
First, let us write Y ∗

v and Y ∗
h for the Palm versions of Yv and Yh. Here, Y ∗

v is defined via the
property [10, Section 2.2] that

E
[

f (Y ∗
v )

] = 1

λv
E

[ ∑

Xi ∈Yv∩[0,1]
f (Yv − Xi )

]

for any measurable function f on the space of σ -finite counting measures on R to [0,∞).
Then the Palm version S∗

M is given according to (13). It suffices to verify that Y ∗
v ×[−1, 1] and

Y ∗
h ×[−1, 1] have all exponential moments. Indeed, using this and the mutual independence

of Yv, Yh, and U , the proof of Corollary 1.5 for the MG can be completed analogously to
the proof of Theorem 1.1 part (v) in Sect. 2.1.5. We only consider Y ∗

v , the proof for Y ∗
h is

analogous. For α > 0 we have

E[exp (
α#(Y ∗

v ∩ [−1, 1]))] = 1

λv
E

[ ∑

Xi ∈Yv∩[0,1]
exp

(
α#((Yv − Xi ) ∩ [−1, 1]))

]

= 1

λv
E

[ ∑

Xi ∈Yv∩[0,1]
exp

(
α#(Yv ∩ [Xi − 1, Xi + 1]))

]

≤ 1

λv
E

[ ∑

Xi ∈Yv∩[0,1]
exp

(
α#(Yv ∩ [−2, 2]))

]

= 1

λv
E

[
#(Yv ∩ [0, 1]) exp (

α#(Yv ∩ [−2, 2]))]

≤ 1

λv
E[#(Yv ∩ [0, 1])2]1/2E[exp (

2α#(Yv ∩ [−2, 2]))]1/2 < ∞,

where in the first inequality of the last line we used Hölder’s inequality. 
�
As above, note that weaker assumptions on the exponential moments of Yv, Yh imply

lower exponential moments for S∗
MG.
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