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Abstract
Wepropose twomodels of the Boltzmann equation (BGK and Fokker-Planckmodels) for rar-
efied flows of diatomic gases in vibrational non-equilibrium. These models take into account
the discrete repartition of vibration energy modes, which is required for high temperature
flows, like for atmospheric re-entry problems. We prove that these models satisfy conser-
vation and entropy properties (H-theorem), and we derive their corresponding compressible
Navier–Stokes asymptotics.

Keywords Fokker-Planck model · BGK model · H-theorem · Rarefied Gas Dynamics ·
vibrational molecules

1 Introduction

Numerical simulation of atmospheric reentry flows requires to solve the Boltzmann equation
of Rarefied Gas Dynamics. The standard method to do so is the Direct Simulation Monte
Carlo (DSMC) method [1,2], which is a particle stochastic method. However, it is sometimes
interesting to have alternative numerical methods, like, for instance, methods based on a
direct discretization of the Boltzmann equation (see [3]). This is hardly possible for the
full Boltzmann equation (except for monatomic gases, see [4]), since this is still much too
computationally expensive for real gases. But BGK like model equations [5] are very well
suited for such deterministic codes: indeed, their complexity can be reduced by the well
known reduced distribution technique [6], which leads to intermediate models between the
full Boltzmann equation and moment models [7]. The Fokker-Planck model [8] is another
model Boltzmann equation that can give very efficient stochastic particle methods, see [9].
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These model equations have already been extended to polyatomic gases, so that they can
take into account the internal energy of rotation of gas molecules. They contains correction
terms that lead to correct transport coefficients: the ESBGK or Shakhov’s models [10–12],
and the cubic Fokker-Planck and ES-Fokker-Planck [9,13–15].

For high temperature flows, like in space reentry problems, the vibrational energy of
molecules is activated, and has a significant influence on energy transfers in the gas flow.
It is therefore interesting to extend the model equations to take this vibrational modes into
account. Several extended BGK models have been recently proposed to do so, for instance
[16–19], and a recent Fokker-Planck model has been proposed earlier in [13].

All these models assume a continuous vibrational energy repartition. However, while
transitional and rotational energies in air can be considered as continuous for temperature
larger than 1K and 10K, respectively, vibrational energy can be considered as continuous
only for much larger temperatures (2000K for oxygen and 3300K for nitrogen). For flows
up to 3000K around reentry vehicles, the discrete levels of vibrational energy must be used
[20]. It seems that that the only BGK model that allows for this discrete repartition is the
model of Morse [21].

In this paper, we consider a simpler version of this Morse BGK model for vibrating
gases that allows for a discrete vibrational energy. We show that the complexity of this
model can be reduced with the reduced distribution technique so that the discrete vibrational
energy is eliminated. What is new here is that this construction allows us to prove that the
corresponding reduced model satisfies the H-theorem. Moreover, the model is shown to
give macroscopic Euler and Navier–Stokes equations in the dense regime, with temperature
dependent heat capacities, as expected. Thismeans that the reducedmodel is a good candidate
for its implementation in a deterministic simulation code. Note that with this reduction, only
higher order moments with respect to the vibration energy variable are lost: the macroscopic
quantities of interest like pressure, temperature, and heat flux, are the same as in the non-
reduced model. Moreover, since the reduced variable is not the velocity, this reduction does
not require any assumption or special geometries.

An equivalent reduced Fokker-Planckmodel is also proposed, that has the same properties.
However, this model is not based on a non-reduced model, since we are not able so far to
define diffusion process for the discrete vibrational energy. Up to our knowledge, this is the
first time such a Fokker-Planck model for vibration energy is proposed.

Our paper is organized as follows. In section 2, we present the kinetic description of a
gas with vibrating molecules, and we discuss the mathematical properties of the reduced
distributions that will be used for our models. Our BGK and Fokker-Planck models are
presented in sections 3 and 4, respectively. In section 5, the hydrodynamic limits of our
models, obtained by a Chapman-Enskog procedure, are discussed. Section 6 gives some
perspectives of this work.

2 Kinetic Description of a Vibrating Diatomic Gas

2.1 Distribution Function and Local Equilibrium

We consider a diatomic gas. We define f (t, x, v, ε, i) the mass density of molecules with
position x , velocity v, internal energy ε, and in the i th vibrational energy level, such that the
corresponding vibrational energy is i RT0, where T0 = hν/k is a characteristic vibrational
temperature of the molecule (h and k are the Planck and Boltzmann constant, while ν is the
fundamental vibrational frequency of the molecule).
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1078 J. Mathiaud, L. Mieussens

The corresponding local equilibrium distribution is defined by (see [1])

Mvib[ f ](v, ε, i) = ρ√
2πRT

3

1 − e−T0/T

RT
exp

(
−

1
2 |u − v|2 + ε + i RT0

RT

)
. (1)

Here, ρ is the mass density of the gas, T its temperature of equilibrium and u its mean
velocity, defined below.

2.2 Moments and Entropy

The macroscopic quantities are defined by moments of f as follows:

ρ = 〈 f 〉v,ε,i , ρu = 〈v f 〉v,ε,i , ρe =
〈(

1

2
|v − u|2 + ε + i RT0

)
f

〉
v,ε,i

, (2)

where we use the notation 〈φ〉v,ε,i = ∑∞
i=0

∫∫
φ(t, x, v, ε, i) dvdε for any function φ.

With standard Gaussian integrals and summation formula, it is easy to find that the
moments of the equilibrium Mvib[ f ] satisfy:

〈Mvib[ f ]〉v,ε,i = ρ, 〈vMvib[ f ]〉v,ε,i = ρu.

At equilibrium, we can define the following energies of translation, rotation, and vibration

ρetr (T ) =
〈(

1

2
(v − u)2

)
Mvib[ f ]

〉
v,ε,i

= 3

2
ρRT , (3)

ρerot (T ) = 〈εMvib[ f ]〉v,ε,i = ρRT , (4)

ρevib(T ) = 〈(i RT0)Mvib[ f ]〉v,ε,i = ρ
RT0

eT0/T − 1
= δ(T )

2
ρRT , (5)

where the number of degrees of freedom of vibrations is

δ(T ) = 2T0/T

eT0/T − 1
, (6)

which is a non integer and temperature dependent number, while the number of degrees of
freedom is 3 for translation and 2 for rotation.

The temperature T is defined so that Mvib[ f ] has the same energy as f :〈(
1

2
(v − u)2 + ε + i RT0

)
Mvib[ f ]

〉
v,ε,i

= ρe,

which gives the non linear implicit definition of T :

e = 5 + δ(T )

2
RT . (7)

Since the function T → e is monotonic, T is uniquely defined by (7). Moreover, note that
δ(T ) is necessarily between 0 and 2, which means that vibrations add at most two degrees
of freedom.

Finally, the entropy H( f ) of f is defined by H( f ) = 〈 f log f 〉v,ε,i .
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2.3 Reduced Distributions

For computational efficiency, it is interesting to define marginal, or reduced, distributions F
and G by

F(t, x, v, ε) =
∑
i

f (t, x, v, ε, i), and G(t, x, v, ε) =
∑
i

i RT0 f (t, x, v, ε, i).

Themacroscopic variables defined by f can be obtained through F andG only, as it is shown
in the following proposition by integrating with respect to v and ε and using the definition (2)
of the moments.

Proposition 2.1 (Moments of the reduced distributions) The macroscopic variables ρ, u, and
e, of f , defined by (2), satisfy

ρ = 〈F〉v,ε , ρu = 〈vF〉v,ε , ρe =
〈(

1

2
(v − u)2 + ε

)
F

〉
v,ε

+ 〈G〉v,ε . (8)

where we use the notation 〈ψ〉v,ε = ∫∫
ψ(t, x, v, ε) dvdε for any function ψ .

This reduction procedure can be extended to the entropy functional as follows. First, to
simplify the following relations, we use the notation fi (v, ε) for f (v, ε, i). Then, we define
the reduced entropy by

H(F,G) = 〈H(F,G)〉v,ε , where

H(F,G) = inf
f >0

{∑
i

fi log fi such that
∑
i

fi = F,
∑
i

i RT0 fi = G

}
.

(9)

In otherwords, for a given couple of reduced distributions (F,G), we define the (non reduced)
distribution that minimizes the marginal entropy

∑
i fi log fi among all the distributions that

have the same marginal distributions F and G. Then the reduced entropy is the integral with
respect to v and ε of the corresponding marginal entropy.

Now it is possible to represent this reduced entropy as a function of F and G only, as it is
shown in the following proposition.

Proposition 2.2 (Entropy) The reduced entropy H(F,G) defined by (9) is

H(F,G) =
〈
F log(F) + F log

(
RT0F

RT0F + G

)
+ G

RT0
log

(
G

RT0F + G

)〉
v,ε

. (10)

Proof The set
{
f > 0 such that

∑
i fi = F,

∑
i i RT0 fi = G

}
is clearly convex, so that

we can use a Lagrangian multiplier approach by finding if there exists a minimum of the
function L defined through :

L( f , α, β) =
∑
i

fi log fi − α

(∑
i

fi − F

)
− β

(∑
i

i RT0 fi − G

)
,

where α and β are real numbers and
∑

i fi log fi is a convex function of f . The functional
L is convex but no longer strictly convex. A minimum of H(F,G) necessarily satisfies
∂L
∂ f = 0, and it is easy to deduce that f can be written fi (v, ε) = A exp (−i BRT0), where
A := A(v, ε) and B := B(v, ε) are functions that are still to be determined.
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1080 J. Mathiaud, L. Mieussens

The linear constraints give:

F =
∑
i

fi = A

1 − exp (−BRT0)
,

G =
∑
i

i RT0 fi = ART0 exp (−BRT0)

(1 − exp (−BRT0))2
,

where we have used the property i RT0 fi = − d fi
dB that comes from fi = A exp (−i BRT0).

Solving this linear system gives

A = RT0F2

RT0F + G
, B = 1

RT0
log

(
1 + RT0F

G

)
.

so that

H(F,G) = F log(F) + F log

(
RT0F

RT0F + G

)
+ G

RT0
log

(
G

RT0F + G

)
. (11)

A final integration with respect to v and ε gives the final result. ��
The following proposition gives useful differential properties of the reduced entropy func-

tional.

Proposition 2.3 (Properties of H )

1. The partial derivatives of H computed at (F,G) are:

D1H(F,G) = 1 + log

(
RT0F2

RT0F + G

)
, D2H(F,G) = 1

RT0
log

(
G

RT0F + G

)
.

(12)

2. We denote byH =
(

D11H(F,G) D12H(F,G)
D12H(F,G) D22H(F,G)

)
the Hessian matrix of H. The second order

derivatives are:

D11H(F,G) = 2

F
− RT0

RT0F + G
, D12H(F,G) = − 1

RT0F + G
,

D21H(F,G) = D12H(F,G), D22H(F,G) = F

G(RT0F + G)
,

and we have

FD11H(F,G) + GD21H(F,G) = 1,

FD12H(F,G) + GD22H(F,G) = 0.
(13)

3. The function (F,G) 	→ H(F,G) is convex.

Proof Points 1 and 2 are given by direct calculations. For point 3, note that the determinant of
the Hessian matrixH, which is detH = 1

G(RT0F+G)
is positive. Moreover, its trace is positive

too, so that the Hessian matrix is positive definite, and hence the function H is convex. ��
Now,wewant to use this reduced entropy to define the corresponding reduced equilibrium.

This is done by computing the minimum of the reduced entropy among all the reduced
distributions (F1,G1) that have the same moments as (F,G), as it is stated in the following
proposition.
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Proposition 2.4 (Reduced equilibrium) Let (F,G) be a couple of reduced distributions and
ρ, ρu, and ρe its moments as defined by (8). Let S be the convex set defined by

S =
{

(F1,G1) such that 〈F1〉v,ε = ρ, 〈vF1〉v,ε = ρu,

〈(
1

2
|v|2 + ε

)
F1 + G1

〉
v,ε

= ρe

}
.

1. The minimum of H on S is obtained for the couple (Mvib[F,G], evib(T )Mvib[F,G])
with

Mvib[F,G] = ρ√
2πRT

3 exp

(
−|v − u|2

2RT

)
1

RT
exp

(
− ε

RT

)
(14)

where evib(T ) is the equilibrium vibrational energy defined by (5) and ρ, u, T depend
on F and G through the definition of the moments.

2. For every (F1,G1) in S, we have
D1H(F1,G1)(Mvib[F,G] − F1) + D2H(F1,G1)(evib(T )Mvib[F,G] − G1)

≤ H(Mvib[F,G], evib(T )Mvib[F,G]) − H(F1,G1) ≤ 0.

Proof First, the set S is clearly convex, and it is non empty, since it is easy to see that
(Mvib], evib(T )Mvib) realizes the moments ρ, ρu, and ρe, and hence belongs to S. Now, we
define the following Lagrangian

L(F1,G1, α, β, γ ) =〈H(F1,G1)〉v,ε − α(〈F1〉v,ε − ρ)

− β · (〈vF1〉v,ε − ρu) − γ

(〈(
1

2
|v|2 + ε

)
F1 + G1

〉
v,ε

− ρe

)

for every positive (F1,G1), α ∈ R, β ∈ R
3, γ ∈ R. The reduced entropy can reach a

minimum of S when L has its first derivatives equal to zero: it is a minimum if it is unique .
Such a point, denoted by (F1,G1, α, β, γ ) for the moment, is characterised by the fact that
the partial derivatives of L vanish at (F1,G1, α, β, γ ). This gives the following relations
(using the cancellation of the L derivatives in F1,G1, α, β, γ respectively)

D1H(F1,G1) = α + β · v + γ
1

2
|v|2, (15)

D2H(F1,G1) = γ, (16)

〈F1〉v,ε − ρ = 0, (17)

〈vF1〉v,ε − ρu = 0, (18)〈(
1

2
|v|2 + ε

)
F1 + G1

〉
v,ε

− ρe = 0, (19)

where D1H and D2H are defined in (12). For instance first relation comes from the fact that
the derivative with respect to F1 satisfies for every δF1

∂F1L(F1,G1, α, β, γ )(δF1)

=
〈(

D1H(F1,G1) −
(

α + β · v + γ

(
1

2
|v|2 + ε

)))
δF1

〉
v,ε

,

It is true for all δF1 leading to the relation 15.
Now Combining equations (15) and (16), one gets that there exists four real numbers A,

B, C , D and one vector E ∈ R
3, independent of v and ε, such that:
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1082 J. Mathiaud, L. Mieussens

F1 = A exp
(
E · v + B|v|2 + Cε

)
,

G1 = DF1,

where B andC are necessarily non positive to ensure the integrability of F1 andG1. It is then
standard to use equations (17)–(19) to get F1 = Mvib(F,G) and G1 = evib(T )Mvib(F,G).

Finally point 2 is a direct consequence of the convexity of H and of the minimization
property. ��

3 A BGKModel with Vibrations

With the local equilibrium Mvib[ f ] defined in (1), it is easy to derive the following BGK
model:

∂t f + v · ∇ f = 1

τ
(Mvib[ f ] − f ). (20)

The macroscopic parameters ρ, u, and T are defined through the moments ρ, ρu and ρe of
f (see (2)).
Like in the BGK model for monoatomic gases, it will be shown that the relaxation time

of this BGK model is τ = μ/p, where p = ρRT is the pressure and μ the viscosity, that
can be temperature dependent.

Now we have the following properties.

Property 3.1 • Conservation: for BGK model (20) the mass, momentum and total energy
are conserved:

∂t

〈⎛
⎝ 1

v
1
2 |v|2

⎞
⎠ f

〉
v,ε,i

+ ∇x ·
〈
v

⎛
⎝ 1

v
1
2 |v|2

⎞
⎠ f

〉
v,ε,i

= 0.

• H-theorem: for the entropy H( f ) = 〈 f log f 〉v,ε,i , we have

∂tH( f ) + ∇x · 〈v f log f 〉v,ε,i = 1

τ
〈(Mvib[ f ] − f ) log f 〉v,ε,i ≤ 0.

The proof relies on standard arguments (definition of Mvib[ f ] and convexity of x log x) and
is left to the reader.

3.1 A Reduced BGKModel with Vibrations

For computational reasons, it is interesting to reduce the complexity of model (20) by using
the usual reduced distribution technique [22]. We define the reduced distributions

F =
∑
i

f (t, x, v, ε, i), and G =
∑
i

i RT0 f (t, x, v, ε, i),

and by summation of (20) on i we get the following closed system of two reduced equations:

∂t F + v · ∇x F = 1

τ
(Mvib[F,G] − F) , (21)

∂tG + v · ∇xG = 1

τ

(
δ(T )

2
RT Mvib[F,G] − G

)
, (22)
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where the reduced Maxwellian is

Mvib[F,G] = ρ√
2πRT

3 exp

(
−|v − u|2

2RT

)
1

RT
exp

(
− ε

RT

)
,

and the macroscopic quantities are defined by

ρ = 〈F〉v,ε , ρu = 〈vF〉v,ε , ρe =
〈(

1

2
(v − u)2 + ε

)
F

〉
v,ε

+ 〈G〉v,ε , (23)

and T is still defined by (7) which implies that T depends both on F and G: to avoid the
heavy notation T [F,G], it will still be denoted by T in the following.

Note that this model can easily be reduced once again to eliminate the rotational energy
variable. This gives a reduced system of three BGK equations, with three distributions.

It is interesting to compare our new model to the work of [23] and [19]: in these recent
papers, the authors also proposed, independently, BGK and ES-BGKmodels for temperature
dependent δ(T ), like in the case of vibrational energy. However, they are not based on an
underlying discrete vibrational energy partition, and the authors are not able to prove any H-
theorem. Only a local entropy dissipation can be proved. The advantage of our new approach
is that the reduced model, which is continuous in energy too, inherits the entropy property
from the non-reduced model, and hence a H-theorem, as it is shown below.

3.2 Properties of the ReducedModel

System (21–22) naturally satisfies local conservation laws of mass, momentum, and energy.
Moreover, the H-theorem holds with the reduced entropy H(F,G) as defined in (9). Indeed,
we have the

Proposition 3.1 The reduced BGK system (21–22) satisfies the H-theorem

∂tH(F,G) + ∇x · 〈vH(F,G)〉v,ε ≤ 0,

where H(F,G) is the reduced entropy defined in (9).

Proof By differentiation we get

∂tH(F,G) + ∇x · 〈vH(F,G)〉v,ε

= 〈D1H(F,G)(∂t F + v∇x F) + D2H(F,G)(∂t G + v∇xG)〉v,ε

= 1

τ

〈
D1H(F,G)(Mvib[F,G] − F) + D2H(F,G)

(
δ(T )

2
RT Mvib[F,G] − G

)〉
v,ε

≤ 0

where we have used (21–22) to replace the transport terms by relaxation ones, and point 5
of proposition 2.4 to obtain the inequality. ��

4 A Fokker-PlanckModel with Vibrations

It is difficult to derive a Fokker-Planck model for the distribution function f with discrete
energy levels. We find it easier to directly derive a reduced model, by analogy with the
reduced BGKmodel (21–22) and by using our previous work [15] on a Fokker-Planck model
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1084 J. Mathiaud, L. Mieussens

for polyatomic gases. We remind that the original Fokker-Planck model for monoatomic gas
can be derived from the Boltzmann collision operator under the assumption of small velocity
changes through collisions and additional equilibrium assumptions (see [8]). In practice, the
agreement of this model with the Boltzmann equation is observed even when the gas is far
from equilibrium (see [9], for instance).

4.1 A Reduced Fokker-PlanckModel with Vibrations

First, we remind the Fokker-Planck model for a diatomic gas (without vibrations) obtained
in [15]:

∂t f + v · ∇x f = D( f ), (24)

where f = f (t, x, v, ε) and the collision operator is

D( f ) = 1

τ

(∇v · (
(v − u) f + RT∇v f

) + 2∂ε(ε f + RT ε∂ε f )
)
,

where the macroscopic values are

ρ = 〈 f 〉v,ε , ρu = 〈 f v〉v,ε , ρe =
〈
f

(
1

2
(v − u)2 + ε

)〉
v,ε

= 5

2
ρRT .

The internal energy ε can be eliminated by the reduction technique (integration w.r.t dε and
εdε) to get

∂tF + v · ∇xF = D1(F,G),

∂tG + v · ∇xG = D2(F,G),

with the collision operators

DF (F,G) = 1

τ
∇v · (

(v − u)F + RT∇vF
)
,

DG(F,G) = 1

τ
∇v · (

(v − u)G + RT∇vG
) + 2

τ
(RTF − G) .

Note that the two velocity drift-diffusion terms in the two previous equations have exactly
the same structure as the one in the non-reduced model (24). However, it is interesting to note
that the energy drift-diffusion term of (24) gives, after reduction, a relaxation operator in the
G equation. Moreover by reducing the model we lose some moments of initial distribution
functions (higher moments in internal energy notably) but we are still able to capture energies
and fluxes which are generally the main quantities of interest.

By analogy, now we propose the following reduced Fokker-Planck model for a diatomic
gas with vibrations. Note that now, the model is still with variables x , v, and ε: only the
discrete energy levels i are eliminated. This model is

∂t F + v · ∇x F = DF (F,G), (25)

∂tG + v · ∇xG = DG(F,G), (26)
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with

DF (F,G) = 1

τ

(∇v · (
(v − u)F + RT∇vF

) + 2∂ε(εF + RT ε∂εF)
)
,

DG(F,G) = 1

τ

(∇v · (
(v − u)G + RT∇vG

) + 2∂ε(εG + RT ε∂εG)
)

+ 2

τ
(evib(T )F − G) ,

(27)

where the macroscopic values are defined as in (23) and (7). Again, note that the temperature
T depends on F and G.

Note that we do not derive this reduced Fokker-Planck model directly from a model with
discrete vibrational energy as for the BGK model, since we are not able so far to define
a discrete diffusion operator. As mentioned above, this model is obtained by analogy with
the Fokker-Plank model proposed for polyatomic gases. Its derivation from reduction of a
discrete in energy Fokker-Plank model will be studied in a future work.

4.2 Properties of the ReducedModel

Using direct calculations and dissipation properties as in [15] we can prove the following
proposition.

Proposition 4.1 The collision operator conserves the mass, momentum, and energy:

〈(1, v)DF (F,G)〉v,ε = 0 and

〈(
1

2
|v|2 + ε

)
DF (F,G) + DG(F,G)

〉
v,ε

= 0,

the reduced entropy H(F,G) satisfies the H-theorem:

∂tH(F,G) + ∇x · 〈vH(F,G)〉v,ε = D(F,G) ≤ 0,

and we have the equilibrium property

(DF (F,G) = 0 and DG(F,G) = 0) ⇔ (F = Mvib[F,G] and G = evib(T )Mvib[F,G]).

Proof The conservation property is the consequence of direct integration of (27). The equi-
librium property can be proved as follows. First, note that the Maxwellian Mvib[F,G] can
be written as

Mvib[F,G] = ρ

(2π)3/2(RT )5/2
exp

(
−1

2

(
v − u
2ε

)T

�−1
(

v − u
2ε

))
,

with � =
(
RT 0
0 2εRT

)
. To shorten the notations, Mvib[F,G] will be simply denoted by

Mvib below, and evib(T ) will be simply denoted by evib as well. Then the collision operators
can be written in the compact form

DF (F,G) = 1

τ
∇v,ε ·

(
�Mvib∇v,ε

F

Mvib

)
,

DG(F,G) = 1

τ
∇v,ε ·

(
�Mvib∇v,ε

G

Mvib

)
+ 2

τ
(evib F − G) .
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Then an integration by part gives the following identity for DF (F,G):〈
DF (F,G)

F

Mvib

〉
v,ε

= − 1

τ

〈(
∇v,ε

F

Mvib

)T

�Mvib∇v,ε

F

Mvib

〉
v,ε

.

Consequently, if DF (F,G) = 0, since the integrand in the previous relation is a definite
positive form, the gradient is necessarily zero, and hence F = Mvib. For the equilibrium
property of G, the proof is a bit more complicated. First, we have〈

DG(F,G)
G

evibMvib

〉
v,ε

= − 1

τevib

〈(
∇v,ε

G

Mvib

)T

�Mvib∇v,ε

G

Mvib

〉
v,ε

+
〈
2

τ
(evib F − G)

G

evibMvib

〉
v,ε

.

Consequently, if DG(F,G) = 0, and since F = Mvib, we have

1

evib

〈(
∇v,ε

G

Mvib

)T

�Mvib∇v,ε

G

Mvib

〉
v,ε

= 2

τ

〈
(evibMvib − G)

G

evibMvib

〉
v,ε

= −2

τ

〈
(evibMvib − G)2

1

evibMvib

〉
v,ε

+ 2

τ
〈evibMvib − G〉v,ε

≤ 2

τ
〈evibMvib − G〉v,ε

= 2

τ
(ρevib − 〈G〉v,ε) = 0,

which comes from (8) and F = Mvib. Therefore, we obtain

1

evib

〈(
∇v,ε

G

Mvib

)T

�Mvib∇v,ε

G

Mvib

〉
v,ε

≤ 0,

and again this gives G = evibMvib, which concludes the proof of the equilibrium property.
The proof of the H-theorem is much longer. First, by differentiation one gets that the

quantity D(F,G) = ∂tH(F,G) + ∇x · 〈vH(F,G)〉v,ε satisfies:

D(F,G) = 〈D1H(F,G)(∂t F + v · ∇x F) + D2H(F,G)(∂tG + v · ∇xG)〉v,ε

= 〈D1H(F,G)DF (F,G) + D2H(F,G)DG(F,G)〉v,ε , (28)

from (21–22). Then the proof is based on the convexity of H(F,G): while for the BGK
model we only used the first derivatives of H , we now use the positive-definiteness of the
Hessian matrix of H . To do so we integrate by parts D(F,G) and multiply by τ so that:

τD(F,G) = −
3∑

i=1

〈
∂vi (F)D11H(F,G)

(
F(vi − ui ) + RT ∂vi F

)〉
v,ε

−2 〈∂ε(F)D11H(F,G) (Fε + RT ε∂εF)〉v,ε

−
3∑

i=1

〈
∂vi (G)D21H(F,G)

(
F(vi − ui ) + RT ∂vi F

)〉
v,ε
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−2 〈∂ε(G)D21H(F,G) (Fε + RT ε∂εF)〉v,ε

−
3∑

i=1

〈
∂vi (F)D12H(F,G)

(
G(vi − ui ) + RT ∂vi G

)〉
v,ε

−2 〈∂ε(F)D12H(F,G) (Gε + RT ε∂εG)〉v,ε

−
3∑

i=1

〈
∂vi (G)D22H(F,G)

(
G(vi − ui ) + RT ∂vi G

)〉
v,ε

−2 〈∂ε(G)D22H(F,G) (Gε + RT ε∂εG)〉v,ε

+2

〈
(evib(T )F − G)

1

RT0
log

(
G

RT0F + G

)〉
v,ε

To use the positive definiteness of the Hessian matrix H of H , we introduce the following
vectors:

Vi = (F(vi − ui ) + RT ∂vi F,G(vi − ui ) + RT ∂vi G)

E = (Fε + RT ε∂εF,Gε + RT ε∂εG),

and we decompose the partial derivatives of F and G in factor of D11F , D22F , D12F as
follows:

(
∂vi (F), ∂vi (G)

) = 1

RT
Vi −

(
F

vi − ui
RT

,G
vi − ui
RT

)

(∂ε(F), ∂ε(G)) = 1

ε
E −

(
F

1

RT
,G

1

RT

)
.

This gives

τD(F,G) =
3∑

i=1

〈(
F

vi − ui
RT

)
D11H(F,G)

(
F(vi − ui ) + RT ∂vi F

)〉
v,ε

+2

〈(
F

1

RT

)
D11H(F,G) (Fε + RT ε∂εF)

〉
v,ε

+
3∑

i=1

〈(
G

vi − ui
RT

)
D21H(F,G)

(
F(vi − ui ) + RT ∂vi F

)〉
v,ε

+2

〈(
G

1

RT

)
D21H(F,G) (Fε + RT ε∂εF)

〉
v,ε

+
3∑

i=1

〈(
F

vi − ui
RT

)
D12H(F,G)

(
G(vi − ui ) + RT ∂vi G

)〉
v,ε

+2

〈(
f

1

RT

)
D12H(F,G) (gε + RT ε∂εG)

〉
v,ε

+
3∑

i=1

〈(
G

vi − ui
RT

)
D22H(F,G)

(
G(vi − ui ) + RT ∂vi G

)〉
v,ε

+2

〈(
G

1

RT

)
D22H(F,G) (Gε + RT ε∂εG)

〉
v,ε
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−
3∑

i=1

〈
V T
i HVi

〉
v,ε

− 2
〈
ET

HE
〉
v,ε

+2

〈
(evib(T )F − G)

1

RT0
log

(
G

RT0F + G

)〉
v,ε

Now this expression can be considerably simplified by using property (13), and we get

τD(F,G) =
3∑

i=1

〈(
vi − ui
RT

) (
F(vi − ui ) + RT ∂vi F

)〉
v,ε

+2

〈
1

RT
(Fε + RT ε∂εF)

〉
v,ε

−
3∑

i=1

V t
i HVi − Et

HE

−2

〈
(evib(T )F − G)

1

RT0
log

(
G

RT0F + G

)〉
v,ε

.

Then the first two terms are simplified by using an integration by parts and relations (8)
and (7) to get

τD(F,G) = 2

RT
(ρevib(T ) − 〈G〉v,ε)

−
3∑

i=1

V t
i HVi − 2Et

HE

+2

〈
(evib(T )F − G)

1

RT0
log

(
G

RT0F + G

)〉
v,ε

.

The terms with the Hessian are clearly negative, since H is positive definite. Then we have

τD(F,G) ≤ 2

RT
(ρevib(T ) − 〈G〉v,ε)

+2

〈
(evib(T )F − G)

1

RT0
log

(
G

RT0F + G

)〉
v,ε

.

Note that from (8) the first term can be written as

2

RT
(ρevib(T ) − 〈G〉v,ε) = 2

RT
〈evib(T )F − G〉v,ε ,

and can be factorized with the second term to find

τD(F,G) ≤ 2

〈
(evib(T )F − G)

(
1

RT0
log

(
G

RT0F + G

)
+ 1

RT

)〉
v,ε

.

We can now prove that the integrand of the right-hand side is non-positive. Indeed, assume
for instance that the first factor is non-positive, that is to say evib(T )F − G ≤ 0. By using
evib(T ) = RT0

eT0/T −1
(see definition (5)), it is now very easy to prove the following relations

evib(T )F − G ≤ 0 ⇔ 1

T0
log

(
G

RT0F + G

)
≥ − R

T
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that is to say the second factor of the integrand is non-negative.
Consequently, we have proved τD(F,G) ≤ 0, which concludes the proof. ��

5 Hydrodynamic Limits for ReducedModels

With a convenient nondimensionalization, the relaxation time τ of the reduced BGK
model (21)–(22) and the Fokker-Planck model (25)–(26) is replaced by Kn τ , where Kn
is the Knudsen number, which can be defined as a ratio between the mean free path and a
macroscopic length scale. It is then possible to look for macroscopic models derived from
BGK and Fokker-Planck reduced models, in the asymptotic limit of small Knudsen numbers.

For convenience, these models are re-written below in non-dimensional form. The BGK
model is

∂t F + v · ∇x F = 1

Kn τ
(Mvib[F,G] − F) , (29)

∂tG + v · ∇xG = 1

Kn τ

(
δ(T )

2
T Mvib[F,G] − G

)
, (30)

where Mvib[F,G] can be defined by (14) with R = 1. Similarly, the relations (3)–(7)
between the translational, internal, and total energies and the temperature, have to be read
with R = 1 in non-dimensional variables. We remind that T is still a function of F and G.
The Fokker-Planck model is

∂t F + v · ∇x F = DF (F,G), (31)

∂tG + v · ∇xG = DG(F,G), (32)

with

DF (F,G) = 1

Kn τ

(∇v · (
(v − u)F + T∇vF

) + 2∂ε(εF + T ε∂εF)
)
,

DG(F,G) = 1

Kn τ

(∇v · (
(v − u)G + T∇vG

)
+ 2∂ε(εG + T ε∂εG)

) + 2

Kn τ
(evib(T )F − G) .

(33)

5.1 Euler Limit

In this section, we prove the following proposition:

Proposition 5.1 The mass, momentum, and energy densities (ρ, ρu, E = 1
2ρu

2 + ρe) of the
solutions of the reduced BGK and the Fokker-Planck models satisfy the equations

∂tρ + ∇x · ρu = 0,

∂tρu + ∇x · (ρu ⊗ u) + ∇ p = O(Kn ),

∂t E + ∇x · (E + p)u = O(Kn ),

(34)

which are the Euler equations, up to O(Kn ). The non-conservative form of these equations
is
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1090 J. Mathiaud, L. Mieussens

∂tρ + ∇x · ρu = 0,

ρ(∂t u + (u · ∇x )u) + ∇ p = O(Kn ),

∂t T + u · ∇x T + T

cv(T )
∇x · u = O(Kn ),

(35)

where cv(T ) = d
dT e(T ) is the specific heat capacity at constant volume.

Proof The reduced BGKmodel (21)–(22) is multiplied by 1, v, and 1
2 |v|2 + ε and integrated

with respect to v and ε, which gives the following conservation laws:

∂tρ + ∇x · ρu = 0,

∂tρu + ∇x · (ρu ⊗ u) + ∇xσ(F) = 0,

∂t E + ∇x · Eu + ∇x · σ(F)u + ∇x · q(F,G) = 0,

(36)

where σ(F) = 〈(v − u) ⊗ (v − u)F〉v,ε is the stress tensor, and q(F,G) =〈
(v − u)( 12 |v − u|2 + ε)F

〉
v,ε

+ 〈(v − u)G〉v,ε is the heat flux.
When Kn is very small, if all the time and space derivatives of F and G are O(1)

with respect to Kn , then (29)–(30) imply F = Mvib[F,G] + O(Kn ) and G =
evib(T )Mvib[F,G]+O(Kn ). Then it is easy tofind thatσ(F) = σ(Mvib[F,G])+O(Kn ) =
pI+O(Kn ) ,where I is the unit tensor, andq(F,G) = q(Mvib[F,G], evib(T )Mvib[F,G])+
O(Kn ) = O(Kn ), since the heat flux is zero at equilibrium, which gives the Euler equa-
tions (35). The same analysis can be applied for the reduced Fokker-Planck model (31)–(33).

Finally, the non conservative form is readily obtained from the conservative form. Note
another formulation of the energy equation that will be useful below:

∂t evib(T ) + u · ∇x evib(T ) + T e′
vib(T )

cv(T )
∇x · u = O(Kn ), (37)

where e′
vib(T ) = d

dT evib(T ). ��

5.2 Compressible Navier–Stokes Limit

In this section, we shall prove the following proposition:

Proposition 5.2 The moments of the solution of the BGK and Fokker-Planck kinetic mod-
els (21)–(22) and (25)–(26) satisfy, up to O(Kn 2), the Navier–Stokes equations

∂tρ + ∇ · ρu = 0,

∂tρu + ∇ · (ρu ⊗ u) + ∇ p = −∇ · σ,

∂t E + ∇ · (E + p)u = −∇ · q − ∇ · (σu),

(38)

where the shear stress tensor and the heat flux are given by

σ = −μ
(∇u + (∇u)T − α∇ · u)

, and q = −κ∇ · T , (39)

and where the following values of the viscosity and heat transfer coefficients (in dimensional
variables) are

μ = τ p, and κ = μcp(T ) for BGK,

μ = 1

2
τ p, and κ = 2

3
μcp(T ) for Fokker-Planck,

(40)
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while the volumic viscosity coefficient is α = cp(T )

cv(T )
− 1 for both models, and cp(T ) =

d
dT (e(T ) + p/ρ) = cv(T ) + R is the specific heat capacity at constant pressure. Moreover,
the corresponding Prandtl number is

Pr = μcp(T )

κ
= 1 for BGK, and

3

2
for Fokker-Planck. (41)

Note that both models do not provide a correct Prandtl number, which can lead to errors
for the computation of fluxes in numerical simulations. This is a usual problem with single
parameter models like BGK or Fokker-Planck: this can be corrected by a modification of the
models like with the ES-BGK or ES-FP approaches, as it has been done for polyatomic gases
(see [11,15] for instance).

5.2.1 Proof for the BGKModel

The usual Chapman-Enskog method is applied as follows. We decompose F and G as F =
Mvib[F,G] + Kn F1 and G = evib(T )Mvib[F,G] + KnG1, which gives

σ(F) = pI + Kn σ(F1), and q(F,G) = Kn q(F1,G1).

Then we have to approximate σ(F1) and q(F1,G1) up to O(Kn ). This is done by using the
previous expansions and (21) and (22) to get

F1 = −τ(∂t Mvib[F,G] + v · ∇x Mvib[F,G]) + O(Kn ),

G1 = −τ(∂t evib(T )Mvib[F,G] + v · ∇x evib(T )Mvib[F,G]) + O(Kn ).

This gives the following approximations

σ(F1) = −τ 〈(v − u) ⊗ (v − u)(∂t Mvib[F,G] + v · ∇x Mvib[F,G])〉v,ε + O(Kn ),

(42)

and

q(F1,G1) = − τ

〈
(v − u)

(
1

2
|v − u|2 + ε

)
(∂t Mvib[F,G] + v · ∇x Mvib[F,G])

〉
v,ε

− τ 〈(v − u)(∂t evib(T )Mvib[F,G] + v · ∇x evib(T )Mvib[F,G])〉v,ε + O(Kn ).

(43)

Now it is standard to write ∂t Mvib[F,G] and ∇x Mvib[F,G] as functions of derivatives
of ρ, u, and T , and then to use Euler equations (34) to write time derivatives as functions of
the space derivatives only. After some algebra, we get

∂t (Mvib(F,G)) + v · ∇x (Mvib(F,G))

= ρ

T
5
2

M0(V )e−J
(
A · ∇T√

T
+ B : ∇u

)
+ O(Kn ), (44)

where

V = v − u√
T

, J = ε

T
, M0(V ) = 1

(2π)
3
2

exp(−|V |2
2

)

A =
( |V |2

2
+ J − 7

2

)
V , B = V ⊗ V −

(
1

cv

(
1

2
|V |2 + J

)
+ e′

vib(T )

cv(T )

)
I .
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Then we introduce (44) into (42) to get

σi j (F1) = −τρT
〈
Vi Vj Bkl M0e

−J
〉
V ,J

∂xl uk + O(Kn ),

where we have used the change of variables (v, ε) 	→ (V , J ) in the integral (the term with A
vanishes due to the parity of M0). Then standard Gaussian integrals (see appendix A) give

σ(F1) = −μ
(
∇u + (∇u)T − α∇ · u I

)
+ O(Kn ),

with μ = τρT and α = cp
cv

− 1, which is the announced result, in a non-dimensional form.
For the heat flux, we use the same technique. First for evib(T )Mvib[F,G] we obtain

∂t (evibMvib(F,G)) + v · ∇x (evibMvib(F,G))

= ρ

T
3
2

M0(V )

(
Ã · ∇T√

T
+ B̃ : ∇u

)
+ O(Kn ), (45)

where

Ã =
( |V |2

2
+ J − 7

2
+ T e′

vib(T )

evib

)
V ,

B̃ = V ⊗ V −
(

1

cv

(
1

2
|V |2 + J

)
+ e′

vib(T )

cv(T )
+ T e′

vib(T )

cv(T )evib

)
I .

Then q(F1,G1) as given in (43) can be reduced to

qi (F1,G1) = −τρT

(〈
1

2
|V |2Vi A j M0e

−J
〉
V ,J

+
〈
Vi J A j M0e

−J
〉
V ,J

)
∂x j T

− τρ
〈
Vi Ã j M0e

−J
〉
V ,J

∂x j T .

Using again Gaussian integrals , we get

q(F1,G1) = −κ∇x T ,

where κ = μcp(T ) with cp(T ) = d
dT (e(T ) + p

ρ
) = 7

2 + e′
vib(T ) = 1 + cv(T ) in a non-

dimensional form.

5.2.2 Proof for the Fokker-Planck Model

Here, we rather use the decomposition F = Mvib(1+Kn F1) andG = evibMvib(1+KnG1),
which gives

σ(F) = pI + Kn σ(Mvib F1) and q(F,G) = Kn q(Mvib F1, evibMvibG1),

inwhich, for clarity, the dependenceofMvib on F andG has beenomitted, and the dependence
of evib on T as well. Finding F1 and G1 is less simple than for the BGK model: however,
the computations are very close to what is done in the standard monatomic Fokker-Planck
model (see [14] for instance), so that we only give the main steps here (see appendix A for
details).
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First, the decomposition is injected into (33) to get

DF (F,G) = 1

τ
MvibLF (F1) + O(Kn ),

DG(F,G) = 1

τ
evibMvibLG(F1,G1) + O(Kn ),

where LF and LG are linear operators defined by

LF (F1) = 1

Mvib

(
∇v · (T Mvib∇vF1) + ∂ε (2T εMvib∂εF1)

)
,

LG(F1,G1) = 1

evibMvib

(
∇v · (T evibMvib∇vG1) + 2∂ε (T εevibMvib∂εG1) + 2(F1 − G1)

)
.

(46)

Then the Fokker-Planck equations (31)-(32) suggest to look for an approximation of F1
and G1 up to O(Kn ) as solutions of

∂t Mvib + v · ∇x Mvib = 1

τ
Mvib(F,G)LF (F1)

∂t evibMvib + v · ∇x evibMvib = 1

τ
evibMvib(F,G)LG(F1,G1).

By using (44)-(45), these relations are equivalent, up to another O(Kn ) approximation, to

LF (F1) = τ

(
A · ∇T√

T
+ B : ∇u

)
, and LG(F1,G1) = τ

(
Ã · ∇T√

T
+ B̃ : ∇u

)
,

(47)

where A, B, Ã, and B̃ are the same as for the BGK equation in the previous section.
Now,we rewrite LF (F1) and LG(F1,G1), defined in (46), by using the change of variables

V = v−u√
T

and G = ε
T to get

LF (F1) = −V · ∇V F1 + ∇V · (∇V F1) + 2 ((1 − J )∂J F1 + J∂J J F1) ,

LG(F1,G1) = LF (G1) + 2(F1 − G1).

Then simple calculation of derivatives show that A, B, Ã, and B̃ satisfy the following prop-
erties

LF (A) = −3A, LF (B) = −2B,

LG(A, Ã) = −3 Ã, LG(B, B̃) = −2B̃.

Therefore, we look for F1 and G1 as solution of (47) under the following form

F1 = aA · ∇T√
T

+ bB : ∇u and G1 = ã Ã · ∇T√
T

+ b̃ B̃ : ∇u,

and we find ã = a = −1/3 and b̃ = b = 1/2.
Finally, using these relations into σ and q and using some Gaussian integrals (see

appendix A) give

σ(Mvib F1) = −μ
(
∇u + (∇u)T − α∇ · u I

)
and q(Mvib F1, evibMvibG1) = −κ∇x T ,

where α = cp
cv

− 1, μ = τ
2ρT , and κ = 2

3μcp(T ), which is the announced result, in a
non-dimensional form.
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6 Conclusion

In this paper, we have proposed to different models (BGK and Fokker-Planck) of the Boltz-
mann equation that allow for vibrational energy discrete modes. These models satisfy the
conservation and entropy property (H-theorem), and the vibration energy variable can be
eliminated by the usual reduced distribution function. The low complexity of the reduced
BGK model can make it attractive to be implemented in a deterministic code, while the
Fokker-Planck model can be easily simulated with a stochastic method.

Of course, since these models are based on a single time relaxation, they cannot allow
for multiple relaxation times scales. This is not physically correct, since it is known that
the relaxation times for translational, rotational, and vibrational energies are very different.
However, standard procedures can be used to extend our model, like the ellipsoidal-statistical
approach, already used to correct the Prandtl number of the BGK model [11] and Fokker-
Plank models [14,15].

A Gaussian Integrals and Other Summation Formulas

In this section, we give some integrals and summation formula that are used in the paper.

First, we remind the definition of the absolute Maxwellian M0(V ) = 1

(2π)
3
2
exp(−|V |2

2 ).

We denote by 〈φ〉 = ∫
R3 φ(V ) dV for any function φ. It is standard to derive the following

integral relations (see [24], for instance), written with the Einstein notation:

〈M0〉V = 1,

〈Vi Vj M0〉V = δi j , 〈V 2
i M0〉V = 1, 〈|V |2M0〉V = 3,

〈Vi Vj VkVlM0〉V = δi jδkl + δikδ jl + δilδ jk, 〈V 2
i V

2
j M0〉V = 1 + 2 δi j

〈Vi Vj |V |2M0〉V = 5 δi j , 〈|V |4M0〉V = 15,

〈Vi Vj |V |4M0〉V = 35 δi j , 〈|V |6M0〉 = 105,

while all the integrals of odd power of V are zero. Note that the first relation of each line
implies the other relations of the same line: these relations are given here to improve the
readability of the paper. From the previous Gaussian integrals, it can be shown that for any
3 × 3 matrix C , we have

〈Vi VjCklVkVlM0〉V = Ci j + C ji + Ciiδi j .

Finally, we have also used the following relations:

∫ +∞

0
Je−J d J =

∫ +∞

0
e−J d J = 1,

and also

+∞∑
i=0

e−iT0/T = 1

1 − e−T0/T
and

+∞∑
i=0

ie−iT0/T = e−T0/T

(1 − e−T0/T )2
.
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