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Abstract
Westudy properties of the Fuss–Catalan distributionsμ(p, r), p ≥ 1, 0 < r ≤ p: free infinite
divisibility, free self-decomposability, free regularity andunimodality.We show that theFuss–
Catalan distribution μ(p, r) is freely self-decomposable if and only if 1 ≤ p = r ≤ 2. We
verify numerically the following phase-transition conjecture: For every p > 1 there exists
r0(p), with p − 1 < r0(p) < p, such that the Fuss–Catalan distribution μ(p, r) is unimodal
if and only if either r = p or 0 < r ≤ r0(p). We prove rigorously some partial results.
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1 Introduction

The two-parameter Fuss–Catalan numbers (called also Raney numbers) are defined by

Ak(p, r) := r

k!
k−1∏

i=1

(kp + r − i) = r

kp + r

(
kp + r

k

)
,

where p, r are real parameters. If p, r are natural numbers then Ak(p, r) may admit several
combinatorial interpretations in terms of plane trees, lattice paths or noncrossing partitions,
see [12]. In particular, Ak(2, 1) is the famous Catalan sequence, see [23]:

A0(2, 1) = 1, A1(2, 1) = 1, A2(2, 1) = 2, A3(2, 1) = 5,

A4(2, 1) = 14, A5(2, 1) = 42, A6(2, 1) = 132 · · · .

It is known that the sequence Ak(p, r) is positive definite if and only if either p ≥ 1,
0 < r ≤ p or p ≤ 0, p − 1 ≥ r or else if r = 0, see [16–19] for various proofs. The
corresponding probability measure we will call the Fuss–Catalan distribution and denote
μ(p, r), so that

Ak(p, r) =
∫

R

xkμ(p, r)(dx).

It is easy to observe that μ(p, 0) = δ0 and that μ(1 − p,−r) is the reflection of μ(p, r).
Therefore wewill confine ourselves to the case p ≥ 1, 0 < r ≤ p. Thenμ(p, r) is absolutely
continuous (except μ(1, 1) = δ1) and the support is

[
0, p p(p − 1)1−p

]
for p > 1 and [0, 1]

for p = 1, 0 < r < 1.
The Fuss–Catalan numbers and distributions play an important role in the context of

random matrix theory. They appear as the singular values distributions of the product of
independent, large sized non-hermitian Gaussian randommatrices. In [10], Forrester and Liu
proved that the two-parameters Fuss–Catalan numbers show up as the moment sequence for
the spectral density of square of scaled singular values as the matrix size goes to infinity.
Moreover, Forrester et al. stated in [11] that the Fuss–Catalan distributions have densities
for equilibrium problems based on the eigenvalues of products of random matrices and
related statistical systems. On the other hand, in [20] the Fuss–Catalan distributions were
also applied in quantum information theory as the random constructed states: the level density
of mixed quantum states associated with a graph [8] and states obtained by projection onto
the maximally entangled states of a multi-partite system [28]. In this context, in [20], this
class was analyzed by free probabilistic transformation.

Forrester and Liu [10] found the following implicit formula for the density function
Wp,r (x) of μ(p, r):

Proposition 1.1 (Proposition 2.1 in [10]) For p > 1 put

ρ(ϕ) := (sin(pϕ))p

sin(ϕ)(sin((p − 1)ϕ))p−1 , 0 < ϕ <
π

p
. (1)

Then ρ(ϕ) is a decreasing function which maps (0, π/p) onto
(
0, p p(p − 1)1−p

)
and we

have

Wp,r (ρ(ϕ)) = (sin((p − 1)ϕ))p−r−1 sin(ϕ) sin(rϕ)

π(sin(pϕ))p−r
, 0 < ϕ <

π

p
. (2)
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For p = 1, 0 < r < 1 the density function W1,r (x) is given in [17, formula (5.2)] (or see
Proposition 4.7).

We have therefore

Ak(p, r) =
∫ p p(p−1)1−p

0
xk Wp,r (x) dx (3)

for k ≥ 0, p > 1, 0 < r ≤ p. This formula is still valid for r > p > 1, however in this case
Wp,r (x) is negative on some subinterval of

(
0, p p(p − 1)1−p

)
. Another description of the

density function Wp,r , in terms of the Meijer functions, for rational p > 1, was provided in
[19].

It was proved in [17] that the free cumulant sequence {rk(μ(p, r))}∞k=1 ofμ(p, r) is given
by

rk(μ(p, r)) = Ak(p − r , r). (4)

Consequently, if 0 < r ≤ min{p − 1, p/2} then μ(p, r) is freely infinitely divisible, i.e
infinitely divisible with respect to the additive free convolution �. Here we will show in
addition that μ(p, p) is freely infinitely divisible for 1 ≤ p ≤ 2.

In this paperwe investigate free self-decomposability and unimodality. These two concepts
are very relevant.

Let us briefly explain the importance of modes of a distribution. It goes without saying that
it is very easy to calculate modes from the observed data. It is also easy to imagine that the
number and position of modes will be a tool for estimating the distribution. However, if the
distribution is not given explicitly, but, for example, through some analytic transformations,
like the characteristic function (i.e. the Fourier transform), the Stielties transform or the
free R-transform, modality of that distribution becomes difficult to study. In this context a
result of Yamazato [27] is useful: all self-decomposable distributions are unimodal. Hasebe
and Thorbjørnsen [14] proved its free analog: all freely self-decomposable distributions are
unimodal. From this property and the fact that the class of self-decomposable distributions
in both classical and free case are closed under classical and free convolutions, respectively,
we can find classical or free convolution semigroup of unimodal distributions.

We also investigate the class of free regular distribution. The distributions in this class are
free infinitely divisible, supported on [0,∞) and closed under free additive convolution. The
supports of the corresponding free convolution semigroup are concentrated on [0,∞). This
type support information are quite important in quantum information theory. See e.g. [9].

1.1 Main Results

In this paper we study the Fuss-Catalan distributions μ(p, p) and μ(p, r) in the framework
of the free probability theory. In particular we are interested in free infinite divisibility, free
self-decomposability, free L1 property, free regularity and also unimodality. First we briefly
recall these concepts. In Sect. 3 we concentrate on the distributions μ(p, p). We will prove:

Theorem 1.2 For the Fuss–Catalan distribution μ(p, p) we have the following:

(1) μ(p, p) is freely infinitely divisible if and only if 1 ≤ p ≤ 2.
(2) If 1 ≤ p ≤ 2 then μ(p, p) is freely self-decomposable, more precisely, it is in the free

L1 class.
(3) μ(p, p) is not free regular for any 1 < p ≤ 2.
(4) μ(p, p) is unimodal for all p ≥ 1.

In Sect. 4 we obtain some results Fuss–Catalan distribution μ(p, r) in general:
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1058 W. Młotkowski et al.

Theorem 1.3 Suppose that p ≥ 1 and 0 < r ≤ p. For the Fuss-Catalan distribution μ(p, r)

we have the following:

(1) μ(p, r) is freely infinitely divisible if and only if either 0 < r ≤ min{p/2, p − 1} or
1 ≤ p = r ≤ 2.

(2) μ(p, r) is freely self-decomposable if and only if 1 ≤ p = r ≤ 2.
(3) μ(p, r) is free regular if and only if either 0 < r ≤ min{p/2, p − 1} or p = r = 1.

Furthermore, we study the unimodality for the Fuss–Catalan distributions μ(p, p − 1),
μ(2r , r), μ(1, r) and μ(2, r). In particular, in Proposition 4.9, we find r1 ∈ (1, 2) such that
μ(2, r) is unimodal for 0 < r < r1. We have calculated numerically the value of r1. For
other parameters (p, r) we verify numerically a phase-transition conjecture.

In this paper we will denote byP(I ) andB(I ) the family of all Borel probability measures
and the class of all Borel sets on I ⊆ R. We will denote C+ (resp. C−) the set of complex
numbers with strictly positive (resp. strictly negative) imaginary part.

2 Preliminaries in the Free Probability Theory

2.1 Freely Infinitely Divisible Distributions

The notion of the free infinite divisibility is an important research area. One reason is the
Berovici–Patamap, which is a bijectionwhichmaps classical infinitely divisible distributions
onto free infinitely divisible ones.

A probability measure μ on R is called freely infinitely divisible if for any n ∈ N there
exists a probability measure μn ∈ P(R) such that

μ = μn � · · · � μn︸ ︷︷ ︸
n times

,

where � denotes the free additive convolution which can be defined as the distribution
of sum of freely independent selfadjoint operators. In this case, μn ∈ P(R) is uniquely
determined for each n ∈ N. The freely infinite divisible distributions can be characterized as
those admitting a Lévy–Khintchine representation in terms of R-transform which is the free
analog of the cumulant transform Cμ(z) := log(μ̂(z)), where μ̂ is the characteristic function
of μ. This was originally established by Bercovici and Voiculescu in [7]. To explain it, we
gather analytic tools for free additive convolution �. In order to define the R-transform (or
free cumulant transform) Rμ of a (Borel-) probability measure μ onR first we need to define
its Cauchy–Stieltjes transform Gμ:

Gμ(z) =
∫

R

1

z − t
μ(dt), (z ∈ C

+).

Note in particular that Im(Gμ(z)) < 0 for any z in C
+, and hence we may consider the

reciprocalCauchy transform Fμ : C+ → C
+ given by Fμ(z) = 1/Gμ(z). For any probability

measure μ on R and any λ in (0,∞) there exist positive numbers α, β and M such that Fμ

is univalent on the set 	α,β := {z ∈ C
+ | Im(z) > β, |Re(z)| < αIm(z)} and such that

Fμ(	α,β) ⊃ 	λ,M . Therefore the right inverse F−1
μ of Fμ exists on 	λ,M , and the free

cumulant transform Rμ is defined by

Rμ(w) = wF−1
μ (1/w) − 1, for all w such that 1/w ∈ 	λ,M .
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Free Self-decomposability and Unimodality... 1059

The name refers to the fact that Rμ linearizes free additive convolution (cf. [7]). Variants of
Rμ (with the same linearizing property) are the R-transformRμ and theVoiculescu transform
ϕμ related by the following equalities:

Rμ(w) = wRμ(w) = wϕμ( 1
w

).

The free version of the Lévy–Khintchine representation now amounts to the statement
that a probability measure μ onR is freely infinitely divisible if and only if there exist a ≥ 0,
η ∈ R and a Lévy measure1 ν such that

Rμ(w) = aw2 + ηw +
∫

R

(
1

1 − wx
− 1 − wx1[−1,1](x)

)
ν(dx) (w ∈ C

−). (5)

The triplet (a, η, ν) is uniquely determined and referred to as the free characteristic triplet
forμ, and ν is referred to as the free Lévy measure forμ. In terms of the Voiculescu transform
ϕμ the free Lévy–Khintchine representation takes the form:

ϕμ(z) = γ +
∫

R

1 + t z

z − t
σ(dt), (z ∈ C

+), (6)

where the free generating pair (γ, σ ) is uniquely determined and related to the free charac-
teristic triplet by the formulas[4]:

⎧
⎪⎪⎨

⎪⎪⎩

ν(dt) = 1+t2

t2
· 1R\{0}(t) σ (dt),

η = γ + ∫
R

t
(
1[−1,1](t) − 1

1+t2

)
ν(dt),

a = σ({0}).
In particular σ is a finite measure. The right hand side of (6) gives rise to an analytic function
defined on all of C+, and in fact the property that ϕμ can be extended analytically to all of
C

+ also characterizes the measures in the class of freely infinitely divisible distributions.
More precisely Bercovici and Voiculescu proved in [7] the following fundamental result:

Theorem 2.1 A probability measure μ on R is freely infinitely divisible if and only if the
Voiculescu transform ϕμ has an analytic extension defined on C

+ with values in C
− ∪ R.

Recently free infinite divisibility has been proved for: normal distribution, some of the
Boolean-stable distributions, some of the beta distributions and some of the gamma dis-
tributions, including the chi-square distribution, see [2,5,13].

2.2 Freely Self-decomposable Distributions

A probability measure μ on R is called freely self-decomposable if for any c ∈ (0, 1) there
exists a probability measure ρc ∈ P(R) such that

μ = Dc(μ) � ρc, (7)

where Dc is dilation, that is, Dc(μ)(B) := μ(c−1B) for any c > 0 and B ∈ B(R). It is
known that the measures ρc are freely infinitely divisible too.

The concept has six characterizations at least: (I) in terms of the free Lévy measure,
(II) limit theorem, (III) stochastic integral representation, (IV) self-similarity, (V) the free
cumulant sequence and (VI) analytic functions. From (I) to (IV) are proved in [4] based on
the Bercovici–Pata bijection and classical results (see page 2 in [26]). (V) and (VI) are proved
in [15]. In this paper we will apply (I) and (V).

1 A (Borel-) measure ν on R is called a Lévy measure, if ν({0}) = 0 and
∫
R
min{1, x2} ν(dx) < ∞.
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1060 W. Młotkowski et al.

2.2.1 Free Lévy Measure

In this sectionwe characterize the class of classical and freely self-decomposable distributions
via its Lévy measure. Firstly we define the concept of unimodality. A measure ρ is said to
be unimodal with mode a ∈ R if

ρ(dx) = cδa + f (x) dx,

where dx is the Lebesgue measure, c ≥ 0 and f (x) is a function which is non-decreasing on
(−∞, a) and non-increasing on (a,∞). If μ is classically or freely self-decomposable, then
its corresponding Lévy measure is absolutely continuous with respect to Lebesgue measure
and classical/free Lévy measure νμ has following form:

νμ(dx) = k(x)

|x | dx,

where the measure k(x) dx is unimodal with mode 0, see [4] for details.

2.2.2 Free Cummulant Sequence

If μ is a compactly supported probability measure on R then the free cumulant transform
Rμ can be extended analytically to an open neighborhood of 0 and Rμ(0) = 0. Thus Rμ(z)
admits a power series expansion:

Rμ(z) =
∞∑

n=1

rn(μ)zn

in a disc around 0. The coefficients {rn(μ)}n≥1 are called the free cumulants of μ (see e.g.
[6]). They can be also computed frommoments ofμ via Möbius inversion, see [6,21]. Recall
that a sequence {an}∞n=1 of real numbers is said to be conditionally positive definite if the
infinite matrix {ai+ j }∞i, j=1 is positive definite, see [21]. It is equivalent to positive definiteness
of the sequence {an+2}∞n=0.

Proposition 2.2 [15] Let μ be a Borel probability measure on R with moments of all orders,
and let {rn(μ)}∞n=1 be the free cumulant sequence of μ. Then:

(i) If μ is freely self-decomposable then {nrn(μ)}∞n=1 is conditionally positive definite.
(ii) Suppose further that μ has compact support. Then μ is freely self-decomposable if and

only if {nrn(μ)}∞n=1 is conditionally positive definite.

Remark 2.3 Suppose thatμ is compactly supported. It is well known thatμ is freely infinitely
divisible if and only if {rn(μ)}∞n=1 is conditionally positive definite (see e.g. [21, Theorem
13.16]). Observe the following implication:

{nrn(μ)}∞n=1 is conditionally positive definite 
⇒ {rn(μ)}∞n=1 is conditionally positive definite.

Indeed, the sequence { 1n }∞n=1 is conditionally positive definite since
1
n is the (n−1)-thmoment

of the uniform distribution on (0, 1) and the pointwise product of two conditionally positive
definite sequences is again conditionally positive definite.
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2.3 Free Regular Distributions

A freely infinitely divisible distribution μ on [0,∞) is said to be free regular if the measure
μ�t is also a probabilitymeasure on [0,∞) for all t > 0. For example, theMarchenko–Pastur
law �p,θ is free regular, where

�p,θ (dx) := max{1 − p, 0}δ0

+
√

(θ(1 + √
p)2 − x)(x − θ(1 − √

p)2)

2πθx
1(θ(1−√

p)2,θ(1+√
p)2)(x)dx,

for p, θ > 0 since ��t
p,θ = �pt,θ ∈ P([0,∞)) for all t > 0. In [3] a characterization of free

regular measures is given via R-transform as follows:

Theorem 2.4 [3, Theorem 4.2] Let μ be a freely infinitely divisible distribution on [0,∞).
Then μ is free regular if and only if its free cumulant transform is represented as

Rμ(z) = η′z +
∫

R

(
1

1 − zx
− 1

)
ν(dx), (z ∈ C

−),

for some η′ ≥ 0 and ν is the free Lévy measure with
∫
(0,∞)

min{1, x2}ν(dx) < ∞ and
ν((−∞, 0]) = 0.

Futhermore, free regular measures are characterized as free subordinators, see Theorem 4.2
in [3].

3 Fuss–Catalan Distributions �(p,p)

In this section we discuss the Fuss–Catalan distributions μ(p, p), p ≥ 1. First we study
free infinite divisibility. In Sect. 3.2 we obtain a result for free self-decomposability of
μ(p, p). Then we provide free Lévy–Khintchine representation of μ(p, p) via the Gauss
hypergeometric functions. In Sect. 3.4 we introduce concept of the free L1 class and prove
thatμ(p, p) is in the free L1 class for all 1 ≤ p ≤ 2. In Sect. 3.5 we investigate free regularity
for μ(p, p). Finally we prove that all the distributions μ(p, p), p ≥ 1, are unimodal.

3.1 Free Infinite Divisibility for�(p, p)

By (4) the free cumulants of μ(p, p) are given by rn(μ(p, p)) = An(0, p) = (p
n

)
, n ≥ 1.

Therefore first we are going to study the sequence
{( p

n+2

)}∞
n=0

.

Proposition 3.1 If −1 < p < 2, p �= 0, 1, then the sequence
{( p

n+2

)}∞
n=0

admits the follow-

ing integral representation:
(

p

n + 2

)
= sin(pπ)

π

∫ 0

−1
xn · x

(
1 + x

−x

)p

dx .

This sequence is positive definite if and only if p ∈ [−1, 0] ∪ [1, 2].
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1062 W. Młotkowski et al.

Proof Substituting x → −y, using the properties of the Beta function and applying Euler’s
reflection formula:

	(1 − p)	(p) = π

sin(pπ)
, p /∈ Z,

we get

sin(pπ)

π

∫ 0

−1
xn · x

(
1 + x

−x

)p

dx

= (−1)n+1 sin(pπ)

π

∫ 1

0
yn+1−p(1 − y)pdy

= (−1)n+1 sin(pπ)

π

	(n + 2 − p)	(p + 1)

	(n + 3)

= (−1)n+1 sin(pπ)

π

(n+1− p) . . . (n + 1 − p)(2 − p)(1 − p)	(1 − p) × p	(p)

(n + 2)!
= p(p − 1)(p − 2) . . . (p − n − 1)

(n + 2)! =
(

p

n + 2

)
.

If p ∈ (−1, 0) ∪ (1, 2), −1 < x < 0 then x sin(pπ) > 0. Therefore the sequence an(p) :=( p
n+2

)
is positive definite for p ∈ (−1, 0) ∪ (1, 2). We have also an(−1) = (−1)n , an(0) =

an(1) = 0 for n ≥ 0, a0(2) = 1 and an(2) = 0 for n ≥ 1, so the sequences an(−1), an(0),
an(1), an(2) are positive definite too. On the other hand, if the sequence an(p) is positive
definite, then a0(p) = p(p − 1)/2 ≥ 0 and

a0(p)a2(p) − a1(p)2 = 1

144
(2 − p)(1 + p)p2(p − 1)2 ≥ 0,

which implies that p ∈ [−1, 0] ∪ [1, 2]. ��
According to Remark 2.3 and Proposition 3.1, we have

Theorem 3.2 The Fuss–Catalan distribution μ(p, p) is freely infinitely divisible if and only
if 1 ≤ p ≤ 2.

Note that this case was overlooked in Corollary 7.1 in [18].

3.2 Free Self-decomposability for�(p, p)

In this section we will prove free self-decomposability for μ(p, p), 1 ≤ p ≤ 2. We need the
following

Proposition 3.3 If 0 < p < 2, p �= 1, then the sequence
{
(n + 2)

( p
n+2

)}∞
n=0

admits the

following integral representation:

(n + 2)

(
p

n + 2

)
= − p sin(pπ)

π

∫ 0

−1
xn
(
1 + x

−x

)p−1

dx . (8)

This sequence is positive definite if and only if p ∈ {0} ∪ [1, 2].
Proof Similarly as before, we have
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Free Self-decomposability and Unimodality... 1063

− p sin(pπ)

π

∫ 0

−1
xn
(
1 + x

−x

)p−1

dx

= (−1)n+1 p sin(pπ)

π

∫ 1

0
yn+1−p(1 − y)p−1 dy

= (−1)n+1 p sin(pπ)

π

	(n + 2 − p)	(p)

	(n + 2)

= (−1)n+1 p sin(pπ)

π

(n + 1 − p)(n − p) . . . (1 − p)	(1 − p)	(p)

(n + 1)!
= p(p − 1) . . . (p − n − 1)

(n + 1)! = (n + 2)

(
p

n + 2

)
.

From (8) we see that the sequence bn(p) := (n + 2)
( p

n+2

)
is positive definite for 1 < p < 2.

We have also bn(0) = bn(1) = 0 for n ≥ 0, b0(2) = 2 and bn(2) = 0 for n ≥ 1, so that the
sequences bn(0), bn(1) and bn(2) are positive definite too. On the other hand, if the sequence
bn(p) is positive definite, then b0(p) = p(p − 1) ≥ 0 and

b0(p)b2(p) − b1(p)2 = 1

12
p3(p − 1)2(2 − p) ≥ 0,

which implies that p ∈ {0} ∪ [1, 2]. ��
Combining Proposition 2.2 with Proposition 3.3 we obtain

Theorem 3.4 The Fuss–Catalan distribution μ(p, p) is freely self-decomposable if and only
if 1 ≤ p ≤ 2.

3.3 Free Cumulant Transform and Nonregularity of�(p, p)

From the binomial expansion, the free cumulant transform Rμ(p,p) of μ(p, p) is given by

Rμ(p,p)(z) =
∞∑

n=1

An(0, p)zn = (1 + z)p − 1.

Sinceμ(p, p) is freely infinitely divisible (even freely self-decomposable) for 1 ≤ p ≤ 2, its
free cumulant transform should be written by the free Lévy–Khintchine representation (5).
We give a free characteristic triplet of μ(p, p) for 1 ≤ p ≤ 2. In particular Rμ(1,1)(z) = z
and Rμ(2,2)(z) = 2z + z2, so in these cases the free Lévy–Khintchine triples are (0, 1, 0) and
(1, 2, 0).

Now we assume that 1 < p < 2. We will apply the Gauss hypergeometric series which
is defined by

2F1(a, b, c; z) :=
∞∑

n=0

(a)n(b)n

(c)n

zn

n! ,

where a, b, c are real parameters, c �= 0,−1,−2, . . . and (a)n denotes the Pochhammer
symbol: (a)n := a(a + 1) . . . (a + n − 1), (a)0 := 1, see [1,22]. The series is absolutely
convergent for |z| < 1. The function 2F1(a, b, c; z) is the unique solution f (z) which is
analytic at z = 0 with f (0) = 1, of the following equation:

z(1 − z) f ′′(z) + (c − (a + b + 1)z) f ′(z) − ab f (z) = 0. (9)
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Moreover, if Re(c) > Re(b) > 0 and |z| < 1 then we have the following integral represen-
tation:

2F1(a, b, c; z) = 1

B(b, c − b)

∫ 1

0
xb−1(1 − x)c−b−1(1 − zx)−adx, (10)

where B(t, s) is the Beta function. We give an explicit formula for a special choice of a, b, c.

Lemma 3.5 For s > 0, s �= 1, 2 we have

2F1(1, s, 3; z) = −2
(
(s − 2)z + 1 − (1 − z)2−s

)

(s − 2)(s − 1)z2
. (11)

Proof Let s > 0, s �= 1, 2 and denote by fs(z) the right hand side of (11). This function is
analytic at z = 0 and it is easy to check that fs(0) = 1. Then we have

f ′
s (z) = 2

(
2(1 − z)2−s + (2 − s)z(1 − z)1−s − 3(2 − s)z + 2

)

(s − 2)(s − 1)z3
,

f ′′
s (z) = −2

(
6(1 − z)2−s + 4(2 − s)z(1 − z)1−s + (2 − s)(1 − s)z2(1 − z)−s − 6(2 − s)z + 6

)

(s − 2)(s − 1)z4
,

and one can check that the differential equation (9) satisfied. This concludes the proof. ��
For 1 < p < 2, we get the free Lévy–Khintchine representation of μ(p, p).

Proposition 3.6 For 1 < p < 2, z ∈ C
−, we have

Rμ(p,p)(z) = pz +
∫

R

(
1

1 − zx
− 1 − zx1[−1,1](x)

)

×
(

− sin(pπ)

π |x |
)(

1 + x

−x

)p

1(−1,0)(x)dx, (12)

Proof For 1 < p < 2 and for z in a disc around 0, by applying (10) and Lemma 3.5, we have
∫

R

(
1

1 − zx
− 1 − zx1[−1,1](x)

)
×
(

− sin(pπ)

π |x |
)(

1 + x

−x

)p

1(−1,0)(x)dx

= z2
(

− sin(pπ)

π

)∫ 1

0
x1−p(1 − x)p(1 + zx)−1dx

= z2
(

− sin(pπ)

π

)
B(2 − p, 1 + p)2F1(1, 2 − p, 3;−z)

= z2
(

− sin(pπ)

π

)(
−π(p − 1)p

2 sin(pπ)

)(
2((1 + z)p − pz − 1)

(p − 1)pz2

)

= (1 + z)p − pz − 1

= Rμ(p,p)(z) − pz.

Therefore the free cumulant transform of μ(p, p) has the representation (12) on a neigh-
bourhood 0 for 1 < p < 2. Since μ(p, p) is freely infinitely divisible for all 1 < p < 2, its
free cumulant transform has an analytic continuation to C

− and therefore the formula (12)
holds for all z ∈ C

− by using the identity theorem of complex analytic functions. ��
Remark 3.7 By Proposition 3.6, the free Lévy measure νμ(p,p) of μ(p, p) is of the form

νμ(p,p)(dx) = kp(x)

|x | dx,
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where

kp(x) =
(

− sin(pπ)

π

)(
1 + x

−x

)p

1(−1,0)(x)dx .

Note that for 1 < p < 2 the function kp is non-decreasing on (−1, 0), which is an another
proof of free self-decomposability of μ(p, p). Moreover, the free Lévy measure νμ(p,p) for
1 < p < 2 has compact support so that it is not in free counterpart of so-called Thorin class.
Note also that, surprisingly, the support of μ(p, p) is contained in the positive half-line,
while the support of the Lévy measure νμ(p,p) is contained in negative half-line.

As an immediate consequence of Proposition 3.6 and Theorem 2.4 we get

Theorem 3.8 If 1 < p≤ 2 then the Fuss–Catalan distribution μ(p, p) is not free regular.

Since μ(2, 2)�t corresponds to the Wigner’s semicircle law with mean 2t and variance
t , the measure μ(2, 2)�t is not probability measure on [0,∞) for 0 < t < 1, and therefore
μ(2, 2) is not also free regular. The measure μ(1, 1) = δ1 is free regular.

3.4 �(p, p) is in the Class Free L1

Now we define the following special subclass of all freely self-decomposable distributions.

Definition 1 A probability measure μ on R is said to be in the class free L1 if μ is freely
self-decomposable and for every c ∈ (0, 1) the measure ρc := ρc(μ) ∈ P(R) in (7) is also
freely self-decomposable.

According to Sect. 3.1, the measure μ(p, p) is freely self-decomposable for 1 ≤ p ≤ 2.
Therefore for any c ∈ (0, 1) there exists ρp,c ∈ P(R) such that

μ(p, p) = Dc(μ(p, p)) � ρp,c. (13)

Now we will prove that ρp,c is also freely self-decomposable for 1 ≤ p ≤ 2.

Theorem 3.9 The Fuss–Catalan distribution μ(p, p) is in the class free L1 for all 1 ≤ p ≤ 2.

Proof For any p ∈ [1, 2], c ∈ (0, 1), we show that ρp,c in (13) is freely self-decomposable.
First we consider the cases p = 1, 2. If p = 1 then

Rρ1,c (z) = Rμ(1,1)(z) − RDc(μ(1,1))(z) = z − cz = (1 − c)z,

for all z ∈ C
−. Therefore ρ1,c is freely self-decomposable. When p = 2 we have

Rρ2,c (z) = Rμ(2,2)(z) − RDc(μ(2,2))(z) = 2(1 − c)z + (1 − c2)z2,

for all z ∈ C
−. Therefore ρ2,c is also freely self-decomposable.

Now assume that p ∈ (1, 2). By (12), we have that the free Lévy measure νρp,c of ρp,c is
given by

− sin(pπ)

π |x |
{(

1 + x

−x

)p

1(−1,0)(x) −
(

c + x

−x

)p

1(−c,0)

}
dx .

Define

kp,c(x) := − sin(pπ)

π

{(
1 + x

−x

)p

1(−1,0)(x) −
(

c + x

−x

)p

1(−c,0)

}
,
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that is, νρp,c (dx) = kp,c(x)

|x | dx . It is enough to show that kp,c(x) is non-decreasing on (−1, 0).
Put

u p,c(x) := − π

sin(pπ)
kp,c(x).

Then

u′
p,c(x) = p(1 + x)p−1

(−x)p+1 > 0

for −1 < x ≤ −c and

u′
p,c(x) = p{(1 + x)p−1 − c(c + x)p−1}

(−x)p+1 > 0

for −c < x < 0. Hence u p,c(x) is non-decreasing on (−1, 0), and therefore so is kp,c(x).
Thus ρp,c is freely self-decomposable for p ∈ (1, 2) too by [4] or Sect. 2.2.1. ��

3.5 Unimodality for�(p, p)

Unimodality is a remarkable property of classical and freely self-decomposable distributions,
namely, every classical or freely self-decomposable distribution is unimodal (see [14,27]).
Since μ(p, p), p > 0, is absolutely continuous with respect to Lebesgue measure, we
consider only unimodality of the density function Wp,p(x). According to Proposition 1.1 we
have

Wp,p(ρ(ϕ)) = (csc((p − 1)ϕ)) sin(ϕ) sin(rϕ)

π
, 0 < ϕ <

π

p
. (14)

Proposition 3.10 The Fuss–Catalan distribution μ(p, p) is unimodal for all p ≥ 1.

Proof If 1 ≤ p ≤ 2 then μ(p, p) is freely self-decomposable, therefore, by [14, Theorem
1], it is unimodal. Now assume that p > 2. Denote by g(ϕ) the right hand side of (14). Then

dg(ϕ)

dϕ
=
(
sin2(pϕ) − p sin2(ϕ)

)
csc2(ϕ(1 − p))

π
, 0 < ϕ <

π

p
.

Here we consider h(ϕ) = sin(pϕ) − √
p sin(ϕ). h′(ϕ) = p cos(pϕ) − √

p cos(ϕ) and
h′′(ϕ) = −p2 sin(pϕ) + √

p sin(ϕ). h′(0) = p − √
p > 0, h′( π

p ) = −p + √
p cos( π

p ) < 0
and h′′(ϕ) < 0 on 0 < ϕ < π

p because sin(pϕ) ≥ sin(ϕ) on 0 < ϕ < π
p . So this means that

sin(pϕ) = √
p sin(ϕ) has only one solution in 0 < ϕ < π

p for p > 2 and so does dg(ϕ)
dϕ

. As
a result we obtain that μ(p, p) is unimodal. ��

4 General Fuss–Catalan Distributions �(p, r)

In this section, we discuss the general Fuss–Catalan distribution μ(p, r) and give a proof of
Theorem 1.3. In Sect. 4.1, we study free infinite divisibility forμ(p, r). In Sect. 4.2, we obtain
a Lévy–Khintchine representation ofμ(p, r) for r < p. In Sect. 4.3, we investigate free self-
decomposability for μ(p, r) via its Lévy measure. In Sect. 4.4, we discuss free regularity
of μ(p, r). In Sect. 4.5, we study unimodality for four special families of Fuss–Catalan
distributions.
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4.1 Free Infinite Divisibility for�(p, r)

The characterization of those μ(p, r) which are freely infinitely divisible in [18, Corollary
7.1], was not quite correct and overlooked the distributions μ(p, p), 1 ≤ p ≤ 2. Here we
provide complete description and proof.

Theorem 4.1 Suppose that p ≥ 1, 0 < r ≤ p. The Fuss–Catalan distribution μ(p, r) is
freely infinitely divisible if and only if either 0 < r ≤ min{p/2, p − 1} or 1 ≤ p = r ≤ 2.

Proof From Corollary 5.1 in [17] and Theorem 3.2 we know that if either 0 < r ≤
min{p/2, p − 1} or 1 ≤ p = r ≤ 2 then μ(p, r) is freely infinitely divisible.

On the other hand, by Theorem 3.2, μ(p, p) is not freely infinitely divisible for p > 2.
Similarly, for μ(p, p − 1) the free cumulants are An(1, p − 1) = (n−2+p

n

)
. Since

A2(1, p − 1)A4(1, p − 1) − A3(1, p − 1)2 = 1

144
p2(p − 1)2(p + 1)(2 − p),

μ(p, p − 1) is not freely infinitely divisible for p > 2.
Now assume that p − 1 < r < p. We are going to show that there exists even n ≥ 2 such

that An(p − r , r) ≤ 0. We have

rn(p, r) = An(p − r , r) = r

n(p − r) + r

(
n(p − r) + r

n

)

= r

n!
n−1∏

i=1

(n(p − r) + r − i) = r

n!
n−1∏

i=1

(n(p − r − 1) + r + i).

Putting u := r + 1 − p we have 0 < u < 1 and An(p − r , r) ≤ 0 if and only if nu − r > 1
and the floor �nu − r� is odd. Consider the set

G := {(nu − r) mod 2 : n ∈ N, n even, nu > r + 1} ⊆ [0, 2).
If u is rational then G is a coset of a finite subgroup of the group

([0, 2), 0,+mod 2
)
, otherwise

G is a dense subset of [0, 2). It is easy to see in the former case that for some even n we have
(nu − r)mod 2 ∈ [1, 2), which implies An(p − r , r) ≤ 0. In the latter we can find n such
that n is even, 1 < (nu − r)mod 2 < 2 and then An(p − r , r) < 0.

Finally, assume that p > 2 and p − 1 < r < p/2. Then p − r > 1 and the free
cumulants An(p − r , r) admit integral representation (3), with p − r instead of p. Since
r > p − r , Wp−r ,r (x) is negative on some interval, and so is x2Wp−r ,r (x). This implies,
that the sequence An+2(p − r , r) is not positive definite (c.f. Lemma 7.1 in [18]). ��

4.2 Free Cumulant Transform of�(p, r)

In this section, we give the free Lévy–Khintchine representation of μ(p, r) to discuss free
self-decomposability and free regularity for μ(p, r).

Proposition 4.2 If 0 < r ≤ min{p/2, p − 1} then the free cumulant transform Rμ(p,r) has
an analytic continuation to C

− and we have

Rμ(p,r)(z) =
∫ (p−r)p−r (p−r−1)1−(p−r)

0

(
1

1 − zx
− 1

)
Wp−r ,r (x)dx (15)

for all z ∈ C
−, where Wp−r ,r (t) is the density function of μ(p−r , r) with respect to Lebesgue

measure on R.
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Proof Suppose that p ≥ 1 and 0 < r < p. Then the function Wp−r ,r (t) is the probability
density function of the probability measure μ(p − r , r). Since Wp−r ,r (t) has a support
concentrated on [0, (p − r)p−r (p − r − 1)1−(p−r)], we can take ε > 0 such that |z| < ε

and |zt | < 1 for all t in the support of Wp−r ,r (t). If it is necessary, then we replace ε > 0
such that the free cumulant transform Rμ(p,r)(z) extends the power series at z = 0. Then for
|z| < ε, the free cumulant transform Rμ(p,r) is written by

Rμ(p,r)(z) =
∞∑

n=1

An(p − r , r)zn =
∞∑

n=1

(∫ (p−r)p−r (p−r−1)1−(p−r)

0
xn Wp−r ,r (x)dx

)
zn

=
∫ (p−r)p−r (p−r−1)1−(p−r)

0

∞∑

n=1

(zx)n Wp−r ,r (x)dx

=
∫ (p−r)p−r (p−r−1)1−(p−r)

0

zx

1 − zx
Wp−r ,r (x)dx

=
∫ (p−r)p−r (p−r−1)1−(p−r)

0

(
1

1 − zx
− 1

)
Wp−r ,r (x)dx .

In particular, if 0 < r ≤ min{p/2, p − 1}, then μ(p, r) is freely infinitely divisible by
Theorem 4.1. Hence the free cumulant transform Rμ(p,r) has an analytic continuation to C−
and therefore the formula (15) holds for all z ∈ C

− by using the identity theorem of complex
analytic functions. ��

From the above proposition, the free Lévy measure νμ(p,r) of μ(p, r) is given by

νμ(p,r)(dx) = kp,r (x)

x
dx, kp,r (x) := xWp−r ,r (x), (16)

for all p ≥ 1 and 0 < r ≤ min{p/2, p − 1}.

4.3 Free Self-decomposability for�(p, r)

In order to check free self-decomposability of μ(p, r) we should check whether or not
xWp−r ,r (x)dx is unimodal with mode 0.

Theorem 4.3 Suppose that p ≥ 1, 0 < r ≤ p. The Fuss–Catalan distribution μ(p, r) is
freely self-decomposable if and only if 1 ≤ p = r ≤ 2.

Proof In view of Theorem 3.4 and Theorem 4.1 it suffices to check the case 0 < r ≤
min{p/2, p − 1}. By [10, Corollary 2.5], we have

kp,r (x) ∼ 1

π
sin

(
rπ

p − r

)
x

r
p−r ,

as x → 0+, where kp,r was defined in (16). Since 0 < r ≤ min{p/2, p − 1}, we have
p − r ≥ r . Hence k′

p,r (x) ≥ 0 for x ∈ (0, ε), where ε > 0 is sufficiently small. This implies
that kp,r (x)dx can not be unimodal with mode 0. From remarks in Sect. 2.2.1, we conclude
that μ(p, r) is not freely self-decomposable for 0 < r ≤ min{p/2, p − 1}. ��
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4.4 Free Regularity for�(p, r)

In this section, we investigate free regularity for μ(p, r). We should check the free Lévy
measure of μ(p, r).

Theorem 4.4 Suppose that p ≥ 1, 0 < r ≤ p. The Fuss–Catalan distribution μ(p, r) is free
regular if and only if either 0 < r ≤ min{p/2, p − 1} or p = r = 1.

Proof Wemay assume that p ≥ 1, 0 < r ≤ p and either 0 < r ≤ min{p/2, p − 1} or p = r
and1 ≤ p ≤ 2 holds sinceμ(p, r)has to be freely infinitely divisible.Wehave alreadyproved
thatμ(p, r) is not free regularwhen p = r and 1 < p≤ 2 and is free regularwhen p = r = 1.
Suppose that 0 < r ≤ min{p/2, p − 1} holds. Note that νμ(p,r)(dx) = Wp−r ,r (x)dx . Since
the support of Wp−r ,r is concentrated on [0, (p − r)p−r (p − r − 1)1−(p−r)] and νμ(p,r)(dx)

is Lebesgue absolute continuous, we have νμ(p,r)((−∞, 0]) = 0. By Proposition 4.2 and
Theorem 2.4, the distribution μ(p, r) is free regular. Therefore μ(p, r) is free regular if and
only if either 0 < r ≤ min{p/2, p − 1} or p = r = 1. ��

4.5 Unimodality for�(p, r): 4 Cases

The Fuss-Catalan distributions μ(p, r) are absolutely continuous for p > 1, 0 < r ≤ p,
therefore we have to verify unimodality of the density function Wp,r (x). Equivalently, it is
sufficient to checkwhether the right hand side of (2) is an unimodal function for 0 < φ < π/p.
This turns out to be quite difficult in full generality. We know already from Proposition 3.10
that all μ(p, p), p ≥ 1, are unimodal. Here we will study some further special cases.

4.5.1 Case I:�(p, p− 1)

The Fuss–Catalan distributions μ(p, p − 1), p > 1, are not freely self-decomposable, but
we will show that they are unimodal.

Proposition 4.5 The Fuss–Catalan distribution μ(p, p − 1) is unimodal for all p ≥ 1.

Proof If p = 1, then μ(p, p − 1) = δ0, and therefore it is unimodal. Assume that p > 1.
Then the density function is

Wp,p−1(ρ(ϕ)) = 1

π(cot((p − 1)ϕ) + cot ϕ)
, 0 < ϕ <

π

p
,

with ρ(ϕ) given by (1). We consider a function gp(ϕ) defined by gp(ϕ) := πWp,p−1(ρ(ϕ))

for 0 < ϕ < π
p . Then

g′
p(ϕ) = (p − 1) sin2 ϕ + sin2((p − 1)ϕ)

(cot((p − 1)ϕ) + cot ϕ)2 sin2((p − 1)ϕ) sin2 ϕ
.

If p > 1, then we have that g′
p(ϕ) > 0 for all 0 < ϕ < π

p . Hence gp(ϕ) is non-decreasing

on (0, π
p ) and therefore μ(p, p − 1) is unimodal with mode ρ(π/p) = p p(p − 1)1−p . ��

4.5.2 Case II:�(2r, r)

We show that μ(2r , r) is unimodal for all r ≥ 1 in this section. Note that μ(2r , r) does not
have a singular part with respect to Lebesgue measure for r ≥ 1. Therefore we consider
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only probability density of μ(2r , r) to study unimodality. The probability density function
of μ(2r , r) is given by

W2r ,r (ρ(ϕ)) = sinr−1((2r − 1)ϕ) sin ϕ sin(rϕ)

π sinr (2rϕ)
.

Proposition 4.6 The Fuss–Catalan distribution μ(2r , r) is unimodal for all r ≥ 1.

Proof If r = 1, then μ(2r , r) = �1,1 is unimodal. Assume that r > 1. Let gr (ϕ) :=
πW2r ,r (ρ(ϕ)). We have

g′
r (ϕ) = Gr (ϕ)

sinr+1(2rϕ)
,

where

Gr (ϕ) := sinr−2((2r − 1)ϕ) sin(2rϕ)
[
(2r2 − 3r + 1) sin ϕ sin(rϕ) cos((2r − 1)ϕ)

+ sin((2r − 1)ϕ)(r sin ϕ cos(rϕ) + cosϕ sin(rϕ))
]

− 2r cos(2rϕ) sinr−1((2r − 1)ϕ) sin ϕ sin(rϕ)

Since 2r2 − 3r + 1 > 0 and rϕ, (2r − 1)ϕ ∈ (0, π/2) for all ϕ ∈ (0, π
2r ) ⊂ (0, π/2) and

r > 1, we have

(2r2 − 3r + 1) sinr−2((2r − 1)ϕ) sin(2rϕ) sin ϕ sin(rϕ) cos((2r − 1)ϕ) ≥ 0.

Therefore we have

Gr (ϕ) ≥ sinr−1((2r − 1)ϕ) sin(2rϕ)(r sin ϕ cos(rϕ) + cosϕ sin(rϕ))

− 2r cos(2rϕ) sinr−1((2r − 1)ϕ) sin ϕ sin(rϕ)

≥ r sinr−1((2r − 1)ϕ) sin(2rϕ) sin ϕ cos(rϕ)

− 2r cos(2rϕ) sinr−1((2r − 1)ϕ) sin ϕ sin(rϕ)

= r sin ϕ sinr−1((2r − 1)ϕ)
[
sin(2rϕ) cos(rϕ) − 2 cos(2rϕ) sin(rϕ)

]

= 2r sin ϕ sinr−1((2r − 1)ϕ) sin3(rϕ)

≥ 0,

for all ϕ ∈ (0, π
2r ). Hence gr (ϕ) is non-decreasing on (0, π

2r ), and therefore μ(2r , r) is
unimodal for all r > 1. ��

4.5.3 Case III:�(1, r)

The density function of μ(1, r) can not be written by (2), but we have obtained a density
formula of μ(1, r) in [17].

Proposition 4.7 Suppose that 0 < r < 1. We have

W1,r (x) = sin(rπ)

π
xr−1(1 − x)−r1(0,1)(x). (17)

Furthermore μ(1, r) is not unimodal for 0 < r < 1.
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Proof Equation (17) was proved in [17, formula (5.2)]. Now it is elementary to check that
for 0 < r < 1 the function W1,r (z) is decreasing on x ∈ (0, 1 − r) and increasing for
x ∈ (1 − r , 1), hence is not unimodal. ��

Since W1,p−1(x)dx is the free Lévy measure ofμ(p, p−1), (1 < p < 2) and it is written
by (17), we get an explicit free Lévy–Khintchine representation of μ(p, p − 1). From the
form of free cumulants of μ(p, p − 1), its free cumulant transform Rμ(p,p−1) is written by

Rμ(p,p−1)(z) =
∞∑

n=1

An(1, p − 1)zn = 1

(1 − z)p−1 − 1.

Similarly as in Proposition 3.6, we get the following formula.

Corollary 4.8 For 1 < p < 2, we have

Rμ(p,p−1)(z) = (p − 1)z +
∫

R

(
1

1 − zx
− 1 − zx1[−1,1](x)

)

×
(

− sin(pπ)

π

)
x p−2(1 − x)1−p1(0,1)(x)dx

=
∫

R

(
1

1 − zx
− 1

)
×
(

− sin(pπ)

π

)
x p−2(1 − x)1−p1(0,1)(x)dx,

(18)

for all z ∈ C
−.

Proof For all z in a neighborhood of 0, by applying the integral representation (10) and
Lemma 3.5 again, we have

∫

R

(
1

1 − zx
− 1 − zx1[−1,1](x)

)
×
(

− sin(pπ)

π

)
x p−2(1 − x)1−p1(0,1)(x)dx

= z2
(

− sin(pπ)

π

)∫ 1

0

x p(1 − x)1−p

1 − zx
dx

= z2
(

− sin(pπ)

π

)
B(p + 1, 2 − p)2F1(1, p + 1, 3; z)

= z2
(

− sin(pπ)

π

)(
−π(p − 1)p

2 sin(pπ)

)(
−2(pz − z + 1 − (1 − z)1−p)

(p − 1)pz2

)

= −pz + z − 1 + 1

(1 − z)p−1

= (1 − p)z + Rμ(p,p−1)(z).

Therefore the free cumulant transform of μ(p, p − 1) has the representation (18) on the
neighborhood of 0 for 1 < p < 2. Since μ(p, p − 1) is freely infinitely divisible for all
1 < p < 2, its free cumulant transform has an analytic continuation to C

− and therefore
the formula of (18) hold for all z ∈ C

− by using the identity theorem of complex analytic
functions. ��

4.5.4 Case IV:�(2, r)

For p = 2 there is a more simple formula available for the density function W2,r (x), namely

W2,r (x) = sin
(
r · arccos√

x/4
)

πx1−r/2 , (19)
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x ∈ (0, 4), see formula (33) in [19]. In particular,

W2,1/2(x) =
√
2 − √

x

2πx3/4
, W2,1(x) = 1

2π

√
4 − x

x
, (20)

W2,3/2(x) = (1 − √
x)
√
2 − √

x

2πx1/4
, W2,2(x) = 1

2π

√
x(4 − x). (21)

From (20), (21) it is easy to check thatμ(2, 1/2),μ(2, 1),μ(2, 3/2) andμ(2, 2) are unimodal.
Now we will prove the following

Proposition 4.9 There exists r1 ∈ ( 32 , 2) such that the Fuss–Catalan distribution μ(2, r) is
unimodal for all 0 < r < r1. The constant r1 is the unique solution in 3

2 < r < 2 of the
equation

r sin

(
3r + 3

2r + 4
π

)
+ 2 sin

(
3r

2r + 4
π

)
cos

(
3

2r + 4
π

)
= 0. (22)

One can find numerically that r1 = 1.6756 . . ..

Proof First we will prove that if 0 < r < 1 then μ(2, r) is unimodal. Substitute x �→ 4t2 in
(19). Then

wr (t) := W2,r (4t2) = sin (r · arccos t)

π(2t)2−r
,

t ∈ (0, 1), and

w′
r (t) = −r t cos (r · arccos t) + (2 − r)

√
1 − t2 sin (r · arccos t)

π22−r t3−r
√
1 − t2

.

If 0 < r < 1, 0 < t < 1 then 0 < r · arccos t < rπ/2 < π/2, so both the summands in the
numerator are positive. Consequently, wr (t) is decreasing on t ∈ (0, 1).

Next, we show the existance and uniqueless of a solution r1 ∈ ( 32 , 2) of the Eq. (22).
Let A(r) be the function of LHS of the Eq. (22). It is easy to check that A(r) > 0 for all
r ∈ (1, 3

2 ) and A(2) < 0. Moreover A′(r) < 0 for all 3
2 < r < 2. Hence there exists a unique

solution r1 ∈ ( 32 , 2) such that A(r1) = 0 by the intermediate value theorem.
Assume1 < r < r1.Weconsider a function gr (ϕ)definedby gr (ϕ) := π ·22−r W2,r (ρ(ϕ))

for 0 < ϕ < π
2 . Then

g′
r (ϕ) = r cos((r + 1)ϕ) + 2 sin(rϕ) sin ϕ

(cosϕ)3−r

It is sufficient to check the positivity of the function hr (ϕ) := r cos((r+1)ϕ)+2 sin(rϕ) sin ϕ

to see the positivity of g′
r (ϕ) since (cosϕ)3−r > 0 for all 0 < ϕ < π

2 . Since sin(rϕ) sin(ϕ) >

0 for all ϕ ∈ (0, π
2 ), we have that hr (ϕ) > 0 for all ϕ ∈ (0, π

2(r+1) ). Next we show that

h′
r (ϕ) < 0 for all ϕ ∈ ( π

2(r+1) ,
3π

2(r+2) ). To show this, we divide two cases of the region of ϕ.
Case I π

2(r+1) < ϕ ≤ π
r+1 : It is clear that

h′
r (ϕ) = −r(r + 1) sin((r + 1)ϕ) + 2r cos(rϕ) sin ϕ + 2 sin(rϕ) cosϕ

= −(r − 1)(r sin((r + 1)ϕ) + 2 sin(rϕ) cosϕ)

< 0.
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Fig. 1 Density function W2,r for r = 1.5, 1.6, 1.7, 1.8, 1.9, 2

Fig. 2 Phase transition

Case II π
r+1 < ϕ < 3π

2(r+2) : Since A(r) > 0 for all 1 < r < r1, we have

h′
r (ϕ) < −(r − 1)

[
r sin

(
3r + 3

2r + 4
π

)
+ 2 sin

(
3r

2r + 4
π

)
cos

(
3

2r + 4
π

)]

= −(r − 1)A(r)

< 0.

Due to the above evaluation, we obtain that h′
r (ϕ) < 0 for all π

2(r+1) < ϕ < 3π
2(r+2) . In

addition, for all π
r+1 < ϕ < π

2 , we have

h′′
r (ϕ) = −(r − 1) [r(r + 1) cos((r + 1)ϕ) + 2r cos(rϕ) cosϕ − 2 sin(rϕ) sin ϕ] > 0.
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Moreover h′
r (

π
2 ) = −(r − 1)r sin( (r+1)π

2 ) > 0 for all 1 < r < r1. Hence there exists a
unique solution ϕ0 ∈ ( 3π

2(r+2) ,
π
2 ) such that h′

r (ϕ0) = 0 by the intermediate value theorem.

More strongly, we have that h′
r (ϕ) < 0 for all ϕ ∈ ( 3π

2(r+2) , ϕ0) and h′
r (ϕ) > 0 for all

ϕ ∈ (ϕ0,
π
2 ). The equality h′

r (ϕ0) = 0 implies that

(cosϕ0)hr (ϕ0) = r cos((r + 1)ϕ0) cosϕ0 + 2 sin(rϕ0) cosϕ0 sin ϕ0

= r cos((r + 1)ϕ0) cosϕ0 − r sin((r + 1)ϕ0) sin ϕ0

= r cos((r + 2)ϕ0) > 0,

since 3π
2 < (r + 2)ϕ0 <

(r+2)π
2 < 2π . Thus hr (ϕ0) > 0, and therefore hr (ϕ) > 0 for

all ϕ ∈ ( π
2(r+1) ,

π
2 ). Hence gr (ϕ) is non-decreasing on (0, π

2 ). This means that μ(2, r) is
unimodal for all 1 < r < r1. ��

4.6 Phase Transition

The results of Sects. 4.5.3 and 4.5.4, as well as some numerical experiments, suggest, that
for every p > 1 the Fuss–Catalan distributions admit the following phase transition:

Conjecture 4.10 For every p > 1 there exists r0(p), with p − 1 < r0(p) < p, such that the
Fuss–Catalan distribution μ(p, r) is unimodal if and only if either r = p or 0 < r ≤ r0(p).

As an example we present on Fig. 1 graphs of W2,r (x) for r = 1.5, 1.6, 1.7, 1.8, 1.9, 2, the
left parts of the graphs appear in this order from the top to the bottom. Note that if 0 < r < 2
then limx→0+ W2,r (x) = +∞ and limx→0+ W2,2(x) = 0. We see that W2,1.5(x), W2,1.6(x)

are unimodal, W2,1.7(x), W2,1.8(x), W2,1.9(x) are not unimodal and W2,2(x) is again uni-
modal.Wehave found numerically that for p = 2 the phase transition is at r0(2) = 1.6756 . . .,
which suggests that r0(2) coincides with r1 from Proposition 4.9.

On Fig. 2 we represent the Fuss–Catalan distributions μ(p, r), p ≥ 1, 0 < r ≤ p, on
the (p, r)-plane. The middle thick blue line represents r0(p) which was found experimen-
tally. Top thick red line segment corresponds to the freely self-decomposable distributions
μ(p, r) and green area corresponds free regular infinitely divisible distributionsμ(p, r). The
union of the red and green areas corresponds to the freely infinitely divisible Fuss–Catalan
distributions.
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5. Belinschi, S.T., Bożejko, M., Lehner, F., Speicher, R.: The normal distribution is �-infinitely divisible.
Adv. Math. 226(4), 3677–3698 (2011)

6. Benaych-Georges, F.: Taylor expansions of R-transforms: application to supports and moments. Indiana
Univ. Math. J. 55(2), 465–481 (2006)

7. Bercovici, H., Voiculescu, D.: Free convolution ofmeasures with unbounded support. IndianaUniv.Math.
J. 42(3), 733–773 (1993)

123



Free Self-decomposability and Unimodality... 1075
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19. Młotkowski, W., Penson, K.A., Życzkowski, K.: Densities of the Raney distributions. Doc. Math. 18,

1573–1596 (2013)
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