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Abstract

A general approach for the derivation of nonlinear parameterizations of neglected scales
is presented for nonlinear systems subject to an autonomous forcing. In that respect,
dynamically-based formulas are derived subject to a free scalar parameter to be determined
per mode to parameterize. For each high mode, this free parameter is obtained by minimizing
a cost functional—a parameterization defect—depending on solutions from direct numerical
simulation (DNS) but over short training periods of length comparable to a characteristic
recurrence or decorrelation time of the dynamics. An important class of dynamically-based
formulas, for our parameterizations to optimize, are obtained as parametric variations of
manifolds approximating the invariant ones. To better appreciate the origins of the modified
manifolds thus obtained, the standard approximation theory of invariant manifolds is revisited
in Part I of this article. A special emphasis is put on backward—forward (BF) systems naturally
associated with the original system, whose asymptotic integration provides the leading-order
approximation of invariant manifolds. Part II presents then (i) the modifications of these
approximating manifolds based also on integration of the same BF systems but this time over
a finite time 7, and (ii) the variational approach aimed at making an efficient selection of 7 per
mode to parameterize. The parametric class of leading interaction approximation (LIA) of the
high modes obtained this way, is completed by another parametric class built from the quasi-
stationary approximation (QSA); close to the first criticality, the QSA is an approximation to
the LIA, but it differs as one moves away from criticality. Rigorous results are derived that
show that—given a cutoff dimension—the best manifolds that can be obtained through our
variational approach, are manifolds which are in general no longer invariant. The minimizers
are objects, called the optimal parameterizing manifolds (PMs), that are intimately tied to the
conditional expectation of the original system, i.e. the best vector field of the reduced state
space resulting from averaging of the unresolved variables with respect to a probability mea-
sure conditioned on the resolved variables. Applications to the closure of low-order models of
Atmospheric Primitive Equations and Rayleigh-Bénard convection are then discussed. The
approach is finally illustrated—in the context of the Kuramoto—Sivashinsky turbulence—as
providing efficient closures without slaving for a cutoff scale k. placed within the inertial
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range and the reduced state space is just spanned by the unstable modes, without inclusion
of any stable modes whatsoever. The underlying optimal PMs obtained by our variational
approach are far from slaving and allow for remedying the excessive backscatter transfer
of energy to the low modes encountered by the LIA or the QSA parameterizations in their
standard forms, when they are used at this cutoff wavelength.

Keywords Approximate invariance formulas - Backward—forward systems - Dynamical
closure - Optimization - Parameterizing manifold

1 Introduction

A number of theories have been proposed to explain the phenomenon of turbulence in fluid
dynamics, but none has been universally accepted. Landau [117] and Hopf [93] suggested
that turbulence is the result of an infinite sequence of bifurcations, each adding another
independent period to a quasi-periodic motion of increasingly greater complexity. More
recently, it has been shown numerically that the original quasiperiodic Landau’s view of
turbulence, with the amendment of the inclusion of stochasticity, may be well suited to
describe certain turbulent behavior [105], at least for the motion of large eddies. In the 1970s
it has been theoretically argued and confirmed by many experiments that dynamical systems
may exhibit strange attractors which result in chaotic but deterministic behavior after a (very)
few bifurcations have taken place. Ruelle and Takens [151] and others have suggested this as
a mechanism underlying turbulence. In realistic physical problems one is seldomly able to
carry out the mathematics beyond the first or second bifurcation, in particular regarding the
derivation of reduced equations that capture effectively the amplitude and frequency content
of the bifurcated solutions [42,118]. Noteworthy is normal form reduction that have been
carried for degenerate singularities with simultaneous onset of co-existing and possibly many
instabilities, but still close to first criticality [4,40,59].

It is typical of many bifurcation problems that, as the condition for instability is exceeded,
increasingly many modes become unstable. This circumstance considerably complicates an
effective reduction because it often corresponds to going through higher-order bifurcations to
reach possibly chaos, for which a failure of the slaving principle of the unresolved variables
onto the resolved ones—mandatory for the success of standard reduction techniques—is
typically observed.

Center manifold techniques [42,81,172] require such a slaving principle to provide an
efficient reduction of the dynamics, and in that sense is reliable only in the vicinity of low-
order bifurcations associated with the onset of instability. Center manifolds form a particular
class of more general invariant manifolds associated with a fixed point, on which solutions
obey de facto a slaving principle. A comprehensive treatment of the computational aspects
relative to the underlying parameterizations can be found in [85]. The treatment in [85]
is based on the so-called parameterization method [16—18] itself built upon the invariance
equation (see Eq. (2.26) below) and the associated cohomological equations that the sought
(slaving) parameterization solves at different orders. The parameterization method allows
for efficient computations for not only the case of invariant manifolds associated with fixed
points, but also for the cases of invariant tori for autonomous or quasi-periodically forced
systems, averaging and periodic diffeomorphisms [27], invariant tori in Hamiltonian systems
[85], as well as normally hyperbolic invariant tori. Other complementary approaches include
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e.g. the Lyapunov—Schmidt reduction [77,125] and the Lyapunov—Perron method [88,125],
as well as the usage of symmetries [77,83].

Despite the success for analyzing a broad class of bifurcations or detecting special solu-
tions in dynamical systems such as quasi-periodic ones, these methods relying on invariant
manifold theory, have failed to prove their efficiency for reducing complicated behaviors
resulting from the presence of chaos. In a certain sense, the “story” of the inertial manifold
(IM) constitutes perhaps an epitome of this failure. Despite appealing mathematical results
showing existence of IMs for a broad class of dissipative systems [38,62,66,130,164], and
convergence error estimates when e.g. slaving is not guaranteed to be satisfied (Approximate
Inertial Manifold (AIM)) [48,52,98,131], early promises [55,64,65,95,96] have been chal-
lenged due to practical shortcomings pointed out for efficient closure by IMs or AIMs for
turbulent flows and route chaos [46,68,72,80,87,97,137].

Essentially, the current IM theory [180] predicts that the underlying slaving of the high
modes to the low modes, holds when the cutoff wavenumber, k., is taken sufficiently far within
the dissipative range, especially in “strongly” turbulent regimes that correspond e.g. to the
presence of many unstable modes. Still, as the AIM theory underlines, satisfactory closures
may be expected to be derived for k. corresponding to scales larger than what the IM theory
predicts. Nevertheless, as one seeks to further decrease k. within the inertial range, standard
AlIMs fail typically in providing relevant closures and one needs to rely on no longer a fixed
cutoff but instead a dynamic one so as to avoid energy accumulation on the cutoff level
[50,54,56].

In general, to aim at closing a given chaotic system at a fixed cutoff scale such that the
neglected scales contain a non-negligible fraction of the energy,! makes, a priori, the closure
problem difficult to address. This difficulty is often manifested by either an under- or over-
parameterization of the small scales, i.e. a deficient or excessive parameterization of the
small-scale energy, leading to an incorrect reproduction of the backscatter transfer of energy
to the large scales [9,94,108,121,140]. Thus, a deficiency in the (nonlinear) parameterization
of the high modes leads to errors in the backscatter transfer of energy which is due to nonlinear
interactions between the modes, especially those near the cutoff scale. We can speak of an
inverse error cascade, i.e. errors in the modeling of the parameterized (small) scales that
contaminate gradually the larger scales, and may spoil severely the closure skills for the
resolved variables.

To remedy such a pervasive issue, it is thus reasonable, given a cutoff scale to seek
for nonlinear parameterizations (manifolds) that minimize as much as possible a defect of
parameterization in order to reduce spurious backscatter transfer of energy to the large scales.
Obviously such manifolds should coincide with the invariant ones as one approaches towards
the first bifurcation.

This latter point explains the two-part structure of our article. We show here that an impor-
tant class of dynamically-based formulas for our parameterizations are obtained as parametric
variations of manifolds approximating the invariant ones. To better appreciate the origins of
the modified manifolds thus obtained, the standard approximation theory of invariant man-
ifolds is revisited in Part I of this article. A special emphasis is put on backward—forward
(BF) systems naturally associated with the original system, whose asymptotic integration
provides the leading-order approximation of invariant manifolds.

Part II presents then (i) the modifications of these approximating manifolds based also on
integration of the same BF systems but this time over a finite time 7, and (ii) the variational
approach aimed at making an efficient selection of T per mode to parameterize, in order to

I Such as “cutting” within the inertial range of turbulence.
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minimize a parameterization defect. The parametric class of leading interaction approxima-
tion (LIA) of the high modes obtained this way, is completed by another parametric class
built from the quasi-stationary approximation (QSA); close to the first criticality, the QSA is
an approximation to the LIA, but differs as one moves away from criticality.

In this article our formulations are general, but our primary motivations are geophysical
fluid dynamics, and our numerical illustrations are with simple systems of this type. With
this in mind, we elaborate our approach for a broad class of ordinary differential equations
(ODEs), that includes forced-dissipative systems of the form

dy

E:Ay—l—B(y,y)—i—F, y e CN. (1.1

Here A denotes a linear N x N matrix, B a quadratic nonlinearity (as in the fluid advection
operator) and F a constant forcing, i.e. autonomous. Such systems with complex entries arise
e.g. as equations for the perturbed variable around a mean state, when the latter are expressed
in the eigenbasis {e; }?':1 of the linearization at this mean state.

We decompose the phase space into the sum of the subspace, E., of resolved variables
(“coarse-scale”), and the subspace, E,, of unresolved variables (‘“small-scale”). In practice
E. is spanned by the first few eigenmodes with dominant real parts (e.g. unstable), and E
by the rest. Within this framework, and given a cutoff dimension, m (i.e. dim(E.)=m), we
consider for systems such as (1.1) parametric families of nonlinear parameterizations of the
form

He() = Y Hy(tw,&e, &€E,

n>m+1

T = (Tnt1,---»TN), Tn =0. (1.2)

The purpose is to dispose of parameterizations that cover situations of slaving between the
resolved and unresolved variables as well as situations for which slaving is not expected to
occur (e.g. far from criticality), as 7 is varied. In that respect, we aim at determining a family
of parameterizations that include the leading-order approximation of invariant manifolds
when the system is placed near the first bifurcation value. The theory of approximation of
invariant manifolds revisited in Part I teaches us that such a family can be produced by finite
time-integration of auxiliary BF systems derived from Eq. (1.1); see e.g. (2.29) and (4.12)
below. This gives rise to the LIA class, for which taking the limit (under appropriate non-
resonance conditions) of H,(t,, &) as 7, — oo provides the leading-order approximation of
the invariant manifold; see Theorems 1 and 2 below.

We propose a variational approach to deal with situations far away from criticality. It
consists of determining the optimal t,,-value, 7,7, by minimizing (relevant) cost functionals
that depend on solutions from direct numerical simulation (DNS) but over a training interval
of length comparable to a characteristic recurrence or decorrelation time of the dynamics;
see Sects. 5 and 6 below for applications.

Given a solution y(¢) of Eq. (1.1) available over an interval I7 of length 7', one such cost
functional on which a substantial part of this article focuses on is given by the following
parameterization defect

Qi (T, T) = |yn (1) — Ha(u; ye ). (13)

Here (-) denotes the time-mean over I7 while vn (1) and y.(¢) denote the projections onto
the high-mode e, and the reduced state space E. of y(t), respectively. Our goal is then to
optimize 9,,(t,, T) by solving foreachm +1 <n < N,
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min 9, (t,, T). (1.4)

This procedure corresponds to minimizing the variance of the residual error per high
mode in case y, and H, are zero-mean, and to minimizing the residual error as measured in
a least-square sense, in the general case.

Geometrically, as shown in Sect. 4.2 below, the graph of H; gives rise to a manifold 91,

that satisfies
N

Wf Z On(ty, 1), (1.5)

n=m+1

where dist(y(z), M,) denotes the distance of y(¢) (lying on the attractor) to the manifold
M.

Thus minimizing each Q, (t,,, T') (in the 7,,-variable) is a natural idea to enforce closeness
of y(¢) in a least-square sense to the manifold 9t;. The left panel in Fig. 1 illustrates (1.5)
for the y,-component: The optimal parameterization, H,(t,’, £), minimizing (1.4) is shown;
it illustrates a situation where the dynamics is transverse to it (i.e. absence of slaving) while
H, (v, &) provides the best (quadratic) parameterization in a least-square sense.

In practice, the following normalized parameterizing defect (for the nth mode), Q,,, is a
useful tool to compare the different parameterizations H,(t; -) as t is varied. It is defined as

lyn — Hy (T3 yo)I?
|an2

It provides a non-dimensional number to judge objectively of the quality of a parameteri-
zation. If Q,(z, T) = 0 for each n > m + 1, then H; provides an exact slaving relation,
and if H, = 0 i.e. H; = 0, corresponding to a standard Galerkin approximation, then
Q,(t,T) = 1. Thus, the notion of (normalized) parameterizing defect allows us to bring
another perspective on criticisms brought to the (approximate) inertial manifold theory
[72,90]: given a cutoff scale, if O, (z, T) > 1 (over-parameterization) for several high modes,
then a parameterization H; may indeed lead to closure skills worse than those that would
be obtained from a standard Galerkin scheme (cf. Q) in Fig. 1; right). In other words, only
a parameterization associated with a manifold that avoids such a situation is useful com-
pared to a standard Galerkin scheme. This understanding alone is overlooked in the literature
concerned with inertial manifolds and the like. We call such a manifold a parameterizing
manifold (PM); see Definition 1 for a precise characterization of a PM.

Minimizing the parameterization defects leads thus to an optimal PM, for the cost func-
tionals Q,,. We emphasize that each component H,, of the parameterization H; given in
(1.2), depends only on 7, (and not the other 7,,’s for p # n), and thus the cost functionals,
9,, may be minimized independently from each other.

The parametric dependence on 7 of H is of practical importance. To understand this, let us
consider for a moment a parameterization, H,, given as a homogeneous quadratic polynomial
of the m-dimensional &-variable with unknown coefficients (not depending on t,,). To learn
these coefficients via a standard regression would lead to m (m — 1) /2 coefficients to estimate.
Instead, adopting the parametric formulation given in (1.3), only the parameter t needs to be
learned (per high-mode) in case each coefficient of H,,(t, &) is given by a function of t. This
way, we benefit from a significant reduction of the amount N7 of snapshots y(#) required
from numerical integration of Eq. (1.1) to obtain robust parameterizations (in a statistical
sense). Roughly speaking, if N7 is smaller or comparable to m(m — 1)/2, then learning
the unknown (and arbitrary) coefficients of a homogeneous quadratic parameterization (not
given under the parametric form (1.3)) is either undetermined or not robust statistically.

On(t,T) = (1.6)
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Fig. 1 Left panel: The optimal parameterization, Hy (,f, §), minimizing (1.4) is shown (in gray). Here the
dynamics (black curve) is transverse to it (i.e. absence of slaving) while H, (7,, £) provides the best (quadratic)
parameterization in a least-square sense. See Fig. 4 below for a concrete example in the case of a truncated

Primitive Equation model due to Lorenz [123]. The parameter t;° corresponds to the argmin of Q, (red

asterisk) shown in the right panel. Right panel: Dependence on t shown for two parameterization defects Qj
and Q) given by (1.6), with p, n > m + 1. The minimum is marked by a red asterisk (Color figure online)

Explicit formulas for the coefficients of H,(t, &) are derived in Sects. 4.3 and 4.4 below.
These formulas are dynamically-based in the sense that these coefficients involve structural
elements of the right-hand side (RHS) of Eq. (1.1) such as the eigenvalues 8 of A, projections
onto the n™ high-mode of nonlinear interactions B!’ between pairs of low eigenmodes (e;, e )
of A (1 <i,j < m),as well as possible nonlinear interactions between these modes and the
forcing term.

For instance, for the LIA class, the coefficients of the H,,(z, £)’s monomials are given by
D;’j (7) Bl”j with

—78
—e ij
Dl”j(r) = - , T >0,
8;;
with Sfj:ﬂi—i-ﬂj—ﬂn. (1.7)

We emphasize that at an heuristic level, the coefficient Df'j (7) allows for balancing the denom-

inator 8;; by the numerator 1 — ¢~ ™ when the former is small. Such compensating t-factors
are in general absent from parameterizations built from invariant manifold or (approximate)
inertial manifolds techniques.

From the approximation theory of invariant manifolds revisited in Part I below, one notes
that D!'.(t) is equal to 1/8. in the case of standard approximation formulas of invariant
manifolds (Theorem 2), corresponding thus to the asymptotic case T — oo if 8, > 0.
When adopting these approximation formulas outside their domain of applicability (i.e. not
for approximating an underlying invariant manifold), it corresponds typically to small 8:’1 ’S
which without the compensating t-factors lead to an over-parameterization and an incorrect
reproduction of the backscatter transfer of energy to the large scales. This problem is typi-
cally encountered in invariant manifold approximation when small spectral gaps are present,
regardless of whether the solution dynamics is simple or complicated; see the Supplementary
Material for a simple example. It turns out that, to seek for an optimal backward integration
time t actually helps alleviate this problem by introducing numerators balancing the small
denominators present in standard LIA parameterizations such as provided by Theorem 2
below.

At the same time, T = 0 implies D;’j (r) = 0, which corresponds to the null parameteriza-
tion, namely to a Galerkin approximation of dimension m. Thus, minimizing the Q,’s gives
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rise to an intermediate (and optimized) parameterization compared to a Galerkin approxima-
tion (H, = 0) or an invariant manifold approximation (Q, = 0).

The right panel in Fig. 1 shows a typical dependence on t of the Q,’s defined in (1.6)
for the LIA class. Similar dependences hold for the QSA class. On a practical ground,
the minimization problem (1.4) is greatly facilitated by exploiting the explicit formulas of
Sects. 4.3 and 4.4. An efficient minimization can be indeed operated by application of a
simple gradient-descent algorithm in the real variable 7, when the appropriate moments up
to fourth order have been estimated; see Appendix.

‘We emphasize that the parameterization formulas of the LIA or QSA classes can be derived
for dissipative nonlinear partial differential equations (PDEs) as well; see Sect. 6 below.
The LIA class as rooted in the backward—forward method mentioned above was initially
introduced for PDEs (possibly driven by a multiplicative linear noise) in [31, Chap. 4] and
was applied to the closure of a stochastic Burgers equation in [31, Chaps. 6 & 7] and to optimal
control in [26]. The main novelty compared to these previous works is the idea of optimizing
per high mode the backward integration time, t,,, by minimization of the parameterization
defect Q,. Here, we also restrict ourselves to quadratic parameterizations that we prefer
to optimize instead of computing higher-order terms that although being potentially useful
make more cumbersome the numerical integration of the corresponding closure systems by
adding too many extra terms in the RHS of the latter.

The justification of the variational approach proposed in this article relies on the ergodic
theory of dissipative deterministic dynamical systems. In that respect, given the flow T;
associated with Eq. (1.1), we assume in Part II of this article that 7; possesses an invariant
probability measure w, which is physically relevant [37,57], in the sense that time-average
equals to ensemble average for trajectories emanating from Lebesgue almost every initial
condition. More precisely, we say that the invariant measure, j, is physical if the following
property holds for y in a positive Lebesgue measure set B(x) (of CV) and for every continuous
observable ¢ : CV — C

1 T
limoo?/o @(T;(y)) d Z/Qﬂ(y)du(y)- (1.8)

T—

This property assures that meaningful averages can be calculated and the statistics of the
dynamical system can be investigated by the asymptotic distribution of orbits starting from
Lebesgue almost every initial condition in e.g. the basin of attraction B(u) of the statistical
equilibrium, .

It can be proven for e.g. Anosov flows [13], partially hyperbolic systems [1], Lorenz-
like flows [12], and observed experimentally for many others [28,33,57,71] that a common
feature of (dissipative) chaotic systems is the transformation (under the action of the flow) of
the initial Lebesgue measure into a probability measure with finer and finer scales, reaching
asymptotically an invariant measure y of Sinai—Ruelle-Bowen (SRB) type. This measure is
singular with respect to the Lebesgue measure, is supported by the local unstable manifolds
contained in the global attractor or the non-wandering set [37, Definition 6.14], and if it has
no zero Lyapunov exponents it satisfies (1.8) [177]. This latter property is often referred
to as the chaotic hypothesis that, roughly speaking, expresses an extension of the ergodic
hypothesis to non-Hamiltonian systems [71].

At the core of our analysis, is the disintegration ji¢ of statistical equilibrium p with respect
to the resolved variable & in E; see [23, Sec. 3]. In our case, the probability measure ¢
gives the conditional probability of the unresolved variables (in Es), contingent upon the
value taken by the resolved variable £. Denoting by y. (#) the high-mode projection of y (),
Theorem 4 below shows, under a natural boundedness assumption on the 2nd-order moments,
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that the optimal PM that minimizes the defect

Qr (W) = llys(t) — ¥ ()% (1.9)

with ¥ denoting a square-integrable mapping? from E. to Es, is given, when T — 00, by

W*@):/E Cdue(c). £ e Ee. (1.10)

This formula shows that the optimal PM corresponds actually to the manifold that maps
to each resolved variable £ in E, the averaged value of the unresolved variable ¢ in Eg as
distributed according to the conditional probability measure pis. In other words, the optimal
PM provides the best manifold (in a least-square sense) that averages out the fluctuations of
the unresolved variable. The closure system that consists of approximating the unresolved
variables by this optimal parameterization provides then, when the high-mode to high-mode
interactions are small, the conditional expectation of the original system; see Theorem 5
below. The latter provides the best vector field of the reduced state space for which the
effects of the unresolved variables are averaged out with respect to the probability measure
Mg on the space of unresolved variables, itself conditioned on the resolved variables. For
slow-fast systems, in the limit of infinite time-scale separation, it is well-known that the
slow dynamics is approximated (on bounded time scales) by the conditional expectation
of the multiscale system [100,101,138] and that slow trajectories may be obtained through
a variational principle [119]. Nevertheless, the conditional expectation may be useful to
approximate other global features of the multiscale dynamics when time-scale separation
is lacking. For instance, the low-frequency variability dynamics may be well approximated
for chaotic systems that do not exhibit distinguished fast variables but rather episodic bursts
of fast oscillations punctuated by slow oscillations for each variable; see [32] and Sect. 3.4
below.

The optimal PM, ¥*, comes with a normalized parameterization defect, Q7 (¥*) =
Or (W*)/|lys(2)|?, that satisfies necessarily (Theorem 4)

0< lim Qr(¥™) < 1. (1.11)
T—o00

This variational view on the parameterization problem of the unresolved variables removes
any sort of ambiguity that has surrounded the notion of (approximate) inertial manifold in the
past. Indeed, within this paradigm shift, given an ergodic invariant measure p and a reduced
dimension m, the optimal PM may have a parameterization defect very close to 1 and thus the
best possible nonlinear parameterization one could ever imagine may not a priori do much
better than a classical Galerkin approximation, and sometimes even worse. To the opposite,
the smaller Q7 (¥*) is (for T large), the better the parameterization. All sort of nuances are
actually admissible, even when the parameterization defect is just below unity; see [32].
The parameterization defect analysis will be often completed by the evaluation of the cor-
relation parameterization, c(t) (see (3.6)), that provides a measure of collinearity between
the parameterized variable ¥ (y.(#)) and the unresolved variable ys(#), as time evolves. It
allows thus for measuring how far from a slaving situation a given PM is on a more geomet-
rical ground than with Q7 (Sect. 3.1). As we will see in applications, the parameterization
correlation allows us, once an optimal PM has been determined, to select the dimension m
of the reduced state space according to the following criterium: m should correspond to the
lowest dimension of E. for which the probability distribution function (PDF) of the corre-
sponding parameterization angle, «(t) = arccos(c(t)), is the most skewed towards zero and

2 With respect to the probability measure m obtained as a projection of x onto E¢.
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the mode (i.e. the value that appears most often) of this PDF is the closest to zero. The basic
idea is that one should not only parameterize properly the statistical effects of the neglected
scales but also avoid to lose their phase relationships with the retained scales [132]. This is
particularly important to derive closures that respect a certain phase coherence between the
resolved and unresolved scales.

Although finite-time error estimates are easily accessible when PMs are used to derive
surrogate low-dimensional systems in view of the optimal control of dissipative nonlinear
PDEs (see e.g [26, Theorem 1 & Corollary 2]), error estimates that relate the parameterization
defect to the ability of reproducing the original dynamics’s long term statistics by a surrogate
system are difficult to produce for uncontrolled deterministic systems, in particular for chaotic
regimes, due to the singular nature (with respect to the Lebesgue measure) of the invariant
measure p satisfying (1.8). In the stochastic realm, this invariant measure becomes smooth
for a broad class of systems and the tools of stochastic analysis make the obtention of
such estimates more amenable albeit non trivial; see [21]. Nevertheless, as discussed above,
considerations from ergodic theory and conditional expectations are already insightful for
the deterministic systems dealt with in this article. They allow us to envision the addition
of memory effects (non-Markovian terms) and/or stochastic parameterizations when a PM
alone is not sufficient to provide an accurate enough closure. The addition of such ingredients
are beyond the scope of this article, but are outlined in the Concluding Remarks (Sect. 7) as a
natural direction to extend the present work. The latter sets up a framework for determining,
via dynamically-based formulas to optimize, approximations of the Markovian terms arising
in the Mori-Zwanzig formalism [34,79]; this formalism providing a conceptual framework
to study the reduction of nonlinear autonomous systems.

The structure of this article is as follows. In Sect. 2 we revisit the approximation formulas
of invariant manifolds for equilibria. The leading-order approximation hj to these mani-
folds is obtained as the pullback limit of the high-mode part of the solution to an auxiliary
backward—forward system (Theorem 1) and explicit formulas of A are derived (Theorem
2). The resulting invariant manifold approximation formulas are applied to an El Nifio-
Southern Oscillation ODE model in the Supplementary Material, in the case of a subcritical
Hopf bifurcation. In Sect. 3, we introduce the measure-theoretic framework in which our
variational approach is formulated. Theorem 4 characterizes the minimizers (optimal PMs)
of the parameterization defect, and Theorem 5 shows that optimal PMs relate naturally to
conditional expectations. As a first application, in Sect. 3.4 the closure results of [32] con-
cerning the low-order model atmospheric Primitive Equations of [123], are enlightened by
new insights introduced in this article. Building upon the backward—forward systems of Sect.
2, we derive in Sect. 4 parametric formulas of dynamically-based parameterizations aimed
at being optimized.

Applications to the closure of a low-order model of Rayleigh-Bénard convection are then
discussed in Sect. 5, for which a period-doubling regime and a chaotic regime are analyzed.
In Sect. 6 the approach is finally illustrated—in the context of the Kuramoto-Sivashinsky
turbulence—as providing efficient closures without slaving and for cutoff scales placed well
within the inertial range, keeping only the unstable modes in the reduced state space. It is
shown that the variational approach introduced in this article allows for fixing the excessive
backscatter transfer of energy to the low modes encountered by standard parameterizations.
We conclude in Sect. 7 by outlining future directions of research.
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Part I: Invariant Manifold Reduction Revisited
2 Approximation Formulas for Invariant Manifolds of Nonlinear ODEs

2.1 Local Invariant Manifolds for Equilibria: Validity and Motivations for Other
Parameterizations

Our framework takes place with autonomous systems of ordinary differential equations

(ODEs) in R¥ of the form:
dYy

— = F(Y), 2.1
dr

for which the vector field F is assumed to be sufficiently smooth in the state variable Y.

Invariant manifold theory allows for the rigorous derivation of low-dimensional surro-
gate systems from which not only the system’s qualitative behavior near e.g. a steady state
is preserved, but also quantitative features of the nonlinear dynamics are reasonably well
approximated such as the solution’s amplitude or possible dominant periods. This aspect of
the theory is recalled below in the Supplementary Material, for the unfamiliar reader.

To set the ideas, assuming that Y is a steady state of the system (2.1), we rewrite the
system (2.1) in terms of the perturbed variable, y = ¥ — Y, namely

% = Ay + G(y), with
A=DF(Y),
G(y)=F(y+Y)— Ay, (2.2)

where D F(x) denotes the Jacobian matrix of F at x.
From its definition, the nonlinear mapping, G: RN — R, satisfies

G(0) =0, and DG(0) =0. (2.3)

As a consequence, G (y) admits the following expansion for y near the origin:

G(y) = Gr(y, ..., y)+ Oy, (2.4)
—————
k times
where
Gr: RV x ... xRY - RV (2.5)
—_——————
k times

denotes a homogenous polynomial of order k > 2. That is, Gy is the homogeneous part of
lowest degree. Sometimes, G (y) will be used as a compact notation for G (y, ..., y).
The spectrum of A is denoted by o (A), i.e.

o(A)={BjeC:j=1,..., N} 2.6)

where the 8;s denote the eigenvalues of A for which we have accounted for their algebraic
multiplicity in the sense that if A is a root of multiplicity p of the characteristic polynomial
Xxa,thene.g. 81 = A, ..., B, = A. The corresponding generalized eigenvectors are denoted
by

fejeCN:j=1,...,N} 2.7
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The index in (2.6) also accounts for an arrangement of the eigenvalues in lexicographical
order, that is the eigenvalues are ordered so that their real parts decrease as the index increases,
and for eigenvalues with the same real parts, they are arranged so that the imaginary parts
decrease.

Taking into account this ordering, grouping the first m eigenvalues of A, and assuming

Re(Bm) # Re(Bm+1), (2.8)

the spectrum of A is decomposed as follows

0(A) =0.(A) Uos(A), 2.9
where
oc(A)=1{Bj, j=1,...,m}, (2.10)
and
0s(A) ={Bj, j=m+1,...,N} (2.11)

Note that due to (2.8) and the aforementioned lexicographical order, we have

Re(Bm) > Re(Bm+1). (2.12)
This spectral decomposition implies a natural decomposition of CV:
CN = E. ® E,, (2.13)
in terms of the generalized eigenspaces
E.=spanfe; : j =1,...,m},
E; =spani{e;: j=m+1,..., N} (2.14)

This spectral decomposition of CV along with the corresponding canonical projectors 17,
and [1; onto E. and E, respectively, are at the core of our dimension reduction of Eq. (2.2).

The theory of local invariant manifolds for equilibria says that the simple condition (2.12)
combined with the tangency condition (2.3) about the nonlinear term G ensure the existence
of a local m-dimensional invariant manifold, namely a manifold obtained as the local graph
over an open ball 98B in E. centered at the origin, that is

M={E+h(&):£€BCE}, (2.15)

where h: E. — E, is a C!-smooth manifold function such that #(0) = 0 and Dh(0) = 0,
for which the following property holds:

(i) any solution y(¢) of Eq. (2.2) such that y (7o) belongs to 21 for some 7, stays on 9T over
an interval of time [7g, fp + @), @ > 0, i.c.

Y() = ye(t) + h(yc (@), t € [t0,t0 + ), (2.16)
where y.(¢) denotes the projection of y(¢) onto the subspace E..

Additionally, if Re(8,,+1) < 0 and Re(B,,) > 0, then the local invariant manifold is the
so-called local center-unstable manifold and the following property holds

(ii) If there exists a trajectory ¢ — y(¢) such that y.(#) belongs to ‘B for all —oo < t < oo,
then the trajectory must lie on 1.
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Property (ii) implies that an invariant set X of any type, e.g., equilibria, periodic orbits,
invariant tori, must lie in 9 if its projection onto E. is contained in ‘B, i.e. if [1. X C ‘B.
Property (2.16) holds then globally in time for the solutions that composed such invariant
sets, and thus the knowledge of the m-dimensional variable, y.(#), is sufficient to entirely
determine any solution y(¢) that belongs to such an invariant set. Furthermore, y.(¢) is
obtained as the solution of the following reduced m-dimensional problem
% =M. Ax + I1.G(x + h(x)), x(0) = y.(0) € B, 2.17)

which in turn characterizes the solution y(¢) in X, since the slaving relationship ys () =
h(y(t)) holds for any solution y(z) that belongs to an invariant set X for which I7. X C 8.

More generally, property (i) allows for y.(¢) to leave the neighborhood 5 for some time
instance, ¢, and thus to violate the parameterization (2.16) for y(¢), but does not exclude to
have (2.16) to hold again over another interval [1, ] 4 1) as soon as y(#1) belongs to 9.

Regarding the neighborhood B, the theory shows that it shrinks as the spectral gap,

Ym = Re(fm) — Re(Bm+1),

gets small and the nonlinear term G deviates quickly from the tangency condition as one
moves away from the origin, leaving possible an (exact) parameterization only for solutions
with sufficiently small amplitude. Indeed, the existence of such a (local) exact parameteri-
zation or say in other words, of a local m-dimensional invariant manifold is subject to the
following spectral gap condition:

ym > CLip(Gly), (2.18)

where Lip(G|y ) denotes the Lipschitz constant of the nonlinearity G, restricted to a neigh-
borhood V of the origin in C" such that VN E, = 9B, and C > 0 is typically independent on
V. Due to the tangency condition (2.3), the condition (2.18) always holds once V (and thus
$B) is chosen sufficiently small. The theory of local invariant manifolds makes thus sense
if solutions with sufficiently small amplitudes lie in the neighborhood V. This situation is
encountered for many bifurcations, near criticality for which the system’s linear part has
modes that become unstable, although a condition on the asymptotic stability of the origin is
often required to have a local attractor that continuously unfolds from the origin as the bifur-
cation parameter is varied [125, Theorem 6.1]. In the context of e.g. nonlinear oscillations
that bifurcate from a steady state, local invariant manifolds provide exact parameterizations?
of stable limit cycles near criticality in the case of a supercritical Hopf bifurcation, whereas it
is the parameterization of the unstable limit cycle that emerges continuously from the steady
state that is guaranteed to be exact, at least sufficiently close to criticality in the case of a
subcritical Hopf bifurcation. In the Supplementary Material, we show that the approxima-
tion formulas of Sect. 2.2, allow for approximating not only the unstable “inner” unstable
limit cycle but also the “outer” stable limit cycle arising in an El Nifio-Southern Oscillation
(ENSO) model via subcritical Hopf bifurcation.

In any event, local invariant manifolds by their local nature, although useful in many
applications do not allow for an efficient dimension reduction of arbitrary or at least generic
solutions. Attempts to extend the theory to a more global setting, have failed dramatically to
systematically provide nonlinear parameterizations of type (2.16) for a broader set of solu-
tions, since, in general, the same type of spectral gap condition as (2.18) is also encountered
in such an endeavor. For instance, the theory of inertial manifolds is known to be conditioned

3 As provided for instance by a center manifold or the unstable manifold of the origin.
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on spectral gap conditions such as given by (2.18) for which the Lipschitz constant is global
or taken over a neighborhood V that contains the (projection onto E. of the) global attractor.

Part II proposes a new framework to provide manifolds which are no-longer locally
invariant—and thus not subject to a spectral gap condition—but still provide meaningful
nonlinear parameterizations of nonlinear dynamics; these manifolds being called param-
eterizing manifolds (PMs). Nevertheless, the calculation of PMs departs from the theory
of approximation of local invariant manifolds which we revisit in the next section, before
presenting the main, new, analytical ingredients in Sect. 4.

The material presented in Sect. 2.2 below will serve to derive (approximate) parameteriza-
tions for perturbed variable taken with respect to a mean state Y, instead of a steady state; see
Sect. 4.3. To set the ideas, we consider F (Y) to be given by LY + B(Y, Y) with L linear, and
B a quadratic homogeneous polynomial and symmetric, B(X, Y) = B(Y, X). The equation
for the perturbed variable y then becomes

dy

dr
which adopting the notations of Eq. (2.2), corresponds to A = Ly +2B(y, Y) and G(y) =
B(y,y)+ LY 4+ B(Y,Y). Since Y is no longer a steady state, G(0) # 0,and LY + B(Y,Y)
is a time-independent forcing term. Thus the standard local invariant manifold theory for
equilibria cannot be applied.

Nevertheless, as shown in Sect. 4 below, the theory underlying the derivation of approx-
imation formulas for invariant manifolds is still relevant for their appropriate modification
in view of providing approximate parameterizations in presence of forcing, once a good
representation of these formulas is adopted; see Theorem 1 below for the representation of
these approximation formulas (see (2.33)), and Sect. 4.3 for the modified parameterizations
in presence of forcing.

(Ly +2B(y,Y)) + B(y,y) + B(Y,Y), (2.19)

2.2 Leading-Order Approximation of Invariant Manifolds

This section is devoted to the derivation of analytic formulas for the approximation of the
(local) invariant manifold function % in (2.15). As shown below these formulas are easily
obtained by relying only on the invariance property of 91, responsible for the invariance
equation to be satisfied by 4. We recall first the derivation of this fundamental equation; see
also [88, pp. 169—171] and [42, VII. A. 1]. For the existence of the invariant/center manifolds
for ODEs, we refer to [172].

In that respect, note first that by applying respectively the projectors I1. and I1; on both
sides of Eq. (2.2) and by using that A leaves invariant the eigensubspaces E. and Eg, we
obtain that Eq. (2.2) can be split as follows

dy
dl‘[ = Acyc +I1.G(yc + ys), (2.20a)
dys
dr = Asys + IIsG(ye + Ys), (2.20b)
with
ye=I.y€E. ys=1Isy € Es, Ac=1II.A and A; = [T, A. (2.21)

Since 9 is locally invariant, any solution y () of Eq. (2.2) with initial datum on 97 stays
on 91 as long as y.(¢) stays in B (where B is given in (2.15)), i.e.

() =y (@) + h(yc(1)), (2.22)
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provided that y.(¢) lies in B; see (2.16).
This implies, as long as y. () belongs to B, that ys () = h(y.(t)), which, when substituted
into Eq. (2.20b) gives

dh(yc)
= Ash(0) + MG ye + h(yo)). (2.23)
On the other hand since £ is differentiable, we have by using Eq. (2.20a),
dh(ye) d
2 = Dh(y) 1 = Dh(ylAcye + TGO +hG)l.  (224)

Then (2.23) and (2.24) allow us to conclude that as long as y, () belongs to B, h evaluated
along the corresponding “segment” of trajectory satisfies

Dh(yc(O))[Acye(t) + TG (ye (1) + xh(ye(1)] = Ash(ye(1))

=IT;G(yc(t) + h(y: (1)), (2.25)
which can be recast into the aforementioned invariance equation to be satisfied by &, namely
Dh(§)[Acs + T1.G(§ + h(§)] — Ash(§) = T1:G(§ + h(§)), § € B. (2.26)

This functional equation is a nonlinear system of first order PDEs that cannot be solved in
closed form except in special cases. However, one can solve Eq. (2.26) approximately by
representing i(£) as a formal power series. The solution is thus sought in terms of Taylor
expansion in the £-variable and various numerical techniques—based, e.g., on the resolution
of the multilinear Sylvester equations associated with the invariance equation—have been
proposed in the literature to find the corresponding coefficients [10,58]. Once a power series
approximation has been found, a posteriori error estimates can be checked by applying for
instance [19, Theorem 3, p. 5].4

For a broad class of systems, the leading-order approximation of 4 can be efficiently
and analytically calculated. It consists of dropping in Eq. (2.26) the terms involving nonlin-
ear dependence on /. This operation leads to the following equation for the corresponding
leading-order approximation /Ay (see, e.g., [30,88]):

Dhi(§)Acs — Ashi(§) = ITsGi (§), 2.27)

where Gy is the leading-order term in the Taylor expansion of G about the origin; cf. Eq. (2.4).

Easily checkable conditions on the eigenvalues of A, allows then for guaranteeing an
analytic solution to Eq. (2.27). For instance, in the case A is self-adjoint, it simply requires
certain cross non-resonance conditions to be satisfied as stated in Theorem 2 below. Namely,
for any given set of resolved modes for which their self-interactions (through the leading-
order nonlinear term Gy) do not vanish when projected against an unresolved mode e, it is
required that some specific linear combinations of the corresponding eigenvalues dominate
the eigenvalue associated with e, ; see (NR) below.

In the general case, when A is not necessarily diagonal, the cross non-resonance condi-
tion is strengthened to the requirement that Re(8,,4+1) < k Re(B;;) which ensures that the
following Lyapunov—Perron integral J: E, — Es,

0
J(E) = / e [T, Gr(e e &) ds, (2.28)

—00

4 According to this theorem, a candidate to a (truncated) Taylor expansion has to be first determined, and
then it has to be checked to satisfy the invariance equation up to some order to ensure to be a genuine Taylor
approximation; see also [88, Thm. 6.2.3].
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is well defined and in fact provides a solution Ay to Eq. (2.27); see Theorem 1 below. This
solutions provides actually the leading-order approximation of the (local) invariant manifold
function /4 if we assume furthermore that Re(8,,+1) < min{2kRe(B,,), 0}; see Theorem 1
again.

This Lyapunov—Perron integral itself possesses a flow interpretation: it is obtained as the
pullback limit constructed from the solution of the following backward—forward auxiliary
system

1
dyd"

=AY, s €[~ 0], (2.292)
ds
dys” M )
o = AsYs + TG (ye"), s € [—1, 0], (2.29b)
with yD(s)|y=0 = &, and y{V (s)|y=—r = 0. (2.29¢)

Indeed, the solution to Eq. (2.29b) at s = 0 is given by

0
V(&) = yP[E1O; —1) = / e A5 [1,G (e €) ds, (2.30)

-7

and taking the limit formally in (2.30) as t — o0, leads to J given by (2.28).
The theorem below states more precisely the relationships between Eq. (2.27), the
Lyapunov—Perron integral (2.28), and the solution to the backward—forward system (2.29).

Theorem 1 Consider Eq. (2.2). Let the subspaces E. and Eg be given by (2.14) and let m
be the dimension of E.. Assume (2.12) and furthermore that

Re(Bn+1) < kRe(Bm), (2.31)

where k denotes the leading order of the nonlinearity G; cf. (2.4).
Then, the Lyapunov—Perron integral

0
j(s):/ e A [1,Gr(eAc€)ds, & € E., (2.32)

is well defined and is a solution to Eq. (2.27). Moreover, J is the pullback limit of the high-
mode part of the solution to the backward—forward system (2.29):

3) = lim y[£10; —1), (2.33)

where yé”[s](o; —1) denotes the solution to Eq. (2.29b) at s = 0.
Finally, if we assume furthermore that

Re(Bm+1) < min{2kRe(B,,), 0}, (2.34)

then J provides the leading-order approximation of the invariant manifold function h in the
sense that

13¢) = h®lle, =o(lElE), &€ Ec. (2.35)

Proof First, we outline how condition (2.31) combined with the fact that G is ahomogeneous
polynomial of order &, ensure that the Lyapunov—Perron integral J is well defined. In that
respect, we note first that natural estimates about ||e’ As IT, | L(cNy and lle'4e || L(cn) hold.
This is essentially a consequence of (2.12). Indeed, any choice of real constants 11 and

12 such that
Re(Bm) > n1 > m2 > Re(Bn+1), (2.36)
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ensures the existence of a constant K > 0 (depending on 1 and 7,) such that the following
estimates hold:

le' A el vy < Ke™', V& <0,
le" A Mgl vy < Ke™', Vi = 0. (2.37)
The latter inequalities resulting essentially from the fact that ||e’ 5 | L(cN) is bounded for # > 0

if ReA < O for all A in o (B).
Since G is a homogeneous polynomial of order k, there exists C > 0 such that

IGk®)Il < ClEN*, V& € E.. (2.38)
Now, by using (2.37) and (2.38), we obtain for each s < 0 that
le A [T, Gr(e* < &)|| < Ke |Gy (e <)
< CKe™ et gt
< CKZe i gk,

Assumption (2.31) allows us to choose 7 and 7, in (2.36) such that n, — kn; < 0 which in
turns leads to

0
< f e~ [T, G (<€) ds

—00

0
H / eSS IT,Gr(e* <€) ds
—00

IA

0
CK2||§'||k/ e—Sm=kn) q¢
—00

CK2 k
_ KT e e g (2.39)
kni —m2

We have thus shown that J is well defined.
We show next that J satisfies Eq. (2.27). To do so, for any £ in E. we introduce the
following function

Vi (—00,0] > Eq

t
> J(eAcg) =/ 1A [T.Gr(e*Ac ) ds. (2.40)

—0o0

On one hand, by differentiating v (1) = [ __e*=94s [T,Gy(e’A<£) ds, we obtain

d t
T‘f = I1,Gr (" €) + A5/ =945 [T, Gr ("4 £) ds. (2.41)
—00

On the other, using that 1 (1) = J(e'4<£), we have

% = DI(e'AcE)Ace ek, (2.42)

It follows then that

t
DI &)Ace' e g = M;Gr (e &) + Aﬁf e 1. Gr(e*Acg)ds, Vi <0.
- (2.43)
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Set r = 0 in the above equality, we then obtain

0
DI(E)AE = TG (§) + As / e A [1,G(e* e €)ds, V& € Eq,

—0o0

which is equivalent to
D3(§)AcE — AsT(E) = I1sGr(§), V& € E..

We have thus verified that J is a solution to Eq. (2.27).
Recall from Eq. (2.30) that the high-mode part of the solution to the backward—forward
system (2.29) is given (at s = 0) by:
0
W0 —0) = [ A G e as, (2.44)
-7
By using the same type of estimates as in (2.39), it is easy to show that the limit,
limz— 00 ¥V [£1(0; —7), exists and it is equal to J(&).
The leading-order approximation property stated in (2.35) under the assumption (2.34) is
a direct consequence of the general result [30, Corollary 7.1] proved for stochastic evolution
equations in infinite dimension, driven by a multplicative white noise which thus applies to
our finite dimensional and deterministic setting. Indeed, to apply [30, Corollary 7.1], we are
only left with the checking of constants 7; and 1, for which [30, condition (7.1)] is verified,
namely
Ne <M2 <m <N, M <2km <0, (2.45)

with ns = Re(B,,+1) and n, = Re(f;,) here. One can readily check that this condition is
guaranteed under the assumptions (2.12) and (2.34). Indeed, if Re(B,,+1) < 2kRe(B;,) < 0,
we just need to choose

n1 = Re(Bp) — € and n2 = Re(By+1) + €,

with sufficiently small positive €; and if Re(8,,+1) < 0 < 2kRe(B,,), we just need to choose
n1 = —e and n2 = Re(B,+1) + € with again € sufficiently small. ]

The next Theorem shows, under a slightly relaxed spectral condition (see (NR) below),
that if the matrix A is assumed to be diagonal, then even when the Lyapunov—Perron integral
(2.32) is no longer defined, a solution & to Eq. (2.27) can still be derived and that this solution
possesses even an explicit expression.

This expression consists of an expansion in terms of the eigenvectors e, lying in the
eigenspace Es, and whose coefficients are homogeneous polynomials of order k in the &-
variable lying in eigenspace E.; the coefficients of these polynomials being themselves
expressed in terms of ratios between the linear combinations of eigenvalues of A and the
corresponding eigenmodes interactions through the leading-order nonlinear term Gy; see
(2.48). More precisely, we have

Theorem 2 Consider Eq. (2.2). Let the subspaces E. and E be given by (2.14) and let m be
the dimension of E.. Assume (2.12) and that the matrix A is diagonal under its eigenbasis
{ej € (LA j = 1,..., N}. We denote by {e;f,j = 1,..., N} the eigenvectors of the
conjugate transpose A*.

Recalling that Gy denotes the leading-order homogeneous polynomial in the expansion of
G (see (2.4)), let us assume furthermore that the eigenvalues B; of A satisfies the following
cross non-resonance condition:
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Y (i1,....ix) €I*, n e {m+1, ..., N}, it holds that (NR)

((Grteirs. ei). ) #0) = (Z,Blj B ;AO),

where T = {1,...,m}, and (-, -) denotes the inner product on CV defined by

N
by=> aib;, a.beCV. (2.46)

Then, a solution to Eq. (2.27) exists, and is given by

N
he(§) = Z hin(&)en, &= (&1,....86m) € Ec, (2.47)
n=m+1
where hi ,(§) is a homogeneous polynomial of degree k in the variables &1, . . ., &y given by

Z (Gk(eip"'aeik)seﬁ)

hian(§) = :
(i1semix)€TF Zj=lﬂij_/3n

Eiy - iy (2.48)

Remark 1 (i) The formulas (2.47)-(2.48) for the case of real and symmetric matrices, are

(i)

(iii)

(iv)

known; see e.g. [126, Appendix A]. The result presented in Theorem 2 extends neverthe-
less these formulas to cases for which A is diagonalizable in C, allowing in particular for
an arbitrary number of complex conjugate eigenpairs. The case when the neutral/unstable
modes correspond to a single complex conjugate pair has been dealt with in [126,
Appendix A]. Even in this special case, our formulas are in contradistinction simpler
than those given in [126, Eq. (A.1.15)]. This is due to the use of generalized eigenvectors
adopted here and the method of proof of Theorem 2 which relies on the calculation of
spectral elements of the homological operator £4 naturally associated with Eq. (2.27);
see (2.54) below.
The case of eigenvalues of higher-order multiplicity is more involved. The presence
of Jordan blocks makes indeed the derivation of general analytic formulas challenging
but still possible by the method used in the derivation of the formulas (2.47)—(2.48).
Communication about these formulas will be pursued elsewhere.
By only assuming the (NR) condition, the solution to Eq. (2.27) given by the formulas
(2.47)—(2.48) is not necessarily unique. This situation happens for instance when we
have a k-uple (i1, ..., i) and an index n for which (Gk(e;,, ..., €; ), e;) = 0 while
Zl;z 1 Bi = Bn = 0. In this case, we can add to any solution 4y to Eq. (2.27) a monomial
cx;, - -+ xj, with any scalar coefficient ¢ and get another solution; see (2.63)—(2.64)
below.
Note that if the (NR) condition is strengthened to

Y (i1,....i) €IF, n € {m+1,..., N}, it holds that
k

((Gutery. - i) en) #0) = (ZRe(ﬂw —Re(By) > 0), (2.49)
j=1

then the expression of /i given by (2.47)—(2.48) results directly from the expression of
Lyapunov—Perron integral J. Indeed,
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m
“A 1G] P ke ) ds

i=1

ﬁ: e—*ﬁf<Gk(Z ﬁffsiei), en>en ds (2.50)

j=m+1 i=1

u
II

o=[.
/L

ie.

N 0
J(E) = Z Z <Gk (eil, o 9ik>, 9Z>5i1 .. .giken/ B+ FBi=Bs g
J=mA1 (i) e Tk %

2.51)
recalling that G (1) denotes G (u, .. ., u), ahomogeneous polynomial or order k. The
condition (2.49) ensures that the integrals in (2.51) are well-defined, leading to (2.47)—
(2.48) after integration.

Of course, by assuming only (NR) instead of (2.49), the Lyapunov—Perron integral may
not be well defined anymore. But as shown below, the solution to Eq. (2.27) still exists,
and is given again by (2.47)—(2.48).

(v) Finally, it is worth mentioning that cross non-resonance conditions of the form

k
D By = Bu#0. Y (1. ix) €TF, ne(m+1,... N},

is also encountered for the study of normal forms on an invariant manifolds; see, e.g.
[84, Sect. 3.2.1], [60, Thm. 2.4] and also [11, Thm. 3.1].

Proof of Theorem 2 The proof is inspired by Lie algebra techniques used in the derivation of
normal forms for ODEs (see, e.g., [5, Chap. 5] and [11, Chap. 1]). We proceed in three steps.

Step 1 We seek a solution to Eq. (2.27) as a mapping hy : E. — Eg that admits the
following expansion:

N

h@E) = ) YW @© e &=, ... &) € Ec (2.52)

n=m+1 \(iy,...,i)€Z¥

Here, for each (iy, ..., i) € T, the function lIIi’IL ik (&) is a complex-valued homogeneous
polynomial of degree k given by
lp,‘rll ,,,,, i (E) = F,rll ,,,,, ik‘i:il e gik- (2-53)

The task is then to determine the coefficients I"l’]q i (in C) by using Eq. (2.27).

.....

Step 2 In that respect, we introduce the following homological operator £ 4:

LAl®1E) = DP(§)AE — Asp(§), & € Ec, (2.54)

where ¢: E. — E is a smooth function.
A key observation consists of noting that the E;-valued function, & +— lI/i’l’ i (&)ey,

,,,,,

provides an eigenfunction of £4 corresponding to the eigenvalue le-zl Bi; — Bn. in other
words that the following identity holds

LAWY (€)eaE) = Zm—nwﬁgmm ,,,,, (2.55)

.....
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In order to check (2.55), we first calculate D¢ (§)A & when ¢ (§) = lI/l.’: i (&)ey,. In that

.....

respect, denoting by e’} the j™ component of e,,, the Jacobian matrix D[lI/i’f ik (§)e,], given
by the following N x m matrix,

AW (&) W (&)
..... i il
) 7, €l
DY i (en]l = : : : , (2.56)
LA o i &)
e N e, N

I Z awr .
P [ (e L LY

..... 01 &
=TI} ienB&). 2.57)
where B(§) = (B1(&), ..., B, (§)) is an m-dimensional row vector whose components are

given for any j in {1, ..., m} by

5 pE) T [ & it € lin ... ixd,
Bi€) = (6 &) = it (2:58)

0 0, otherwise,

where p denotes the number of indices in the set {i1, ..., i;} that equal j.
Thus,
D[‘p,’: i &)eq]AE =

,,,,,

enBEAE. (2.59)

which leads to

D['I/,'rll i (&)e At =T

.....

ikenB(S) (B161, ~--a,3mé;_m)tra (2.60)

.....

since A is assumed to be diagonal.
By noting that the product B(£) (B1£1, . . ., Bm&n)" is nothing else that ZI;=1 Bjki, - Eips
and recalling the expression of lI/i” ik (&) in (2.53), we infer from (2.60) that

DY . (E)en]AE = Z,Bz,ll’” ,,,,, i en. (2.61)
Jj=1
On the other hand,

AW Eren = Bu¥] , E)en, (2.62)

and recalling the definition of £4 in (2.54), the identity (2.55) follows.
Step 3 By using the expansion of /(&) given by (2.52) in Eq. (2.27), and by using
the fact that lII" i, (6)ey are eigenvectors of the homological operator £4 with eigenvalue

.....

.....

YA B - B (cF. (2.55)). we get

N k
D (Zﬂi, —ﬁn)ri':,,,,,,»ks,-l & | en = MG (£). (2.63)

n=m+1 | i, .., ireZk *j=1
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At the same time, since Gy is a homogeneous polynomial of order k and & = Y /L, &;e;,
we obtain

N

Y (Gi®), €})en

n=m+1

I5Gi(§)

N
YooY & E(Grler .. e € )en (2.64)

n=m+1(iy,...i) €Tk

By using the above identity in (2.63), we obtain the following formulas for the coefficients
rj ., in(2.53):

no_ Gk, e) ) (2.65)

i1yeees iy k
Zj:] ,Bij — B

The formula of & given in (2.47)—(2.48) is thus derived by combining (2.52), (2.53) and
(2.65). The proof is complete. O

2.3 Analytic Formulas for Higher-Order Approximations

We discuss briefly here simple considerations to derive higher-order approximations of an
invariant manifold. The approach relies on the use of a power series expansion of the manifold
function 4 in the invariance equation (2.26). However, instead of keeping all the monomials
at a given degree arising from this expansion, we filter out terms that carries significantly
less energy compared with those that are kept. This elimination procedure relies on the
assumption that the projected ODE dynamics onto the resolved subspace E. contains most
of the energy; an assumption which is often met in practical applications concerned with
invariant manifold reduction. To present the idea in a simple setting, we consider below the
case for which G(y) = G2(y, y) + G3(y, y, y) and a cubic approximation is sought.

When G = G2 + G3, the leading-order approximation of £ is sy given by (2.47)—(2.48)
with k = 2. Recall also h; satisfies (2.27). To determine the approximation of order 3,
we replace A in the invariance equation (2.26) by h?PP = hy + v, where V represents the
homogeneous cubic terms in the power expansion of 7, to be determined. By identifying all
the terms of order two, we recover (2.27) with k = 2 to be satisfied for /7, and by identifying
all the terms of order three, we obtain the following equation for i:

Dy (§)AcE — Asy(§) = —Dha(§)I1.G2(§) + I1sG2(§, ha(§))
+115G2(ha(§), §) + 1G53 (8). (2.66)

Notice that the LHS of (2.66) is £ 4 ¥, and that the RHS is a homogeneous cubic polynomial
in the &-variable. If most of the energy of the ODE dynamics is contained in the low modes,
one gets that the energy carried by ys is much smaller than ||y||%. It is then reasonable to
expect that the energy carried by 42 (&) is much smaller than ||£|? for & = y.(¢) as ¢ varies.
This energy consideration implies that on the RHS of (2.66), the term [1;G3(&) dominates
the other three terms provided that ||G2(y, ¥)||/|| y||2 is on the same order of magnitude as
1G3(y, v, WII/lyI3. Thus, it is reasonable to seek for a good approximation of ¥ by simply
solving the equation:

Dh3(§)Ac§ — Ash3(§) = I1sG3(8). (2.67)
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Note that this is exactly (2.27) with k = 3. In virtue of Theorem 2, the existence of /3 is
guaranteed under the non-resonance condition (NR), and 43 is given by (2.47)—(2.48). We
denote this cubic parameterization by

D (&) = ha(§) + h3(§)

N

(Ga(eiy, eir). €)) (G3(eiy. €iy, €i3), €))

= Z Z Wéilsiz +Z ﬂ +/13 —'Z_ﬂ'IB_/;l 5[1§i2§i3 €n,
n=m+1 \(i,ipez? 07200 (i in,in)ezd ML R T s

(2.68)

withZ = (1, ..., m). See the Supplementary Material for an application to the derivation of

effective reduced models able to capture a subcritical Hopf bifurcation arising in an ENSO
model.

In what precedes, we considered the case G of order 3, and determined approximations of
order 3. We could nevertheless, seek for higher-order approximations of invariant manifolds,
independently of the nonlinearity to be of high-order or not. For instance if G(y) = B(y, y),
i.e. quadratic, we outline hereafter how recursive solutions to a hierarchy of homological
equations arise naturally once we look for higher-order approximations.

In that respect, we introduce some notations. We denote by Poly, (E.; Es) (resp. Poly,
(E; E.)) the space of vectors in E; (resp. E.) whose components are homogeneous
polynomials of order k in the E.-variable. Given a polynomial P in Poly,(E.; E;) or in
Poly, (E.; E), the symbol [77(5 )] « fepresents the collection of terms of order k in P.

By seeking a solution, ¥, to the invariance equation Eq. (2.26) under the form,

W) =) W), W € Poly(Ec Es). (2.69)
k=2

we infer that the W ’s satisfy the following recursive homological equations given by

-1

LIRIE) = [AB@(©). ®(@)] = D" DVt O[T B@<0(). 0-(€)) |,

= (2.70)
where @ _¢ (&) denotes
—1
D& =E+ Y W) .71
j=2

Note that with the convention Z; = 0, we recover the first homological equation, namely

L[¥1() = IIsB(§, ). (2.72)

In other words ¥» = h;. We refer to [85] for a detailed account regarding the rigorous
and computational aspects for the determination of solutions to Eq. (2.70). [109, Chap. 11]
contains also a detailed survey of algorithms to compute numerically invariant manifolds for
fast-slow systems.

@ Springer



Variational Approach to Closure of Nonlinear Dynamical... 1095

Part ll: Variational Approach to Closure

3 Optimal Parameterizing Manifolds

3.1 Variational Formulation

3.1.1 Parameterizing Manifolds (PM) and Parameterization Defect

A cornerstone of our approach presented below is the notion of parameterizing manifold
(PM) that we recall below from [26,31,32]. Our framework takes place in finite dimension
as in Part I, however here we consider more general systems of the form

%:Ay—i—G(y)-i—F, yecCV, 3.1)
where F denotes a time-independent forcing in C¥, A is a N x N matrix with complex
entries, while G is assumed to be a smooth nonlinearity for which we do notassume G (0) = 0
anymore. In practice Eq. (3.1) can be thought as derived in the perturbed variable from an
original system, for which A is either the Jacobian matrix at a mean state (F # 0) or at a
steady state (F' = 0), although the concepts presented below do not restrict to such situations.
Hereafter we assume that A, F and G are such that classical solutions (at least C') exist and
that the corresponding initial value problem possesses a unique solution, at least for initial
data taken in an open domain D of CV. Dynamically-based formulas to design PMs for
Eq. (3.1) are given in Sects. 4.3 and 4.4 below. For the moment we recall the definition of a
PM, and introduce the notion of parameterization defect that will be used for the optimization
of PMs.

Definition1 Let 7 > O and 0 < 11 < 1 < oo. Let y be a solution to Eq. (3.1), and
¥: E. — E, be a continuous mapping satisfying the following energy inequality for all ¢
in [, 12)

t+T t+T
/ lye(s) — ¥ (ye(s)) 1 2 ds < / lys ()11 ds, (3.2)
t t

where y.(s) = I1.y(s) and ys(s) = [I5y(s), with I1. and [T that denote the canonical
projectors onto E. and E, respectively (E. and E; being defined in (2.14)).
Then, the manifold, 91y, defined as the graph of ¥, i.e.

My ={§+P(E)|§ € Ed, (3.3)

is a finite-horizon parameterizing manifold associated with the system of ODEs (3.1), over
the time interval [#1, #2). The time-parameter 7 measuring the length of the “finite-horizon” is
independent on #1 and #,. If (3.2) holds for #, = oo, then My is simply called a finite-horizon
parameterizing manifold, and if it holds furthermore for all 7, it is called a parameterizing
manifold (PM).

Given a parameterization ¥ of the unresolved variables (in E;) in terms of the resolved
ones (in E), a natural non-dimensional number, the parameterization defect, is defined as

S Nys(s) = @ (ye(s))l 2 ds

011, W) =
! [T ya(s) ) 2 ds

t €, n). (3.4)

5 Note however that other cost functionals may be considered at this stage; see Sect. 4.4 below.
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Sometimes, the dependence on ¢ will be secondary, and by making r = #; in (3.4) with #;
sufficiently large so that for instance transient dynamics has been removed, we will denote
O7(t, ¥) simply by Q7 (¥). In any event, either Q7 (¢, ¥) or Q7 (¥) allows us to compare
objectively two manifolds in their ability to parameterize the variables that lie in the subspace
E ¢ by those that lie in the subspace E .. Clearly a situation corresponding to an exact slaving
of the variables in E by those in E as encountered in the invariant manifold theory revisited
in Part I, corresponds to Q7 (¥) = 0 for any solution y that lies on the invariant manifold,
My, associated with the parameterization ¥. If furthermore 91y attracts e.g. exponentially
any trajectory like in the case of an inertial manifold, then Q7 (¥) — 0,as T — oo whatever
the solution y.

A standard m-dimensional Galerkin approximation based on the modes in E. (with
dim(E.) = m), corresponds to ¥ = 0 and thus to Q7 (¥) = 1. Thus,

My isaPMif and only if Q7 (W) < 1 forall T > 0.

Clearly, given a parameterization ¥, it may happen that the corresponding parameterization
defect Q7 (¥) fluctuates from solutions to solutions, and depends also substantially on the
time interval [¢1, ) over which the initial time ¢ is taken to compute the integrals in (3.4),
as well as the horizon 7.

Nevertheless, given a set of solutions of interest, a horizon 7', an interval [¢#1, t2), and a
set dimension of the reduced state space (i.e. dim(E.)= m), one is naturally inclined for
seeking for parameterizations, ¥, that come with the smallest parameterization defect. In
other words, we aim at solving the following minimization problem

t+T ’
min / |va(s) = ¥ (e ds, (3.5)

for which £ denotes a space of parameterizations that makes not only tractable the determi-
nation of a minimizer, but also that is not too greedy in terms of data. This latter requirement
comes from important practical considerations. For instance, for high-dimensional systems
(e.g. N of about few hundred thousands), one has typically y(¢) available over a relatively
small interval of time, and thus if e.g. m ~ N /100 and the choice of £ is too naive, such
as homogeneous polynomials in the E-variable, with arbitrary coefficients, one might eas-
ily face an overfitting problem in which too many coefficients have to be determined while
not enough snapshots of y(s) are available over [¢, ¢ + T']. Section 4 below shows that the
backward—forward system (2.29) provides a space £ of dynamically-based parameterizations
that allow to bypass this difficulty as the coefficients to be determined are dependent only on
a scalar parameter, the backward integration time 7 in (2.29).

These practical considerations are central in our approach but before providing their
details, we consider in the next section other important theoretical questions. These questions
deal with the existence (and uniqueness) of minimizers to (3.5) on one hand, and with the
characterization of the closure system that is reached once (3.5) is solved, on the other.
Thus, we show in Sect. 3.2 below that, under assumptions of ergodicity, reasonable for a
broad class of forced-dissipative nonlinear systems such as arising in fluid dynamics, the
minimization problem (3.5) possesses a unique solution, as 7 — oo; see Theorem 4 and
also [32, Theorem A.1 and Remark 4.1]. We call the corresponding minimizer, the optimal
parameterizing manifold. We conclude finally by showing that an optimal PM, once used
as a substitute of the unresolved variables, leads to a reduced system in E that gives the
conditional expectation of the original system, i.e. the best vector field of the reduced state
space resulting from averaging of the unresolved variables with respect to a probability
measure conditioned on the resolved variables; see Theorem 5 below.
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We emphasize that PMs have already demonstrated their utility in other applications.
For instance, PMs have shown their usefulness for the effective determination of surrogate
low-dimensional systems in view of the optimal control of dissipative nonlinear PDEs. In
this case, rigorous error estimates show that parameterization defects arise naturally in the
efficient model reduction of optimal control problems (see [26, Thm. 1 and Cor.2]) as fur-
thermore supported by detailed numerical results (see [26, Sec. 5.5] and [22]). Speaking
roughly, these estimates show that the smaller is the parameterization defect, the better a
low-dimensional controller designed from the surrogate system, behaves. Error estimates
that relate the parameterization defect to the ability of reproducing the original dynamics’
long term statistics by a surrogate system are difficult to produce for uncontrolled determin-
istic systems, in particular for chaotic regimes such as considered hereafter in Sects. 5 and 6,
due to the singular nature (with respect to the Lebesgue measure) of the underlying invariant
measure. In the stochastic realm, this invariant measure becomes smooth for a broad class
of systems and the tools of stochastic analysis make the obtention of such estimates more
amenable albeit non trivial; see [21]. Nevertheless, considerations from ergodic theory and
conditional expectations are already insightful for the deterministic systems dealt with in this
article as explained in Sect. 3.2 below.

3.1.2 Parameterization Correlation and Angle

Given a parameterization ¥ that is not trivial (i.e. ¥ # 0), we define the parameterization
correlation as,
 Re(¥ (D), ys (1)

I ys 1l

It provides a measure of collinearity between the parameterized variable ¥ (y.(¢)) and the
unresolved variable yq(?), as time evolves. In case of exact slaving, y; () = ¥ (y.(¢)) and
thus c(t) = 1.

The parameterization correlation, c(t), is another key quantity in our approach. Speaking
roughly, we aim for not only at finding a PM with the smallest parameterization defect but
also with a parameterization correlation, c(t), to be as much close to one as possible. The
basic idea is to find parameterizations that approximate as much as possible an ideal slaving
situation, for regimes in which slaving does not hold necessarily.

In particular, the parameterization correlation allows us, once an optimal PM has been
determined, to select the dimension m of the reduced phase space according to the following
criterium: m should correspond to the lowest dimension of E. for which the probability
distribution function (PDF) of the corresponding parameterization angle,

c(t) (3.6)

a(r) = arccos(c(t)), 3.7

is the most skewed towards zero and the mode of this PDF (i.e. the value that appears most
often) is the closest to zero; see Fig. 2.
As a rule of thumb, we aim at finding PMs, ¥, such that:

1. The parameterization defect, Q7 (¥), is as small as possible, and
2. The PDF of the parameterization angle «(¢) is skewed towards zero as much as possible,
and its mode (i.e. the value that appears most often) is close to zero.

We illustrate in Sects. 3.4 and 5 below that, when breakdown of slaving principle occurs, these
rules manifest as a natural framework to diagnose and select a parameterization. Nevertheless
as the dimension of the original problem gets large, one may have to inspect a modewise
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PDF of the parameterization angle «(t)
T T T

0 L L Il
0 /4 /2 3m/4 T

angle (rad)
Fig. 2 Effect of the reduced dimension m: schematic. This effect is schematically shown here on the PDF of

the parameterization angle «(¢). Here a case corresponding to m| > my, is depicted: m is large enough to
be a successful PM while m is not

version of Qp (as discussed in Sect. 4.2) as well as of «a(t); see Sect. 6.3 for the latter. In
any case, the idea is that one should not only parameterize properly the statistical effects of
the neglected scales but also avoid to lose their phase relationships with the retained scales
[132]. This is particularly important to derive closures that respect a certain phase coherence
between the resolved and unresolved scales.

3.2 Optimal Parameterizing Manifold and Conditional Expectation

We present in this section the main results that serve as a foundational basis for the applications
discussed hereafter. We denote by X the vector field associated with Eq. (3.1) i.e.

X(y)=Ay+G(y)+ F, forallyeCV, (3.8)

To simplify the presentation, we assume this vector field to be sufficiently smooth and
dissipative on CV, such that the corresponding flow, 7;, is well-defined. We assume, fur-
thermore, that 7; possesses an invariant probability measure p, which is physically relevant
[37,57], in the sense that the following property holds for y in a positive Lebesgue measure
set B(u) (of CN) and for every continuous observable ¢ : (OLNYy

1 T
tim 7 [ o@ondr= [ omauo. (39)
T—ooT 0
This property assures that meaningful averages can be calculated and the statistics of the
dynamical system can be investigated by the asymptotic distribution of orbits starting from
Lebesgue almost every initial condition in e.g. the basin of attraction, B (), of the statistical
equilibrium p.

Recall that, like all probability measures invariant under 7, an invariant measure that
satisfies (3.9) is supported by the global attractor A when the latter exists; e.g. [24, Lemma
5.1]. In the case a global attractor is not known to exist, an invariant measure has its support
in the non-wandering set, A; see [69, Remark 1.4, p. 197].

It can be proven for e.g. Anosov flows [13], partially hyperbolic systems [1], Lorenz-
like flows [12], and observed experimentally for many others [28,33,57,71] that a common

@ Springer



Variational Approach to Closure of Nonlinear Dynamical... 1099

feature of (dissipative) chaotic systems is the transformation (under the action of the flow) of
the initial Lebesgue measure into a probability measure with finer and finer scales, reaching
asymptotically an invariant measure p of Sinai—Ruelle-Bowen (SRB) type. This measure is
singular with respect to the Lebesgue measure, is supported by the local unstable manifolds
contained in A or in A [37, Def. 6.14], and if it has no zero Lyapunov exponents it satisfies
(3.9) [177]. This latter property is often referred to as the chaotic hypothesis that, roughly
speaking, expresses an extension of the ergodic hypothesis to non-Hamiltonian systems [71].
We work thus hereafter within this hypothesis and we assume furthermore that (3.9) holds for
¢ that lies in the space of integrable function, L }L((CN ), with respect to the invariant measure
.

Having clarified the ergodic framework within which we will frame our variational
approach, we consider now a high-mode parameterization of the form

N

WE) = Y W@en £e€E, (3.10)

n=m+1

with the e,’s denoting the eigenmodes of the linear part, A, that span the subspace Es. The
regularity assumption made on ¥ is clarified hereafter; see Theorem 3. In practice, ¥ does
not need to cover the whole range [m + 1, N] and some ¥, may be zero.

We denote by m the push-forward of the measure u by the projector I1, onto E, namely

m(B) = //,(17:1(3)), B € B(E,), 3.11)

where B(E.) denotes the family of Borel sets of E.; i.e. the family of sets that can be formed
from open sets (for the topology on E induced by the norm || - || £, ) through the operations
of countable union, countable intersection, and relative complement.

In what follows (see Sect. 4), given a solution y(¢) that emanates from yy in B(u), we
also consider the parameterization defect, Q,,, associated with the parameterization ¥, of
the n'"-eigenmode, namely

17 2
o) = 1 [ oo ) v, (3.12)

where we recall that {ejf}?’:] denotes the eigenvectors of the conjugate transpose A*.

In the case {e, } forms an orthonormal basis of CN, namely when A is a Hermitian matrix,
we have due to the Parseval’s identity,

1T N
QT<W>=;/O Iys () =W (ye@)I* de = Y~ Qu(T). (3.13)

n=m+1

However this equality does not always hold, in general. Indeed, by writing ys(t) =
SN et Yn(D)en With ¥, (1) = (vs(1), €f), we remark that

N

Iy ) =P = Y <(y (1) = W, G0 ey (s (1) - wn2<yc(t>>)e,,2>,

ny,no=m+1

and the latter identity is reduced to Zflv:m“ |yn (t) — W, (v ())]1* when (e}, ex) = 8, x for
all j,k=m+1,...,N.
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Thus, solving (3.5) is not always equivalent to solving the following family of variational
problems
T 2
min / ’(ys(t), ey — W, (ye)| dr,  m+1<n<N. (3.14)
e€ Jo
As we will see, for practical reasons we will often prefer to solve (3.14) rather than (3.5); see
Sect. 4.2 below. Nevertheless, the existence and uniqueness of minimizers for either (3.14)
or (3.5), are dealt with in the same way. Hereafter, we present the latter only in the case
of (3.5) (allowing for the simplification of certain statements) and leave to the reader the
corresponding statements and proofs in the case of the minimization problems (3.14).
In that respect, we select the space of parameterizations, £, to be the Hilbert space con-
stituted by E-valued functions of the resolved variables & in E, that are square-integrable
with respect to m, namely

&= L%n(Ec; E;) = [11/ : E. — E; measurable and such that / ||l1/(.§)||2dm(“;‘) < oo’

E.
(3.15)
Our approach to minimize, Q7 (¥) (in £), and to identify parameterizations for which the
normalized parameterization defect

0r(¥) = Qr (W) (lys %7, (3.16)

satisfies
0< lim Qr(¥) <1, (3.17)
T—o0

relies substantially on the general disintegration theorem of probability measures; seee.g. [S1,
p- 78]. In (3.16), we have denoted by (]| ys I2)7 the time-mean of vs over [0, T']. The disin-
tegration theorem states that given a probability measure i on CV, a vector subspace V of
CV, and a Borel-measurable mapping p : CV — V, then there exists a uniquely determined
family of probability measures {iy}ycy such that, for m-almost all % x in V, . is concen-
trated on the pre-image p~! ({x}) of x, i.e. jix (CN \p~! ({x})) = 0, and such that for every
Borel-measurable function ¢ : cN - C,

/¢(y) du(y) :/ (/ o (y) dux(y)> dm(x). (3.18)
v \Jyepi(x)

Here m denotes the push-forward in V of the measure p by the mapping p, i.e. m is given by
(3.11) where I1. is replaced by p. Note that when p is the projection onto V, the probability
measure [, is the conditional probability of the unresolved variables, contingent upon the
value of the resolved variable to be x; see also [29, Supporting Information].

Hereafter, we apply this theorem with the reduced phase space, V, to be the subspace of
the resolved variables, E., and the mapping p to be the projector I1, onto E.. In this case, a
decomposition analogous to (3.18) holds for the measure p itself, namely

w(B x F) =/ e (F)dm(§), B x F e B(E:) ® B(Es). (3.19)
F

First, we state a result identifying natural conditions under which, Tlim Q7 (¥) exists.
—00

6je. up to an exceptional set of null measure with respect to m.
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Theorem 3 Assume that Eq. (3.1) admits an invariant probability measure p satisfying (3.9)
and that the unresolved variable ¢ in Es has a finite energy in the sense that

/ IZII* du < oo. (3.20)

If ¥ lies in L%H(Ec, Es), then for a.e. solution y(t) of Eq. (3.1) that emanates from an
initial datum yq in the basin of attraction B (), the limit Tlim Or (V) exists, and is given by
— 00

lim Or (¥) =/ Ie —w @I du. (321)
T—o0 (E.0)EEc X Eq

Proof This theorem is a direct consequence of the ergodic property (3.9) applied to the
observable

9E. O =l —vE|* (3.22)
Indeed, first, let us note that (&, ¢) = ||Z]|7 — 2(¢, ¥ (§)) + || ¥ (§)|)? satisfies

/w@,c)du sf||c||2dug<c>+/||W(s>||2dm+/<||c||2+||W<s>||2>du, (323)

by application of (3.19) and the Fubini’s theorem for the two first integrals in the RHS of
(3.23), and of the Cauchy—Schwarz and Young inequalities for the third integral. Another
application of (3.19) and the Fubini’s theorem for this latter integral shows that ¢ lies in
LL(CN), since ¥ belongs to len(Ec, E;) and (3.20) holds. O

We are now in position to show the existence of a unique minimizer to the minimization
problem

min( lim QT(W)), (3.24)

veE\T—oo

i.e. to ensure the existence of an optimal manifold minimizing the parameterization defect.
The minimizer is also characterized; see (3.26) below. An earlier version of such results may
be found in [32, Theorem A.1] for the special case of a truncated Primitive Equation model
due to Lorenz [123]. The general case is dealt with below.

Theorem 4 Assume that the assumptions of Theorem 3 hold. Then the minimization problem

min f g — W@ dp, (3.25)
Vel J(5,0)eE xEs

possesses a unique solution in £ = L%n(Ec, E;) whose argmin is given by

e = /E Cdus(@), & Ee. (3.26)
Furthermore
Jim Qr(¥*) < Jim Qr(¥), Ve L2 (E., Es). (3.27)

Proof The proof is a direct consequence of the disintegration theorem applied to the ergodic
measure . Let us introduce the following Hilbert space of E-valued functions

Li(Ec X Eg; Eg) = [f : E. x E; — E5, measurable and s.t.

[ e o aue.o < o). (3.28)

s

@ Springer



1102 M. D. Chekroun et al.

Let us define the expectation £, (g) with respect to the invariant measure 1 by

E,(g) =/E ¢E O O, ge 2B x Es ). (3.29)

5

By applying to the ambient Hilbert space Li(Ec x Eg; Eg), the standard projection
theorem onto closed convex sets [14, Theorem 5.2], one defines (given I7.) the conditional
expectation I£, [g|I].] of g as the unique function in & that satisfies the inequality

Eulllg = EulglTIIP] < Epulllg — (%), forall ¥ € £. (3.30)

The general disintegration theorem of probability measures, applied to u (see (3.18)),
provides the following explicit representation of the conditional expectation

Eu[glnc]Z/E g, &) dus (%), (3.31)

with pg denoting the disintegrated measure of w in (3.19).
Now let us take g(&, ¢) = ¢, then

Eulg ] =", (3.32)
with ¥* defined by (3.26). We have then
2
le*®]|" < / 1% dpee (). (3.33)
and by using (3.18) we have

/HW*(E)H2 dm(§) < / IZ 1% dpe. (3.34)

This inequality shows that ¥* lies in L1211(E ¢» E5) due to assumption (3.20).
‘We have then from (3.30),

Eulllc — ¥*1*1 < Eulllc — w|*], forall ¥ € &. (3.35)
By recalling that
Eulll — &)%) =/E i g —w* @I duE, ¢) = / e — w* @)1 du(&, ¢), (3.36)

one obtains then, by applying respectively (3.9)to ¢ = || — w*||? and ¢ = || — |3, that
forall ¥ in &,

T

1 [T 1
Jim fo llys (£) — ¥* (e () ||* dr < Jim /0 lys () — ¥ (yc(O)|I*dr.  (3.37)

The proof is complete. o

The manifold obtained as the graph of ¥* given by (3.26) will be called the optimal PM.
Formula (3.26) shows that the optimal PM corresponds actually to the manifold that maps
to each resolved variable £ in E., the averaged value of the unresolved variable ¢ in E4 as
distributed according to the conditional probability measure ji¢. In other words, the optimal
PM provides the best manifold (in a least-square sense) that averages out the fluctuations of
the unresolved variable.
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By making ¥ = 01in (3.27), this optimal PM comes with a (normalized) parameterization
defect (3.16) that satisfies necessarily

0< lim Qr(¥*) < 1. (3.38)
T—o00

This variational view on the parameterization problem of the unresolved variables removes
any sort of ambiguity that has surrounded the notion of (approximate) inertial manifold in
the past. Indeed, within this paradigm shift, given an ergodic invariant measure (1 and a
reduced dimension m (defining thus a projector I1,), the optimal PM may have a parame-
terization defect very close to 1 and thus the best possible nonlinear parameterization one
could ever imagine cannot a priori do much better than a classical Galerkin approximation,
and sometimes even worse. To the opposite, the smaller Q7 (¥*) is (for T large), the best the
parameterization. All sort of nuances are actually admissible, even when the parameterization
defect is just below unity; see [32] and Sect. 3.4 below.

We emphasize that although the theory presented in this section has been shaped for asymp-
totic values of T, in practice we will be instead interested to seek for optimal PMs learned
over a training length as short as possible (to rely on as few as possible DNS snapshots).
In that respect, it is where the parametric families of dynamically-based parameterizations
derived in Sect. 4 below (and relying on Part I) become useful. We will indeed show that
by applying these formulas in practice, we are able to derive optimal PMs trained over short
training intervals of length comparable to a characteristic recurrence or decorrelation time
of the dynamics; see Sects. 5 and 6 below.

Remark 2 (i) The ergodic property (3.9) can be relaxed into weaker forms such as consid-

ered in e.g. [24,69]. These relaxed versions hold for a broad class of dissipative systems
including systems of ODEs and even PDE:s, as long as a global attractor exists [24, The-
orem 2.2]. However these weaker forms do not guarantee the existence of the limit in
(3.21) and the latter would be replaced instead by a notion of generalized limit involving
e.g. averaging over accumulations points. The statistical equilibrium g is then not guar-
anteed to be unique.
Nevertheless, bearing these changes in mind, the proof presented above can be easily
adapted and the conclusion of Theorem 4 remains valid with however a form of opti-
mality that is now subject to the choice of the statistical equilibrium. Within this ergodic
framework, several optimal parameterizing manifolds may co-exist but for each statisti-
cal equilibrium there is only one optimal parameterizing manifold. The same is true if a
global attractor A is not guaranteed to exist: .4 must be replaced by the non-wandering
set A, and the optimal PM is unique for trajectories sampled according to the statistical
equilibrium gu.

(i) Withthe nuances broughtupin (i) above, Theorem 4 applies thus to any relevant Galerkin
truncations of systems of PDEs arising in fluid dynamics; see [32] and Sect. 3.4 below for
an application to a 9D Galerkin truncation of the Primitive Equations of the atmosphere
due to Lorenz [123].

(iii)) Theorem 4 is fundamental for understanding and interpretation but is of little interest for
computing the optimal PM in practice, except in specific problems for which p is known
explicitly (see e.g. [23, Sec. 4]) or can be approximated semi-analytically [128,129];
see also [171] for an alternative approach to estimate numerically ¢ in the context
of slow-fast systems. In Sect. 4 below we introduce instead explicit dynamically-based
parameterizations that, once optimized according to a mode-adaptive approach, provide
an efficient way to determine PMs that although suboptimal (for (3.25)) will be shown
to be skillful for closure in practice; see Sects. 5 and 6 below.
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We have then the following result relating the conditional expectation to the optimal PM.
We state this theorem in the case of quadratic interactions, motivated by applications in fluid
dynamics; see also [32, Sec. 4.3] and Sect. 3.4 below, for an illustration.

Theorem 5 Under the conditions of Theorem 4 if G is a quadratic nonlinearity B in Eq. (3.1),
the conditional expectation, B, [X|I1.], satisfies

Eu[X[T)(E) = A +TTcB(E, &)+ (BE W () +BW* (), )+ Fe+n(§), & € Ee,
(3.39)
where X is the vector field given by (3.8), W™ is the optimal PM guaranteed by Theorem 4,
and 1 is given by
né) = T B(&, §) dpe (9). (3.40)
CEES
Thus in the case n = 0, the optimal PM, W*, provides the conditional expectation E,, [ X |I1],
ie.

EulX|T)(E) = Ack + B, 6) + ITe(BE, ¥ (€) + BWH(§),8) + Fe. (341

Proof Expanding X (& + ¢) (with (§,¢) in E. X Eg) and integrating with respect to the
disintegrated probability measure, ¢, we get (by using that [ dug = 1)

Eu[X[ITc](E) = A& + TTcB(§. &) + Fe +n(5) +/ <17c(B($, ¢+ B, S))) dpg (2),
=A& +1IBE. &)+ Fo+n(8) +HcB<€,/CdM§(C))

+17cB(/§dMg(§)7$>, (3.42)

which given the expression of ¥* in (3.26), gives (3.39). ]

3.3 Inertial Manifolds and Optimal PMs

To avoid any confusion, we clarify the distinction between the concept of an inertial manifold
(IM) and that of an optimal parameterizing manifold (PM). First of all, an IM is a particular
case of an asymptotic PM since when an inertial manifold ¥ exists, Q7 (¥) = 0 for all T
sufficiently large. We list below some important points to better appreciate the differences
between the two concepts.

(i) When an IM, ¥, exists, then ¥ = ¥™* in (3.26) with ug being the Dirac mass (in
E;) concentrated on ¥ (§), i.e. tg = Sy (¢). Furthermore in this case, the probability
distribution p, of the parameterization angle, «(¢) given by (3.7), is given by the Dirac
mass 8 (on the real line) concentrated at 0.

(ii) Working with the eigenbasis of the linear part of Eq. (3.1) and assuming that an IM
exists, let m, denote the minimal dimension of the reduced state space required for an
IM to exist. If m = dim(E.) < m, then there is no inertial manifold but a PM still
exists in general as supported by Theorem 3. One may wonder however whether more
can be said when m < m,.

This is where the parameterization defect, Qr, and the parameterization angle, «(?),
provide useful mutual informations. Typically when m < m., seeking for a manifold
that minimizes Q7 allows for parameterizing optimally (in a least square sense) the
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statistical effects of the neglected scales in terms of those retained. However one should
keep in mind to avoid losing the phase relationships between the resolved and unresolved
scales, and in that sense the distribution p, should not be too spread. For systems with
a high-dimensional global attractor one may need to inspect a modewise version of
Q7 (as discussed in Sect. 4.2 below) as well as of a(¢) for the design of the nonlinear
parameterization; see Sect. 6.3 for the latter in the context of 1D Kuramoto-Sivashinsky
turbulence.

Thus, even for systems that admit an IM, an optimal PM often provides an efficient
closure based on much fewer modes compared to an inertial form. Such an observation
about efficient reduced dimension is known by the practitioner familiar with the notion of
approximate inertial manifold (AIM). An AIM provides a manifold such that the attractor lies
within a neighborhood of it that shrinks as the reduced dimension m is increased [48,52,131].
Nevertheless, as the reduced dimension is set too low, a given AIM may suffer from e.g. an
over-parameterization of the small scales resulting into dramatic errors backscattering to the
large scales; see Sect. 6. This is because the AIM approach does not address the question
of finding an optimal manifold that minimizes the parameterization defect while keeping
the reduced dimension as low as possible. This is the focus of the PM approach proposed
in this article which is thus, in essence, variational rather than concerned with the rate of
convergence with m as in standard AIM theory.

3.4 A Reduced-Order Primitive Equation Example: PM and Breakdown of Slaving
Principles

The conditional expectation is related to the optimal PM according to Theorem 5, making thus
the optimal PM an essential ingredient for the closure problem. Depending on the problem
at hand, the conditional expectation provides e.g. the reduced equations that filter out the
fast gravity waves from truncated Primitive Equations (PE) of the atmosphere; see [32].
Truncations corresponding to n = 0 in (3.39), i.e. when the high-high interactions do not
contribute to the low-mode dynamics, is particularly favorable for the conditional expectation
to provide such a filtering property. As shown numerically in [32], the conditional expectation
provides indeed such a “low-pass filter” closure for the truncated PE proposed by Lorenz in
1980 [123], when a critical Rossby number, €*, is crossed. We reproduce hereafter some of
these numerical results and provide new, complementary understanding based on the theory
of PMs such as discussed in this article.
The model of [123], when rescaled following [32], becomes

) dX; 3 2 2
€“a; ” =e€a;bj XXy —e“cla; —ap) XYy +ecla; —aj)Y; Xy
—2ec’Y; Yy — € Noa? X; + ai(Yi — Z;),
dy;
aiTtl = —Eakkaij - eajijij + c(ak —(lj)Yij —a,‘X,' - Noangi,
dz;
Fraie —eby X j(Z — Hy) — €bj(Zj — Hj) Xk + cYj(Zx — Hy)

—o(Z; — H)Yy + goai X; — Koa; Zi + Fi. (3.43)

The above equations are written for each cyclic permutation of the set of indices (1, 2, 3),
namely, for
@, j.k)e{(1,2,3),(2,3,1),3,1,2)}. (3.44)
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We refer to [32] for a detailed description of this model and its parameters. For our purpose,
it is sufficient to know that the time, ¢, is an O(1)-slow time, and that X;’s,Y;’s, and Z;’s are
O(1)-amplitudes for the divergent velocity potential, streamfunction, and dynamic height,
respectively. In this setting Ny and K are rescaled damping coefficients in the slow time.
The F;’s are O(1) control parameters that, in combination with variations of €, can be used to
affect regime transitions/bifurcations. In a general way, €, can be identified with the Rossby
number.

Solutions of higher-order accuracy in € > 0 that are entirely slow in their evolution
are, by definition, balanced solutions, and [73] showed by construction several examples of
explicitly specified, approximate balanced models. One of these, the Balance Equations (BE),
was conspicuously more accurate than the others when judged in comparison with apparently
slow solutions of (3.43). The BE approximation consists of a parameterization of the X;’s
and Z;’s variables, in terms of the Y;’s variables. The Z-component of this parameterization
has an explicit expression. The X-component of this parameterization, denoted by @, is
however obtained implicitly, by solving a system of differential-algebraic equations derived
from Eq. (3.43) under a balance assumption that consists of replacing the dynamical equation
for the X;’s by algebraic relations. Eventually, we arrive at a 3D reduced system of ODEs,
simply called the BE, and that takes the form

dy; 2
a; O = —eqyby @ (Y)Y —€ajb;Y; P (Y)+c(ax—a;)Y;Yr—a; P;(Y)—Noa; Y;, (3.45)
with (i, j, k) as in (3.44). We refer to [32, Sec. 3.1] for a derivation.

For certain Rossby numbers for which energetic bursts of fast oscillations occur in the
course of time (occurring for € > €*), Chekroun et al. [32] have shown that the underlying
BE manifold (associated with the BE parameterization of the X- and Z-variables), provides
a very good approximation of the optimal PM for this problem, and thus of the conditional
expectation in virtue of Theorem 5, i.e. the best approximation in the Y -variable for which
the “fast” X- and Z-variables are averaged out. In other words, the BE (3.45) provides a
nearly optimal reduced vector field that averages out the fast oscillations contained in the
Y -variable. Figure 3, reproduced from [32], illustrates this feature for the model (3.43). The
lower-right panel shows that the BE reduced model is able to capture the coarse-grained
topological features of the projected attractor onto the “slow” variables, Y; and Y3, when
compared with the projection onto the same variables of the attractor associated with the full
Eq. (3.43). For the rest of this section we will use the BE as if it were the optimal PM. All
the results presented hereafter correspond to € = 1.5522 > €*; see [32].

The underlying BE manifold is a 6D manifold obtained as graph of a 6D-valued mapping
of a 3D-variable (Y'), and as such only slices can be represented in 3D. Such a slice is shown
in Fig. 4. More exactly, it shows the X,-variable as parameterized by the slow Y>- and Y3-
variables. Note that in order to obtain this representation, the Y1 -variable, involved also in the
BE parameterization @ along with the Y>- and Y3-variables, has been set to its most probable
value conferring to Fig. 4 a certain “typicalness.” This being kept in mind, the slice thus
obtained of the BE manifold (and shown in Fig. 4) will be simply called the BE manifold,
for simplifying the discourse.

As evidenced in Fig. 4, a PE solution on the attractor—as observed through the X-
variable—possesses an intricate transversal component to the BE manifold that seems to
exclude its parameterization by a smooth manifold, whereas, at the same time, a substantial
portion of the trajectory lies very close to the BE manifold. It is this latter portion of the
dynamics that is well captured by the BE manifold and that allows for approximating the
aforementioned conditional expectation. Here Fig. 4 reveals thus simple geometric features
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Fig. 3 Attractor comparison between PE and BE (reproduced from [32], with permission from Elsevier). A
slow-variable projection of the global attractor associated with Eq. (3.43) (lower-left panel) and its approxi-
mation obtained from the BE reduced model (lower-right panel). Even in presence of energetic bursts of fast
oscillations in the fast variables (here such an episode is shown in the upper panel for the X»-variable (black
curve)), the BE model (3.45) is able to capture the coarse-grained topological features of the projected attractor
onto the slow variables. This is because the BE manifold provides a good approximation of the optimal PM
given in (3.26) that averages here out (optimally) the fast oscillations

- Xy-component

- BE manifold

-1 T '
-1.5 05

Fig.4 The BE manifold for the X;-variable. Note that in order to obtain this representation, the Y| -variable,
involved also in the BE parameterization @ along with the Y>- and Y3-variables, has been set to its most
probable value. The black curve shows the resulting X»-variable obtained after solving Eq. (3.43) while the
blue dots correspond to the BE parameterization @ involved in (3.45)

(not identified in [32]), which are responsible for the BE to provide in the space of slow
variables, a vector field that approximates the PE dynamics. It does so by filtering out the
(fast) oscillations contained in the PE solutions; the fast dynamics corresponding, in this
representation, to the transversal part of the dynamics. Indeed, a closer inspection reveals
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Parameterization defects: Qr(t, ®) vs Qr(t, ¥)
\ \
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Fig. 5 Parameterization defects of the BE manifold @ and the QG manifold ¥. Here the parameterization
defects as given by (3.4), Q7 (¢, @) (red curve) and Q7 (¢, ¥) (blue curve), are computed for the BE manifold,
@, and for the QG manifold ¥ [32, Eq. (4.22)]; each with T = 80 (for the rescaled system (3.43)) which
corresponds to 10 days in the time-variable of the original Lorenz model [123] (Color figure online)

that this transversal part of the dynamics corresponds exactly to the aforementioned burst of
fast oscillations. This is confirmed by computing the parameterization defect. In that respect,
Fig. 5 shows the parameterization defect r — Qr (¢, @) (given by (3.4)) of the BE manifold
@ for a time horizon set to T = 80 (for the rescaled system (3.43)) which corresponds to 10
days in the time-variable of the original Lorenz model [32]. Figure 5 shows that Q7 (¢, @)
oscillates, as ¢ evolves, between values right above zero and right below one (red curve). The
rising of values taken by Q7 (¢, @) occurs over time windows for which the parameterized
X-variable contains a significant fraction of the total energy, such as manifested by bursts
of fast oscillations in the X»-variable shown in the upper panel of Fig. 3 between 40 and 80
days. To the contrary, when the PE solutions get very close to the BE manifold, the dynamics
is almost slaved to this manifold and Q7 (¢, @) ~ 0.

Complementarily, the parameterization defect Q7 (¢, ¥) has been computed for the stan-
dard Quasigeostrophic (QG) manifold [32, Eq. (4.22)] that can be derived for ¢ = 0 and is
associated with the famous quadratic Lorenz system [122]; see [32, Sec. 4.2]. Here again a
similar behavior is observed for Q7 (¢, ¥) (blue curve in Fig. 5) with the noticeable difference
that Q7 (¢, ¥) stays further away from zero than Q7 (¢, @) does, as t evolves.

The parameterization correlation, ¢(¢) given by (3.6), has been also computed for the
BE and the QG manifolds. The results are shown in Panels (a) and (b) of Fig. 6, over
different time intervals. Although when an episode of fast (gravity waves) oscillations occurs
in the PE solutions, the parameterization correlation can deviate substantially from 1 for
the BE and QG manifolds (panel (a)), the parameterization correlation gets, comparatively,
much closer to 1 for the BE than for the QG manifold over time intervals for which the
slow, Rossby waves dominate the dynamics (panel (b)). This phenomenon is confirmed
statistically at the level of the probability distribution for the corresponding parameterization
angle, o(t) = arccos(c(t)). The PDF of the latter is much more skewed towards zero for
the BE manifold than for the QG manifold supporting thus, at a quantitative level, the visual
rendering of Fig. 4 which suggests that a substantial portion of the PE trajectory lies very
close to the BE manifold. More precisely, Fig. 6¢ shows that the mode of the PDF of «(z)
(i.e. the value that appears most often) for the BE manifold is located very close to zero,
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Fig.6 Parameterization correla