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Abstract
A general approach for the derivation of nonlinear parameterizations of neglected scales
is presented for nonlinear systems subject to an autonomous forcing. In that respect,
dynamically-based formulas are derived subject to a free scalar parameter to be determined
per mode to parameterize. For each high mode, this free parameter is obtained byminimizing
a cost functional—a parameterization defect—depending on solutions from direct numerical
simulation (DNS) but over short training periods of length comparable to a characteristic
recurrence or decorrelation time of the dynamics. An important class of dynamically-based
formulas, for our parameterizations to optimize, are obtained as parametric variations of
manifolds approximating the invariant ones. To better appreciate the origins of the modified
manifolds thus obtained, the standard approximation theory of invariantmanifolds is revisited
in Part I of this article. A special emphasis is put on backward–forward (BF) systems naturally
associated with the original system, whose asymptotic integration provides the leading-order
approximation of invariant manifolds. Part II presents then (i) the modifications of these
approximating manifolds based also on integration of the same BF systems but this time over
a finite time τ , and (ii) the variational approach aimed at making an efficient selection of τ per
mode to parameterize. The parametric class of leading interaction approximation (LIA) of the
high modes obtained this way, is completed by another parametric class built from the quasi-
stationary approximation (QSA); close to the first criticality, the QSA is an approximation to
the LIA, but it differs as one moves away from criticality. Rigorous results are derived that
show that—given a cutoff dimension—the best manifolds that can be obtained through our
variational approach, are manifolds which are in general no longer invariant. The minimizers
are objects, called the optimal parameterizing manifolds (PMs), that are intimately tied to the
conditional expectation of the original system, i.e. the best vector field of the reduced state
space resulting from averaging of the unresolved variables with respect to a probability mea-
sure conditioned on the resolved variables. Applications to the closure of low-ordermodels of
Atmospheric Primitive Equations and Rayleigh–Bénard convection are then discussed. The
approach is finally illustrated—in the context of the Kuramoto–Sivashinsky turbulence—as
providing efficient closures without slaving for a cutoff scale kc placed within the inertial
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range and the reduced state space is just spanned by the unstable modes, without inclusion
of any stable modes whatsoever. The underlying optimal PMs obtained by our variational
approach are far from slaving and allow for remedying the excessive backscatter transfer
of energy to the low modes encountered by the LIA or the QSA parameterizations in their
standard forms, when they are used at this cutoff wavelength.

Keywords Approximate invariance formulas · Backward–forward systems · Dynamical
closure · Optimization · Parameterizing manifold

1 Introduction

A number of theories have been proposed to explain the phenomenon of turbulence in fluid
dynamics, but none has been universally accepted. Landau [117] and Hopf [93] suggested
that turbulence is the result of an infinite sequence of bifurcations, each adding another
independent period to a quasi-periodic motion of increasingly greater complexity. More
recently, it has been shown numerically that the original quasiperiodic Landau’s view of
turbulence, with the amendment of the inclusion of stochasticity, may be well suited to
describe certain turbulent behavior [105], at least for the motion of large eddies. In the 1970s
it has been theoretically argued and confirmed by many experiments that dynamical systems
may exhibit strange attractors which result in chaotic but deterministic behavior after a (very)
few bifurcations have taken place. Ruelle and Takens [151] and others have suggested this as
a mechanism underlying turbulence. In realistic physical problems one is seldomly able to
carry out the mathematics beyond the first or second bifurcation, in particular regarding the
derivation of reduced equations that capture effectively the amplitude and frequency content
of the bifurcated solutions [42,118]. Noteworthy is normal form reduction that have been
carried for degenerate singularities with simultaneous onset of co-existing and possiblymany
instabilities, but still close to first criticality [4,40,59].

It is typical of many bifurcation problems that, as the condition for instability is exceeded,
increasingly many modes become unstable. This circumstance considerably complicates an
effective reduction because it often corresponds to going through higher-order bifurcations to
reach possibly chaos, for which a failure of the slaving principle of the unresolved variables
onto the resolved ones—mandatory for the success of standard reduction techniques—is
typically observed.

Center manifold techniques [42,81,172] require such a slaving principle to provide an
efficient reduction of the dynamics, and in that sense is reliable only in the vicinity of low-
order bifurcations associated with the onset of instability. Center manifolds form a particular
class of more general invariant manifolds associated with a fixed point, on which solutions
obey de facto a slaving principle. A comprehensive treatment of the computational aspects
relative to the underlying parameterizations can be found in [85]. The treatment in [85]
is based on the so-called parameterization method [16–18] itself built upon the invariance
equation (see Eq. (2.26) below) and the associated cohomological equations that the sought
(slaving) parameterization solves at different orders. The parameterization method allows
for efficient computations for not only the case of invariant manifolds associated with fixed
points, but also for the cases of invariant tori for autonomous or quasi-periodically forced
systems, averaging and periodic diffeomorphisms [27], invariant tori in Hamiltonian systems
[85], as well as normally hyperbolic invariant tori. Other complementary approaches include
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Variational Approach to Closure of Nonlinear Dynamical... 1075

e.g. the Lyapunov–Schmidt reduction [77,125] and the Lyapunov–Perron method [88,125],
as well as the usage of symmetries [77,83].

Despite the success for analyzing a broad class of bifurcations or detecting special solu-
tions in dynamical systems such as quasi-periodic ones, these methods relying on invariant
manifold theory, have failed to prove their efficiency for reducing complicated behaviors
resulting from the presence of chaos. In a certain sense, the “story” of the inertial manifold
(IM) constitutes perhaps an epitome of this failure. Despite appealing mathematical results
showing existence of IMs for a broad class of dissipative systems [38,62,66,130,164], and
convergence error estimates when e.g. slaving is not guaranteed to be satisfied (Approximate
Inertial Manifold (AIM)) [48,52,98,131], early promises [55,64,65,95,96] have been chal-
lenged due to practical shortcomings pointed out for efficient closure by IMs or AIMs for
turbulent flows and route chaos [46,68,72,80,87,97,137].

Essentially, the current IM theory [180] predicts that the underlying slaving of the high
modes to the lowmodes, holdswhen the cutoffwavenumber, kc, is taken sufficiently farwithin
the dissipative range, especially in “strongly” turbulent regimes that correspond e.g. to the
presence of many unstable modes. Still, as the AIM theory underlines, satisfactory closures
may be expected to be derived for kc corresponding to scales larger than what the IM theory
predicts. Nevertheless, as one seeks to further decrease kc within the inertial range, standard
AIMs fail typically in providing relevant closures and one needs to rely on no longer a fixed
cutoff but instead a dynamic one so as to avoid energy accumulation on the cutoff level
[50,54,56].

In general, to aim at closing a given chaotic system at a fixed cutoff scale such that the
neglected scales contain a non-negligible fraction of the energy,1 makes, a priori, the closure
problem difficult to address. This difficulty is often manifested by either an under- or over-
parameterization of the small scales, i.e. a deficient or excessive parameterization of the
small-scale energy, leading to an incorrect reproduction of the backscatter transfer of energy
to the large scales [9,94,108,121,140]. Thus, a deficiency in the (nonlinear) parameterization
of the highmodes leads to errors in the backscatter transfer of energywhich is due to nonlinear
interactions between the modes, especially those near the cutoff scale. We can speak of an
inverse error cascade, i.e. errors in the modeling of the parameterized (small) scales that
contaminate gradually the larger scales, and may spoil severely the closure skills for the
resolved variables.

To remedy such a pervasive issue, it is thus reasonable, given a cutoff scale to seek
for nonlinear parameterizations (manifolds) that minimize as much as possible a defect of
parameterization in order to reduce spurious backscatter transfer of energy to the large scales.
Obviously such manifolds should coincide with the invariant ones as one approaches towards
the first bifurcation.

This latter point explains the two-part structure of our article. We show here that an impor-
tant class of dynamically-based formulas for our parameterizations are obtained as parametric
variations of manifolds approximating the invariant ones. To better appreciate the origins of
the modified manifolds thus obtained, the standard approximation theory of invariant man-
ifolds is revisited in Part I of this article. A special emphasis is put on backward–forward
(BF) systems naturally associated with the original system, whose asymptotic integration
provides the leading-order approximation of invariant manifolds.

Part II presents then (i) the modifications of these approximating manifolds based also on
integration of the same BF systems but this time over a finite time τ , and (ii) the variational
approach aimed at making an efficient selection of τ per mode to parameterize, in order to

1 Such as “cutting” within the inertial range of turbulence.
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minimize a parameterization defect. The parametric class of leading interaction approxima-
tion (LIA) of the high modes obtained this way, is completed by another parametric class
built from the quasi-stationary approximation (QSA); close to the first criticality, the QSA is
an approximation to the LIA, but differs as one moves away from criticality.

In this article our formulations are general, but our primary motivations are geophysical
fluid dynamics, and our numerical illustrations are with simple systems of this type. With
this in mind, we elaborate our approach for a broad class of ordinary differential equations
(ODEs), that includes forced-dissipative systems of the form

dy

dt
= Ay + B(y, y) + F, y ∈ C

N . (1.1)

Here A denotes a linear N × N matrix, B a quadratic nonlinearity (as in the fluid advection
operator) and F a constant forcing, i.e. autonomous. Such systems with complex entries arise
e.g. as equations for the perturbed variable around a mean state, when the latter are expressed
in the eigenbasis {e j }N

j=1 of the linearization at this mean state.
We decompose the phase space into the sum of the subspace, Ec, of resolved variables

(“coarse-scale”), and the subspace, Es, of unresolved variables (“small-scale”). In practice
Ec is spanned by the first few eigenmodes with dominant real parts (e.g. unstable), and Es

by the rest. Within this framework, and given a cutoff dimension, m (i.e. dim(Ec)=m), we
consider for systems such as (1.1) parametric families of nonlinear parameterizations of the
form

Hτ (ξ) =
∑

n≥m+1

Hn(τn, ξ)en, ξ ∈ Ec,

τ = (τm+1, . . . , τN ), τn ≥ 0. (1.2)

The purpose is to dispose of parameterizations that cover situations of slaving between the
resolved and unresolved variables as well as situations for which slaving is not expected to
occur (e.g. far from criticality), as τ is varied. In that respect, we aim at determining a family
of parameterizations that include the leading-order approximation of invariant manifolds
when the system is placed near the first bifurcation value. The theory of approximation of
invariant manifolds revisited in Part I teaches us that such a family can be produced by finite
time-integration of auxiliary BF systems derived from Eq. (1.1); see e.g. (2.29) and (4.12)
below. This gives rise to the LIA class, for which taking the limit (under appropriate non-
resonance conditions) of Hn(τn, ξ) as τn → ∞ provides the leading-order approximation of
the invariant manifold; see Theorems 1 and 2 below.

We propose a variational approach to deal with situations far away from criticality. It
consists of determining the optimal τn-value, τ ∗

n , by minimizing (relevant) cost functionals
that depend on solutions from direct numerical simulation (DNS) but over a training interval
of length comparable to a characteristic recurrence or decorrelation time of the dynamics;
see Sects. 5 and 6 below for applications.

Given a solution y(t) of Eq. (1.1) available over an interval IT of length T , one such cost
functional on which a substantial part of this article focuses on is given by the following
parameterization defect

Qn(τn, T ) = ∣∣yn(t) − Hn(τn; yc(t))
∣∣2. (1.3)

Here (·) denotes the time-mean over IT while yn(t) and yc(t) denote the projections onto
the high-mode en and the reduced state space Ec of y(t), respectively. Our goal is then to
optimize Qn(τn, T ) by solving for each m + 1 ≤ n ≤ N ,
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min
τn

Qn(τn, T ). (1.4)

This procedure corresponds to minimizing the variance of the residual error per high
mode in case yn and Hn are zero-mean, and to minimizing the residual error as measured in
a least-square sense, in the general case.

Geometrically, as shown in Sect. 4.2 below, the graph of Hτ gives rise to a manifoldMτ

that satisfies

dist(y(t),Mτ )2 ≤
N∑

n=m+1

Qn(τn, T ), (1.5)

where dist(y(t),Mτ ) denotes the distance of y(t) (lying on the attractor) to the manifold
Mτ .

Thus minimizing eachQn(τn, T ) (in the τn-variable) is a natural idea to enforce closeness
of y(t) in a least-square sense to the manifold Mτ . The left panel in Fig. 1 illustrates (1.5)
for the yn-component: The optimal parameterization, Hn(τ ∗

n , ξ), minimizing (1.4) is shown;
it illustrates a situation where the dynamics is transverse to it (i.e. absence of slaving) while
Hn(τ ∗

n , ξ) provides the best (quadratic) parameterization in a least-square sense.
In practice, the following normalized parameterizing defect (for the nth mode), Qn , is a

useful tool to compare the different parameterizations Hn(τ ; ·) as τ is varied. It is defined as

Qn(τ, T ) = |yn − Hn(τ ; yc)|2
|yn |2

. (1.6)

It provides a non-dimensional number to judge objectively of the quality of a parameteri-
zation. If Qn(τ, T ) = 0 for each n ≥ m + 1, then Hτ provides an exact slaving relation,
and if Hn = 0 i.e. Hτ ≡ 0, corresponding to a standard Galerkin approximation, then
Qn(τ, T ) = 1. Thus, the notion of (normalized) parameterizing defect allows us to bring
another perspective on criticisms brought to the (approximate) inertial manifold theory
[72,90]: given a cutoff scale, if Qn(τ, T ) > 1 (over-parameterization) for several highmodes,
then a parameterization Hτ may indeed lead to closure skills worse than those that would
be obtained from a standard Galerkin scheme (cf. Q p in Fig. 1; right). In other words, only
a parameterization associated with a manifold that avoids such a situation is useful com-
pared to a standard Galerkin scheme. This understanding alone is overlooked in the literature
concerned with inertial manifolds and the like. We call such a manifold a parameterizing
manifold (PM); see Definition 1 for a precise characterization of a PM.

Minimizing the parameterization defects leads thus to an optimal PM, for the cost func-
tionals Qn . We emphasize that each component Hn , of the parameterization Hτ given in
(1.2), depends only on τn (and not the other τp’s for p 	= n), and thus the cost functionals,
Qn , may be minimized independently from each other.

The parametric dependence on τ of Hτ is of practical importance. To understand this, let us
consider for amoment a parameterization, Hn , given as a homogeneous quadratic polynomial
of the m-dimensional ξ -variable with unknown coefficients (not depending on τn). To learn
these coefficients via a standard regression would lead tom(m−1)/2 coefficients to estimate.
Instead, adopting the parametric formulation given in (1.3), only the parameter τ needs to be
learned (per high-mode) in case each coefficient of Hn(τ, ξ) is given by a function of τ . This
way, we benefit from a significant reduction of the amount NT of snapshots y(tk) required
from numerical integration of Eq. (1.1) to obtain robust parameterizations (in a statistical
sense). Roughly speaking, if NT is smaller or comparable to m(m − 1)/2, then learning
the unknown (and arbitrary) coefficients of a homogeneous quadratic parameterization (not
given under the parametric form (1.3)) is either undetermined or not robust statistically.
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1078 M. D. Chekroun et al.

Fig. 1 Left panel: The optimal parameterization, Hn(τ∗
n , ξ), minimizing (1.4) is shown (in gray). Here the

dynamics (black curve) is transverse to it (i.e. absence of slaving) while Hn(τ∗
n , ξ) provides the best (quadratic)

parameterization in a least-square sense. See Fig. 4 below for a concrete example in the case of a truncated
Primitive Equation model due to Lorenz [123]. The parameter τ∗

n corresponds to the argmin of Qn (red
asterisk) shown in the right panel. Right panel: Dependence on τ shown for two parameterization defects Qn
and Q p given by (1.6), with p, n ≥ m + 1. The minimum is marked by a red asterisk (Color figure online)

Explicit formulas for the coefficients of Hn(τ, ξ) are derived in Sects. 4.3 and 4.4 below.
These formulas are dynamically-based in the sense that these coefficients involve structural
elements of the right-hand side (RHS) of Eq. (1.1) such as the eigenvaluesβ j of A, projections
onto the nth high-mode of nonlinear interactions Bn

i j between pairs of low eigenmodes (ei , e j )

of A (1 ≤ i, j ≤ m), as well as possible nonlinear interactions between these modes and the
forcing term.

For instance, for the LIA class, the coefficients of the Hn(τ, ξ)’s monomials are given by
Dn

i j (τ )Bn
i j with

Dn
i j (τ ) = 1 − e−τδn

i j

δn
i j

, τ > 0,

with δn
i j = βi + β j − βn . (1.7)

We emphasize that at an heuristic level, the coefficient Dn
i j (τ ) allows for balancing the denom-

inator δn
i j by the numerator 1−e−τδn

i j when the former is small. Such compensating τ -factors
are in general absent from parameterizations built from invariant manifold or (approximate)
inertial manifolds techniques.

From the approximation theory of invariant manifolds revisited in Part I below, one notes
that Dn

i j (τ ) is equal to 1/δn
i j in the case of standard approximation formulas of invariant

manifolds (Theorem 2), corresponding thus to the asymptotic case τ → ∞ if δn
i j > 0.

When adopting these approximation formulas outside their domain of applicability (i.e. not
for approximating an underlying invariant manifold), it corresponds typically to small δn

i j ’s
which without the compensating τ -factors lead to an over-parameterization and an incorrect
reproduction of the backscatter transfer of energy to the large scales. This problem is typi-
cally encountered in invariant manifold approximation when small spectral gaps are present,
regardless of whether the solution dynamics is simple or complicated; see the Supplementary
Material for a simple example. It turns out that, to seek for an optimal backward integration
time τ actually helps alleviate this problem by introducing numerators balancing the small
denominators present in standard LIA parameterizations such as provided by Theorem 2
below.

At the same time, τ = 0 implies Dn
i j (τ ) = 0, which corresponds to the null parameteriza-

tion, namely to a Galerkin approximation of dimension m. Thus, minimizing the Qn’s gives
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rise to an intermediate (and optimized) parameterization compared to a Galerkin approxima-
tion (Hn = 0) or an invariant manifold approximation (Qn = 0).

The right panel in Fig. 1 shows a typical dependence on τ of the Qn’s defined in (1.6)
for the LIA class. Similar dependences hold for the QSA class. On a practical ground,
the minimization problem (1.4) is greatly facilitated by exploiting the explicit formulas of
Sects. 4.3 and 4.4. An efficient minimization can be indeed operated by application of a
simple gradient-descent algorithm in the real variable τ , when the appropriate moments up
to fourth order have been estimated; see Appendix.

We emphasize that the parameterization formulas of the LIAorQSAclasses can be derived
for dissipative nonlinear partial differential equations (PDEs) as well; see Sect. 6 below.
The LIA class as rooted in the backward–forward method mentioned above was initially
introduced for PDEs (possibly driven by a multiplicative linear noise) in [31, Chap. 4] and
was applied to the closure of a stochastic Burgers equation in [31, Chaps. 6&7] and to optimal
control in [26]. The main novelty compared to these previous works is the idea of optimizing
per high mode the backward integration time, τn , by minimization of the parameterization
defect Qn . Here, we also restrict ourselves to quadratic parameterizations that we prefer
to optimize instead of computing higher-order terms that although being potentially useful
make more cumbersome the numerical integration of the corresponding closure systems by
adding too many extra terms in the RHS of the latter.

The justification of the variational approach proposed in this article relies on the ergodic
theory of dissipative deterministic dynamical systems. In that respect, given the flow Tt

associated with Eq. (1.1), we assume in Part II of this article that Tt possesses an invariant
probability measure μ, which is physically relevant [37,57], in the sense that time-average
equals to ensemble average for trajectories emanating from Lebesgue almost every initial
condition. More precisely, we say that the invariant measure, μ, is physical if the following
property holds for y in a positiveLebesguemeasure set B(μ) (ofCN ) and for every continuous
observable ϕ : CN → C

lim
T →∞

1

T

∫ T

0
ϕ(Tt (y)) dt =

∫
ϕ(y) dμ(y). (1.8)

This property assures that meaningful averages can be calculated and the statistics of the
dynamical system can be investigated by the asymptotic distribution of orbits starting from
Lebesgue almost every initial condition in e.g. the basin of attraction B(μ) of the statistical
equilibrium, μ.

It can be proven for e.g. Anosov flows [13], partially hyperbolic systems [1], Lorenz-
like flows [12], and observed experimentally for many others [28,33,57,71] that a common
feature of (dissipative) chaotic systems is the transformation (under the action of the flow) of
the initial Lebesgue measure into a probability measure with finer and finer scales, reaching
asymptotically an invariant measure μ of Sinai–Ruelle–Bowen (SRB) type. This measure is
singular with respect to the Lebesgue measure, is supported by the local unstable manifolds
contained in the global attractor or the non-wandering set [37, Definition 6.14], and if it has
no zero Lyapunov exponents it satisfies (1.8) [177]. This latter property is often referred
to as the chaotic hypothesis that, roughly speaking, expresses an extension of the ergodic
hypothesis to non-Hamiltonian systems [71].

At the core of our analysis, is the disintegrationμξ of statistical equilibriumμwith respect
to the resolved variable ξ in Ec; see [23, Sec. 3]. In our case, the probability measure μξ

gives the conditional probability of the unresolved variables (in Es), contingent upon the
value taken by the resolved variable ξ . Denoting by ys(t) the high-mode projection of y(t),
Theorem 4 below shows, under a natural boundedness assumption on the 2nd-ordermoments,
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that the optimal PM that minimizes the defect

QT (Ψ ) = ‖ys(t) − Ψ (yc(t))‖2, (1.9)

with Ψ denoting a square-integrable mapping2 from Ec to Es, is given, when T → ∞, by

Ψ ∗(ξ) =
∫

Es

ζ dμξ (ζ ), ξ ∈ Ec. (1.10)

This formula shows that the optimal PM corresponds actually to the manifold that maps
to each resolved variable ξ in Ec, the averaged value of the unresolved variable ζ in Es as
distributed according to the conditional probability measure μξ . In other words, the optimal
PM provides the best manifold (in a least-square sense) that averages out the fluctuations of
the unresolved variable. The closure system that consists of approximating the unresolved
variables by this optimal parameterization provides then, when the high-mode to high-mode
interactions are small, the conditional expectation of the original system; see Theorem 5
below. The latter provides the best vector field of the reduced state space for which the
effects of the unresolved variables are averaged out with respect to the probability measure
μξ on the space of unresolved variables, itself conditioned on the resolved variables. For
slow-fast systems, in the limit of infinite time-scale separation, it is well-known that the
slow dynamics is approximated (on bounded time scales) by the conditional expectation
of the multiscale system [100,101,138] and that slow trajectories may be obtained through
a variational principle [119]. Nevertheless, the conditional expectation may be useful to
approximate other global features of the multiscale dynamics when time-scale separation
is lacking. For instance, the low-frequency variability dynamics may be well approximated
for chaotic systems that do not exhibit distinguished fast variables but rather episodic bursts
of fast oscillations punctuated by slow oscillations for each variable; see [32] and Sect. 3.4
below.

The optimal PM, Ψ ∗, comes with a normalized parameterization defect, QT (Ψ ∗) =
QT (Ψ ∗)/‖ys(t)‖2, that satisfies necessarily (Theorem 4)

0 ≤ lim
T →∞QT (Ψ ∗) ≤ 1. (1.11)

This variational view on the parameterization problem of the unresolved variables removes
any sort of ambiguity that has surrounded the notion of (approximate) inertial manifold in the
past. Indeed, within this paradigm shift, given an ergodic invariant measure μ and a reduced
dimension m, the optimal PMmay have a parameterization defect very close to 1 and thus the
best possible nonlinear parameterization one could ever imagine may not a priori do much
better than a classical Galerkin approximation, and sometimes even worse. To the opposite,
the smaller QT (Ψ ∗) is (for T large), the better the parameterization. All sort of nuances are
actually admissible, even when the parameterization defect is just below unity; see [32].

The parameterization defect analysis will be often completed by the evaluation of the cor-
relation parameterization, c(t) (see (3.6)), that provides a measure of collinearity between
the parameterized variable Ψ (yc(t)) and the unresolved variable ys(t), as time evolves. It
allows thus for measuring how far from a slaving situation a given PM is on a more geomet-
rical ground than with QT (Sect. 3.1). As we will see in applications, the parameterization
correlation allows us, once an optimal PM has been determined, to select the dimension m
of the reduced state space according to the following criterium: m should correspond to the
lowest dimension of Ec for which the probability distribution function (PDF) of the corre-
sponding parameterization angle, α(t) = arccos(c(t)), is the most skewed towards zero and

2 With respect to the probability measure m obtained as a projection of μ onto Ec.
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the mode (i.e. the value that appears most often) of this PDF is the closest to zero. The basic
idea is that one should not only parameterize properly the statistical effects of the neglected
scales but also avoid to lose their phase relationships with the retained scales [132]. This is
particularly important to derive closures that respect a certain phase coherence between the
resolved and unresolved scales.

Although finite-time error estimates are easily accessible when PMs are used to derive
surrogate low-dimensional systems in view of the optimal control of dissipative nonlinear
PDEs (see e.g [26, Theorem 1&Corollary 2]), error estimates that relate the parameterization
defect to the ability of reproducing the original dynamics’s long term statistics by a surrogate
system are difficult to produce for uncontrolled deterministic systems, in particular for chaotic
regimes, due to the singular nature (with respect to the Lebesgue measure) of the invariant
measure μ satisfying (1.8). In the stochastic realm, this invariant measure becomes smooth
for a broad class of systems and the tools of stochastic analysis make the obtention of
such estimates more amenable albeit non trivial; see [21]. Nevertheless, as discussed above,
considerations from ergodic theory and conditional expectations are already insightful for
the deterministic systems dealt with in this article. They allow us to envision the addition
of memory effects (non-Markovian terms) and/or stochastic parameterizations when a PM
alone is not sufficient to provide an accurate enough closure. The addition of such ingredients
are beyond the scope of this article, but are outlined in the Concluding Remarks (Sect. 7) as a
natural direction to extend the present work. The latter sets up a framework for determining,
via dynamically-based formulas to optimize, approximations of the Markovian terms arising
in the Mori-Zwanzig formalism [34,79]; this formalism providing a conceptual framework
to study the reduction of nonlinear autonomous systems.

The structure of this article is as follows. In Sect. 2 we revisit the approximation formulas
of invariant manifolds for equilibria. The leading-order approximation hk to these mani-
folds is obtained as the pullback limit of the high-mode part of the solution to an auxiliary
backward–forward system (Theorem 1) and explicit formulas of hk are derived (Theorem
2). The resulting invariant manifold approximation formulas are applied to an El Niño-
Southern Oscillation ODE model in the Supplementary Material, in the case of a subcritical
Hopf bifurcation. In Sect. 3, we introduce the measure-theoretic framework in which our
variational approach is formulated. Theorem 4 characterizes the minimizers (optimal PMs)
of the parameterization defect, and Theorem 5 shows that optimal PMs relate naturally to
conditional expectations. As a first application, in Sect. 3.4 the closure results of [32] con-
cerning the low-order model atmospheric Primitive Equations of [123], are enlightened by
new insights introduced in this article. Building upon the backward–forward systems of Sect.
2, we derive in Sect. 4 parametric formulas of dynamically-based parameterizations aimed
at being optimized.

Applications to the closure of a low-order model of Rayleigh-Bénard convection are then
discussed in Sect. 5, for which a period-doubling regime and a chaotic regime are analyzed.
In Sect. 6 the approach is finally illustrated—in the context of the Kuramoto-Sivashinsky
turbulence—as providing efficient closures without slaving and for cutoff scales placed well
within the inertial range, keeping only the unstable modes in the reduced state space. It is
shown that the variational approach introduced in this article allows for fixing the excessive
backscatter transfer of energy to the low modes encountered by standard parameterizations.
We conclude in Sect. 7 by outlining future directions of research.
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Part I: Invariant Manifold Reduction Revisited

2 Approximation Formulas for Invariant Manifolds of Nonlinear ODEs

2.1 Local Invariant Manifolds for Equilibria: Validity andMotivations for Other
Parameterizations

Our framework takes place with autonomous systems of ordinary differential equations
(ODEs) in R

N of the form:
dY

dt
= F(Y ), (2.1)

for which the vector field F is assumed to be sufficiently smooth in the state variable Y .
Invariant manifold theory allows for the rigorous derivation of low-dimensional surro-

gate systems from which not only the system’s qualitative behavior near e.g. a steady state
is preserved, but also quantitative features of the nonlinear dynamics are reasonably well
approximated such as the solution’s amplitude or possible dominant periods. This aspect of
the theory is recalled below in the Supplementary Material, for the unfamiliar reader.

To set the ideas, assuming that Y is a steady state of the system (2.1), we rewrite the
system (2.1) in terms of the perturbed variable, y = Y − Y , namely

dy

dt
= Ay + G(y), with

A = DF(Y ),

G(y) = F(y + Y ) − Ay, (2.2)

where DF(x) denotes the Jacobian matrix of F at x .
From its definition, the nonlinear mapping, G : RN → R

N , satisfies

G(0) = 0, and DG(0) = 0. (2.3)

As a consequence, G(y) admits the following expansion for y near the origin:

G(y) = Gk(y, . . . , y︸ ︷︷ ︸
k times

) + O(‖y‖k+1), (2.4)

where

Gk : R
N × · · · × R

N
︸ ︷︷ ︸

k times

→ R
N (2.5)

denotes a homogenous polynomial of order k ≥ 2. That is, Gk is the homogeneous part of
lowest degree. Sometimes, Gk(y) will be used as a compact notation for Gk(y, . . . , y).

The spectrum of A is denoted by σ(A), i.e.

σ(A) = {β j ∈ C : j = 1, . . . , N }, (2.6)

where the β j s denote the eigenvalues of A for which we have accounted for their algebraic
multiplicity in the sense that if λ is a root of multiplicity p of the characteristic polynomial
χA, then e.g. β1 = λ, . . . , βp = λ. The corresponding generalized eigenvectors are denoted
by

{e j ∈ C
N : j = 1, . . . , N }. (2.7)
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The index in (2.6) also accounts for an arrangement of the eigenvalues in lexicographical
order, that is the eigenvalues are ordered so that their real parts decrease as the index increases,
and for eigenvalues with the same real parts, they are arranged so that the imaginary parts
decrease.

Taking into account this ordering, grouping the first m eigenvalues of A, and assuming

Re(βm) 	= Re(βm+1), (2.8)

the spectrum of A is decomposed as follows

σ(A) = σc(A) ∪ σs(A), (2.9)

where
σc(A) = {β j , j = 1, . . . , m}, (2.10)

and
σs(A) = {β j , j = m + 1, . . . , N }. (2.11)

Note that due to (2.8) and the aforementioned lexicographical order, we have

Re(βm) > Re(βm+1). (2.12)

This spectral decomposition implies a natural decomposition of CN :

C
N = Ec ⊕ Es, (2.13)

in terms of the generalized eigenspaces

Ec = span{e j : j = 1, . . . , m},
Es = span{e j : j = m + 1, . . . , N }. (2.14)

This spectral decomposition of CN along with the corresponding canonical projectors Πc

and Πs onto Ec and Es, respectively, are at the core of our dimension reduction of Eq. (2.2).
The theory of local invariant manifolds for equilibria says that the simple condition (2.12)

combined with the tangency condition (2.3) about the nonlinear term G ensure the existence
of a local m-dimensional invariant manifold, namely a manifold obtained as the local graph
over an open ballB in Ec centered at the origin, that is

M = {ξ + h(ξ) : ξ ∈ B ⊂ Ec} , (2.15)

where h : Ec → Es is a C1-smooth manifold function such that h(0) = 0 and Dh(0) = 0,
for which the following property holds:

(i) any solution y(t) of Eq. (2.2) such that y(t0) belongs toM for some t0, stays onM over
an interval of time [t0, t0 + α), α > 0, i.e.

y(t) = yc(t) + h(yc(t)), t ∈ [t0, t0 + α), (2.16)

where yc(t) denotes the projection of y(t) onto the subspace Ec.

Additionally, if Re(βm+1) < 0 and Re(βm) ≥ 0, then the local invariant manifold is the
so-called local center-unstable manifold and the following property holds

(ii) If there exists a trajectory t �→ y(t) such that yc(t) belongs to B for all −∞ < t < ∞,
then the trajectory must lie onM.
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Property (ii) implies that an invariant set Σ of any type, e.g., equilibria, periodic orbits,
invariant tori, must lie in M if its projection onto Ec is contained in B, i.e. if ΠcΣ ⊂ B.
Property (2.16) holds then globally in time for the solutions that composed such invariant
sets, and thus the knowledge of the m-dimensional variable, yc(t), is sufficient to entirely
determine any solution y(t) that belongs to such an invariant set. Furthermore, yc(t) is
obtained as the solution of the following reduced m-dimensional problem

dx

dt
= ΠcAx + ΠcG(x + h(x)), x(0) = yc(0) ∈ B, (2.17)

which in turn characterizes the solution y(t) in Σ , since the slaving relationship ys(t) =
h(yc(t)) holds for any solution y(t) that belongs to an invariant set Σ for which ΠcΣ ⊂ B.

More generally, property (i) allows for yc(t) to leave the neighborhoodB for some time
instance, t , and thus to violate the parameterization (2.16) for y(t), but does not exclude to
have (2.16) to hold again over another interval [t1, t1 + α1) as soon as y(t1) belongs to M.

Regarding the neighborhoodB, the theory shows that it shrinks as the spectral gap,

γm = Re(βm) − Re(βm+1),

gets small and the nonlinear term G deviates quickly from the tangency condition as one
moves away from the origin, leaving possible an (exact) parameterization only for solutions
with sufficiently small amplitude. Indeed, the existence of such a (local) exact parameteri-
zation or say in other words, of a local m-dimensional invariant manifold is subject to the
following spectral gap condition:

γm ≥ CLip(G|V ), (2.18)

where Lip(G|V ) denotes the Lipschitz constant of the nonlinearity G, restricted to a neigh-
borhood V of the origin inCN such that V ∩ Ec = B, and C > 0 is typically independent on
V . Due to the tangency condition (2.3), the condition (2.18) always holds once V (and thus
B) is chosen sufficiently small. The theory of local invariant manifolds makes thus sense
if solutions with sufficiently small amplitudes lie in the neighborhood V . This situation is
encountered for many bifurcations, near criticality for which the system’s linear part has
modes that become unstable, although a condition on the asymptotic stability of the origin is
often required to have a local attractor that continuously unfolds from the origin as the bifur-
cation parameter is varied [125, Theorem 6.1]. In the context of e.g. nonlinear oscillations
that bifurcate from a steady state, local invariant manifolds provide exact parameterizations3

of stable limit cycles near criticality in the case of a supercritical Hopf bifurcation, whereas it
is the parameterization of the unstable limit cycle that emerges continuously from the steady
state that is guaranteed to be exact, at least sufficiently close to criticality in the case of a
subcritical Hopf bifurcation. In the Supplementary Material, we show that the approxima-
tion formulas of Sect. 2.2, allow for approximating not only the unstable “inner” unstable
limit cycle but also the “outer” stable limit cycle arising in an El Niño-Southern Oscillation
(ENSO) model via subcritical Hopf bifurcation.

In any event, local invariant manifolds by their local nature, although useful in many
applications do not allow for an efficient dimension reduction of arbitrary or at least generic
solutions. Attempts to extend the theory to a more global setting, have failed dramatically to
systematically provide nonlinear parameterizations of type (2.16) for a broader set of solu-
tions, since, in general, the same type of spectral gap condition as (2.18) is also encountered
in such an endeavor. For instance, the theory of inertial manifolds is known to be conditioned

3 As provided for instance by a center manifold or the unstable manifold of the origin.
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on spectral gap conditions such as given by (2.18) for which the Lipschitz constant is global
or taken over a neighborhood V that contains the (projection onto Ec of the) global attractor.

Part II proposes a new framework to provide manifolds which are no-longer locally
invariant—and thus not subject to a spectral gap condition—but still provide meaningful
nonlinear parameterizations of nonlinear dynamics; these manifolds being called param-
eterizing manifolds (PMs). Nevertheless, the calculation of PMs departs from the theory
of approximation of local invariant manifolds which we revisit in the next section, before
presenting the main, new, analytical ingredients in Sect. 4.

Thematerial presented in Sect. 2.2 belowwill serve to derive (approximate) parameteriza-
tions for perturbed variable taken with respect to a mean state Y , instead of a steady state; see
Sect. 4.3. To set the ideas, we consider F(Y ) to be given by LY + B(Y , Y )with L linear, and
B a quadratic homogeneous polynomial and symmetric, B(X , Y ) = B(Y , X). The equation
for the perturbed variable y then becomes

dy

dt
= (Ly + 2B(y, Y )) + B(y, y) + B(Y , Y ), (2.19)

which adopting the notations of Eq. (2.2), corresponds to A = Ly + 2B(y, Y ) and G(y) =
B(y, y)+ LY + B(Y , Y ). Since Y is no longer a steady state, G(0) 	= 0, and LY + B(Y , Y )

is a time-independent forcing term. Thus the standard local invariant manifold theory for
equilibria cannot be applied.

Nevertheless, as shown in Sect. 4 below, the theory underlying the derivation of approx-
imation formulas for invariant manifolds is still relevant for their appropriate modification
in view of providing approximate parameterizations in presence of forcing, once a good
representation of these formulas is adopted; see Theorem 1 below for the representation of
these approximation formulas (see (2.33)), and Sect. 4.3 for the modified parameterizations
in presence of forcing.

2.2 Leading-Order Approximation of Invariant Manifolds

This section is devoted to the derivation of analytic formulas for the approximation of the
(local) invariant manifold function h in (2.15). As shown below these formulas are easily
obtained by relying only on the invariance property of M, responsible for the invariance
equation to be satisfied by h. We recall first the derivation of this fundamental equation; see
also [88, pp. 169–171] and [42, VII. A. 1]. For the existence of the invariant/center manifolds
for ODEs, we refer to [172].

In that respect, note first that by applying respectively the projectors Πc and Πs on both
sides of Eq. (2.2) and by using that A leaves invariant the eigensubspaces Ec and Es, we
obtain that Eq. (2.2) can be split as follows

dyc
dt

= Acyc + ΠcG(yc + ys), (2.20a)

dys
dt

= Asys + ΠsG(yc + ys), (2.20b)

with
yc = Πcy ∈ Ec, ys = Πsy ∈ Es, Ac = ΠcA and As = ΠsA. (2.21)

SinceM is locally invariant, any solution y(t) of Eq. (2.2) with initial datum onM stays
on M as long as yc(t) stays in B (where B is given in (2.15)), i.e.

y(t) = yc(t) + h(yc(t)), (2.22)
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provided that yc(t) lies in B; see (2.16).
This implies, as long as yc(t) belongs toB, that ys(t) = h(yc(t)), which, when substituted

into Eq. (2.20b) gives

dh(yc)

dt
= Ash(yc) + ΠsG(yc + h(yc)). (2.23)

On the other hand since h is differentiable, we have by using Eq. (2.20a),

dh(yc)

dt
= Dh(yc)

dyc
dt

= Dh(yc)[Acyc + ΠcG(yc + h(yc))]. (2.24)

Then (2.23) and (2.24) allow us to conclude that as long as yc(t) belongs to B, h evaluated
along the corresponding “segment” of trajectory satisfies

Dh(yc(t))[Acyc(t) + ΠcG(yc(t) + xh(yc(t))] − Ash(yc(t))

= ΠsG(yc(t) + h(yc(t))), (2.25)

which can be recast into the aforementioned invariance equation to be satisfied by h, namely

Dh(ξ)[Acξ + ΠcG(ξ + h(ξ))] − Ash(ξ) = ΠsG(ξ + h(ξ)), ξ ∈ B. (2.26)

This functional equation is a nonlinear system of first order PDEs that cannot be solved in
closed form except in special cases. However, one can solve Eq. (2.26) approximately by
representing h(ξ) as a formal power series. The solution is thus sought in terms of Taylor
expansion in the ξ -variable and various numerical techniques—based, e.g., on the resolution
of the multilinear Sylvester equations associated with the invariance equation—have been
proposed in the literature to find the corresponding coefficients [10,58]. Once a power series
approximation has been found, a posteriori error estimates can be checked by applying for
instance [19, Theorem 3, p. 5].4

For a broad class of systems, the leading-order approximation of h can be efficiently
and analytically calculated. It consists of dropping in Eq. (2.26) the terms involving nonlin-
ear dependence on h. This operation leads to the following equation for the corresponding
leading-order approximation hk (see, e.g., [30,88]):

Dhk(ξ)Acξ − Ashk(ξ) = ΠsGk(ξ), (2.27)

whereGk is the leading-order term in the Taylor expansion ofG about the origin; cf. Eq. (2.4).
Easily checkable conditions on the eigenvalues of A, allows then for guaranteeing an

analytic solution to Eq. (2.27). For instance, in the case A is self-adjoint, it simply requires
certain cross non-resonance conditions to be satisfied as stated in Theorem 2 below. Namely,
for any given set of resolved modes for which their self-interactions (through the leading-
order nonlinear term Gk) do not vanish when projected against an unresolved mode en , it is
required that some specific linear combinations of the corresponding eigenvalues dominate
the eigenvalue associated with en ; see (NR) below.

In the general case, when A is not necessarily diagonal, the cross non-resonance condi-
tion is strengthened to the requirement that Re(βm+1) < k Re(βm) which ensures that the
following Lyapunov–Perron integral I : Ec → Es,

I(ξ) =
∫ 0

−∞
e−s AsΠsGk(e

s Acξ) ds, (2.28)

4 According to this theorem, a candidate to a (truncated) Taylor expansion has to be first determined, and
then it has to be checked to satisfy the invariance equation up to some order to ensure to be a genuine Taylor
approximation; see also [88, Thm. 6.2.3].
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is well defined and in fact provides a solution hk to Eq. (2.27); see Theorem 1 below. This
solutions provides actually the leading-order approximation of the (local) invariant manifold
function h if we assume furthermore that Re(βm+1) < min{2kRe(βm), 0}; see Theorem 1
again.

This Lyapunov–Perron integral itself possesses a flow interpretation: it is obtained as the
pullback limit constructed from the solution of the following backward–forward auxiliary
system

dy(1)
c

ds
= Acy(1)

c , s ∈ [−τ, 0], (2.29a)

dy(1)
s

ds
= Asy(1)

s + ΠsGk
(
y(1)
c

)
, s ∈ [−τ, 0], (2.29b)

with y(1)
c (s)|s=0 = ξ, and y(1)

s (s)|s=−τ = 0. (2.29c)

Indeed, the solution to Eq. (2.29b) at s = 0 is given by

h(1)
τ (ξ) = y(1)

s [ξ ](0;−τ) =
∫ 0

−τ

e−s AsΠsGk(e
s Acξ) ds, (2.30)

and taking the limit formally in (2.30) as τ → ∞, leads to I given by (2.28).
The theorem below states more precisely the relationships between Eq. (2.27), the

Lyapunov–Perron integral (2.28), and the solution to the backward–forward system (2.29).

Theorem 1 Consider Eq. (2.2). Let the subspaces Ec and Es be given by (2.14) and let m
be the dimension of Ec. Assume (2.12) and furthermore that

Re(βm+1) < k Re(βm), (2.31)

where k denotes the leading order of the nonlinearity G; cf. (2.4).
Then, the Lyapunov–Perron integral

I(ξ) =
∫ 0

−∞
e−s AsΠsGk(e

s Acξ) ds, ξ ∈ Ec, (2.32)

is well defined and is a solution to Eq. (2.27). Moreover, I is the pullback limit of the high-
mode part of the solution to the backward–forward system (2.29):

I(ξ) = lim
τ→∞ y(1)

s [ξ ](0;−τ), (2.33)

where y(1)
s [ξ ](0;−τ) denotes the solution to Eq. (2.29b) at s = 0.

Finally, if we assume furthermore that

Re(βm+1) < min{2kRe(βm), 0}, (2.34)

then I provides the leading-order approximation of the invariant manifold function h in the
sense that

‖I(ξ) − h(ξ)‖Es = o(‖ξ‖k
Ec

), ξ ∈ Ec. (2.35)

Proof First, we outline howcondition (2.31) combinedwith the fact thatGk is a homogeneous
polynomial of order k, ensure that the Lyapunov–Perron integral I is well defined. In that
respect, we note first that natural estimates about ‖et AsΠs‖L(CN ) and ‖et AcΠc‖L(CN ) hold.

This is essentially a consequence of (2.12). Indeed, any choice of real constants η1 and
η2 such that

Re(βm) > η1 > η2 > Re(βm+1), (2.36)
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ensures the existence of a constant K > 0 (depending on η1 and η2) such that the following
estimates hold:

‖et AcΠc‖L(CN ) ≤ K eη1t , ∀t ≤ 0,

‖et AsΠs‖L(CN ) ≤ K eη2t , ∀t ≥ 0. (2.37)

The latter inequalities resulting essentially from the fact that ‖et B‖L(CN ) is bounded for t ≥ 0
if Reλ < 0 for all λ in σ(B).

Since Gk is a homogeneous polynomial of order k, there exists C > 0 such that

‖Gk(ξ)‖ ≤ C‖ξ‖k, ∀ξ ∈ Ec. (2.38)

Now, by using (2.37) and (2.38), we obtain for each s ≤ 0 that

‖e−s AsΠsGk(e
s Acξ)‖ ≤ K e−sη2‖Gk(e

s Acξ)‖
≤ C K e−sη2‖es Acξ‖k

≤ C K 2e−s(η2−kη1)‖ξ‖k .

Assumption (2.31) allows us to choose η1 and η2 in (2.36) such that η2 − kη1 < 0 which in
turns leads to

∥∥∥∥
∫ 0

−∞
e−s AsΠsGk(e

s Acξ) ds

∥∥∥∥ ≤
∫ 0

−∞
‖e−s AsΠsGk(e

s Acξ)‖ ds

≤ C K 2‖ξ‖k
∫ 0

−∞
e−s(η2−kη1) ds

= C K 2‖ξ‖k

kη1 − η2
, ∀ξ ∈ Ec. (2.39)

We have thus shown that I is well defined.
We show next that I satisfies Eq. (2.27). To do so, for any ξ in Ec we introduce the

following function

ψ : (−∞, 0] → Es

t �→ I(et Acξ) =
∫ t

−∞
e(t−s)AsΠsGk(e

s Acξ) ds. (2.40)

On one hand, by differentiating ψ(t) = ∫ t
−∞ e(t−s)AsΠsGk(es Acξ) ds, we obtain

dψ

dt
= ΠsGk(e

t Acξ) + As

∫ t

−∞
e(t−s)AsΠsGk(e

s Acξ) ds. (2.41)

On the other, using that ψ(t) = I(et Acξ), we have

dψ

dt
= DI(et Acξ)Acet Acξ. (2.42)

It follows then that

DI(et Acξ)Acet Acξ = ΠsGk(e
t Acξ) + As

∫ t

−∞
e(t−s)AsΠsGk(e

s Acξ) ds, ∀t ≤ 0.

(2.43)
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Set t = 0 in the above equality, we then obtain

DI(ξ)Acξ = ΠsGk(ξ) + As

∫ 0

−∞
e−s AsΠsGk(e

s Acξ) ds, ∀ξ ∈ Ec,

which is equivalent to

DI(ξ)Acξ − AsI(ξ) = ΠsGk(ξ), ∀ξ ∈ Ec.

We have thus verified that I is a solution to Eq. (2.27).
Recall from Eq. (2.30) that the high-mode part of the solution to the backward–forward

system (2.29) is given (at s = 0) by:

y(1)
s [ξ ](0;−τ) =

∫ 0

−τ

e−s AsΠsGk(e
s Acξ) ds, (2.44)

By using the same type of estimates as in (2.39), it is easy to show that the limit,
limτ→∞ y(1)

s [ξ ](0;−τ), exists and it is equal to I(ξ).
The leading-order approximation property stated in (2.35) under the assumption (2.34) is

a direct consequence of the general result [30, Corollary 7.1] proved for stochastic evolution
equations in infinite dimension, driven by a multplicative white noise which thus applies to
our finite dimensional and deterministic setting. Indeed, to apply [30, Corollary 7.1], we are
only left with the checking of constants η1 and η2 for which [30, condition (7.1)] is verified,
namely

ηs < η2 < η1 < ηc, η2 < 2kη1 < 0, (2.45)

with ηs = Re(βm+1) and ηc = Re(βm) here. One can readily check that this condition is
guaranteed under the assumptions (2.12) and (2.34). Indeed, if Re(βm+1) < 2kRe(βm) < 0,
we just need to choose

η1 = Re(βm) − ε and η2 = Re(βm+1) + ε,

with sufficiently small positive ε; and if Re(βm+1) < 0 < 2kRe(βm), we just need to choose
η1 = −ε and η2 = Re(βm+1) + ε with again ε sufficiently small. ��

The next Theorem shows, under a slightly relaxed spectral condition (see (NR) below),
that if the matrix A is assumed to be diagonal, then even when the Lyapunov–Perron integral
(2.32) is no longer defined, a solution hk to Eq. (2.27) can still be derived and that this solution
possesses even an explicit expression.

This expression consists of an expansion in terms of the eigenvectors en lying in the
eigenspace Es, and whose coefficients are homogeneous polynomials of order k in the ξ -
variable lying in eigenspace Ec; the coefficients of these polynomials being themselves
expressed in terms of ratios between the linear combinations of eigenvalues of A and the
corresponding eigenmodes interactions through the leading-order nonlinear term Gk ; see
(2.48). More precisely, we have

Theorem 2 Consider Eq. (2.2). Let the subspaces Ec and Es be given by (2.14) and let m be
the dimension of Ec. Assume (2.12) and that the matrix A is diagonal under its eigenbasis
{e j ∈ C

N : j = 1, . . . , N }. We denote by {e∗
j , j = 1, . . . , N } the eigenvectors of the

conjugate transpose A∗.
Recalling that Gk denotes the leading-order homogeneous polynomial in the expansion of

G (see (2.4)), let us assume furthermore that the eigenvalues β j of A satisfies the following
cross non-resonance condition:
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∀ (i1, . . . , ik) ∈ Ik, n ∈ {m + 1, . . . , N }, it holds that (NR)

(
〈Gk(ei1 , . . . , eik ), e

∗
n〉 	= 0

)
�⇒

( k∑

j=1

βi j − βn 	= 0

)
,

where I = {1, . . . , m}, and 〈·, ·〉 denotes the inner product on C
N defined by

〈a, b〉 =
N∑

i=1

ai bi , a, b ∈ C
N . (2.46)

Then, a solution to Eq. (2.27) exists, and is given by

hk(ξ) =
N∑

n=m+1

hk,n(ξ)en, ξ = (ξ1, . . . , ξm) ∈ Ec, (2.47)

where hk,n(ξ) is a homogeneous polynomial of degree k in the variables ξ1, . . ., ξm given by

hk,n(ξ) =
∑

(i1,...,ik )∈Ik

〈Gk(ei1 , . . . , eik ), e
∗
n〉

∑k
j=1 βi j − βn

ξi1 · · · ξik . (2.48)

Remark 1 (i) The formulas (2.47)–(2.48) for the case of real and symmetric matrices, are
known; see e.g. [126, Appendix A]. The result presented in Theorem 2 extends neverthe-
less these formulas to cases for which A is diagonalizable inC, allowing in particular for
an arbitrary number of complex conjugate eigenpairs. The case when the neutral/unstable
modes correspond to a single complex conjugate pair has been dealt with in [126,
Appendix A]. Even in this special case, our formulas are in contradistinction simpler
than those given in [126, Eq. (A.1.15)]. This is due to the use of generalized eigenvectors
adopted here and the method of proof of Theorem 2 which relies on the calculation of
spectral elements of the homological operator LA naturally associated with Eq. (2.27);
see (2.54) below.

(ii) The case of eigenvalues of higher-order multiplicity is more involved. The presence
of Jordan blocks makes indeed the derivation of general analytic formulas challenging
but still possible by the method used in the derivation of the formulas (2.47)–(2.48).
Communication about these formulas will be pursued elsewhere.

(iii) By only assuming the (NR) condition, the solution to Eq. (2.27) given by the formulas
(2.47)–(2.48) is not necessarily unique. This situation happens for instance when we
have a k-uple (i1, . . . , ik) and an index n for which 〈Gk(ei1 , . . . , eik ), e

∗
n〉 = 0 while∑k

j=1 βi j −βn = 0. In this case, we can add to any solution hk to Eq. (2.27) a monomial
cxi1 · · · xik with any scalar coefficient c and get another solution; see (2.63)–(2.64)
below.

(iv) Note that if the (NR) condition is strengthened to

∀ (i1, . . . , ik) ∈ Ik, n ∈ {m + 1, . . . , N }, it holds that

(
〈Gk(ei1 , . . . , eik ), e

∗
n〉 	= 0

)
�⇒

( k∑

j=1

Re(βi j ) − Re(βn) > 0

)
, (2.49)

then the expression of hk given by (2.47)–(2.48) results directly from the expression of
Lyapunov–Perron integral I. Indeed,
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I(ξ) =
∫ 0

−∞
e−s AsΠsGk

( m∑

i=1

eβi sξi ei

)
ds

=
∫ 0

−∞

N∑

j=m+1

e−sβ j
〈
Gk

( m∑

i=1

eβi sξi ei

)
, en

〉
en ds (2.50)

i.e.

I(ξ) =
N∑

j=m+1

∑

(i1,...,ik )∈Ik

〈
Gk

(
ei1 , . . . , eik

)
, e∗

n

〉
ξi1 · · · ξik en

∫ 0

−∞
e(βi1+···+βik −β j )s ds,

(2.51)
recalling that Gk(u) denotes Gk(u, . . . , u), a homogeneous polynomial or order k. The
condition (2.49) ensures that the integrals in (2.51) are well-defined, leading to (2.47)–
(2.48) after integration.
Of course, by assuming only (NR) instead of (2.49), the Lyapunov–Perron integral may
not be well defined anymore. But as shown below, the solution to Eq. (2.27) still exists,
and is given again by (2.47)–(2.48).

(v) Finally, it is worth mentioning that cross non-resonance conditions of the form

k∑

j=1

βi j − βn 	= 0, ∀ (i1, . . . , ik) ∈ Ik, n ∈ {m + 1, . . . , N },

is also encountered for the study of normal forms on an invariant manifolds; see, e.g.
[84, Sect. 3.2.1], [60, Thm. 2.4] and also [11, Thm. 3.1].

Proof of Theorem 2 The proof is inspired by Lie algebra techniques used in the derivation of
normal forms for ODEs (see, e.g., [5, Chap. 5] and [11, Chap. 1]). We proceed in three steps.

Step 1 We seek a solution to Eq. (2.27) as a mapping hk : Ec → Es that admits the
following expansion:

hk(ξ) =
N∑

n=m+1

⎛

⎝
∑

(i1,...,ik )∈Ik

Ψ n
i1,...,ik

(ξ)

⎞

⎠ en, ξ = (ξ1, . . . , ξm) ∈ Ec. (2.52)

Here, for each (i1, . . . , ik) ∈ Ik , the function Ψ n
i1,...,ik

(ξ) is a complex-valued homogeneous
polynomial of degree k given by

Ψ n
i1,...,ik

(ξ) = Γ n
i1,...,ik

ξi1 · · · ξik . (2.53)

The task is then to determine the coefficients Γ n
i1,...,ik

(in C) by using Eq. (2.27).
Step 2 In that respect, we introduce the following homological operator LA:

LA[φ](ξ) = Dφ(ξ)Acξ − Asφ(ξ), ξ ∈ Ec, (2.54)

where φ : Ec → Es is a smooth function.
A key observation consists of noting that the Es-valued function, ξ �→ Ψ n

i1,...,ik
(ξ)en ,

provides an eigenfunction of LA corresponding to the eigenvalue
∑k

j=1 βi j − βn , in other
words that the following identity holds

LA[Ψ n
i1,...,ik

(ξ)en](ξ) =
⎡

⎣
k∑

j=1

βi j − βn

⎤

⎦Ψ n
i1,...,ik

(ξ)en . (2.55)
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In order to check (2.55), we first calculate Dφ(ξ)Acξ when φ(ξ) = Ψ n
i1,...,ik

(ξ)en . In that

respect, denoting by en
j the j th component of en , the Jacobian matrix D[Ψ n

i1,...,ik
(ξ)en], given

by the following N × m matrix,

D[Ψ n
i1,...,ik

(ξ)en] =

⎛

⎜⎜⎜⎝

∂Ψ n
i1,...,ik

(ξ)

∂ξ1
en
1 · · · · · · ∂Ψ n

i1,...,ik
(ξ)

∂ξm
en
1

...
...

...
∂Ψ n

i1,...,ik
(ξ)

∂ξ1
en

N · · · · · · ∂Ψ n
i1,...,ik

(ξ)

∂ξm
en

N

⎞

⎟⎟⎟⎠ , (2.56)

possesses the following representation

D[Ψ n
i1,...,ik

(ξ)en] = en

(∂Ψ n
i1,...,ik

(ξ)

∂ξ1
, . . . ,

∂Ψ n
i1,...,ik

(ξ)

∂ξm

)

= Γ n
i1,...,ik

en B(ξ). (2.57)

where B(ξ) = (B1(ξ), . . . , Bm(ξ)) is an m-dimensional row vector whose components are
given for any j in {1, . . . , m} by

B j (ξ) = ∂

∂ξ j

(
ξi1 · · · ξik

) =

⎧
⎪⎨

⎪⎩

pξ
p−1
j

∏

i� 	= j

ξi� , if j ∈ {i1, . . . , ik},

0, otherwise,
(2.58)

where p denotes the number of indices in the set {i1, . . . , ik} that equal j .
Thus,

D[Ψ n
i1,...,ik

(ξ)en]Acξ = Γ n
i1,...,ik

en B(ξ)Acξ. (2.59)

which leads to

D[Ψ n
i1,...,ik

(ξ)en]Acξ = Γ n
i1,...,ik

en B(ξ) (β1ξ1, . . . , βmξm)tr , (2.60)

since A is assumed to be diagonal.
Bynoting that the product B(ξ) (β1ξ1, . . . , βmξm)tr is nothing else that

∑k
j=1 β jξi1 · · · ξik ,

and recalling the expression of Ψ n
i1,...,ik

(ξ) in (2.53), we infer from (2.60) that

D[Ψ n
i1,...,ik

(ξ)en]Acξ =
k∑

j=1

βi j Ψ
n
i1,...,ik

(ξ)en . (2.61)

On the other hand,
AsΨ

n
i1,...,ik

(ξ)en = βnΨ n
i1,...,ik

(ξ)en, (2.62)

and recalling the definition of LA in (2.54), the identity (2.55) follows.
Step 3 By using the expansion of hk(ξ) given by (2.52) in Eq. (2.27), and by using

the fact that Ψ n
i1,...,ik

(ξ)en are eigenvectors of the homological operator LA with eigenvalue
∑k

j=1 βi j − βn (cf. (2.55)), we get

N∑

n=m+1

[ ∑

(i1,...,ik )∈Ik

( k∑

j=1

βi j − βn

)
Ψ n

i1,...,ik
(ξ)
]
en = ΠsGk(ξ).

Recalling from (2.53) that Ψ n
i1,...,ik

= Γ n
i1,...,ik

ξi1 · · · ξik , we obtain

N∑

n=m+1

⎡

⎣
∑

i1,...,ik∈Ik

( k∑

j=1

βi j − βn

)
Γ n

i1,...,ik
ξi1 · · · ξik

⎤

⎦ en = ΠsGk(ξ). (2.63)
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At the same time, since Gk is a homogeneous polynomial of order k and ξ =∑m
i=1 ξi ei ,

we obtain

ΠsGk(ξ) =
N∑

n=m+1

〈Gk(ξ), e∗
n〉en

=
N∑

n=m+1

∑

(i1,...,ik )∈Ik

ξi1 · · · ξik 〈Gk(ei1 , . . . , eik ), e
∗
n〉en . (2.64)

By using the above identity in (2.63), we obtain the following formulas for the coefficients
Γ n

i1,...,ik
in (2.53):

Γ n
i1,...,ik

= 〈Gk(ei1 , . . . , eik ), e
∗
n〉

∑k
j=1 βi j − βn

. (2.65)

The formula of hk given in (2.47)–(2.48) is thus derived by combining (2.52), (2.53) and
(2.65). The proof is complete. ��

2.3 Analytic Formulas for Higher-Order Approximations

We discuss briefly here simple considerations to derive higher-order approximations of an
invariantmanifold. The approach relies on the use of a power series expansion of themanifold
function h in the invariance equation (2.26). However, instead of keeping all the monomials
at a given degree arising from this expansion, we filter out terms that carries significantly
less energy compared with those that are kept. This elimination procedure relies on the
assumption that the projected ODE dynamics onto the resolved subspace Ec contains most
of the energy; an assumption which is often met in practical applications concerned with
invariant manifold reduction. To present the idea in a simple setting, we consider below the
case for which G(y) = G2(y, y) + G3(y, y, y) and a cubic approximation is sought.

When G = G2 + G3, the leading-order approximation of h is h2 given by (2.47)–(2.48)
with k = 2. Recall also h2 satisfies (2.27). To determine the approximation of order 3,
we replace h in the invariance equation (2.26) by happ = h2 + ψ , where ψ represents the
homogeneous cubic terms in the power expansion of h, to be determined. By identifying all
the terms of order two, we recover (2.27) with k = 2 to be satisfied for h2, and by identifying
all the terms of order three, we obtain the following equation for ψ :

Dψ(ξ)Acξ − Asψ(ξ) = −Dh2(ξ)ΠcG2(ξ) + ΠsG2(ξ, h2(ξ))

+ ΠsG2(h2(ξ), ξ) + ΠsG3(ξ). (2.66)

Notice that theLHSof (2.66) isLAψ , and that theRHS is a homogeneous cubic polynomial
in the ξ -variable. If most of the energy of the ODE dynamics is contained in the low modes,
one gets that the energy carried by ys is much smaller than ‖yc‖2. It is then reasonable to
expect that the energy carried by h2(ξ) is much smaller than ‖ξ‖2 for ξ = yc(t) as t varies.
This energy consideration implies that on the RHS of (2.66), the term ΠsG3(ξ) dominates
the other three terms provided that ‖G2(y, y)‖/‖y‖2 is on the same order of magnitude as
‖G3(y, y, y)‖/‖y‖3. Thus, it is reasonable to seek for a good approximation of ψ by simply
solving the equation:

Dh3(ξ)Acξ − Ash3(ξ) = ΠsG3(ξ). (2.67)
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Note that this is exactly (2.27) with k = 3. In virtue of Theorem 2, the existence of h3 is
guaranteed under the non-resonance condition (NR), and h3 is given by (2.47)–(2.48). We
denote this cubic parameterization by

Φ(ξ) = h2(ξ) + h3(ξ)

=
N∑

n=m+1

⎛

⎝
∑

(i1,i2)∈I2

〈G2(ei1 , ei2 ), e
∗
n〉

βi1 + βi2 − βn
ξi1ξi2 +

∑

(i1,i2,i3)∈I3

〈G3(ei1 , ei2 , ei3), e
∗
n〉

βi1 + βi2 + βi3 − βn
ξi1ξi2ξi3

⎞

⎠ en,

(2.68)

with I = (1, . . . , m). See the Supplementary Material for an application to the derivation of
effective reduced models able to capture a subcritical Hopf bifurcation arising in an ENSO
model.

In what precedes, we considered the case G of order 3, and determined approximations of
order 3. We could nevertheless, seek for higher-order approximations of invariant manifolds,
independently of the nonlinearity to be of high-order or not. For instance if G(y) = B(y, y),
i.e. quadratic, we outline hereafter how recursive solutions to a hierarchy of homological
equations arise naturally once we look for higher-order approximations.

In that respect, we introduce some notations. We denote by Polyk(Ec; Es) (resp. Polyk
(Ec; Ec)) the space of vectors in Es (resp. Ec) whose components are homogeneous
polynomials of order k in the Ec-variable. Given a polynomial P in Polyk(Ec; Es) or in
Polyk(Ec; Ec), the symbol

[P(ξ)
]

k represents the collection of terms of order k in P .
By seeking a solution, Ψ , to the invariance equation Eq. (2.26) under the form,

Ψ (ξ) =
∑

k≥2

Ψk(ξ), Ψk ∈ Polyk(Ec; Es). (2.69)

we infer that the Ψk’s satisfy the following recursive homological equations given by

L[Ψk](ξ) =
[
ΠsB(Φ<k(ξ),Φ<k(ξ))

]

k
−

k−1∑

�=2

DΨk−�+1(ξ)
[
ΠcB(Φ<�(ξ),Φ<�(ξ))

]

�

(2.70)
where Φ<�(ξ) denotes

Φ<�(ξ) = ξ +
�−1∑

j=2

Ψ j (ξ). (2.71)

Note that with the convention
∑1

2 ≡ 0, we recover the first homological equation, namely

L[Ψ2](ξ) = ΠsB(ξ, ξ). (2.72)

In other words Ψ2 = h2. We refer to [85] for a detailed account regarding the rigorous
and computational aspects for the determination of solutions to Eq. (2.70). [109, Chap. 11]
contains also a detailed survey of algorithms to compute numerically invariant manifolds for
fast-slow systems.
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Part II: Variational Approach to Closure

3 Optimal ParameterizingManifolds

3.1 Variational Formulation

3.1.1 Parameterizing Manifolds (PM) and Parameterization Defect

A cornerstone of our approach presented below is the notion of parameterizing manifold
(PM) that we recall below from [26,31,32]. Our framework takes place in finite dimension
as in Part I, however here we consider more general systems of the form

dy

dt
= Ay + G(y) + F, y ∈ C

N , (3.1)

where F denotes a time-independent forcing in C
N , A is a N × N matrix with complex

entries, whileG is assumed to be a smooth nonlinearity forwhichwe do not assumeG(0) = 0
anymore. In practice Eq. (3.1) can be thought as derived in the perturbed variable from an
original system, for which A is either the Jacobian matrix at a mean state (F 	= 0) or at a
steady state (F = 0), although the concepts presented below do not restrict to such situations.
Hereafter we assume that A, F and G are such that classical solutions (at least C1) exist and
that the corresponding initial value problem possesses a unique solution, at least for initial
data taken in an open domain D of CN . Dynamically-based formulas to design PMs for
Eq. (3.1) are given in Sects. 4.3 and 4.4 below. For the moment we recall the definition of a
PM, and introduce the notion of parameterization defect that will be used for the optimization
of PMs.5

Definition 1 Let T > 0 and 0 ≤ t1 < t2 ≤ ∞. Let y be a solution to Eq. (3.1), and
Ψ : Ec → Es be a continuous mapping satisfying the following energy inequality for all t
in [t1, t2)

∫ t+T

t
‖ys(s) − Ψ (yc(s))‖ 2 ds <

∫ t+T

t
‖ys(s)‖ 2 ds, (3.2)

where yc(s) = Πcy(s) and ys(s) = Πsy(s), with Πc and Πs that denote the canonical
projectors onto Ec and Es, respectively (Ec and Es being defined in (2.14)).

Then, the manifold,MΨ , defined as the graph of Ψ , i.e.

MΨ = {ξ + Ψ (ξ) | ξ ∈ Ec}, (3.3)

is a finite-horizon parameterizing manifold associated with the system of ODEs (3.1), over
the time interval [t1, t2). The time-parameter T measuring the length of the “finite-horizon” is
independent on t1 and t2. If (3.2) holds for t2 = ∞, thenMΨ is simply called a finite-horizon
parameterizing manifold, and if it holds furthermore for all T , it is called a parameterizing
manifold (PM).

Given a parameterization Ψ of the unresolved variables (in Es) in terms of the resolved
ones (in Ec), a natural non-dimensional number, the parameterization defect, is defined as

QT (t, Ψ ) =
∫ t+T

t ‖ys(s) − Ψ (yc(s))‖ 2 ds
∫ t+T

t ‖ys(s)‖ 2 ds
, t ∈ [t1, t2). (3.4)

5 Note however that other cost functionals may be considered at this stage; see Sect. 4.4 below.
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Sometimes, the dependence on t will be secondary, and by making t = t1 in (3.4) with t1
sufficiently large so that for instance transient dynamics has been removed, we will denote
QT (t, Ψ ) simply by QT (Ψ ). In any event, either QT (t, Ψ ) or QT (Ψ ) allows us to compare
objectively twomanifolds in their ability to parameterize the variables that lie in the subspace
Es by those that lie in the subspace Ec. Clearly a situation corresponding to an exact slaving
of the variables in Es by those in Ec as encountered in the invariant manifold theory revisited
in Part I, corresponds to QT (Ψ ) ≡ 0 for any solution y that lies on the invariant manifold,
MΨ , associated with the parameterization Ψ . If furthermoreMΨ attracts e.g. exponentially
any trajectory like in the case of an inertial manifold, then QT (Ψ ) → 0, as T → ∞whatever
the solution y.

A standard m-dimensional Galerkin approximation based on the modes in Ec (with
dim(Ec) = m), corresponds to Ψ = 0 and thus to QT (Ψ ) ≡ 1. Thus,

MΨ is a PM if and only if QT (Ψ ) < 1 for all T > 0.

Clearly, given a parameterization Ψ , it may happen that the corresponding parameterization
defect QT (Ψ ) fluctuates from solutions to solutions, and depends also substantially on the
time interval [t1, t2) over which the initial time t is taken to compute the integrals in (3.4),
as well as the horizon T .

Nevertheless, given a set of solutions of interest, a horizon T , an interval [t1, t2), and a
set dimension of the reduced state space (i.e. dim(Ec)= m), one is naturally inclined for
seeking for parameterizations, Ψ , that come with the smallest parameterization defect. In
other words, we aim at solving the following minimization problem

min
Ψ ∈E

∫ t+T

t

∥∥ys(s) − Ψ (yc(s))
∥∥2 ds, (3.5)

for which E denotes a space of parameterizations that makes not only tractable the determi-
nation of a minimizer, but also that is not too greedy in terms of data. This latter requirement
comes from important practical considerations. For instance, for high-dimensional systems
(e.g. N of about few hundred thousands), one has typically y(t) available over a relatively
small interval of time, and thus if e.g. m ∼ N/100 and the choice of E is too naive, such
as homogeneous polynomials in the Ec-variable, with arbitrary coefficients, one might eas-
ily face an overfitting problem in which too many coefficients have to be determined while
not enough snapshots of y(s) are available over [t, t + T ]. Section 4 below shows that the
backward–forward system (2.29) provides a space E of dynamically-based parameterizations
that allow to bypass this difficulty as the coefficients to be determined are dependent only on
a scalar parameter, the backward integration time τ in (2.29).

These practical considerations are central in our approach but before providing their
details, we consider in the next section other important theoretical questions. These questions
deal with the existence (and uniqueness) of minimizers to (3.5) on one hand, and with the
characterization of the closure system that is reached once (3.5) is solved, on the other.
Thus, we show in Sect. 3.2 below that, under assumptions of ergodicity, reasonable for a
broad class of forced-dissipative nonlinear systems such as arising in fluid dynamics, the
minimization problem (3.5) possesses a unique solution, as T → ∞; see Theorem 4 and
also [32, Theorem A.1 and Remark 4.1]. We call the corresponding minimizer, the optimal
parameterizing manifold. We conclude finally by showing that an optimal PM, once used
as a substitute of the unresolved variables, leads to a reduced system in Ec that gives the
conditional expectation of the original system, i.e. the best vector field of the reduced state
space resulting from averaging of the unresolved variables with respect to a probability
measure conditioned on the resolved variables; see Theorem 5 below.
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We emphasize that PMs have already demonstrated their utility in other applications.
For instance, PMs have shown their usefulness for the effective determination of surrogate
low-dimensional systems in view of the optimal control of dissipative nonlinear PDEs. In
this case, rigorous error estimates show that parameterization defects arise naturally in the
efficient model reduction of optimal control problems (see [26, Thm. 1 and Cor.2]) as fur-
thermore supported by detailed numerical results (see [26, Sec. 5.5] and [22]). Speaking
roughly, these estimates show that the smaller is the parameterization defect, the better a
low-dimensional controller designed from the surrogate system, behaves. Error estimates
that relate the parameterization defect to the ability of reproducing the original dynamics’
long term statistics by a surrogate system are difficult to produce for uncontrolled determin-
istic systems, in particular for chaotic regimes such as considered hereafter in Sects. 5 and 6,
due to the singular nature (with respect to the Lebesgue measure) of the underlying invariant
measure. In the stochastic realm, this invariant measure becomes smooth for a broad class
of systems and the tools of stochastic analysis make the obtention of such estimates more
amenable albeit non trivial; see [21]. Nevertheless, considerations from ergodic theory and
conditional expectations are already insightful for the deterministic systems dealt with in this
article as explained in Sect. 3.2 below.

3.1.2 Parameterization Correlation and Angle

Given a parameterization Ψ that is not trivial (i.e. Ψ 	= 0), we define the parameterization
correlation as,

c(t) = Re〈Ψ (yc(t)), ys(t)〉
‖Ψ (yc(t))‖ ‖ys(t)‖ . (3.6)

It provides a measure of collinearity between the parameterized variable Ψ (yc(t)) and the
unresolved variable ys(t), as time evolves. In case of exact slaving, ys(t) = Ψ (yc(t)) and
thus c(t) ≡ 1.

The parameterization correlation, c(t), is another key quantity in our approach. Speaking
roughly, we aim for not only at finding a PM with the smallest parameterization defect but
also with a parameterization correlation, c(t), to be as much close to one as possible. The
basic idea is to find parameterizations that approximate as much as possible an ideal slaving
situation, for regimes in which slaving does not hold necessarily.

In particular, the parameterization correlation allows us, once an optimal PM has been
determined, to select the dimension m of the reduced phase space according to the following
criterium: m should correspond to the lowest dimension of Ec for which the probability
distribution function (PDF) of the corresponding parameterization angle,

α(t) = arccos(c(t)), (3.7)

is the most skewed towards zero and the mode of this PDF (i.e. the value that appears most
often) is the closest to zero; see Fig. 2.

As a rule of thumb, we aim at finding PMs, Ψ , such that:

1. The parameterization defect, QT (Ψ ), is as small as possible, and
2. The PDF of the parameterization angle α(t) is skewed towards zero as much as possible,

and its mode (i.e. the value that appears most often) is close to zero.

We illustrate in Sects. 3.4 and 5 below that, when breakdown of slaving principle occurs, these
rules manifest as a natural framework to diagnose and select a parameterization. Nevertheless
as the dimension of the original problem gets large, one may have to inspect a modewise
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Fig. 2 Effect of the reduced dimension m: schematic. This effect is schematically shown here on the PDF of
the parameterization angle α(t). Here a case corresponding to m1 > m2, is depicted: m1 is large enough to
be a successful PM while m2 is not

version of QT (as discussed in Sect. 4.2) as well as of α(t); see Sect. 6.3 for the latter. In
any case, the idea is that one should not only parameterize properly the statistical effects of
the neglected scales but also avoid to lose their phase relationships with the retained scales
[132]. This is particularly important to derive closures that respect a certain phase coherence
between the resolved and unresolved scales.

3.2 Optimal ParameterizingManifold and Conditional Expectation

Wepresent in this section themain results that serve as a foundational basis for the applications
discussed hereafter. We denote by X the vector field associated with Eq. (3.1) i.e.

X(y) = Ay + G(y) + F, for all y ∈ C
N . (3.8)

To simplify the presentation, we assume this vector field to be sufficiently smooth and
dissipative on C

N , such that the corresponding flow, Tt , is well-defined. We assume, fur-
thermore, that Tt possesses an invariant probability measure μ, which is physically relevant
[37,57], in the sense that the following property holds for y in a positive Lebesgue measure
set B(μ) (of CN ) and for every continuous observable ϕ : CN → C

lim
T →∞

1

T

∫ T

0
ϕ(Tt (y)) dt =

∫
ϕ(y) dμ(y). (3.9)

This property assures that meaningful averages can be calculated and the statistics of the
dynamical system can be investigated by the asymptotic distribution of orbits starting from
Lebesgue almost every initial condition in e.g. the basin of attraction, B(μ), of the statistical
equilibrium μ.

Recall that, like all probability measures invariant under Tt , an invariant measure that
satisfies (3.9) is supported by the global attractor A when the latter exists; e.g. [24, Lemma
5.1]. In the case a global attractor is not known to exist, an invariant measure has its support
in the non-wandering set, Λ; see [69, Remark 1.4, p. 197].

It can be proven for e.g. Anosov flows [13], partially hyperbolic systems [1], Lorenz-
like flows [12], and observed experimentally for many others [28,33,57,71] that a common

123



Variational Approach to Closure of Nonlinear Dynamical... 1099

feature of (dissipative) chaotic systems is the transformation (under the action of the flow) of
the initial Lebesgue measure into a probability measure with finer and finer scales, reaching
asymptotically an invariant measure μ of Sinai–Ruelle–Bowen (SRB) type. This measure is
singular with respect to the Lebesgue measure, is supported by the local unstable manifolds
contained in A or in Λ [37, Def. 6.14], and if it has no zero Lyapunov exponents it satisfies
(3.9) [177]. This latter property is often referred to as the chaotic hypothesis that, roughly
speaking, expresses an extension of the ergodic hypothesis to non-Hamiltonian systems [71].
Wework thus hereafter within this hypothesis and we assume furthermore that (3.9) holds for
ϕ that lies in the space of integrable function, L1

μ(CN ), with respect to the invariant measure
μ.

Having clarified the ergodic framework within which we will frame our variational
approach, we consider now a high-mode parameterization of the form

Ψ (ξ) =
N∑

n=m+1

Ψn(ξ)en, ξ ∈ Ec, (3.10)

with the en’s denoting the eigenmodes of the linear part, A, that span the subspace Es. The
regularity assumption made on Ψ is clarified hereafter; see Theorem 3. In practice, Ψ does
not need to cover the whole range [m + 1, N ] and some Ψn may be zero.

We denote by m the push-forward of the measure μ by the projector Πc onto Ec, namely

m(B) = μ(Π−1
c (B)), B ∈ B(Ec), (3.11)

where B(Ec) denotes the family of Borel sets of Ec; i.e. the family of sets that can be formed
from open sets (for the topology on Ec induced by the norm ‖ · ‖Ec ) through the operations
of countable union, countable intersection, and relative complement.

In what follows (see Sect. 4), given a solution y(t) that emanates from y0 in B(μ), we
also consider the parameterization defect, Qn , associated with the parameterization Ψn of
the nth-eigenmode, namely

Qn(T ) = 1

T

∫ T

0

∣∣∣〈ys(t), e∗
n〉 − Ψn(yc(t))

∣∣∣
2
d t, (3.12)

where we recall that {e∗
j }N

j=1 denotes the eigenvectors of the conjugate transpose A∗.
In the case {en} forms an orthonormal basis ofCN , namely when A is a Hermitian matrix,

we have due to the Parseval’s identity,

QT (Ψ ) = 1

T

∫ T

0
‖ys(t) − Ψ (yc(t))‖2 d t =

N∑

n=m+1

Qn(T ). (3.13)

However this equality does not always hold, in general. Indeed, by writing ys(t) =∑N
n=m+1 yn(t)en with yn(t) = 〈ys(t), e∗

n〉, we remark that

‖ys(t) − Ψ (yc(t))‖2 =
N∑

n1,n2=m+1

〈(
yn1(t) − Ψn1(yc(t))

)
en1 ,

(
yn2(t) − Ψn2(yc(t))

)
en2

〉
,

and the latter identity is reduced to
∑N

n=m+1 |yn(t)−Ψn1(yc(t))|2 when 〈e j , ek〉 = δ j,k for
all j, k = m + 1, . . . , N .
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Thus, solving (3.5) is not always equivalent to solving the following family of variational
problems

min
Ψn∈E

∫ T

0

∣∣∣〈ys(t), e∗
n〉 − Ψn(yc(t))

∣∣∣
2
d t, m + 1 ≤ n ≤ N . (3.14)

As we will see, for practical reasons we will often prefer to solve (3.14) rather than (3.5); see
Sect. 4.2 below. Nevertheless, the existence and uniqueness of minimizers for either (3.14)
or (3.5), are dealt with in the same way. Hereafter, we present the latter only in the case
of (3.5) (allowing for the simplification of certain statements) and leave to the reader the
corresponding statements and proofs in the case of the minimization problems (3.14).

In that respect, we select the space of parameterizations, E , to be the Hilbert space con-
stituted by Es-valued functions of the resolved variables ξ in Ec, that are square-integrable
with respect to m, namely

E = L2
m(Ec; Es) =

{
Ψ : Ec → Es measurable and such that

∫

Ec

‖Ψ (ξ)‖2 dm(ξ) < ∞
}
.

(3.15)
Our approach to minimize,QT (Ψ ) (in E), and to identify parameterizations for which the

normalized parameterization defect

QT (Ψ ) = QT (Ψ )〈‖ys‖2〉−1
T , (3.16)

satisfies
0 < lim

T →∞QT (Ψ ) < 1, (3.17)

relies substantially on the general disintegration theoremof probabilitymeasures; see e.g. [51,
p. 78]. In (3.16), we have denoted by 〈‖ys‖2〉T the time-mean of ys over [0, T ]. The disin-
tegration theorem states that given a probability measure μ on C

N , a vector subspace V of
C

N , and a Borel-measurable mapping p : CN → V , then there exists a uniquely determined
family of probability measures {μx }x∈V such that, for m-almost all 6 x in V , μx is concen-
trated on the pre-image p−1({x}) of x , i.e. μx

(
C

N \ p−1({x})) = 0, and such that for every
Borel-measurable function φ : CN → C,

∫
φ(y) dμ(y) =

∫

V

(∫

y∈p−1({x})
φ(y) dμx (y)

)
dm(x). (3.18)

Herem denotes the push-forward in V of the measure μ by the mapping p, i.e.m is given by
(3.11) where Πc is replaced by p. Note that when p is the projection onto V , the probability
measure μx is the conditional probability of the unresolved variables, contingent upon the
value of the resolved variable to be x ; see also [29, Supporting Information].

Hereafter, we apply this theorem with the reduced phase space, V , to be the subspace of
the resolved variables, Ec, and the mapping p to be the projector Πc onto Ec. In this case, a
decomposition analogous to (3.18) holds for the measure μ itself, namely

μ(B × F) =
∫

F
μξ (F) dm(ξ), B × F ∈ B(Ec) ⊗ B(Es). (3.19)

First, we state a result identifying natural conditions under which, lim
T →∞QT (Ψ ) exists.

6 i.e. up to an exceptional set of null measure with respect to m.
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Theorem 3 Assume that Eq. (3.1) admits an invariant probability measure μ satisfying (3.9)
and that the unresolved variable ζ in Es has a finite energy in the sense that

∫
‖ζ‖2 dμ < ∞. (3.20)

If Ψ lies in L2
m(Ec, Es), then for a.e. solution y(t) of Eq. (3.1) that emanates from an

initial datum y0 in the basin of attraction B(μ), the limit lim
T →∞QT (Ψ ) exists, and is given by

lim
T →∞QT (Ψ ) =

∫

(ξ,ζ )∈Ec×Es

‖ζ − Ψ (ξ)‖2 dμ. (3.21)

Proof This theorem is a direct consequence of the ergodic property (3.9) applied to the
observable

ϕ(ξ, ζ ) = ‖ζ − Ψ (ξ)‖2. (3.22)

Indeed, first, let us note that ϕ(ξ, ζ ) = ‖ζ‖2 − 2〈ζ, Ψ (ξ)〉 + ‖Ψ (ξ)‖2 satisfies
∫

ϕ(ξ, ζ ) dμ ≤
∫

‖ζ‖2 dμξ (ζ ) +
∫

‖Ψ (ξ)‖2 dm +
∫

(‖ζ‖2 + ‖Ψ (ξ)‖2) dμ, (3.23)

by application of (3.19) and the Fubini’s theorem for the two first integrals in the RHS of
(3.23), and of the Cauchy–Schwarz and Young inequalities for the third integral. Another
application of (3.19) and the Fubini’s theorem for this latter integral shows that ϕ lies in
L1

μ(CN ), since Ψ belongs to L2
m(Ec, Es) and (3.20) holds. ��

We are now in position to show the existence of a unique minimizer to the minimization
problem

min
Ψ ∈E

(
lim

T →∞QT (Ψ )

)
, (3.24)

i.e. to ensure the existence of an optimal manifold minimizing the parameterization defect.
The minimizer is also characterized; see (3.26) below. An earlier version of such results may
be found in [32, Theorem A.1] for the special case of a truncated Primitive Equation model
due to Lorenz [123]. The general case is dealt with below.

Theorem 4 Assume that the assumptions of Theorem 3 hold. Then the minimization problem

min
Ψ ∈E

∫

(ξ,ζ )∈Ec×Es

‖ζ − Ψ (ξ)‖2 dμ, (3.25)

possesses a unique solution in E = L2
m(Ec, Es) whose argmin is given by

Ψ ∗(ξ) =
∫

Es

ζ dμξ (ζ ), ξ ∈ Ec. (3.26)

Furthermore
lim

T →∞QT (Ψ ∗) ≤ lim
T →∞QT (Ψ ), ∀ Ψ ∈ L2

m(Ec, Es). (3.27)

Proof The proof is a direct consequence of the disintegration theorem applied to the ergodic
measure μ. Let us introduce the following Hilbert space of Es-valued functions

L2
μ(Ec × Es; Es) =

{
f : Ec × Es → Es, measurable and s.t.

∫

Ec×Es

‖ f (ξ, ζ )‖2 dμ(ξ, ζ ) < ∞
}
. (3.28)
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Let us define the expectation Eμ(g) with respect to the invariant measure μ by

Eμ(g) =
∫

Ec×Es

g(ξ, ζ ) dμ(ξ, ζ ), g ∈ L2
μ(Ec × Es; Es). (3.29)

By applying to the ambient Hilbert space L2
μ(Ec × Es; Es), the standard projection

theorem onto closed convex sets [14, Theorem 5.2], one defines (given Πc) the conditional
expectation Eμ[g|Πc] of g as the unique function in E that satisfies the inequality

Eμ[‖g − Eμ[g|Πc]‖2] ≤ Eμ[‖g − Ψ ‖2], for all Ψ ∈ E . (3.30)

The general disintegration theorem of probability measures, applied to μ (see (3.18)),
provides the following explicit representation of the conditional expectation

Eμ[g|Πc] =
∫

Es

g(ξ, ζ ) dμξ (ζ ), (3.31)

with μξ denoting the disintegrated measure of μ in (3.19).
Now let us take g(ξ, ζ ) = ζ , then

Eμ[ζ |Πc] = Ψ ∗, (3.32)

with Ψ ∗ defined by (3.26). We have then

∥∥Ψ ∗(ξ)
∥∥2 ≤

∫
‖ζ‖2 dμξ (ζ ), (3.33)

and by using (3.18) we have
∫ ∥∥Ψ ∗(ξ)

∥∥2 dm(ξ) ≤
∫

‖ζ‖2 dμ. (3.34)

This inequality shows that Ψ ∗ lies in L2
m(Ec, Es) due to assumption (3.20).

We have then from (3.30),

Eμ[‖ζ − Ψ ∗‖2] ≤ Eμ[‖ζ − Ψ ‖2], for all Ψ ∈ E . (3.35)

By recalling that

Eμ[‖ζ − Ψ ∗‖2] =
∫

Es×Es

‖ζ − Ψ ∗(ξ)‖2 dμ(ξ, ζ ) =
∫

‖ζ − Ψ ∗(ξ)‖2 dμ(ξ, ζ ), (3.36)

one obtains then, by applying respectively (3.9) to ϕ = ‖ζ − Ψ ∗‖2 and ϕ = ‖ζ − Ψ ‖2, that
for all Ψ in E ,

lim
T →∞

1

T

∫ T

0
‖ys(t) − Ψ ∗(yc(t))‖2 dt ≤ lim

T →∞
1

T

∫ T

0
‖ys(t) − Ψ (yc(t))‖2 dt . (3.37)

The proof is complete. ��
The manifold obtained as the graph of Ψ ∗ given by (3.26) will be called the optimal PM.
Formula (3.26) shows that the optimal PM corresponds actually to the manifold that maps
to each resolved variable ξ in Ec, the averaged value of the unresolved variable ζ in Es as
distributed according to the conditional probability measure μξ . In other words, the optimal
PM provides the best manifold (in a least-square sense) that averages out the fluctuations of
the unresolved variable.
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BymakingΨ ≡ 0 in (3.27), this optimal PM comes with a (normalized) parameterization
defect (3.16) that satisfies necessarily

0 ≤ lim
T →∞QT (Ψ ∗) ≤ 1. (3.38)

This variational view on the parameterization problem of the unresolved variables removes
any sort of ambiguity that has surrounded the notion of (approximate) inertial manifold in
the past. Indeed, within this paradigm shift, given an ergodic invariant measure μ and a
reduced dimension m (defining thus a projector Πc), the optimal PM may have a parame-
terization defect very close to 1 and thus the best possible nonlinear parameterization one
could ever imagine cannot a priori do much better than a classical Galerkin approximation,
and sometimes even worse. To the opposite, the smaller QT (Ψ ∗) is (for T large), the best the
parameterization. All sort of nuances are actually admissible, evenwhen the parameterization
defect is just below unity; see [32] and Sect. 3.4 below.

Weemphasize that although the theory presented in this section has been shaped for asymp-
totic values of T , in practice we will be instead interested to seek for optimal PMs learned
over a training length as short as possible (to rely on as few as possible DNS snapshots).
In that respect, it is where the parametric families of dynamically-based parameterizations
derived in Sect. 4 below (and relying on Part I) become useful. We will indeed show that
by applying these formulas in practice, we are able to derive optimal PMs trained over short
training intervals of length comparable to a characteristic recurrence or decorrelation time
of the dynamics; see Sects. 5 and 6 below.

Remark 2 (i) The ergodic property (3.9) can be relaxed into weaker forms such as consid-
ered in e.g. [24,69]. These relaxed versions hold for a broad class of dissipative systems
including systems of ODEs and even PDEs, as long as a global attractor exists [24, The-
orem 2.2]. However these weaker forms do not guarantee the existence of the limit in
(3.21) and the latter would be replaced instead by a notion of generalized limit involving
e.g. averaging over accumulations points. The statistical equilibrium μ is then not guar-
anteed to be unique.
Nevertheless, bearing these changes in mind, the proof presented above can be easily
adapted and the conclusion of Theorem 4 remains valid with however a form of opti-
mality that is now subject to the choice of the statistical equilibrium. Within this ergodic
framework, several optimal parameterizing manifolds may co-exist but for each statisti-
cal equilibrium there is only one optimal parameterizing manifold. The same is true if a
global attractor A is not guaranteed to exist: A must be replaced by the non-wandering
set Λ, and the optimal PM is unique for trajectories sampled according to the statistical
equilibrium μ.

(ii) With thenuances brought up in (i) above,Theorem4applies thus to any relevantGalerkin
truncations of systems of PDEs arising in fluid dynamics; see [32] andSect. 3.4 below for
an application to a 9D Galerkin truncation of the Primitive Equations of the atmosphere
due to Lorenz [123].

(iii) Theorem 4 is fundamental for understanding and interpretation but is of little interest for
computing the optimal PM in practice, except in specific problems for whichμ is known
explicitly (see e.g. [23, Sec. 4]) or can be approximated semi-analytically [128,129];
see also [171] for an alternative approach to estimate numerically μξ in the context
of slow-fast systems. In Sect. 4 below we introduce instead explicit dynamically-based
parameterizations that, once optimized according to a mode-adaptive approach, provide
an efficient way to determine PMs that although suboptimal (for (3.25)) will be shown
to be skillful for closure in practice; see Sects. 5 and 6 below.
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We have then the following result relating the conditional expectation to the optimal PM.
We state this theorem in the case of quadratic interactions, motivated by applications in fluid
dynamics; see also [32, Sec. 4.3] and Sect. 3.4 below, for an illustration.

Theorem 5 Under the conditions of Theorem 4 if G is a quadratic nonlinearity B in Eq. (3.1),
the conditional expectation, Eμ[X |Πc], satisfies

Eμ[X |Πc](ξ) = Acξ +ΠcB(ξ, ξ)+Πc

(
B(ξ, Ψ ∗(ξ))+ B(Ψ ∗(ξ), ξ)

)+Fc+η(ξ), ξ ∈ Ec,

(3.39)
where X is the vector field given by (3.8), Ψ ∗ is the optimal PM guaranteed by Theorem 4,
and η is given by

η(ξ) =
∫

ζ∈Es

ΠcB(ζ, ζ ) dμξ (ζ ). (3.40)

Thus in the case η = 0, the optimal PM, Ψ ∗, provides the conditional expectationEμ[X |Πc],
i.e.

Eμ[X |Πc](ξ) = Acξ + ΠcB(ξ, ξ) + Πc

(
B(ξ, Ψ ∗(ξ)) + B(Ψ ∗(ξ), ξ)

)+ Fc. (3.41)

Proof Expanding X(ξ + ζ ) (with (ξ, ζ ) in Ec × Es) and integrating with respect to the
disintegrated probability measure, μξ , we get (by using that

∫
dμξ = 1)

Eμ[X |Πc](ξ) = Acξ + ΠcB(ξ, ξ) + Fc + η(ξ) +
∫ (

Πc

(
B(ξ, ζ ) + B(ζ, ξ)

))
dμξ (ζ ),

= Acξ + ΠcB(ξ, ξ) + Fc + η(ξ) + ΠcB

(
ξ,

∫
ζ dμξ (ζ )

)

+ ΠcB

(∫
ζ dμξ (ζ ), ξ

)
, (3.42)

which given the expression of Ψ ∗ in (3.26), gives (3.39). ��

3.3 Inertial Manifolds and Optimal PMs

To avoid any confusion, we clarify the distinction between the concept of an inertial manifold
(IM) and that of an optimal parameterizing manifold (PM). First of all, an IM is a particular
case of an asymptotic PM since when an inertial manifold Ψ exists, QT (Ψ ) = 0 for all T
sufficiently large. We list below some important points to better appreciate the differences
between the two concepts.

(i) When an IM, Ψ , exists, then Ψ = Ψ ∗ in (3.26) with μξ being the Dirac mass (in
Es) concentrated on Ψ (ξ), i.e. μξ = δΨ (ξ). Furthermore in this case, the probability
distribution pα of the parameterization angle, α(t) given by (3.7), is given by the Dirac
mass δ0 (on the real line) concentrated at 0.

(ii) Working with the eigenbasis of the linear part of Eq. (3.1) and assuming that an IM
exists, let m∗ denote the minimal dimension of the reduced state space required for an
IM to exist. If m = dim(Ec) < m∗ then there is no inertial manifold but a PM still
exists in general as supported by Theorem 3. One may wonder however whether more
can be said when m < m∗.
This is where the parameterization defect, QT , and the parameterization angle, α(t),
provide useful mutual informations. Typically when m < m∗, seeking for a manifold
that minimizes QT allows for parameterizing optimally (in a least square sense) the
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statistical effects of the neglected scales in terms of those retained. However one should
keep inmind to avoid losing the phase relationships between the resolved and unresolved
scales, and in that sense the distribution pα should not be too spread. For systems with
a high-dimensional global attractor one may need to inspect a modewise version of
QT (as discussed in Sect. 4.2 below) as well as of α(t) for the design of the nonlinear
parameterization; see Sect. 6.3 for the latter in the context of 1D Kuramoto-Sivashinsky
turbulence.

Thus, even for systems that admit an IM, an optimal PM often provides an efficient
closure based on much fewer modes compared to an inertial form. Such an observation
about efficient reduced dimension is known by the practitioner familiar with the notion of
approximate inertial manifold (AIM). AnAIM provides amanifold such that the attractor lies
within a neighborhood of it that shrinks as the reduced dimension m is increased [48,52,131].
Nevertheless, as the reduced dimension is set too low, a given AIM may suffer from e.g. an
over-parameterization of the small scales resulting into dramatic errors backscattering to the
large scales; see Sect. 6. This is because the AIM approach does not address the question
of finding an optimal manifold that minimizes the parameterization defect while keeping
the reduced dimension as low as possible. This is the focus of the PM approach proposed
in this article which is thus, in essence, variational rather than concerned with the rate of
convergence with m as in standard AIM theory.

3.4 A Reduced-Order Primitive Equation Example: PM and Breakdown of Slaving
Principles

The conditional expectation is related to the optimal PMaccording to Theorem5,making thus
the optimal PM an essential ingredient for the closure problem. Depending on the problem
at hand, the conditional expectation provides e.g. the reduced equations that filter out the
fast gravity waves from truncated Primitive Equations (PE) of the atmosphere; see [32].
Truncations corresponding to η = 0 in (3.39), i.e. when the high-high interactions do not
contribute to the low-mode dynamics, is particularly favorable for the conditional expectation
to provide such a filtering property. As shown numerically in [32], the conditional expectation
provides indeed such a “low-pass filter” closure for the truncated PE proposed by Lorenz in
1980 [123], when a critical Rossby number, ε∗, is crossed. We reproduce hereafter some of
these numerical results and provide new, complementary understanding based on the theory
of PMs such as discussed in this article.

The model of [123], when rescaled following [32], becomes

ε2ai
dXi

dt
= ε3ai bi X j Xk − ε2c(ai − ak)X j Yk + ε2c(ai − a j )Y j Xk

− 2εc2Y j Yk − ε2N0a2
i Xi + ai (Yi − Zi ),

ai
dYi

dt
= −εakbk X j Yk − εa j b j Y j Xk + c(ak − a j )Y j Yk − ai Xi − N0a2

i Yi ,

dZi

dt
= −εbk X j (Zk − Hk) − εb j (Z j − Hj )Xk + cY j (Zk − Hk)

− c(Z j − Hj )Yk + g0ai Xi − K0ai Zi + Fi . (3.43)

The above equations are written for each cyclic permutation of the set of indices (1, 2, 3),
namely, for

(i, j, k) ∈ {(1, 2, 3), (2, 3, 1), (3, 1, 2)}. (3.44)
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We refer to [32] for a detailed description of this model and its parameters. For our purpose,
it is sufficient to know that the time, t , is an O(1)-slow time, and that Xi ’s,Yi ’s, and Zi ’s are
O(1)-amplitudes for the divergent velocity potential, streamfunction, and dynamic height,
respectively. In this setting N0 and K0 are rescaled damping coefficients in the slow time.
TheFi ’s areO(1) control parameters that, in combination with variations of ε, can be used to
affect regime transitions/bifurcations. In a general way, ε, can be identified with the Rossby
number.

Solutions of higher-order accuracy in ε > 0 that are entirely slow in their evolution
are, by definition, balanced solutions, and [73] showed by construction several examples of
explicitly specified, approximate balancedmodels. One of these, the Balance Equations (BE),
was conspicuouslymore accurate than the others when judged in comparison with apparently
slow solutions of (3.43). The BE approximation consists of a parameterization of the Xi ’s
and Zi ’s variables, in terms of the Yi ’s variables. The Z-component of this parameterization
has an explicit expression. The X-component of this parameterization, denoted by Φ, is
however obtained implicitly, by solving a system of differential-algebraic equations derived
from Eq. (3.43) under a balance assumption that consists of replacing the dynamical equation
for the Xi ’s by algebraic relations. Eventually, we arrive at a 3D reduced system of ODEs,
simply called the BE, and that takes the form

ai
dYi

dt
= −εakbkΦ j (Y)Yk −εa j b j Y jΦk(Y)+c(ak −a j )Y j Yk −aiΦi (Y)−N0a2

i Yi , (3.45)

with (i, j, k) as in (3.44). We refer to [32, Sec. 3.1] for a derivation.
For certain Rossby numbers for which energetic bursts of fast oscillations occur in the

course of time (occurring for ε > ε∗), Chekroun et al. [32] have shown that the underlying
BE manifold (associated with the BE parameterization of the X- and Z-variables), provides
a very good approximation of the optimal PM for this problem, and thus of the conditional
expectation in virtue of Theorem 5, i.e. the best approximation in the Y -variable for which
the “fast” X- and Z-variables are averaged out. In other words, the BE (3.45) provides a
nearly optimal reduced vector field that averages out the fast oscillations contained in the
Y -variable. Figure 3, reproduced from [32], illustrates this feature for the model (3.43). The
lower-right panel shows that the BE reduced model is able to capture the coarse-grained
topological features of the projected attractor onto the “slow” variables, Y1 and Y3, when
compared with the projection onto the same variables of the attractor associated with the full
Eq. (3.43). For the rest of this section we will use the BE as if it were the optimal PM. All
the results presented hereafter correspond to ε = 1.5522 > ε∗; see [32].

The underlying BE manifold is a 6D manifold obtained as graph of a 6D-valued mapping
of a 3D-variable (Y ), and as such only slices can be represented in 3D. Such a slice is shown
in Fig. 4. More exactly, it shows the X2-variable as parameterized by the slow Y2- and Y3-
variables. Note that in order to obtain this representation, the Y1-variable, involved also in the
BE parameterizationΦ along with the Y2- and Y3-variables, has been set to its most probable
value conferring to Fig. 4 a certain “typicalness.” This being kept in mind, the slice thus
obtained of the BE manifold (and shown in Fig. 4) will be simply called the BE manifold,
for simplifying the discourse.

As evidenced in Fig. 4, a PE solution on the attractor—as observed through the X2-
variable—possesses an intricate transversal component to the BE manifold that seems to
exclude its parameterization by a smooth manifold, whereas, at the same time, a substantial
portion of the trajectory lies very close to the BE manifold. It is this latter portion of the
dynamics that is well captured by the BE manifold and that allows for approximating the
aforementioned conditional expectation. Here Fig. 4 reveals thus simple geometric features
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Fig. 3 Attractor comparison between PE and BE (reproduced from [32], with permission from Elsevier). A
slow-variable projection of the global attractor associated with Eq. (3.43) (lower-left panel) and its approxi-
mation obtained from the BE reduced model (lower-right panel). Even in presence of energetic bursts of fast
oscillations in the fast variables (here such an episode is shown in the upper panel for the X2-variable (black
curve)), the BEmodel (3.45) is able to capture the coarse-grained topological features of the projected attractor
onto the slow variables. This is because the BE manifold provides a good approximation of the optimal PM
given in (3.26) that averages here out (optimally) the fast oscillations

Fig. 4 The BE manifold for the X2-variable. Note that in order to obtain this representation, the Y1-variable,
involved also in the BE parameterization Φ along with the Y2- and Y3-variables, has been set to its most
probable value. The black curve shows the resulting X2-variable obtained after solving Eq. (3.43) while the
blue dots correspond to the BE parameterization Φ involved in (3.45)

(not identified in [32]), which are responsible for the BE to provide in the space of slow
variables, a vector field that approximates the PE dynamics. It does so by filtering out the
(fast) oscillations contained in the PE solutions; the fast dynamics corresponding, in this
representation, to the transversal part of the dynamics. Indeed, a closer inspection reveals
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Fig. 5 Parameterization defects of the BE manifold Φ and the QG manifold Ψ . Here the parameterization
defects as given by (3.4), QT (t, Φ) (red curve) and QT (t, Ψ ) (blue curve), are computed for the BEmanifold,
Φ, and for the QG manifold Ψ [32, Eq. (4.22)]; each with T = 80 (for the rescaled system (3.43)) which
corresponds to 10 days in the time-variable of the original Lorenz model [123] (Color figure online)

that this transversal part of the dynamics corresponds exactly to the aforementioned burst of
fast oscillations. This is confirmed by computing the parameterization defect. In that respect,
Fig. 5 shows the parameterization defect t �→ QT (t, Φ) (given by (3.4)) of the BE manifold
Φ for a time horizon set to T = 80 (for the rescaled system (3.43)) which corresponds to 10
days in the time-variable of the original Lorenz model [32]. Figure 5 shows that QT (t, Φ)

oscillates, as t evolves, between values right above zero and right below one (red curve). The
rising of values taken by QT (t, Φ) occurs over time windows for which the parameterized
X-variable contains a significant fraction of the total energy, such as manifested by bursts
of fast oscillations in the X2-variable shown in the upper panel of Fig. 3 between 40 and 80
days. To the contrary, when the PE solutions get very close to the BE manifold, the dynamics
is almost slaved to this manifold and QT (t, Φ) ≈ 0.

Complementarily, the parameterization defect QT (t, Ψ ) has been computed for the stan-
dard Quasigeostrophic (QG) manifold [32, Eq. (4.22)] that can be derived for ε = 0 and is
associated with the famous quadratic Lorenz system [122]; see [32, Sec. 4.2]. Here again a
similar behavior is observed for QT (t, Ψ ) (blue curve in Fig. 5) with the noticeable difference
that QT (t, Ψ ) stays further away from zero than QT (t, Φ) does, as t evolves.

The parameterization correlation, c(t) given by (3.6), has been also computed for the
BE and the QG manifolds. The results are shown in Panels (a) and (b) of Fig. 6, over
different time intervals. Although when an episode of fast (gravity waves) oscillations occurs
in the PE solutions, the parameterization correlation can deviate substantially from 1 for
the BE and QG manifolds (panel (a)), the parameterization correlation gets, comparatively,
much closer to 1 for the BE than for the QG manifold over time intervals for which the
slow, Rossby waves dominate the dynamics (panel (b)). This phenomenon is confirmed
statistically at the level of the probability distribution for the corresponding parameterization
angle, α(t) = arccos(c(t)). The PDF of the latter is much more skewed towards zero for
the BE manifold than for the QG manifold supporting thus, at a quantitative level, the visual
rendering of Fig. 4 which suggests that a substantial portion of the PE trajectory lies very
close to the BE manifold. More precisely, Fig. 6c shows that the mode of the PDF of α(t)
(i.e. the value that appears most often) for the BE manifold is located very close to zero,
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(a)

(b)

(c)

Fig. 6 Parameterization correlation and angle. The parameterization correlation, c(t) given by (3.6), is shown
for the BE manifold (Ψ = Φ, red curve) and the QG manifold (“Ψ =QG manifold,” blue curve), over two
consecutive time windows for panels a and b; the range of fluctuations over the 2nd window (panel b) being
smaller to the range shown in the 1st window (panel a). The time-episode shown in panel a corresponds to
the presence of energetic bursts of fast oscillations in the solutions (QT ≈ 1 for the BE), whereas panel b
corresponds to a time-episode devoid of such oscillations (QT ≈ 0 for the BE). The PDFs of the corresponding
parameterization angle α(t) given by (3.7), estimated after long integration of Eq. (3.43), are shown in panel
c (Color figure online)

whereas α(t) almost never reaches such a level of proximity to zero for the QG manifold. In
that sense, the BEmanifold is a manifold that is close to be locally invariant in the sense of (i)
of Sect. 2.1, that is a slaving relationship like (2.16) almost takes place over time, while being
brutally violated from time to time (transversal part of the PE dynamics to the manifold; see
Fig. 4).

Thus theBEmanifold provides an example of amanifold that is close to be locally invariant
and that provides a (nearly optimal) PM. However, nothing excludes the existence of dynam-
ics that although getting very close to a given manifold over certain time windows (almost
slaving situation), experiences excursions far away from it so often that in average the parame-
terization defect gets greater than one, making this manifold to be a non-parameterizing one.
Situations for which the dynamics lies in the vicinity of a given manifold (without large
excursions) is also a favorable context for this manifold to be a PM; see Sect. 5.3 below for
such an example.

Noteworthy are also the tails of the PDFs of the parameterization angle α(t) for both, the
BE and QGmanifolds, which do not drop off suddenly as α increases: this is symptomatic of
the fact that the PE solutions get frequently far away from these manifolds as time evolves.
As a comparison, we refer to Sect. 5.3 below for an example of parameterization angle α

whose PDF drops suddenly as α increases.
Although enlightening, this example of (excellent) approximation of the optimal PM (and

thus of the conditional expectation) that the BE manifold provides, exploits specific aspects
of the problem at hand, encapsulated in the very derivation of the BE manifold. The question
of efficient dynamically-based formulas for the approximation of an optimal PM in a general
context, thus remains. The next section addresses this issue.
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4 ParameterizingManifolds andMode-Adaptive Minimization:
Dynamically-Based Formulas

In this section we derive dynamically-based formulas for designing parameterizing mani-
folds in practice. The formulas derived in Sect. 4.3 below take their origin in the pullback
representation (2.33) (in Theorem 1) and the associated backward–forward system (2.29)
that arise in the approximation theory of invariant manifolds revisited in Part I. The paramet-
ric class of leading interaction approximation (LIA) of the high modes obtained this way is
completed by another parametric class built from the quasi-stationary approximation (QSA)
in Sect. 4.4; close to the first criticality, the QSA is an approximation to the LIA, but differs
as one moves away from criticality. We also make precise hereafter the corresponding min-
imization problems to solve in order to optimize our parameterizations in practice, within a
mode-adaptive optimization procedure (Sect. 4.2).

4.1 Backward–ForwardMethod: General Considerations

We first show that the parameterization h(1)
τ given in (2.30), as obtained by finite-time inte-

gration of the backward–forward system (2.29), satisfies an equation analogous to Eq. (2.27)
satisfied by hk .

Lemma 1 The manifold function h(1)
τ defined by (2.30) satisfies the following system of first

order quasilinear PDEs:

LA[h](ξ) = ΠsGk(ξ) − eτ AsΠsGk(e
−τ Acξ). (4.1)

with LA[h](ξ) = Dh(ξ)Acξ − Ash(ξ) and Ac, As defined in (2.21).

Proof In (2.30), by replacing ξ with et Acξ , we get

Φ(t) = h(1)
τ (et Acξ) =

∫ 0

−τ

e−s AsΠsGk(e
s Acet Acξ) ds

=
∫ 0

−τ

e−s AsΠsGk(e
(s+t)Acξ) ds

=
∫ t

t−τ

e−(s′−t)AsΠsGk(e
s′ Acξ) ds′. (4.2)

We obtain then

dΦ(t)

dt
= ΠsGk(e

t Acξ) − eτ AsΠsGk(e
(t−τ)Acξ)

+ As

∫ t

t−τ

e−(s′−t)AsΠsGk(e
s′ Acξ) ds′

= ΠsGk(e
t Acξ) − eτ AsΠsGk(e

(t−τ)Acξ) + AsΦ(t). (4.3)

On the other hand, we also have

dΦ(t)

dt
= [Dh(1)

τ (et Acξ)]Acet Acξ. (4.4)

Equation (4.1) follows by equating the RHSs of (4.3) and (4.4) and by taking the limit
t → 0. ��
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This lemma provides the equation satisfied by the parameterization h(1)
τ given by (2.30).

However this parameterization is built from the backward–forward system (2.29) associated
with Eq. (2.2) that does not include forcing terms, unlike for more general systems of ODEs
such as Eq. (3.1) dealt with in Sect. 3.

To extend the parameterization h(1)
τ to systems that include forcing terms,we thus naturally

seek for solution of the backward–forward system associated with Eq. (3.1), namely

dy(1)
c

ds
= Acy(1)

c + ΠcF, s ∈ [−τ, 0], (4.5a)

dy(1)
s

ds
= Asy(1)

s + ΠsGk
(
y(1)
c

)+ ΠsF, s ∈ [−τ, 0], (4.5b)

with y(1)
c (s)|s=0 = ξ, and y(1)

s (s)|s=−τ = 0. (4.5c)

Here Πs = IdCN − Πc with Πc denoting the canonical projector onto the eigensubspace,
Ec, spanned by the dominant eigenmodes of A.

By going through similar calculations than for the proof of Lemma 1, the high-mode
solution of (4.5), y(1)

s [ξ ](0;−τ), denoted here by Ψ
(1)
τ (ξ), satisfies then

LA[Ψ (1)
τ ](ξ) + DΨ (1)

τ (ξ)ΠcF = ΠsGk(ξ) − eτ AsΠsGk(SF (−τ)ξ)

+ (Id − eτ As)ΠsF, (4.6)

with
SF (t)ξ = et Acξ − A−1

c (Id − et Ac)ΠcF . (4.7)

Obviously Ψ
(1)
τ = h1

τ when F ≡ 0.

In practice, in order to find an explicit expression of the parameterizationΨ
(1)
τ , one prefers

to solve (4.5) rather than solving Eq. (4.6) directly. Note that we could have adopted the same
strategy for deriving the formulas of Theorem 2, i.e. by solving the backward–forward system
(2.29) in this case.

ThemanifoldMτ associatedwithΨ
(1)
τ possesses a natural geometric interpretation. Given

a solution y(t) of Eq. (3.1) and denoting by Uτ yc(t) the lift of yc(t) onto the manifold Mτ ,
i.e. Uτ yc(t) = yc(t) + Ψ

(1)
τ (yc(t)), we obtain

dist(y(t),Mτ )2 ≤ ‖y(t) − Uτ yc(t)‖2 = ‖ys(t) − Ψ
(1)
τ (yc(t))‖2, (4.8)

where the overbar denotes the time average over [0, T ]. In other words,

dist(y(t),Mτ )2 ≤ QT (Ψ (1)
τ ), (4.9)

with QT that denotes the parameterization defect

QT (Ψ (1)
τ ) = 1

T

∫ T

0

∥∥∥ys(t) − Ψ (1)
τ (yc(t))

∥∥∥
2
d t . (4.10)

Thus, we understand a practical advantage in restricting ourself to theΨ
(1)
τ -class of param-

eterizations instead of the more general E-class considered in (3.15). Indeed, once an explicit
expression for Ψ

(1)
τ is derived, it allows us to greatly simplify the minimization problem

involved in Theorem 4, by replacing it with the minimization in the scalar variable τ of the
cost functionalQT given by (4.10). Although the corresponding minimizer is a priori subop-
timal compared to the more general minimization problem (3.25), we will see in applications
that it provides in various instances an efficient parameterization.
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1112 M. D. Chekroun et al.

Furthermore, based on (4.9), minimizing QT (Ψ
(1)
τ ) in the τ -variable has the following

useful interpretation: it forces, within theΨ
(1)
τ -parametrization class, the manifoldMτ to get

the closest to the trajectory y(t), in a least-square sense. As mentioned earlier, an alternative
approach, theAIMapproach, has been proposed in the literature, but the latter is asymptotic in
essence rather than the PM approach presented here which is variational. The AIM approach
consists indeed of seeking for a family ofmanifolds,Mm , for which dist(u(t),Mm) vanishes
to zero as m = dim(Mm) → ∞; see e.g. [48,162,163,166]. In contradistinction, the PM
approach consists for a given reduced dimension, m, of seeking for a manifold M within a
certain parametric class of dynamically-based parameterizations, for which dist(u(t),M) is
minimized.

Thus, given a reduced dimension, m, seeking for the best approximation within a param-
eterization class is at the core of the PM approach and, as shown in Sect. 3, is quintessential
to address closure problems, in the sense that it relates naturally to the conditional expecta-
tion i.e. to the best closure that can be derived out of nonlinear parameterizations alone; see
Theorem 5.

Remark 3 Given the limitations on our ability to estimate the norms, it is in general hard to
derive sharp estimates of QT (Ψ

(1)
τ ). Nevertheless, some related estimates have been produced

about dist(y(t),M)2/‖y(t)‖2, for the 2DNavier–Stokes equations [20,68] whenM denotes
the manifold associated with the quasi-stationary approximation; see (4.40) below.

4.2 Mode-Adaptive Optimization

Although the minimization in the scalar variable τ of the cost functionalQT in (4.10) is more
appealing than solving the general minimization problem (3.25), we may suffer from the fact
that the parameter τ to be optimized, is chosen globally, irrespectively e.g. to the content of
energy of a particular high mode to parameterize. To better account for the distribution of
energy across the modes, we propose instead to optimize parameterizations of the form

Φ(1)
τ (ξ) =

N∑

n=m+1

Φn(τn,β, ξ)en, τ = (τm+1, . . . , τN ), (4.11)

in the multivalued τ -variable. We emphasize that each parameterization Φn depends only on
τn (and not the other τp’s for p 	= n), and thus each Φn may be optimized independently
from each other.

This way, we are left for each of the nth mode, with a parameterization to optimize,
Φn(τn,β, ξ), that is a scalar function of the scalar variable τn . Following Sect. 4.1 and
assuming A diagonalizable (in C

N ), we obtain Φn(τn,β, ξ), for each m + 1 ≤ n ≤ N , as
the high-mode part y(1)

n of the solution (at s = 0) to the backward–forward system

dy(1)
c

ds
= Acy(1)

c + ΠcF, s ∈ [−τn, 0], (4.12a)

dy(1)
n

ds
= βn y(1)

n + ΠnGk
(
y(1)
c

)+ Πn F, s ∈ [−τn, 0], (4.12b)

with y(1)
c (s)|s=0 = ξ, and y(1)

n (s)|s=−τn = 0, (4.12c)

in which the RHS in Eq. (4.5b) has been replaced by βn y(1)
n + ΠnGk

(
y(1)
c

) + Πn F . Here
Πn X = 〈X , e∗

n〉, for any X in C
N .
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Explicit formulas of theΦn(τn,β, ξ)’s are given in Sect. 4.3 belowwhen Gk is a quadratic
nonlinearity. We show hereafter that minimizing for each n the parameterization defect natu-
rally associated with Φn leads to an optimal parameterization, Φ(1)

τ , with a clear geometrical
interpretation. Todo so—given a fully resolved solution y(t)of the underlying N -dimensional
ODE system (4.16) available over a training interval [0, T ]—we consider for each n ≥ m+1,
the parameterization defect

Qn(τn, T ) = 1

T

∫ T

0

∣∣Πn y(t) − Φn(τ,β, yc(t))
∣∣2 dt, (4.13)

with yc(t) = Πcy(t).
Denoting byMτ the manifold associated with the parameterization Φ

(1)
τ given by (4.11),

we have

dist(y(t),Mτ )2 ≤
∥∥∥∥y(t) −

(
yc(t) +

∑

n≥m+1

Φn(τn,β, yc(t))en)

)∥∥∥∥
2

≤
∥∥∥∥
∑

n≥m+1

(Πn y(t) − Φn(τn,β, yc(t)))en

∥∥∥∥
2

. (4.14)

Taking the eigenvectors of A to be normalized, we are thus left, thanks to the triangular
inequality, with the following estimate

dist(y(t),Mτ )2 ≤
∑

n≥m+1

∣∣∣∣Πn y(t) − Φn(τn,β, yc(t))

∣∣∣∣
2

=
∑

n≥m+1

Qn(τn, T ). (4.15)

Thus minimizing eachQn(τn, T ) (in the τn-variable) is a natural idea to enforce closeness of
y(t) in a least-square sense to the correspondingmanifoldMτ .Note thatwecouldhave chosen
to minimizeQT as given in (4.10) but with Φ

(1)
τ replacing Ψ

(1)
τ . The resulting minimization

would become however more challenging in high-dimension as it would require to minimize
QT (Φ

(1)
τ ) in the multdimensional variable τ . Except when the basis {e j }N

j=1 is orthonormal

(see (3.13)), the two approaches are not equivalent, i.e. minimizing QT (Φ
(1)
τ ) in the vector

τ , vs minimizingQn(τn, T ) in the scalar τn for each n ≥ m + 1. We opted for the latter as a
simple algorithm can be proposed to minimize Qn efficiently; see Appendix. Nevertheless,
even in this scalar case, a certain care must be paid, as the mapping τ �→ Qn(τ, T ) is not
guaranteed to be convex; see Sect. 5. Furthermore, depending on the dynamics (and the
training interval [0, T ]) local minima may appear that require also a special care in order to
properly design an efficient parameterization for the problem at hand; see Remark 8 below.

4.3 Parametric Leading-Interaction Approximation

In this section,we focus on the case of quadratic nonlinear interactions under constant forcing,
for which we derive parameterization formulas by solving the backward–forward systems
(4.12) (for Gk quadratic) presented in Sect. 4.2 above. Our approach allows for deriving
parameterizations that take into account interactions between the forcing components and
the nonlinear terms, at the leading order. As already pointed out in Sect. 4.2, these parameter-
izations are conditioned on the choice of a finite collection τ of scalar parameters. For these
reasons we will refer to Φ

(1)
τ given by (4.36) as the parametric Leading-Interaction Approx-
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imation (LIA). As τ varies, the corresponding class of parameterizations will be referred to
as the Φ(1)-class or simply the LIA class.

The ODE system considered here is of the form:

dy

dt
= Ay + B(y, y) + F, y ∈ C

N , (4.16)

where A is an N × N matrix with complex entries, B denotes quadratic nonlinear interactions
with complex coefficients, and F is a constant forcing term in CN .

Given the spectral elements (β j , e j ) of the matrix A that we assume diagonalizable (in
C

N ), we decompose the state space into resolved and unresolved subspaces as follows

C
N = Ec ⊕ Es, (4.17)

where

Ec = span{ei : i = 1, . . . , m},
Es = span{ei : i = m + 1, . . . , N }, (4.18)

see also (2.6)–(2.14).
We define the projection of a vector X in C

N onto e j as follows

Π j X = 〈X , e∗
j 〉, (4.19)

with {e∗
j } denoting the eigenvectors of the conjugate transpose, A∗. The projectorsΠc is then

explicitly given by

ΠcX =
m∑

j=1

(Π j X)e j and Ac = diag(β1, . . . , βm). (4.20)

Recall that according to the convention (2.8) (of Sect. 2.1) made throughout this article,
the reduced state space Ec is spanned by modes that come either as conjugate pairs or as a
real eigenvector. As a result, ΠcX is real if X is real.

For each given unresolved mode en (n ≥ m + 1), a parameterization y(1)
n of the corre-

sponding unresolved variable
Yn = Πn y, (4.21)

is obtained from the following backward–forward system:

dy(1)
c

ds
= Acy(1)

c + ΠcF, s ∈ [−τ, 0], (4.22a)

dy(1)
n

ds
= βn y(1)

n + Πn B
(
y(1)
c , y(1)

c

)+ Πn F, s ∈ [−τ, 0], (4.22b)

with y(1)
c (s)|s=0 = ξ ∈ Ec, and y(1)

n (s)|s=−τ = 0. (4.22c)

Note that the solution to (4.22a) is given by:

y(1)
c (t) = eActξ −

∫ 0

t
eAc(t−s)ΠcF ds, t ∈ [−τ, 0], (4.23)

which admits the following explicit expression:

y(1)
c (t) =

m∑

j=1

(
eβ j tξ j + γ j (t)Π j F

)
e j , (4.24)
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where

γ j (t) =
{ exp(β j t)−1

β j
, if β j 	= 0,

t, otherwise.
(4.25)

The solution to (4.22b) is given by:

y(1)
n [ξ ](t) =

∫ t

−τ

eβn(t−s)Πn B(y(1)
c (s), y(1)

c (s)) ds +
∫ t

−τ

eβn(t−s)Πn F ds, t ∈ [−τ, 0],
(4.26)

which leads to the following parameterization for the high mode en :

Φn(τ, ξ) =
∫ 0

−τ

e−βnsΠn B(y(1)
c (s), y(1)

c (s)) ds +
∫ 0

−τ

e−βnsΠn F ds. (4.27)

By using (4.24) in the nonlinear termΠn B(y(1)
c (s), y(1)

c (s)) and expanding this term, the first
integral I in the RHS of (4.27) becomes after simplification

I =
m∑

i, j=1

U n
i, j (τ,β)Bn

i, j Fi Fj +
m∑

i, j=1

V n
i, j (τ,β)Fj (Bn

i, j + Bn
j,i )ξi

+
m∑

i, j=1

Dn
i, j (τ,β)Bn

i, jξiξ j , (4.28)

where
Bn

i, j = 〈B(ei , e j ), e∗
n〉, (4.29)

the coefficients Dn
i, j (τ,β) of the quadratic terms (in the ξ -variable) are given by

Dn
i, j (τ,β) =

⎧
⎨

⎩

1−exp
(
−(βi +β j −βn)τ

)

βi +β j −βn
, if βi + β j − βn 	= 0,

τ, otherwise,
(4.30)

while the coefficients in the constant and linear terms are given respectively by

U n
i, j (τ,β) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
βi β j

(
Dn

i, j (τ,β) − 1−exp(−τ(βi −βn))
βi −βn

− 1−exp(−τ(β j −βn))

β j −βn
− 1−exp(τβn)

βn

)
, if βi 	= 0 and β j 	= 0,

1
βi

(
τ exp(−τ(βi −βn))

βi −βn
− 1−exp(−τ(βi −βn))

(βi −βn)2

+ τ exp(τβn)
βn

+ 1−exp(τβn)

(βn)2

)
, if βi 	= 0 and β j = 0,

1
β j

(
τ exp(−τ(β j −βn))

β j −βn
− 1−exp(−τ(β j −βn))

(β j −βn)2

+ τ exp(τβn)
βn

+ 1−exp(τβn)

(βn)2

)
, if βi = 0 and β j 	= 0,

− (τ )2 exp(τβn)
βn

− 2
βn

(
τ exp(τβn)

βn
+ 1−exp(τβn)

(βn)2

)
, if βi = 0 and β j = 0,

(4.31)
and

V n
i, j (τ,β) =

{ 1−exp(−τ(βi +β j −βn))

β j (βi +β j −βn)
− 1−exp(−τ(βi −βn))

β j (βi −βn)
, if β j 	= 0,

τ exp(−τ(βi −βn))
βi −βn

− 1−exp(−τ(βi −βn))

(βi −βn)2
, otherwise.

(4.32)
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By adding
∫ 0
−τ

eβn(t−s)Πn F ds to the constant and linear terms in I , we can form

Γn(F,β, τ, ξ) =
m∑

i, j=1

U n
i, j (τ,β)Bn

i, j Fi Fj +
m∑

i, j=1

V n
i, j (τ,β)Fj (Bn

i, j + Bn
j,i )ξi

− 1 − eτβn

βn
Πn F, (4.33)

leading thus to

Φn(τ,β, ξ) = Γn(F,β, τ, ξ) +
m∑

i, j=1

Dn
i, j (τ,β)Bn

i, jξiξ j . (4.34)

The optimal τ value for each of the unresolved mode is obtained by minimizing the cor-
responding parameterization defect Qn defined in (4.13). In other words, given a fully
resolved solution y(t) of the underlying N -dimensional ODE system (4.16) available over
a training interval [0, T ] (after possible removal of transient dynamics), we solve for each
m + 1 ≤ n ≤ N the following minimization problem

{
min

τ

∫ T
0

∣∣Πn y(t) − Φn(τ,β,Πcy(t))
∣∣2 dt,

where Φn(τ,β, ξ) is given by (4.34).
(4.35)

The resulting minimizers τ ∗
n whose collection is denoted by τ ∗, allows us then to define the

following optimal parameterization within the LIA class

Φ
(1)
τ∗ (ξ) =

N∑

n=m+1

Φn(τ ∗
n ,β, ξ)en . (4.36)

In what follows we will sometimes denote by LIA(τ ), the parameterization Φ
(1)
τ (see 4.36)

with Φn given by (4.34).
Although providing in general only a suboptimal solution to the more general family of

minimization problems (3.14) discussed in Sect. 3.1, wewill refer to the optimal LIA,Φ(1)
τ ∗ , as

the optimal PM when the context is clear; see Sect. 5 below. As mentioned above, Appendix
presents a simple gradient-descent method to determine efficiently, the τ ∗

n ’s (and thus τ ∗) in
practice; as pointed out above, see however Remark 8 below in the presence of local minima.

Remark 4 Note that for F = 0, and when βi + β j > βn , the LIA class includes the leading-
order approximation, h2, given by (2.47)–(2.48) (with k = 2) of the invariant manifold dealt
with in Sect. 2.2, in the sense that then for all ξ in Ec,

lim
τ→∞ Φ(1)

τ (ξ) = h2(ξ). (4.37)

Furthermore Φ
(1)
τ ≡ 0 when τ = 0, i.e. the LIA class contains Galerkin approximations of

dimension m = dim(Ec).

Remark 5 Note that in the expression of Φn given by (4.34), the term Γn(F,β, τ, ξ) takes
into account interactions between the low-mode components of the forcing, F , as well as
cross-interactions between the low-mode components of F and the low-mode variable ξ in
Ec. It also includes the nth high-mode component of the forcing.

We emphasize that these formulas can be derived for PDEs as well, as rooted in the
backward–forward method recalled above and initially introduced for PDEs (possibly driven
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by a multiplicative linear noise) in [31, Chap. 4]; see also [26, Sec. 3.2]. The main novelty
compared to [31, Chap. 4] is the idea of optimizing, high-mode by high-mode, the backward
integration time, τn , of Eq. (4.22), by minimization of the parameterization defect Qn .

Remark 6 Note that when βn+1 = βn , we have e∗
n+1 = e∗

n and therefore Πn+1X = Πn X

when X is real according to (4.19). Furthermore when B(u(1)
c (s), u(1)

c (s)) and F are real, we
have according to (4.27), that Φn+1 = Φn when evaluated on a real vector ξ of Ec.

4.4 Parametric Quasi-stationary Approximation and Another Cost Functional

Other cost functionals than Qn(τn, T ) could have been considered to seek for optimal LIA.
For instance,

Jn(τ, T ;Φn) =
∣∣∣∣
[
Πn y(t)

]2 −
[
Φn(τ,β, yc(t)))

]2∣∣∣∣. (4.38)

Here (·) denotes a time-averaging over an interval of length T . The minimization of the
Jn’s leads in general to different optimal LIA compared to the one obtained by solving the
minimization problems (4.35).

If the mean value of yn(t) is zero, minimizing Qn consists of minimizing the variance of
the residual error, i.e. |yn − f (τ, yc)|2, for a given parameterization f (τ, ·). By construction,
minimizing Jn consists instead of minimizing the residual error of the variance approxima-
tion, i.e. ||yn |2 − | f (τ, yc)|2|. The latter cost functional better accounts for the distribution
of energy across the modes; see Sect. 6.3 for an illustration.

Although a geometric interpretation like (4.15) is not available for such a cost functional,
minimizing (4.38) leads in general to a better reproduction of the energy budget across the
highmodes. For this reason, the cost functional (4.38)will be adopted for certain applications;
see Sect. 6 below.

While the LIA class may be preferred when forcing terms are present (especially when
e.g. only the low modes are forced), another class of parameterization is particularly suited
to systems that do not include forcing terms. Still, in presence of such terms this other class
may be relevant in certain applications (when e.g. only the high modes are forced) and thus
we present hereafter the derivation of the corresponding formulas that take into account
(constant) forcing as for LIA.

This class is rooted in the following Quasi-Stationary approximation (QSA) for Eq. (4.16)

ΠsAz + ΠsB(ξ, ξ) + ΠsF = 0, ξ ∈ Ec, z ∈ Es. (4.39)

The QSA arises in homogeneous turbulence theory [64]; see Remark 7 below. It consists
of neglecting the terms Πs[B(ys, yc) + B(ys, ys)] in virtue of the energy content of the
small structures being small, and following a suggestion of Kraichnan balancing dys/ dt
with ΠsB(yc, ys), i.e., with the advection of small eddies by large eddies; see [68].

After solving (4.39), the QSA parameterization is then obtained as z = K (ξ) with K
given by

K (ξ) = (−As)
−1(ΠsB(ξ, ξ) + ΠsF). (4.40)

In contrast, the standardLIA is obtained by solving the backward-system (4.5) asymptotically,
and the parameterization LIA(τ ) is obtained after solving the backward-systems (4.22).

Similar to what precedes, we use a dynamic version of Eq. (4.39) to get access to a
parametric family of dynamically-based parameterizations such that K belongs to this family,
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as in Remark 4 regarding the LIA class that includes h2. By assuming A diagonal (in C), we
consider thus for τ > 0

dzn

ds
= βnzn + Πn B

(
ξ, ξ
)+ Πn F,

zn(−τ) = 0. (4.41)

Solving Eq. (4.41) for each n, leads then to the following high-mode parameterization

Ψn(τ,β, ξ) = δn(τ )

( m∑

i, j=1

Bn
i jξiξ j + Πn F

)
, (4.42)

with Bn
i j given by (4.29) and where

δn(τ ) =
{

β−1
n (eβnτ − 1), if βn 	= 0,

τ, otherwise.
(4.43)

We arrive then at the following parametric QSA or simply denoted QSA(τ ):

Ψτ (ξ) =
N∑

n=m+1

Ψn(ξ,β, ξ)en . (4.44)

In particular, if βn < 0 for all n ≥ m + 1, since δn(τ ) −→
τ→∞ −β−1

n , then for all ξ in Ec,

lim
τ→∞ Ψτ (ξ) = K (ξ), (4.45)

with K given by (4.40). Furthermore Ψτ ≡ 0 when τ = 0, i.e. the QSA class contains also
Galerkin approximations of dimension m = dim(Ec).

In Sect. 6 below, we show applications of this parameterization class (called the QSA
class), from which the optimal QSA is determined by solving for each m + 1 ≤ n ≤ N the
following minimization problem

⎧
⎨

⎩
min

τ

∣∣∣∣
[
Πn y(t)

]2 −
[
Ψn(τ,β, yc(t)))

]2∣∣∣∣.

where Ψn(τ,β, ξ) is given by (4.42).
(4.46)

The algorithm presented in Appendix to solve (4.35), can be easily adapted to solve (4.46)
(after smoothing) and thus to determine the minimizers τ ∗

n ; the details are left to the reader.
As recalled above, Remark 4 emphasizes that the leading-order approximation h2(ξ)

(given by (2.32) with Gk = B) of the invariant manifold dealt with in Sect. 2.2 may be
obtained as a limit LIA(τ ): here (4.45) shows that the standard QSA, K (ξ), may also be
obtained as a limit of QSA(τ ). It is noteworthy that the theory of approximation of invariant
manifolds shows that these two limiting objects, h2(ξ) and K (ξ), are actually related. More
precisely, [31, Lemma 4.1] shows that near the first criticality and when F = 0, the QSA and
the leading-order approximation h2(ξ), are linked according to the following approximation
relation

h2(ξ) = (−As)
−1ΠsB(ξ, ξ) + O(‖ξ‖2), ∀ ξ ∈ Ec. (4.47)

Thus when F = 0, one should not expect much difference between the parameterizations
LIA(τ ) and QSA(τ ) for large values of τ (and under the appropriate conditions on the βk’s).

However, if τ has componentswith small values, differences are expected to occur between
the corresponding LIA(τ ) and QSA(τ ) parameterizations. To better appreciate these differ-
ences, let us introduce the function f (τ ) = p−1(1−e−pτ ) and note that f (τ ) = δn(τ )when
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p = −βn and that f (τ ) = Dn
i j (τ ) (given by (4.30)) when p = βi + β j − βn . Thus when

F = 0 the LIA and QSA classes differ only by these coefficients.
To simplify, let us assume that the eigenvalues of A are real and that Ec contains all and

only the unstable modes. In this case, p = βi + β j − βn is always bigger than p = −βn .
Now if we assume furthermore that p > 0 (in either case) we have

0 ≤ f (τ ) < p−1, (4.48)

and therefore due to (4.42) and (4.34) (with F = 0), the range of the coefficient in front of
each monomial is larger for Ψn(τ, ξ) than for Φn(τ, ξ), in this case. This allows in practice
forΨn(τ, ξ) to span a larger range of values which in turn may lead to smaller values ofQn or
Jn . The situation described here is exactly what happens for the closure problem considered
below in Sect. 6 within the context of Kuramoto-Sivashinsky turbulence, when one sets the
cutoff wavenumber to be the highest wavenumber among the unstable modes. As we will
show in Sect. 6 for different turbulent regimes, the QSA(τ ) when optimized (either for Qn

or Jn) provides a drastic improvement compared to the standard QSA, K (ξ), for such cutoff
scales.

Remark 7 As mentioned right after (4.39), the QSA is a well-known parameterization in
homogeneous turbulence and has been rigorously proved to provide an AIM in [64] for
the 2D Navier–Stokes equations. The QSA also arises in atmospheric turbulence in the so-
called nonlinear normal-mode initialization[6,46,47,74,120,127,167]; see [49] for rigorous
results. Nevertheless, when the cutoff wavelength is too low within the inertial range it is
known that the standard QSA suffers from over-parameterization leading then to errors in
the backscatter transfer of energy, i.e. errors in the modeling of the parameterized (small)
scales that contaminate gradually the larger scales. We show in Sect. 6, in the context of
KS turbulence that by solving the minimization problems (4.46), the optimal QSA fixes this
problem remarkably.

5 Applications to a Reduced-Order Rayleigh–Bénard System

In this section, we apply the PM approach—as presented in its practical aspects in Sect. 4—
to a Galerkin system of nine nonlinear ODEs examined in [145] and obtained from a triple
Fourier expansion to the Boussinesq equations governing thermal convection in a 3D spatial
domain.

The PM approach is applied to two parameter regimes for this 9D Rayleigh-Bénard (RB)
convection system: (i) a regime located right after the first period-doubling bifurcation occur-
ring for this system (Sect. 5.2), and (ii) a regime corresponding to chaotic dynamics that takes
place right after the period-doubling cascade (Sect. 5.3).

We show hereafter for both cases, that, given a reduced state space, Ec, the dynamically-
based parameterization, LIA(τ ), of Sect. 4.3 when optimized in the τ -variable, by
minimizing7 the parameterization defects (4.35), provides efficient low-dimensional closures
of the original RB system.

To prepare the numerical results of Sects. 5.2 and 5.3, we first recall the 9D RB system
and give the details of its LIA(τ )-closure in Sect. 5.1. We emphasize that the closures are
determined in each case with respect to a mean state C, leading in particular to equations for
the perturbed variable, C − C, of the form (2.19).

7 While maximizing, in certain circumstances, the parameterization correlation, c(t), given by (3.6); see
Sect. 5.2.

123



1120 M. D. Chekroun et al.

5.1 Optimal PM Closure

Like [145], our study below deals with three-dimensional cells with square planform in
dissipative Rayleigh-Bénard convection. In that respect, the 9D RB system derived in [145,
Section 2] takes the form:

Ċ1 = −σb1C1 − C2C4 + b4C2
4 + b3C3C5 − σb2C7,

Ċ2 = −σC2 + C1C4 − C2C5 + C4C5 − σ

2
C9,

Ċ3 = −σb1C3 + C2C4 − b4C2
2 − b3C1C5 + σb2C8,

Ċ4 = −σC4 − C2C3 − C2C5 + C4C5 + σ

2
C9,

Ċ5 = −σb5C5 + 1

2
C2
2 − 1

2
C2
4 ,

Ċ6 = −b6C6 + C2C9 − C4C9,

Ċ7 = −b1C7 − rC1 + 2C5C8 − C4C9,

Ċ8 = −b1C8 + rC3 − 2C5C7 + C2C9,

Ċ9 = −C9 − rC2 + rC4 − 2C2C6 + 2C4C6 + C4C7 − C2C8. (5.1)

Here σ denotes the Prandtl number, and r denotes the reduced Rayleigh number defined to
be the ratio between the Rayleigh number R and its critical value Rc at which the convection
sets in. The coefficients bi ’s are given by

b1 = 4(1 + a2)

1 + 2a2 , b2 = 1 + 2a2

2(1 + a2)
, b3 = 2(1 − a2)

1 + a2 ,

b4 = a2

1 + a2 , b5 = 8a2

1 + 2a2 , b6 = 4

1 + 2a2 , (5.2)

with a = 1
2 being the critical horizontal wavenumber of the square convection cell.

With the purpose to derive a closure for Eq. (5.1), we first put Eq. (5.1) into the following
compact form:

Ċ = AC + B(C,C), (5.3)

where C = (C1, . . . C9)
tr , A is the 9 × 9 matrix given by

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−σb1 0 0 0 0 0 −σb2 0 0
0 −σ 0 0 0 0 0 0 − σ

2
0 0 −σb1 0 0 0 0 σb2 0
0 0 0 −σ 0 0 0 0 σ

2
0 0 0 0 −σb5 0 0 0 0
0 0 0 0 0 −b6 0 0 0

−r 0 0 0 0 0 −b1 0 0
0 0 r 0 0 0 0 −b1 0
0 −r 0 r 0 0 0 0 −1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5.4)
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and the quadratic nonlinearity B is defined by

B(φ,ψ) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−φ2ψ4 + b4φ4ψ4 + b3φ3ψ5
φ1ψ4 − φ2ψ5 + φ4ψ5

φ2ψ4 − b4φ2ψ2 − b3φ1ψ5
−φ2ψ3 − φ2ψ5 + φ4ψ5

1
2φ2ψ2 − 1

2φ4ψ4

φ2ψ9 − φ4ψ9

2φ5ψ8 − φ4ψ9

−2φ5ψ7 + φ2ψ9

−2φ2ψ6 + 2φ4ψ6 + φ4ψ7

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5.5)

for any φ = (φ1, . . . , φ9)
tr and ψ = (ψ1, . . . , ψ9)

tr in C
9.

We consider next fluctuations defined with respect to a mean state. In that respect, we
subtract from C(t) = (C1(t), . . . , C9(t)) its mean value C, which is estimated, in practice,
from simulation of Eq. (5.1) on the same training interval T than used to optimize our
parameterizations hereafter. The corresponding ODE system for the fluctuation variable,
D = C − C, is then given by:

dD
dt

= L D + B(D, D) + AC + B(C,C), (5.6)

with
L D = AD + B(C, D) + B(D,C). (5.7)

Denote the spectral elements of the matrix L by {(β j , e j ) : 1 ≤ j ≤ 9} and those of L∗
by {(β∗

j , e
∗
j ) : 1 ≤ j ≤ 9}. By taking the expansion of D under the eigenbasis of L ,

D =
9∑

j=1

y j e j with y j = 〈D, e∗
j 〉, (5.8)

and assuming that L is diagonal under its eigenbasis, we rewrite Eq. (5.6) in the variable
y = (y1, . . . , y9)tr as follows:

ẏ j = β j y j +
9∑

k,�=1

〈B(ek, e�), e∗
j 〉yk y� + 〈AC + B(C,C), e∗

j 〉, j = 1, . . . , 9. (5.9)

Now we take the reduced state space Ec to be spanned by the first m eigenvectors of A for
some m < 9, where the eigenvalues are ranked according to the ordering (2.12) adopted here
from Sect. 2.1, i.e. the modes are ordered according to their linear rate of growth/decay. For
each m + 1 ≤ n ≤ 9, we approximate the (unresolved) variable yn by the parameterization
Φn(τ ∗

n ,β, ·) obtained from (4.34) after minimization of (4.35), given a training interval of
length T that will be specified hereafter depending on the context.

The resulting m-dimensional optimal PM closure (in the LIA class) reads then

ẋ j = β j x j +
m∑

k,�=1

〈B(ek, e�), e∗
j 〉xk x�

+
m∑

k=1

9∑

�=m+1

(
〈B(e�, ek), e∗

j 〉 + 〈B(ek, e�), e∗
j 〉
)

xkΦ�(τ
∗
� ,β, x1, . . . , xm)
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+
9∑

k,�=m+1

〈B(e�, ek), e∗
j 〉Φk(τ

∗
k ,β, x1, . . . , xm)Φ�(τ

∗
� ,β, x1, . . . , xm)

+ 〈AC + B(C,C), e∗
j 〉, j = 1, . . . , m. (5.10)

Once the optimal PM closure (5.10) is solved, an approximation, CPM(t), of the solution
C(t) to the original system (5.1) is obtained as follows,

CPM(t) =
m∑

j=1

x j (t)e j +
9∑

n=m+1

Φn(τ ∗
n ,β, x1(t), . . . , xm(t))en + C. (5.11)

5.2 Closure in a Period-Doubling Regime

As the reducedRayleigh number r increases, the first period-doubling bifurcation forEq. (5.1)
occurs at approximately r = 13.97, and the dynamics becomes chaotic at approximately
r = 14.22 after successive periodic-doubling bifurcations. We have set r = 14.1 to examine
how the PM approach operates in a period-doubling regime. As a benchmark, for the same
reduced dimension, m, as used for the optimal PM closure (5.10), we determine the reduced
system of the form (2.17) in which h is replaced by the approximation h2 given by (2.47)–
(2.48) (with k = 2) in Theorem 2, i.e. the parameterization that provides the leading-order
approximation of the local invariant manifold for an equilibrium. Applying the ideas of
Sect. 2.1 to Eq. (5.1), the calculations of h2 are made about a steady state of Eq. (5.1), taken
here to be the closest steady state Y to the mean state, C. If one denotes by F the RHS of
Eq. (5.1), the linear part A in (2.2) is then taken to be given by DF(Y ).

Thus, denoting by (λ j , f j ) the spectral elements of DF(Y ) and those of
(
DF(Y )

)∗ by
(λ∗

j , f ∗
j ), the following reduced system based on the invariant manifold approximation h2,

ż j = λ j z j +
m∑

k,�=1

〈B( f k, f �), f ∗
j 〉zk z�

+
m∑

k=1

9∑

�=m+1

(
〈B( f �, f k), f ∗

j 〉 + 〈B( f k, f �), f ∗
j 〉
)

zkh2,�(z1, . . . , zm)

+
9∑

k,�=m+1

〈B( f �, f k), f ∗
j 〉h2,k(z1, . . . , zm)h2,�(z1, . . . , zm), j = 1, . . . , m,

(5.12)

serves us as a benchmark. Here h2,n (6 ≤ n ≤ 9) is given by (2.48) in which Gk is replaced
by B given by (5.5) and the (β j , e j )’s replaced by the (λ j , f j )’s.

From the solution z(t) = (z1(t), . . . , zm(t))tr of the reduced system (5.12), the following
approximation of C(t) is then obtained,

CIM(t) =
m∑

j=1

z j (t) f j +
9∑

n=m+1

h2,n(z1(t), . . . , zm(t)) f n + Y . (5.13)

For the numerical results presented hereafter, the reduced state space Ec is taken to be spanned
by the first five eigenmodes, i.e. by setting m = 5 in this section. To determine our optimal
PM closure, we used the quadratic parameterization, Φn(τ, ·) given by (4.34), in order to
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parameterize each of the modes en with 6 ≤ n ≤ 9. For each 6 ≤ n ≤ 9, each of this
parameterization is optimized in the τ -variable by minimizing the parameterization defect

Qn(τ, T ; t0) =
∫ t0+T

t0

∣∣Πn y(t) − Φn(τ,β,Πcy(t))
∣∣2 dt, (5.14)

for some t0 chosen so that transient dynamics has been removed. Since the dynamics to emu-
late by a closure is here periodic, we selected T = 3Tp/4, where Tp (≈ 17.25) corresponds
to the period of the solution to the 9D RB system (5.1) in order to do not use all the available
information about the periodic orbit. Other choices could have been made for the training
interval such as T = Tp/2. Note that we observed that the choice of t0 plays a key role here.
As discussed in Remark 8 below, depending on t0 the global minimizer τ ∗

n of Qn here, does
not provide necessarily the best parameterization within the Φn-class, and one may have to
rely on the parameterization correlation c(t) (see (3.6)) to discriminate between other local
minimizers of Qn . The results presented below corresponds to a time origin, t0, for which
the global minimizer of the Qn’s lead to the best parameterization within the Φn-class.

Despite the aforementioned t0-dependence, for the sake of keeping the notations as concise
as possible, the dependence on t0 will not bemade apparent for the numerical results presented
below. This being said, whatever the length T of the training interval, we have used the same
training interval [t0, t0 + T ] to estimate the mean state, C, than used for evaluating the cost
functionals Qn in (5.14).

The mean state, C, plays a key role in the determination of the closure as it determines
the linear part L defined in (5.7), and thus the spectral elements (β j , e j ) arising in the
formulation of the parameterizations, Φn(τ, ·) (see (4.34)), and of the corresponding closure
(5.10). Numerically, a fourth-order Runge-Kutta method is used to solve Eq. (5.9) with a
time-step size taken to be δt = 5 × 10−3 to determine a numerical approximation of y(t).
The minimization algorithm for the parameterization defect described in Appendix is used to
find the minimizer τ ∗

n of Qn(τ, T ). In that respect, the trapezoid rule is used to approximate
the integrals involved in (A.6).

The mapping τ �→ Qn(τ, T ) is shown in Fig. 7 from n = 6 to n = 9 and exhibits
a non-convex behavior for each n, although this behavior is more pronounced for n = 6
and n = 7. The minimizer τ ∗

n found by the algorithm of Appendix corresponds to the
abscissa of the red dot shown in each of the panels. Among the parameterized modes, the
minima of Qn that are the most clearly distinguishable occur for the “adjacent” modes —
e6 and e7— located next to the cutoff dimension, i.e. for the modes whose real part of the
corresponding eigenvalues is the closest (from below) to the real part of β5. Nevertheless
we emphasize that the “wavy” shape of the graph of Q6(τ, T ) may experience noticeable
changes when t0 varies. These changes may be manifested by the emergence of local minima
that can modify substantially the global minimizer and thus affect the determination of the
optimal PM; a sensitivity issue that can be fixed by the calculation of c(t) given by (3.6); see
Remark 8.

Thus, the minimization of the Qn’s possibly completed by the analysis of the parame-
terization correlation, c(t), allows us to determine the optimal PM, Φ

(1)
τ∗ , for Eq. (5.9) and

Ec = span{e1, . . . , e5}. For our choice of t0, the global minima of the Qn’s provide the
optimal PM. The values of the parameterization defects for this optimal PM are then given
by, Q6(τ

∗
6 , T ) = 9.5 × 10−2, Q7(τ

∗
7 , T ) = 2.2 × 10−1 and Q8(τ

∗
8 , T ) = Q9(τ

∗
9 , T ) =

1.1 × 10−1. By comparison, for the invariant manifold approximation the parameterization
defects (with h2,n replacing Φn in (5.14)) are given by Q6(h2) = 1.8× 10−1, Q7(h2) = 2.2
and Q8(h2) = Q9(h2) = 8.2×10−1. Note that in both cases, Q8 = Q9, since here β9 = β8
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Fig. 7 Qn(τ, T ) vs τ for Eq. (5.1) for r = 14.1 (period-doubling regime) and m = 5. For each parameterized
mode shown here, the minimum is marked by a red dot

(and λ9 = λ8) and the corresponding parameterizations are just conjugate to each other; see
Remark 6.

These values of the parameterization defects should be put in perspective with the energy
budget for a better appreciation of the exercise of parameterization conducted here. Table 1
summarizes how the energy is distributed (in average) among the modes, over the training
interval [0, T ]. The distribution of energy is explained in part (but not only) by the spectral
decomposition and ordering (2.12) adopted here from Sect. 2.1, i.e. the modes are ordered
according to their linear rate of growth/decay. In our case, it turns out that Eq. (5.9) is a
genuine forced-dissipative system in which the β j ’s have all their real parts negative. Thus
the ordering is here from the least to the most stable ones; the least stable modes (e1 and e2)
containing most of the energy.

It is noteworthy that it is exactly (and only) for mode e7—the mode that contains the
smallest fraction of energy—that the parameterization defect Q7(h2) for h2 is above 1,
leading to an over parameterization for this mode. Despite the small fraction of energy
contained in a given mode, it is known that an over parameterization of such a mode can lead
to an overall misperformance of the associated closure.

In contradistinction, Q7(τ
∗
7 , T ) is of same order of magnitude than the Qn’s for modes e6,

e8 and e9. As a result, the optimal PM, Φ(1)
τ∗ , provides comparatively, a much more efficient

closure than when the parameterization h2 is used. Figure 8 shows for instance that in terms
of attractor reconstruction, the approximation CIM(t) given by (5.13) and obtained from
the 5D reduced system (5.12) based on h2 (blue curve), fails—compared to its counterpart
CPM(t) obtained from the 5D optimal PM closure (5.10) (red curve)—in capturing, within
the embedded phase space, the intricate behavior of the original model’s periodic orbit (black
curve).

A closer examination of the power spectral density (PSD) reveals that CIM(t) fails in
reproducing the dominant frequency and its subharmonics, whereas CPM(t) captures them
almost perfectly; compare panel (a) and (b) of Fig. 9. The length of simulation T f for the
original dynamics and the 5D optimal PM closure (5.10) used for the estimation of these
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Table 1 Averaged fraction of energy over [t0, t0 + T ]: period-doubling regime

e1 e2 e3 e4 e5 e6 e7 e8 e9

42.14% 42.14% 1.81% 3.87% 3.87% 4.27% 0.20% 0.86% 0.86%

Fig. 8 Attractor approximation for r = 14.1 and m = 5. Here the attractor is projected onto the delay
coordinates, (C j (t), C j (t + L)) (1 ≤ j ≤ 9), for the original 9D RB system (black curve). Here L = 1. The

approximation CPM given by (5.11) and obtained from the 5D optimal PM closure (5.10) is shown by the red
curve. The approximation CIM given by (5.13) and obtained from the 5D reduced system (5.12) based on the
invariant manifold approximation h2, is shown by the blue curve (Color figure online)

PSDs is T f = 1000. Recall that for the latter, such results are obtained by optimizing the
parameterization defects on a training interval of length T equals only to three fourth of the
period Tp of the original dynamics, demonstrating thus good skills at least in the frequency
domain. Similar skills than those shown in Fig. 9 for C2(t), hold for the other system’s
components.

As progressing through the period-doubling cascade, the inability of the invariantmanifold
approximation, h2, in reproducing the main features of the RB system’s solutions, is getting
evenworse, in particular right after the onset of chaos. The next section shows that the reduced
systems (5.10), to the contrary, provide still low-dimensional efficient closures (when driven
by the appropriate optimal PM) for such chaotic regimes.

Remark 8 Depending on t0 (after removal of transient), the global minimizer τ ∗
n of Qn , does

not provide necessarily the best parameterization within the Φn-class, and one may have to
rely on the parameterization correlation c(t) (see (3.6)) to discriminate between other local
minimizers of Qn . We clarify here this statement which is relevant only for n = 6 here; the
global minima of Q7, Q8, and Q9 being in fact robust as t0 is varied.
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(a) (b)

Fig. 9 PSD approximation for r = 14.1 and m = 5. Here the PSDs are estimated for C2(t) obtained from the
original 9D RB system (black curve—panels a and b, for CPM

2 (t) obtained from the 5D optimal PM closure

(5.10) (red curve—panel b), and for C IM
2 (t) obtained from the 5D reduced system (5.12) based on invariant

manifold approximation (blue curve—panel a). A semi-log scale is used for panels a and b (Color figure
online)

For the regime analyzed here, the “wavy” shape of the graph of Q6(τ, T ) may experience
noticeable changes when t0 varies. These changes may be manifested by the emergence of
local minima that can modify substantially the location of the global minimizer and thus
affect the determination of the optimal PM.

For instance the left panel of Fig. 10 shows Q6(τ, T ) as obtained from another segment
of the solution y(t) to (5.9) (in the period-doubling regime), that is for another t0 in (5.14)
than used for Fig. 7. A simple visual comparison reveals that the global minimum shown for
Q6 in Fig. 7 corresponds now to a local minimum (red asterisk), and a new global minimum
closer to τ = 0 has appeared (green asterisk).

If one selects the corresponding globalminimizer as τ ∗
6 , the corresponding optimal closure

captures only an excerpt of the dominant frequency and its harmonics (every other frequency
more precisely), and the closure fails in reproducing the period-doubling. This issue can be
easily fixed by the inspection of c(t) given by (3.6) over [0,T]. Indeed, by using the optimal
PM for which τ ∗

6 corresponds to the global minimum and the (sub)optimal PM for which
τ ∗
6 corresponds to the second local minimum, we obtain two curves for c(t): one associated
with the optimal parameterization (global minimum/green curve) and one associated with
the suboptimal parameterization (local minimum/red curve).

The red curve is clearly closer to 1 than the green one (in average), indicating that τ ∗
6

corresponding to the second local minimum (i.e. the suboptimal parameterization) should be
in fact retained for determining the parameterization Φn , as indeed the corresponding PM
closure provides then similar modeling skills to those shown in Fig. 9.

This discrimination, made possible thanks to the parameterization correlation, c(t), (prior
to any simulation of (5.10)) teaches us the relevance of this non dimensional number to
refine the determination of an optimal PM in practice, beyond this example and especially
in presence of other local minima for a given Qn as t0 is varied.

Other tests conducted in other parameter regimes indicate that such a situation requiring
the discrimination via an inspection of c(t) and a selection of a suboptimal rather than
optimal parameterization is rather the exception than the rule;8 namely the parameterization

8 For instance this issue is not encountered for the chaotic regime analyzed in Sect. 5.3.
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Fig. 10 Selection of suboptimal parameterization via parameterization correlation. The parameterization cor-
relation c(t) are shown in the right panel for an interval of length T = 3Tp/4 in the period-doubling regime.

Here c(t) is computed from (3.6) with Ψ = Φ
(1)
τ for two choices of τ . Choice 1: τn = τ∗

n for all the compo-
nents (green curve). Choice 2: τn = τ∗

n except τ6, which is taken instead to be the local minimizer marked by
the red asterisk on the left panel (red curve) (Color figure online)

Table 2 Averaged fraction of energy over [0, T ]: chaotic regime

e1 e2 e3 e4 e5 e6 e7 e8 e9

37.59% 37.59% 8.23% 4.90% 4.90% 3.95% 0.31% 1.27% 1.27%

corresponding to a global minimizer of Qn , provides in general the best closure results.
Nevertheless we decided to communicate on this issue subordinated to the presence of local
minima as it may be encountered for other systems.

5.3 Closure in a Chaotic Regime

We assess in this section the skills of the optimal PM closure (5.10) in a regime located right
after the onset of chaos, after the system has gone through a period doubling cascade, i.e. for
r = 14.22. We conduct also hereafter an analysis on the effect of the reduced dimension,
m, of the reduced state space Ec. Still this reduced state space is spanned by few dominant
eigenmodes of the linear part L of the perturbed system (5.6) about the mean state C is given
by (5.7), with now the latter estimated, after removal of transient dynamics, over the training
interval of length T = Tp , with Tp denoting the period of the solution for r = 14.1; see
previous section.

Here again, the unresolved modes are parameterized by the quadratic manifold, Φn(τ, ·),
given by (4.34), optimized over the training interval [0, T ] by minimizing the parameteriza-
tion defect Qn given by (5.14). The distribution of energy per mode for this regime is shown
in Table 2. The distribution of energy is explained due to the ordering (2.12) adopted here
from Sect. 2.1, i.e. by ordering the modes according to their linear rate of growth/decay; for
this parameter regime again, from the least to the most stable modes. Since e4 and e5 come
in pairs (i.e. Re(β4) = Re(β5)), we analyze hereafter the cases m = 3, m = 5 and m = 6.
Thus from Table 2, the energy to be parameterized corresponds to 16.6% of the total energy
(over [0, T ]) for the case m = 3, to 6.8% for m = 5, and to 2.85% for m = 6.
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Table 3 Optimal
parameterization defects for
T = 25: chaotic regime

m = 3 m = 5 m = 6

Q4(τ
∗
4 , T ) 0.09

Q5(τ
∗
5 , T ) 0.09

Q6(τ
∗
6 , T ) 0.38 0.12

Q7(τ
∗
7 , T ) 0.22 0.2 0.04

Q8(τ
∗
8 , T ) 0.05 0.09 0.02

Q9(τ
∗
9 , T ) 0.05 0.09 0.02

Given the solution y(t) of Eq. (5.9) over [0, T ], theminimal values Qn(τ ∗
n , T ) achieved by

the optimal PM, Φ(1)
τ∗ , in terms of the reduced dimension m are shown in Table 3. Obviously,

the case m = 6 comes with the smaller parameterization defects, while the case m = 3
presents for the modes e6 and e7, values that although less than 1 are not on the same order
of magnitude than the other values of Qn .

The energy left after application of the optimal PM, represents 0.04× 0.31+ 2× 0.02×
1.27 = 0.063% of the total energy for the case m = 6, and represents 0.765% for the case
m = 5, still below 1% of the total energy. To the contrary, an amount of energy represent-
ing 5.42% needs still to be parameterized after application of the optimal PM for the case
m = 3. Compared with the fraction of energy left in the corresponding unresolved modes
prior parameterization, an application of the optimal PM leads to an improvement by a factor
approximately equal to 45 for m = 6, and equal to 9 and to 3 for respectively m = 5 and
m = 3. Without any surprise, the cutoff corresponding to the smallest amount of energy to
be parameterized (i.e. when m = 6) comes with the best improvement in terms of parame-
terization when the optimal PM is used. On the other hand, the cutoff corresponding to the
biggest amount of energy (i.e. when m = 3) comes with the poorest parameterization score
in terms of energy that still needs to be parameterized after application of the optimal PM.
Thus, one expects that an optimal PM closure should perform certainly better for m = 6
than for m = 3, and must show some improvements compared to the optimal PM closure for
m = 5.

This energy budget analysis is comforted by the analysis of the parameterization corre-
lation c(t) and of the probability density function (PDF) of the parameterization angle α(t).
Here c(t) and α(t) are respectively computed from (3.6) and (3.7), with Ψ = Φ

(1)
τ∗ , the

optimal PM as determined for each case, m = 3, m = 5, and m = 6, from (4.36), for which
the optimal vector τ ∗ is obtained by minimization of (5.14) for the relevant n. As shown in
panel (b) of Fig. 11, each of these PDFs is skewed towards zero. Nevertheless the PDF that is
the most concentrated (i.e. with more mass) near zero corresponds to the case m = 6 (black
curve), then comes the PDF associated with the case m = 5 (magenta curve), and finally the
PDF for the case m = 3 (blue curve).

These diagnostics are confirmed when looking at the ability of the corresponding optimal
PM closures (5.10), in reproducing key statistics of the original model’s dynamics such as
autocorrelation functions (ACFs) and PSDs. For the regime analyzed here (r = 14.22), the
time-variability of the chaotic dynamics is characterized by a broad band spectrum visible
in each component’s PSD. The black curve in either right panels of Fig. 12, shows such a
broad band spectrum for e.g. the PSD of C2 as estimated from integration of Eq. (5.1) after
a simulation of length T f = 1000. Other components display similar PSDs.
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Fig. 11 Effect of the reduced dimension m: diagnostic for r = 14.22. This effect is shown here on the
parameterization correlation c(t) (panel a) and the PDF of the parameterization angle α(t) (panel b) for the

chaotic regime. Here c(t) and α(t) are respectively computed from (3.6) and (3.7), withΨ = Φ
(1)
τ∗ , the optimal

PM

(a) (b)

(c) (d)

(e) (f)

Fig. 12 Effect of the reduced dimension m: simulation for r = 14.22. This effect is shown for the chaotic
regime on the ability of the optimal PMclosure (5.10) to reproduce the PSDandACF, for the second component
C2. A semi-log scale is used for panels b, d and f

Figure 12 shows clearly, as anticipated by the energy budget analysis on a short interval
[0, T ] (with T = 17.25) (and supported by the parameterization angle’s PDF analysis), that
the 5D and 6D optimal PMs provide efficient closures, with a noticeable improvement for
the ACF’s reproduction of C2 when the 6D optimal PM is used; see panel (e) of Fig. 12. Fur-
thermore, Fig. 13 shows that the 6D optimal PM closure leads to an excellent approximation

123



1130 M. D. Chekroun et al.

Fig. 13 Attractor approximation for r = 14.22 and m = 6. Same as in Fig. 8 except r = 14.22 (chaotic
regime) and m = 6. Here also L = 1

of the original model’s attractor, whereas the 5D optimal PM closure although reproducing
correctly most of its features fails in reproducing certain solution’s large excursions in the
embedded phase space (not shown). The 3D optimal PM fails however dramatically in the
approximation of this attractor as it leads to a periodic orbit and fails thus to reproduce the
time variability of the original model’s chaotic dynamics; see panels (a) and (b) of Fig. 12.

Based on these results, we may state that our parameterization formula of Sect. 4.3
(i.e.Φ(1)

τ∗ given by (4.36)) provides here, seemingly, a good approximation of the optimal PM
as given by the abstract Theorem 4 when m = 5 and m = 6. Our optimal PM as computed
for the case m = 3, although leading to a periodic orbit, may still be a good approximation
of the theoretical optimal parameterization (3.26) averaging out the unresolved variables,
for the reduced state space, Ec = span{e1, e2, e3}. It is indeed possible that the conditional
expectation as defined in Theorem 5, gives a periodic solution for a given reduced state space.
The theory of Sect. 3 does not exclude such a scenario.

To improve the results in the case m = 3, stochastic parameterizations may be then
superimposed to our optimal PM in order to further reduce the parameterization defect. This
topic is out of the scope of the present paper but will be pursued elsewhere; see Concluding
Remarks in Sect. 7.

5.4 Heat Flux Analysis

We analyze here how the optimal LIA parameterization behaves in the physical domain,
for the chaotic regime. We focus on the vertical heat flux, accomplished by the fluctuations
around the time-averaged state that enables the system to sustain statistical equilibrium. Once
a solution C(t) to Eq. (5.1) is computed, one can evaluate the following local heat flux

H(x, t) = w(x, t)θ ′(x, t) − ∂zθ(x), x = (x, y, z), (5.15)
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Table 4 Heat fluxes: relative
error when “s” is replaced by
optimal PM

m = 5 (%) m = 6 (%)

〈H〉 15 4.5

〈Hcs〉 7.6 11.2

〈Hss〉 64 21.9

where w denotes the vertical velocity, and θ ′ denotes the anomaly of the temperature θ

with respect to the time-mean temperature θ . The vertical velocity w and temperature θ are
computed according to Eqns. (12) and (17) of [145].

Recall that our optimal PM is determined for the transformed variables, namely for
Eq. (5.9). In particular our splitting between low and high modes is made within the system
of coordinates in the y-variable. By transforming back into the original variables we can
trace the contribution of the high and low modes (defined in the transformed variables) into
the original system of coordinates. By doing so, the heat flux H(x, t) decomposes as

H(x, t) = Hcc(x, t) + Hcs(x, t) + Hss(x, t). (5.16)

with

Hcc(x, t) = wc(x, t)θ ′
c(x, t) − ∂zθc(x),

Hss(x, t) = ws(x, t)θ ′
s(x, t) − ∂zθs(x),

Hcs(x, t) = wc(x, t)θ ′
s(x, t) + ws(x, t)θ ′

c(x, t). (5.17)

When the high-mode contribution in (5.16) and (5.17) is replaced by the optimal LIA param-
eterization derived in the previous section (chaotic regime), errors in the “low-high” and
“high-high” interactions to the heat flux are visible. Table 4 shows these relative errors in the
L2-norm in time, after space average 〈·〉. Clearly these errors reduce as the dimension of the
reduced state space (in the transformed variables) increases, but overall the reproduction of
the time-variability of 〈H〉 is satisfactory, especially when m = 6; see Figs. 14 and 15. As a
comparison when only the lowmodes are used to approximate the heat flux like in a Galerkin
truncation, the heat flux errors are substantially larger; see Table 5. Without any surprise the
improvement brought by the high-mode parameterization is more pronounced when m = 5
than when m = 6. Taking volume- and time-average in (5.16), we observe that 〈H〉 = 54.6.
Doing the same operation in which the s-variable is replaced by its high-mode approximation
(as given by the optimal LIA) gives 〈H app〉 = 61.4 form = 5, and 〈H app〉 = 56.1, form = 6.

6 Closing Kuramoto–Sivashinsky Turbulence and Fixing Backscatter
Errors

In this section we show that the PM approach allows for deriving efficient closures for the
Kuramoto-Sivashinsky (KS) turbulence, in strongly turbulent regimes. The closure results
presented hereafter are obtained for cutoff scales placedwellwithin the inertial range, keeping
only the unstable modes in the reduced state space. The underlying optimal PMs obtained by
our variational approach are far from slaving and allow for remedying the excessive backscat-
ter transfer of energy to the lowmodes encountered by the LIA or the QSA parameterizations
in their standard forms, when they are used at this cutoff wavelength.
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Fig. 14 Space-average heat fluxes for the chaotic regime. Here the reduced state space is five-dimensional
(m = 5)
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Fig. 15 Space-average heat fluxes for the chaotic regime. Here the reduced state space is six-dimensional
(m = 6)

Table 5 Relative error
Ec = |〈H − Hcc〉|L2/|〈H〉|L2

m = 5 m = 6

Ec 132% 35%

6.1 Preliminaries and Background

We consider the KS equation (KSE) [111,157] posed on the domain,D = (0, L), and subject
to periodic boundary conditions:

∂t u = −ν∂4x u − D∂2x u − γ u∂x u, (6.1)

where ν, D and γ are positive parameters. The KSE is commonly considered as a basic case
study for spatio-temporal chaos.

Note that the KSE in its formulation (6.1) can be rescaled as posed on the interval (0, 2π):

∂t u = −4∂4x u − α

(
∂2x u + u∂x u

)
, (6.2)

by using the following scaling

L =
√

να

D
π, u = 2D3/2

γ
√

να
u, x =

√
να

2
√

D
x, t = να2

4D2 t . (6.3)
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Although mathematically equivalent, depending on the purpose one may prefer one formu-
lation to the other for the closure exercises considered hereafter; see Remark 9.

We aim at closure of the KSE. Various purposes are pursued regarding what a low-
dimensional closure should do and this may cause confusion when comparing methods.
Among the purposes targeted in the literature concerning the closure/reduction problemof the
KSE, are the following: (i) finite-time approximation error such as in AIM theory [52,131] or
renormalization group (RG) methods [156], (ii) reproduction of local and global bifurcations
[2,15,96,97], (iii) optimal prediction of resolved variables [158], and (iv) reproduction of
long-term statistics such as the energy spectrum. We follow clearly this latter path, to which
we add the question of reproduction by closure of patterns and their statistical features. For
the KSE, only few works have addressed the closure in the latter sense. We refer to [124] for
closure aimed at reproducing long-term statistics and to [158] for optimal prediction. In all
these works, the regimes for which an efficient closure is sought correspond either to specific
solutions or to weakly turbulent regimes associated with a few pairs of unstable modes: 2
pairs in [2], up to 4 pairs of unstable modes for [15,96,97], and 3 pairs in [124,158].

In this study, we aim at determining efficient closures for the reproduction of patterns and
long-term statistics in two strongly turbulent regimes: one regime corresponding to 31 pairs
(Regime A, Table 6) of unstable modes and another one corresponding to 90 pairs of unstable
modes (RegimeB, Table 7). Our approach relies on optimal PMs that allow for approximating
the conditional expectation (Theorem 5) without assuming separation of scales and differ in
that sense from averaging techniques and other RG methods.

The reproduction of the energy spectrum of KS solutions will be one of the core metrics
to assess the quality of our parameterizations. For either formulation (6.1) or (6.2), a typical
energy spectrum, E(k), of a chaotic KS solution is shown as the black curve in panel (e)
of Fig. 16. Four parts of this spectrum are distinguishable [174]: (i) The large scale region
as k → 0 which is characterized by a plateau reminiscent of a thermodynamic regime with
equipartition of energy; (ii) the active scale region that contains most of the energy, with a
peak corresponding to a characteristic length l p = L/(2πkp)with kp that corresponds to the
wavenumber of the most linearly unstable mode; (iii) a power law decay with an exponent
experimentally indistinguishable from 4 within this active region; and (iv) an exponential tail
due to the strong dissipation at small scales. It is tempting to think of the region E(k) ∼ k−4,
where production and dissipation are almost balanced (Dk2 ≈ νk4), as an “inertial range.”
This latter aspect has been already discussed in the literature; see [141].

From amathematical perspective, theKSE is awell-known example of PDE that possesses
an inertialmanifold, in the invariant space of odd functions [38,65], and in the general periodic
case [149,165], but the current IM theory [180] predicts that the underlying slaving of the
high modes to the low modes, holds when the cutoff wavenumber, kc, is taken sufficiently
far within the dissipative range, especially in “strongly” turbulent regimes that correspond
to the presence of many unstable modes; see the Supplementary Material. Still, as the AIM
theory underlines, satisfactory closure may be expected to be derived for kc corresponding to
scales larger than what predicts the IM theory. Nevertheless, as one seeks to further decrease
kc within the inertial range, standard AIMs fail typically in providing relevant closures and
one needs to rely on no longer a fixed cutoff but instead a dynamic one so as to avoid energy
accumulation on the cutoff level [50,54,56]. This situation has been already documented for
the Navier–Stokes equations [137], but is less known for the KSE.

Aspointed out below, such a failure by traditional (nonlinear) parameterizations for closing
the KSE when kc is placed low within the inertial range occurs e.g. for Regime A considered

123



1134 M. D. Chekroun et al.

hereafter and whose parameters9 are listed in Table 6. For this regime, the KS flow is strongly
turbulent (see Fig. 16b) and possesses 31 pairs of unstable modes. We selected kc to be
the wavenumber corresponding to the smallest scale present among the unstable modes,
corresponding here to kc = 31 for Regime A, and making thus the reduced state space, Ec,
to be spanned by the unstable modes. This choice of kc places the cutoff wavelength within
the aforementioned inertial range, as one can observe in Fig. 16d. The fraction of energy
to parameterize is quite substantial for this cutoff as it represents 15.7% of the total energy.
For this selection of kc, the energy distribution nearby this cutoff scale is comparable to the
energy E(k) contained in the large scales (k ∼ 1). Beyond kc, the energy does not drop
suddenly (due to its decay following a power law) and actually takes values on a same order
of magnitude compared to E(1) for roughly kc < k < 1.5kc while only after k > k1 = 2kc,
the energy E(k) drops faster (exponentially); see black curve Fig. 16e.

Thus to close the KSE at this cutoff scale, makes, a priori, the closure problem difficult
because quite a few energeticmodes need to be properly parameterized.Actually, as discussed
in Sect. 6.2 below, this difficulty is manifested when using nonlinear parameterizations such
as the standard QSA (4.40) that suffers from a backscattering transfer of energy particularly
overwhelming for the large scales. In this case an over-parameterization of the neglected
scales (i.e. an excessive parameterization of the unresolved energy) leads to an incorrect
reproduction of the backscatter transfer of energy due to nonlinear interactions between the
modes, especially those near the cutoff scale. We speak of an inverse error cascade, i.e. errors
in the modeling of the parameterized scales that contaminate gradually the larger scales and
spoil the closure skills for the resolved variables.

To illustrate such an inverse error cascade in a simple context, we invite the reader to
consult the AB-system in the Supplementary Material; see Eq. (17) therein. For this system,
let us assume that an error of size εB is made on the parameterized variable B at the steady
state (A, B) given by (18) in the Supplementary Material. This error propagates then to the

resolved variable A through nonlinear coupling as Aapp =
√

(ν2Bapp − αB
3
app)/γ2 where

Bapp = (1 ± ε)B. The (L2) error on the resolved variable becomes then |A2 − A
2
app|: of

order ε when ε is small, and of order ε3 when ε is large. This simple example shows that
an error made on the parameterization may be amplified through the nonlinear interactions
as it propagates to the resolved variables when the parameterization is not accurate. Such
an inverse error cascade is even more pronounced as the number of nonlinear interaction
terms gets large while the neglected scales contain a non-negligible amount of energy. In that
respect, the parameter regimes considered here for the KSE are particularly demanding to
avoid an incorrect reproduction of the backscatter transfer of energy to the large scale.

Our purpose is to show that the parametric QSA formulas (4.42)–(4.44) of Sect. 4.4, when
optimized by solving the minimization problems (4.46), allow for fixing the backscatter
transfer of energy issue encountered by the standard QSA (4.40). As shown hereafter, the
amount of data required to determine the underlying optimal PMs (here given as optimal
QSAs), is related to mixing properties such as encoded into decay of temporal correlations.
Typically, the faster the decay of (temporal) correlations is, the less the amount of data
(in the time direction) required, is. The PM approach and its apparatus provides further-
more new understanding about essential variables and their interactions for closure of the
KSE.

9 These parameters become α = 4000, δt = 10−7 and Nx = 256 when scaling (6.3) is applied; see Remark
9.
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Table 6 Regime A: Parameters
for Eq. (6.1)

ν D L γ δt Nx

2 × 10−4 0.2 2π 1 10−3 256

Table 7 Regime B: Parameters
for Eq. (6.2)

α δt Nx

33,000 10−9 2048

To apply the PM approach and the parameterization formulas of Sect. 4.4 to Eq. (6.1) we
first recall the spectral elements of the operator A = −ν∂4x − D∂2x , under periodic boundary
conditions. These are given by

βk = −16νπ4k4

L4 + 4Dπ2k2

L2 , (6.4)

for the eigenvalues, and

e�
k(x) =

⎧
⎪⎪⎨

⎪⎪⎩

√
2
L cos

(
2πkx

L

)
, if � = 0

√
2
L sin

(
2πkx

L

)
, if � = 1,

(6.5)

for the eigenmodes. Note that because the spatial average of our KS-solutions considered
hereafter is zero (see (6.10)), we consider k ≥ 1 in what follows.

Adopting the convention of Sect. 2.1, and after having reordered the βk’s in descending
order, the reduced state space is

Ec = span{e�
p(1), . . . , e

�
p(m), � = 0, 1}, (6.6)

where p( j) denotes the wavenumber of the cosine/sine pair associated with the j th largest
eigenvalue. Note that due to the distribution of the βk’s given by (6.4), this reordering matters
only when m < mu with mu denoting the total number of pairs of unstable modes.

The projector Πc onto Ec is then given by

Πcu =
1∑

�=0

m∑

j=1

〈u, e�
p( j)〉e�

p( j). (6.7)

Hereafter we will consider closure for m ≥ mu . In this case, the reduced state space is simply
given by

Ec = span{e�
1, . . . , e

�
m, � = 0, 1}. (6.8)

Here the ambient space is taken to be the Hilbert space H = L2(0, L), and 〈·, ·〉 denotes its
natural inner product. Hereafter we denote by Πs the orthogonal complement of Πc in H,
i.e. Πs = IdH − Πc.

Another regime that will be dealt with in Sect. 6.3 below has its parameters listed in Table
7 for the KSE written under its formulation (6.2). This regime is even more turbulent than
RegimeA, as it exhibits 90 pairs of unstable modes. Either for RegimeA or B, the benchmark
KS solution for the closure exercises conducted hereafter, is obtained by transforming the
KSE in Fourier space and by using amodification of the exponential time-differencing fourth-
order Runge-Kutta (ETDRK4) method proposed in [99] in order to solve the resulting stiff
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1136 M. D. Chekroun et al.

ODE system. The number of Fourier modes retained (Nx ) and time step used (δt) for each
regime, are listed in Tables 6 and 7, for Regimes A and B, respectively. We refer hereafter to
a KS solution thus obtained as a Direct Numerical Solution (DNS). The ODE closure derived
hereafter are integrated with an semi-implicit Euler scheme, in which the linear terms are
treated implicitly while the nonlinear ones, explicitly. These closure systems are integrated
with the same time step as listed in Tables 6 and 7, depending on the regime.

In all our numerical experiments that follow, the KSE is integrated from the following
initial datum with zero-mean

u0(x) = cos(x)(1 + sin(x)). (6.9)

In such a case, since the spatial average is a conserved quantity for the KS solution u(x, t),
we have for all t , ∫ L

0
u(x, t) dx = 0. (6.10)

Note that compared with the original ETDRK4 proposed in [41], the modification in [99]
consists of evaluating key coefficients as given by [99, Eq. (2.5)] using contour integrals
rather than direct evaluation to avoid possible cancellation errors. The contours are taken
to be circles of radius δt centered around each of the eigenvalues of the discretized linear
operator, and the contour integrals are approximated using trapezoid rules with M equally
spaced points on the circle.Wehave set M = 64 for both parameter regimes considered. In our
numerical calculations performed in Matlab (version R2018a), compared to the script given
in [99, Fig. 7], the spatial discretization is taken to be x = L* (0:Nx-1)’/Nx instead
of x = L*(1:Nx)’/Nx to suit the way the fast Fourier transform (FFT) is implemented
in the Matlab built-in function fft.

Remark 9 When the scaling (6.3) is performed, we find for Regime A that α = 4000 and
t = θ t with θ = 5× 10−5. After transient is removed, to reach the same energy level, ‖u‖2

L2

than by integrating (6.1) (with the same solver), we have found that we can decrease the
time-step compared to δt by a factor a = 104, that is δt = 10−7. Given an interval of length
T in the original time variable t , it corresponds to T = 5× 10−5T , that is an amount of data
in time that is given by N = T /δt = 500T data points. Thus, since N = T /δt = 1000T ,
we have that N = N/2. Although mathematically equivalent, we can thus store twice more
data (while keeping Nx identical) by integrating numerically the formulation (6.2) than
by integrating the formulation (6.1), integrating the dynamics up to the same time instant
(taking into account the rescaling). Such observations have their interest to draw statistics
from long time integration. For RegimeA it turns out that the simulations performed hereafter
were already sufficient to draw robust statistics with the formulation (6.1). We use however
formulation (6.2) to simulate the turbulent Regime Bwith a higher number of unstable modes
than for Regime A.

6.2 Fixing the Backscatter Transfer of Energy for KS Turbulence with Optimal PMs

It is known that when the cutoff wavelength is too low within the inertial range, the standard
QSA (4.40) suffers typically from over-parameterization leading to an incorrect backscatter
transfer of energy, i.e. errors in the modeling of the parameterized (small) scales that con-
taminate gradually the larger scales. In the case of Regime A, when kc = 31 (corresponding
to Ec spanned by 31 pairs of unstable modes), the QSA leads to an over parameterization
of E(k) by an amount of about 5800% (in average) over the wavenumbers 32 ≤ k ≤ 36;
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Fig. 16 Closure and parameterization results Regime A. Panel a shows the solution obtained from the optimal
PM closure (6.23) with m = 31, while panel b shows the KS solution as obtained from DNS of Eq. (6.1).
Here the optimal PM is obtained as QSA(τ∗)with τ∗ obtained by optimization of the cost functional Jn given
by (6.19) (with t = 1 and T = 4). The optimal values Jn(τ∗

n ) are shown in panels c for the parameterized
cosine modes. The corresponding Qn -values are shown in panel d, with Qn given by (6.20). The resulting
optimal QSA parameterizes the wavelength band, kc < k < k1 = 2kc, as shown by the red curve in panel e
on the energy spectrum E(k) (log–log scale). Here kc is the wavenumber corresponding to the smallest scale
present among the unstable modes, that is kc = 31. The blue curve shows the dramatic failure of the standard
quasi-stationary approximation (QSA) (4.40) for parameterizing this wavelength band, especially for k near
kc

see blue curve in Fig. 16e. The nonlinear interactions between these modes and the unstable
modes corresponding to k ≤ kc lead in this case to such an excessive backscatter transfer of
energy, that a closure in which the unresolved modes are approximated by the QSA, blows
up after few iterations no matter the numerical scheme used.

As pointed out in Sect. 4.4, the parametric QSA formulas (4.42)–(4.44) involve the same
interaction coefficients, the Bn

i j ’s given by (4.29) as for the standard QSA, K (ξ). However
the magnitudes of the nonlinear interactions, as encapsulated in the coefficients δn(τ )’s given
by (4.43), is different from the coefficients−β−1

n appearing in K (ξ). The coefficients δn(τ )’s
enable us here to counterbalance the excess of energy in the parameterization compared to
a standard QSA. Furthermore, as explained below, these coefficients are optimized in the
τ -variable by solving the minimization problems (4.46) over short training periods of length
comparable to a characteristic decorrelation time of the dynamics.

In the case of the KSE, the parametric QSA (4.44), QSA(τ ), takes the following form

Ψτ (ξ) =
1∑

�=0

2m∑

n=m+1

Ψ �
n (τn,β, ξ)e�

n, (6.11)

with
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Ψ �
n (τ �

n ,β, ξ) =
m∑

i, j=1

δn(τ �
n )
(

En,�
i j ξ0i ξ0j + Cn,�

i j ξ0i ξ1j + Fn,�
i j ξ1i ξ1j

)
, ξ ∈ Ec. (6.12)

The index m in the upper bound of the sum is taken here to be equal to kc = 31, which
corresponds to the number of pairs of unstable modes for Regime A. The reduced state space
Ec is thus 2m-dimensional, taking into account � = 0, 1.

In (6.12), δn(τ �
n ) is given by (4.43) while

En,�
i j =

{
〈B(e0i , e

0
j ), e

0
n〉, if � = 0

〈B(e0i , e
0
j ), e

1
n〉, if � = 1,

(6.13)

Cn,�
i j =

{
〈B(e0i , e

1
j ), e

0
n〉 + 〈B(e1j , e

0
i ), e

0
n〉 if � = 0

〈B(e0i , e
1
j ), e

1
n〉 + 〈B(e1j , e

0
i ), e

1
n〉 if � = 1,

(6.14)

and

Fn,�
i j =

{
〈B(e1i , e

1
j ), e

0
n〉 if � = 0

〈B(e1i , e
1
j ), e

1
n〉 if � = 1.

(6.15)

These coefficients correspond to the aforementioned interaction coefficients. They possess a
simple analytic expression here given the nonlinearity and the trigonometric eigenfunctions.
In particular, a majority of these coefficients are actually zero for m + 1 ≤ n ≤ 2m, leaving
only a few of them non-zero.

More precisely, we have

〈B(e0i , e
0
j ), e

0
n〉 = 〈B(e0i , e

1
j ), e

1
n〉 = 〈B(e1i , e

0
j ), e

1
n〉 = 〈B(e1i , e

1
j ), e

0
n〉 = 0, ∀ i, j, n,

(6.16)

〈B(e0i , e
1
j ), e

0
n〉 = 〈B(e1j , e

0
i ), e

0
n〉 =

⎧
⎪⎪⎨

⎪⎪⎩

− γπn√
2L3/2 , if n = i + j,

γπ(i− j)√
2L3/2 , if n = |i − j |,

0, otherwise,

(6.17)

and

〈B(e�
i , e

�
j ), e

1
n〉 =

⎧
⎪⎪⎨

⎪⎪⎩

(−1)� γπn√
2L3/2 , if n = i + j, � ∈ {0, 1},

γπn√
2L3/2 , if n = |i − j |, � ∈ {0, 1},

0, otherwise.

(6.18)

Note that formulas (6.16)-(6.18) show that the parameterization Ψ �
n in (6.12) is sparse, for

m + 1 ≤ n ≤ 2m and identically zero for n ≥ 2m + 1.
The optimal QSA, Ψτ∗ , is obtained by solving the minimization problems (4.46). The

corresponding normalized parameterization defect,

Jn(t, τ ) =

∣∣∣∣
∫ t+T

t [Πnu(s)]2 ds − ∫ t+T
t [Ψn(τ,β, uc(s))]2 ds

∣∣∣∣
∫ t+T

t |Πnu(s)|2 ds
, (6.19)

is shown in panel (c) of Fig. 16 for the τ = τ ∗
n ’s that correspond to the optimal values for

the cosine modes, dropping here the dependence on � = 0. The results for the sine modes
are almost identical, and are thus not shown. Here t is chosen after the transient behavior, as
measured through the energy, ‖u(t)‖L2 of the DNS for Regime A. In our case, it corresponds
to t = 1. The training length T is chosen to be T = 4.
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Fig. 17 Relative error of 1
T

∫ t+T
t [Πnu(s)]2 ds compared to E(n). Here the energy contained in E(n) is

estimated over 4 × 106 snapshots, that is for T = 4000

Note that unlike the case dealt with in Sect. 5.2, the cost functional Jn does not exhibit
local minima (in contrast with Remark 8) and thus the dependence on t is secondary as far as
one is concerned with optimal values: Jn(t, τ ∗

n ) will be hereafter denoted by Jn(τ ∗
n ). Instead,

τ �→ Jn(τ ) exhibits, for n = 32 through n = 50, sharp gradients near the origin that lead to
τ ∗

n -values close to zero for these modes.
It is striking to observe that Jn(τ ∗

n ) is almost identical to zero for n = 32 up to n = 50 (see
Fig. 16c), resulting by an almost perfect parameterization of the energy contained into the
corresponding modes; compare the red curve with the black curve in Fig. 16e. For instance,
the corresponding optimal QSA comes with a (average) relative error of only 1.3% over the
wavenumbers 32 ≤ k ≤ 36, allowing in turn to fix the dramatic backscatter transfer of energy
issue encountered by the standard QSA and even by standard Galerkin approximations with
m > kc; see Remark 11 below.

This ability of the optimal QSA to accurately reproduce the amount of energy contained
in the consecutive high modes located after the cutoff scale, is even more striking when one
notes that QSA(τ ) is optimized by minimizing Jn on DNS data over a training length T = 4
(corresponding to 4 × 103 snapshots) whereas the energy spectrum E(k) shown in Fig. 16e
is estimated over T = 4000 (4×106 snapshots). The relative error r of 1

T

∫ t+T
t [Πnu(s)]2 ds

compared to E(n) is shown as T evolves in Fig. 17 for the cosine and sine modes. For T = 4
the average error is about 8%. Even if T = 1 (corresponding to r ≈ 16%) is selected to
evaluate Jn , the resulting optimal QSA performs similarly than that optimized with T = 4,
regarding the reproduction of the amount of energy contained in the high modes (not shown).

These observations show the usefulness of our variational approach: By optimizing the
parameterization QSA(τ ) according to the cost functional Jn , one fixes the backscatter
transfer of energy issue encountered by the standard QSA, while relying only on a short
integration of the KSE. Furthermore, on a practical ground, it is worthwhile noting that one
benefits greatly from the dynamically-based formulas QSA(τ ) (see (4.42)–(4.44)) to operate
this optimization. As a comparison, a blind regression using homogeneous polynomials of
degree 2 in the ξ -variable, would lead in this case to 31 × 15 × 3 = 1395 coefficients10 to
estimate for each high mode and by taking T = 1 or T = 4 (4 × 103 snapshots) the result-
ing regression problem would be either underdetermined or non-robust statistically. Instead,

10 Obtained by counting the number of (distinct) monomials ξ�
i ξ�′

j , with i, j ∈ {1, . . . , 31}, and �, �′ ∈ {0, 1}.
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due to the parametric form of QSA(τ ), only 2 scalar parameters (τ �
n , � = 0, 1) need to be

determined, for each high mode.
As a complimentary diagnosis metric, we show in Fig. 16d, for the τ ∗

n ’s obtained by
minimizing (6.19), the values of the following parameterization defect,

Qn(τ ∗
n ) =

∫ t+T
t

∣∣Πnu(s) − Ψn(τ ∗
n ,β, uc(s))

∣∣2 ds
∫ t+T

t |Πnu(s)|2 ds
, (6.20)

also for the cosine modes, and for t = 1 and T = 4. Clearly for the modes whose wavenum-
bers are located right above the cutoff wavelength, kc, the Qn-values, although less than 1, are
not as close to zero as for the Jn-values shown in Fig. 16c. Remark that since the mean values
of the components of our KS-solution are zero, minimizing Qn consists of minimizing the
variance of the residual error, i.e. |un − f (τ, uc)|2, for a given parameterization f (τ, ·). By
construction, minimizing Jn consists instead of minimizing the residual error of the variance
approximation, i.e. ||un |2 − | f (τ, uc)|2|.

It is noteworthy that the Qn-values in (6.20) differ slightly from the optimal ones that
would be found by minimizing directly the Qn’s in the τ -variable, over the same training
length. Nevertheless, the resulting differences in the corresponding minimizers matters as
one would encounter an under-parameterization of about 50% (in average) for the modes
near the cutoff wavelength (32 ≤ n ≤ 36); see Remark 11 below.

To better understand the effect of the training length T (that determines the amount of data
fromDNS to be stored), we proceeded as follows.Given a training length T , the optimalQSA,
Ψτ∗ , is determined by minimizing the corresponding cost functional Jn given by (6.19) (with
t = 1), providing thus the optimal parameters, τ ∗

n ’s. Recalling that the interaction coefficients
are zero for n ≥ 2m + 1 (see (6.16)–(6.18)), we analyzed then numerically the dependence
on t and T of the following averaged parameterization defect

JT (t, Ψτ∗) =
∑2m

n=m+1

∣∣∣
∫ t+T

t [Πnu(s)]2 ds − ∫ t+T
t [Ψn(τ ∗

n ,β, uc(s))]2 ds
∣∣∣

∑2m
n=m+1

∫ t+T
t [Πnu(s)]2 ds

, (6.21)

as well as of the parameterization defect QT (t, Ψτ∗) given by (3.4). To simplify the notations,
we denote hereafter JT (t, Ψτ∗) and QT (t, Ψτ∗) by JT (t) and QT (t), respectively. Panels (a)
and (b) of Fig. 18 show the dependence on t of JT (t) and QT (t), respectively. This dependence
is shown here for three values of T : T = 0.1, T = 1, and T = 4. In each case, QT (t) < 1
showing that Ψτ∗ is a PM, even for the short training length T = 0.1. Either for QT (t) or
JT (t) we observe that the amplitude of the oscillations in time is reduced as T is increased.
This is further confirmed by inspecting the variance of QT and JT as T is varied: both exhibit
a fast convergence towards zero as T grows; see panel (c) of Fig. 18.

The decay towards zero of these variances can be put into perspective with the following
space average temporal ACF,

ρ(t) = 1

2πT

∫ 2π

0

∫ T

0
u(x, s)u(x, t + s) ds dx . (6.22)

The latter quantity informs us on how the spatio-temporal field, u(x, t), decorrelates in time,
after averaging over x . This space average ACF is shown in panel (d) of Fig. 18. It exhibits
decay of correlations on timescales comparable to those for the variances of QT and JT

supporting thus an earlier statement that the coefficients δn(τ )’s in (4.43) are optimized in
the τ -variable by solving the minimization problems (4.46) over short training periods of

123



Variational Approach to Closure of Nonlinear Dynamical... 1141

700 705 710 715 720
0.2

0.3

0.4

0.5

0.6

0.7

t

(a): QT(t)

700 705 710 715 720
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t

(b): JT(t)

T = 0.1
T = 1
T = 4

0 0.5 1 1.5 2 2.5 3
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

T

(c): var(QT) and var(JT)
var(QT)
var(JT)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

t

(d): Space average ACF: ρ(t)

Fig. 18 Effects of the training period, T , on the parameterization defects JT (t) and QT (t). Here, we observe
that: (i) as T is increasing, JT (t) and QT (t) are converging towards a constant value (Panels a and b), (ii) the
variance of JT (t) (resp. QT (t)), var(JT ) (resp. var(QT )), decays to zero (Panel c), and (iii) the rate of decay
of the latter is comparable to that of the space average ACF, ρ(t), given by (6.22) (Panel d)

length comparable to a characteristic decorrelation time of the dynamics. For our closure
results presented hereafter we selected T = 4.

Thus, after minimization in the τ -variable of the cost functionals, Jn’s, given by (6.19),
(with T = 4 and after removal of transient, t = 1), we use the resulting optimal (and sparse)
PM, QSA(τ ∗) (i.e. Ψτ∗ ), with

τ ∗ = {τ ∗
n,�, : m + 1 ≤ n ≤ 2m, � = 0, 1},

to construct the following optimal PM closure

dz�
j

dt
= β j z

�
j +
〈
B(z + Ψτ∗(z), z + Ψτ∗(z)), e�

k

〉
, 1 ≤ j ≤ m, � ∈ {0, 1}, (6.23)

where z(x, t) = ∑1
�=0
∑m

j=1 z�
j (t)e

�
j (x), for m = 31, that, we recall, corresponds to the

number of pairs of unstable modes.
Good closure skills are already visible with naked eyes, by simply comparing the solution

patterns, u(x, t), obtained by a full integration of Eq. (6.1) over Nx modes (i.e. u obtained
by DNS), with the patterns exhibited by the optimal PM closure solution,

v(x, t) = z(x, t) + Ψτ∗(z(x, t)), (6.24)

obtained by resolving only m = 31 pairs of reduced variables (i.e. by solving system (6.23));
compare panels (a) and (b) of Fig. 16.

To further assess the ability to reproduce the spatio-temporal dynamics by the optimal PM
closure (6.23), we estimated the following time average spatial ACF
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(a) (b)

Fig. 19 Time average spatial ACF, C(x), for Regimes A and B. In both cases, the spatial ACF, C(x), is
estimated from (6.25) based on long simulations of the KSE and the optimal PM closure (6.23), with τ∗
minimizing the Jn ’s given by (6.19). The simulation lengths correspond here, respectively, to N = 4 × 106

snapshots for Regime A, and to N = 2 × 106 snapshots for Regime B. These estimated ACFs are compared
with the analytic formula for C(x) proposed in (6.26)

C(x) = 1

LT f

∫ T f

0

∫ L

0
u(x ′, t)u(x + x ′, t) dx ′ dt, (6.25)

for u as obtained from DNS and its approximation v(x, t) given by (6.24), both integrated
up to T f = 4000, while we recall that the training length is T = 4 to determine Ψτ∗ . The
results are shown in panel (a) of Fig. 19. The correlation function C(x) captures both the
underlying oscillatory, cellular spatial structure of the KS dynamics, and the rapid spatial
decorrelation reflecting the spatial disorder in the spatio-temporal chaotic regime analyzed
here. These features are thus well captured by the optimal PM closure (6.23).

Following [174], we observed that the time average spatial ACF is well modeled for the
DNS by the following analytic formula,

C(x) ≈ cos(k−1
p x) exp(−x/λ), (6.26)

with kp that corresponds to the wavelength associated with the peak in the energy spectrum
E(k) shown in Fig. 16e, and λ to a correlation length for which spatial coupling becomes
negligible beyond a fewmultiples of λ. For RegimeA, we found kp = 21 and λ = 0.23. Only
for large lags in the x-variable, the optimal PM fails to reproduce accurately this theoretical
prediction.

Remark 10 The QSA (4.40) may also be obtained as the limit of the parameterization

Kτ (ξ) = −τ(Id + τ AΠs)
−1ΠsB(ξ, ξ), (6.27)

obtained by using an implicit Eulermethod to approximate the highmodes and by simplifying
the nonlinear terms; see [63] and [67, Sec. 7.1]. In this case we have,

lim
τ→∞ −τ(Id + τ AΠs)

−1ΠsB(ξ, ξ) = −A−1
s ΠsB(ξ, ξ). (6.28)

Note that in (6.27) unlike in [63], we consider the operator A to be the full linear operator
and not only given by the 4th-order term. In its standard formulation, the parameterization
Kτ is not optimized and τ is chosen to be λ−1

m+1, where λm = 16νπ4m4/L4 denotes the
eigenvalue of ν∂4x .
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Table 8 1st and 2nd moments of ‖u‖L2 : relative error for regime A

Energy contained in Es (%) ‖u‖L2 (%) std(‖u‖L2 ) (%)

QSA(τ∗)-closure (6.23), τ∗
minimizing the Jn ’s

15.7 3.2 3.8

QSA(τ∗)-closure (6.23), τ∗
minimizing the Qn ’s

15.7 6.9 1.3

Galerkin (m = 49) 0.9 42.1 307

Galerkin (m = 53) 0.4 16.6 101

Galerkin (m = 58) 0.2 3.1 5.8

Galerkin (m = 61) 0.1 0.8 3.1

Taking A = ν∂4x + D∂2x , the analytic expression of the parameterization Kτ is the same
as for QSA(τ )(4.42), except that δn(τ ) therein is replaced by τ(1 − βnτ)−1. Since 0 ≤
τ(1−βnτ)−1 < −β−1

n , the range of this coefficient is the same as that of δn(τ ) (see discussion
at the end of Sect. 4.4), and the parameterization Kτ once optimized by minimizing the cost
functional Jn leads also to similar closure skills than those obtained by the optimal QSA.11

We see thus here that the PM approach is not limited to the QSA-class nor the LIA-class
introduced respectively in Sects. 4.4 and 4.3, but applies actually to any parametric family
of nonlinear parameterizations.

Remark 11 We report briefly here on the closure skills obtained when QSA(τ ) is optimized
by minimizing the Qn’s instead of the Jn’s. The metrics used to assess these skills are ‖u‖L2

(after transient removal) and its standard variation, std(‖u‖L2). The time averages are here
estimated on an interval of length T = 100 (105 snapshots). We observe from Table 8 that the
relative error of approximation for ‖u‖L2 is increased while that for std(‖u‖L2) is reduced,
when the 62D closure (6.23) (m = 31) is driven by the optimal QSA(τ ∗) with τ ∗ minimizing
the Qn’s. Comparison with standard Galerkin approximations, show that only starting from a
118DGalerkin approximations (m=59), one starts to improve, compared to the 62Dclosure,12

the approximation of the mean value of ‖u(t)‖L2 (and comparable skills for std(‖u‖L2))
although a good reproduction of the KS patterns’ qualitative features, is observed for lower
dimension. However this latter aspect seems to be germane to the KSE. In general, indeed, an
error in the reproduction of the right amount of energy come with failures in the reproduction
of qualitative features as well, due to an incorrect reproduction of the backscatter transfer of
energy. For instance, regarding thewind-driven circulationof the oceans [75], the jet extension
and variability [53] are notoriously difficult to get parameterized due to eddybackscatter [7,8].

6.3 Closure Results in Presence of 90 Pairs of Unstable Modes

The ability of the optimal QSA to fix the backscatter transfer of energy issue, providing thus
an efficient closure, is further tested by applying the PM approach to an even more turbulent
regime, namely Regime B (see Table 7) that exhibits 90 pairs of unstable modes. Due to the

11 Note that by taking A to be given by ν∂4x the resulting coefficients are bounded by λ−1
n , and since λ−1

n <

−β−1
n the optimized Kτ is not a priori of comparable parameterization defects, and in fact leads to less efficient

closures.
12 Driven by the optimal QSA(τ∗) with τ∗ minimizing the Jn ’s.
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Fig. 20 Closure and parameterization results for Regime B. Same as Fig. 16 except that kc = 90, since Regime
counts 90 pairs of unstable modes. The energy spectrum E(k) in panel e is estimated over N = 2 × 106

snapshots whereas the optimal QSA is determined by minimizing the cost functional, Jn , exploiting the first
2×104 snapshots (after removal of transient). Figure 21 shows blowup regions of panels a and b corresponding
to 2.5 ≤ x ≤ 4

Fig. 21 Closure results for Regime B: patterns. Blowup regions of panels a and b of Fig. 20 corresponding to
2.5 ≤ x ≤ 4

scaling (6.3) and the large value of α (see Table 7) the time variable for Eq. (6.2) evolves on
a much smaller timescale than for Eq. (6.1) and as a consequence we will often emphasize
the number of snapshots that a given time instant represents rather than giving the (small)
value of this time.

Here again we take the cutoff scale to be given by the smallest scale (higher wavenumber)
contained among the unstablemodes. Thus forRegimeB, kc = 90, andhere also, 15.7%of the
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(a)

(c)

(b)

(d)

Fig. 22 Parameterization correlation c(t), and PDF of the parameterization angle α(t). Here these results are
obtained for the optimal QSAs, QSA(τ∗) used in Fig. 16 for Regime A, and in Fig. 20 for Regime B, that is
with τ∗ minimizing the Jn ’s with n ≥ kc = 31 for Regime A, and n ≥ kc = 90, for Regime B. A semi-log
scale is used for b and d

total amount of energy needs to be parameterized at this cutoff scale. For this more turbulent
regime, the standard QSA fails even more dramatically than for Regime A and leads to an
(ridiculous) over-parameterization of E(k)by an amount of about 35×103 % (in average) over
the range of wavenumbers 91 ≤ k ≤ 121; see blue curve in Fig. 20e. In contradistinction, the
optimal QSA, QSA(τ ∗), obtained by minimizing Jn given in (6.19) with T that corresponds
to the first 2×104 snapshots (after removal of transient),13 leads to an average error of about
0.7% over the same range of wavelengths, fixing thus here again the backscatter transfer of
energy to the large scales. As a consequence, good closure skills are obtained as shown in
Fig. 20 for the reproduction of KS patterns, demonstrating furthermore the robustness of our
approach to even more turbulent regimes. Note that Qn is greater than 1 only for n = 91 (see
panel (d) of Fig. 20). This does not affect the overall quality of the QSA(τ ∗)-parameterization
(optimized for the Jn’s) and we have still QT given by (3.4) that is strictly less than 1, here.

A finer inspection of the patterns is made possible by Fig. 21 which shows blowup regions
of panels (a) and (b) of Fig. 20. Here, we observe that as time evolves the creation and
annihilation of the humps displayed by the optimal PM closure solution is reminiscent with
what can be observed for the KS solution. Statistically, the spatial correlations are also well
reproduced for Regime B as shown in panel (b) of Fig. 19. Only the small-scale features
of the optimal PM closure solution and the spatial coherence at long-range distance require
improvements, and in that respect one might pursue some ideas proposed in Sect. 7 below.

These closure and parameterization skills are put into perspective by computing for each
regime, the parameterization correlation, c(t), (see (3.6)) and PDF of the corresponding
parameterization angle, α(t) (see (3.7)). As shown in panels (a) and (c) of Fig. 22, c(t)
fluctuates away from 1, and α(t) fluctuates over a broad range of values relatively far away

13 Note that a blind regression would lead in this case to 89 × 45 × 3 = 12015 coefficients to estimate
for each high mode; a number of coefficients comparable to the number of snapshots making thus the esti-
mated coefficients by regression non-robust. Instead, one benefits here again greatly from the parametric (and
dynamically-based) form of QSA(τ ) and only 2 scalar parameters (τ�

n , � = 0, 1) need to be determined, for
each high mode.
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Fig. 23 PDFs of αn(t) given by (6.30). Here the PDFs are shown in linear scale

from zero. This situation is indicative that for both regimes, the optimal PM computed here
is far from a slaving situation.

However, the distribution of α(t) does not seem to be consistent with the good closure
results shown here and the rule of thumb pointed out in Sect. 3.1.2. The reason behind this is
the large number ofmodes parameterized (here 90 pairs) that makes the parameterization cor-
relation less representative of the quality of a given parameterization than for low-dimensional
systems. In the same vein that we have used modewise parameterization defects (the Qn’s)
instead of the global parameterization defect QT (t, Ψτ∗) given by (3.4), we inspect below a
modewise version of c(t) to diagnose our parameterizations.

In that respect, for the bidimensional real vector f n(t) = ( f 0n (t), f 1n (t)) with f �
n (t) =

Ψ �
n (τ ∗

n,�, yc(t)), � = 0, 1, we introduce

cn(t) = 〈 f n(t), yn(t)〉
‖ f n(t)‖ ‖ yn(t)‖ . (6.29)

and the following parameterization angle,

αn(t) = arccos(cn(t)). (6.30)

We computed cn(t) and αn(t) for n = 91 through n = 180. Figure 23 shows the results for
the PDFs of αn(t), as gathered into three groups: a group of parameterized modes adjacent
to the cutoff scale, a group of modes (well) within the inertial range, and a group of modes
corresponding to the smallest scales parameterized. Clearly the PDFs corresponding to the
2nd group of modes correspond to the best modewise parameterizations; compare middle
panel of Fig. 23 with the two other panels of the same figure. Here, we observe for this group
of modes PDFs that exhibit features discussed in Sect. 3.1.2. These PDFS are indeed skewed
towards zero with the most frequent value of αn(t) also close to zero; cf. black curve in
Fig. 2. These features are also shared by the PDFs of the adjacent modes to the cutoff scale
(left panel of Fig. 23) with however a fat tail towards high values of αn(t). The last group of
modes corresponding to high wavenumbers (right panel of Fig. 23) corresponds to the less
accurate modewise parameterizations as manifested by PDFs of αn(t) that although skewed
are somewhat close to a uniform distribution.

These small-scale modes are weakly energetic, they contain less than 0.6 % of the total
energy for n > 150, and here do not spoil the parameterization noticeably. However the fat
tails of the PDFs corresponding to the adjacent parameterized modes is a determining factor
responsible of pushing the (global) parameterization correlation, c(t) (given by (3.6)), away
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Table 9 1st and 2nd moments of ‖u‖L2 : relative error for regime B

‖u‖L2 (%) std(‖u‖L2 ) (%)

QSA(τ∗)-closure , τ∗ minimizing the Jn ’s 4 3.2

QSA(τ∗)-closure , τ∗ minimizing the Qn ’s 7.5 1.6

LIA(τ∗)-closure with τ∗ minimizing the Jn ’s 8.9 1.7

LIA(τ∗)-closure with τ∗ minimizing the Qn ’s 10.2 0.3

from 1, as it can be observed by removing the contribution of these modes in the calculation
of c(t) (not shown). On the other hand, these adjacent modes are important dynamically and
cannot be removed for closure as they contain an amount of energy comparable to that of the
modes right below the cutoff scale (i.e. for k < kc).

We conclude by reporting on how the choice of the cost functional and class of param-
eterization impacts the closure skills. The metrics used to assess these skills are those used
for Table 8, namely ‖u‖L2 (after transient removal) and the standard variation, std(‖u‖L2).
The time averages are here estimated on 2 × 104 snapshots. As Table 9 shows, minimizing
the Qn’s instead of the Jn’s leads to a deterioration in the approximation of ‖u‖L2 but an
improvement in the standard variation within a given class of parameterizations.

The portion of the energy spectrum E(k) parameterized—by the optimal LIA(τ ∗) or
QSA(τ ∗) with τ ∗ minimizing either the cost functionals Jn’s or Qn’s—is shown in Fig. 24.
As one can observe, the QSA(τ ∗) obtained by minimizing the Jn’s provides the best result
and an almost perfect parameterization of the energy contained in the high modes over the
range of wavenumbers, 91 ≤ k ≤ 147, resulting thus into the good closure skills shown
in Fig. 20 and panel (b) of Fig. 19. We emphasize that as for Regime A, these skills are
obtained from an optimal PM designed from a training interval over which the statistics of
|un |2 have not yet stabilized; cf. discussion relative to Fig. 17 for Regime A. When the Qn’s
are used to optimize either the LIA(τ )- or the QSA(τ )-parameterization, one observes an
under-parameterization more pronounced near the cutoff scale kc = 90 and that vanishes
as k is increased, before re-emerging beyond wavenumbers that contain a small fraction of
the total energy Etot; for instance the scales beyond k = 147, contain only 0.6% of Etot.
Despite this under-parameterization, the optimal LIA(τ ∗) and QSA(τ ∗) with τ ∗ minimizing
the Qn’s, provide also closure skills comparable to those shown in Fig. 20 and panel (b)
of Fig. 19. The main differences are actually observed at the level of the approximation of
‖u‖L2 and std(‖u‖L2), as summarized in Table 9. We refer to the heuristic discussion at
the end of Sect. 4.4 to better appreciate the nuances between the LIA- and QSA-classes of
parameterizations in regards of these numerical results.

7 Concluding Remarks

Thus, the PM approach is not limited to a class of parametric parameterizations nor to a
particular cost functional. As the closure exercise shows here in the context of KS turbulence,
a good choice of the cost functional and class of parameterizations to optimize is nevertheless
key to approximate certain features better than others. This is where the specificities of the
problem at hand plays an important role14 and where one may benefit from the flexibility

14 In that respect, we may mention the variational normal mode initialization in Meteorology, pioneered by
Daley [45], who combined the Machenhauer [127] non-linear normal-mode initialization within a variational
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Fig. 24 Approximations of E(k) for kc < k ≤ k1 for Regime A. Optimal LIA(τ∗) and QSA(τ∗) with τ∗
minimizing either the cost functionals Jn ’s or Qn ’s. Recall that kc = 90 and k1 = 2kc. A log–log scale is
used here

of the PM approach to optimize relevant parameterizations known by the practitioner, once
the underlying formulas are made parametric, i.e. made as a function of a (collection) of
(independent) scalar variable(s).

Rooted in the rigorous approximation theory of invariant manifolds (Part I), this articles
provides a natural framework to extend the corresponding approximation formulas as non-
linear parameterizations useful when slaving relations do not hold anymore, e.g., away from
criticality (Part II). The framework opens up several possible directions for future research.
We outline some of these directions below.

1. Time-dependent parameterizing manifolds for non-autonomous systems As for the
autonomous case discussed here, formulas for time-dependent PMs may be rooted in the
approximation theory of time-dependent invariant manifolds [143,144]. The leading order
approximation, h2, becomes now time-dependent and satisfies the following version of the
homological equation (2.27) (with LA defined in (2.54)),

(
∂t + LA

)
h = ΠsB(ξ, ξ) + ΠsF(t), (7.1)

for a system of the form

dy

dt
= Ay + B(y, y) + F(t), y ∈ C

N . (7.2)

The backward–forward method to derive parametric formulas for PMs, extends to this non-
autonomous setting and provides a parametric family of time-dependent manifold function,

Footnote 14 continued
procedure allowing for the adjustment of confidence weights arising in a fidelity functional I ; see also [168].
In these works, the manifoldM is fixed a priori and it is the point onM nearest to the observation using the
“metric” defined by I , that is sought.

123



Variational Approach to Closure of Nonlinear Dynamical... 1149

Ψ
(1)
τ (t, ·), that satisfies for instance in the case ΠcF = 0, the following modification of

Eq. (4.6)

(
∂t+LA

)
Ψ (1)

τ (t, ξ) = ΠsB(ξ, ξ)−eτ AsΠsB(e−τ Acξ, e−τ Acξ)+ΠsF(t)−eτ AsΠsF(t−τ).

(7.3)
Due to the time-dependent coefficients to calculate in Ψ

(1)
τ (t, ·), the evaluation of the

parameterization defect gets more involved than in the autonomous case. Nevertheless, the
optimal value for the free parameter τ may be still obtained by minimizing this defect,
leading to an optimal PM, in the Ψ

(1)
τ (t, ·)-class and thus to closures with time-dependent

coefficients. The measure-theoretic framework of Sect. 3 may benefit here from the theory of
SRBmeasures for non autonomous systems [178]. The formulas for the LIA andQSAparam-
eterizations of Sects. 4.3 and 4.4 respectively, extend to this non-autonomous setting as well.
The case of a stochastic forcing can be dealt with along the same lines, the backward–forward
method providing in this case parametric formulas for PMs that come with non-Markovian
coefficients depending on time-history of the noise (exogenous memory terms) [31].

2. Combining PMs with stochastic parameterizations To set the framework, we discuss
stochastic improvements that can be made to the LIA class of Sect. 4.3, but the ideas apply to
the QSA class of Sect. 4.4 as well. Given a cutoff dimension m, the optimal PM obtained by
solving the minimization problems (4.35), for n ≥ m + 1, is the best manifold—in the LIA
class—that averages out the unresolved fluctuations lying in Es. Once the optimal PM,Φ(1)

τ∗ ,
has been determined, wemay still want to parameterize these fluctuations. These fluctuations
are given by the residual ηt whose components are determined after having solved (4.35) for
each n ≥ m + 1. We have then

ys(t) = Φ
(1)
τ∗ (yc(t)) + ηt . (7.4)

From a closure viewpoint, we are thus left with the stochastic modeling of ηt . The next
step consists of seeking for a stochastic parameterization ζt of ηt . Here several approaches
are possible; see [79] for a survey. The idea of incorporating a stochastic ingredient as a
supplement to a nonlinear parameterization is not new and has been proposed in the context
of two-dimensional turbulence [121], atmospheric turbulence [70] andmore recently, oceanic
turbulence [179].

Once a satisfactory stochastic parameterization ζt has been determined, we arrive at the
following closure for the resolved variable (in the case of bilinear system),

dz

dt
= Acz + ΠcB

(
z + Φ

(1)
τ∗ (z) + ζt , z + Φ

(1)
τ∗ (z) + ζt

)
+ ΠcF . (7.5)

Thinking of B as given by a nonlinear advective term, we see that the stochastic parame-
terization (7.4) brings new elements to the closure (7.5) such as stochastic advective terms
compared to a closure that would be only based on the optimal PM. Other recent approaches
have shown the relevance of such stochastic advective terms to derive stochastic formulations
of classical representations of fluid flows as well as for emulating suitably the coarse-grained
dynamics [3,39,91,146–148].

The selection of the best parameters (e.g. lags for an auto-regressive process) of a given
stochastic parameterization aimed at emulating the residual, ηt , can here again be guided by
theminimization of the parameterization defect Qn ; the parameters of ζt being determined so
as tominimize further Qn compared towhen the optimal PM is used alone. Complementarily,
the parameterization correlation, c(t), for whichΨ = Φ

(1)
τ∗ +ζt in (3.6), can then be evaluated

to further revise other ingredients in the stochastic parameterization, so that the probability
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distribution of the corresponding correlation angle α(t) gets skewed towards zero as much
as possible. In other words, one should not only parameterize properly the statistical effects
of the subgrid scales but also avoid to lose their phase relationships with the retained scales
[132]. In that respect, the residual noise ηt in (7.4) is expected to depend on the state of the
resolved variable ξ . The abstract formula (3.26) for the optimal PM suggests that subgrid-
scale parameterization techniques with conditional Markov chains [44,78,116] constitute a
consistent tool with our approach for the design of a stochastic parameterization ζt .

3. Beyond conditional expectation: Memory effects and noise An alternative to the inclu-
sion of stochastic ingredients as discussed above, relies on Theorem 5 as a starting point. The
latter theorems shows that once an optimal PM is found, it provides the conditional expec-
tation (in the case η = 0). Nevertheless, as shown in Sect. 3.4, the conditional expectation
alone, let us say R, is sometimes insufficient to close fully the system. The Mori-Zwanzig
formalism [134,181] of statistical physics, instructs us then that a complete closure exists
under the form of the following generalized Langevin equation (GLE) [34,76,79,102],

ẋ = R(x) +
∫ t

0
G(t, s, x(s)) ds + ηt . (GLE)

Here, the integral term accounts for the nonlinear interactions between the resolved and
unresolved variables that are not accounted for in R; it involves the past of the macroscopic
variables and conveys non-Markovian (i.e. memory) effects. The term ηt accounts for effects
of the unresolved variables which are uncorrelated with the resolved variables. This last
term can be thus represented by a state-independent noise that may still involve correlations
in time, i.e. of “red noise” type. It is well known that the analytical determination of the
constitutive elements of the GLE is a difficult task in practice. By relying on Theorem 5
and formulas of Sect. 4, the PM approach can be seen as providing an efficient way to
approximate the conditional expectation R in (GLE). However, the practical determination
of the memory and stochastic terms remains a challenge, especially for fluid flows [79,102].
Various approaches have been proposed to address this aspect that include for instance short-
memory approximations [36], the t-model [82,159], formal expansions of the Koopman
operator [175,176], NARMAX techniques [35,124], and the dynamic-τ model [135,136].
See also [89,106,107,133,142,179] for other reduced modeling/parameterization approaches
that involve memory terms (and noise) in the context of homogeneous turbulence, shear
dynamo and oceanic turbulence, respectively.

Once R is approximated from an optimal PM, the practical determination of the memory
and stochastic term could also benefit from the data-driven modeling techniques of [25], to
model the residual, ẏc−R(yc), where yc denotes the low-mode projection of a fully resolved
solution y. As illustrated and discussed in [105] for a wind-driven ocean gyres model, the
data-driven techniques of [25] have been successfully applied to model the coarse-scale
dynamics. To operate in practice, the data-driven techniques of [25] require observations of
y(t) of length comparable also to a decorrelation time of the dynamics [25,103,104], as for
the optimization of the dynamically-based PMs of Sect. 4.

4.Combining modal reductions and the PM approach Inmany applications such as arising
in turbulence, the number of ODEs associated to a given discretization, is very large. This
is where modes computed in the physical domain from DNS may be used to proceed to a
first reduction (data compression) of the phase space. Among the most commonly employed
modal decomposition techniques are the proper orthogonal decomposition (POD) [92], and
its variants; see [161] and references therein. Of demonstrated relevance for the reduction
of nonlinear PDEs are also the principal interaction patterns (PIPs) modes [86,112,113] that
find a compromise between minimizing tendency error with maximizing explained variance
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in the resolved modes; see [114,115] for applications to atmospheric models, and [43] for a
very clear comparison between POD and PIP modes. In the last decade, related promising
techniques such as the dynamic mode decomposition (DMD) [150,155,161,173] have also
emerged; see [169] for a discussion on the relationships between PIPs, DMD, and the linear
inverse modeling [139].

Also, the use of time-dependence in the basis elements—the so-called Dynamical Orthog-
onal (DO) modes [153,154]—have been considered, as in principle it allows for the
representation of the transient character of the solution using much fewer modes. A dynami-
cal orthogonality condition leads then to a closed set of equations that allows for the evolution
of the mean field, the DO modes and the corresponding (stochastic) coefficients [61]. From
the mean, the time-dependent patterns of the DOmodes plus the distribution of the stochastic
coefficients (at a certain time t), an approximation to the probability density function of the
state vector can be obtained [152,160,170]. In terms of computational performance, there
is however a trade-off between fewer modes to consider on one hand, and more equations
(including interactions between the modes) to solve, on the other.

For certain problems of turbulence, even after modal reduction, one may wish still to fur-
ther reduce the dimension of the ODE approximation. Whatever the modes used to represent
the dataset at hand, one should avoid to compute parameterizations by taking the reduced state
space, Ec, to be spanned by only the first few modes. There are several reasons behind this
caution. One reason is that thesemodesmaymix the large and small spatial scales, making the
distinction between Ec and Es not obvious. Another reason, more technical, is that Ec and its
complement Es are no longer invariant subspaces for the linear part of the original PDE,which
introduces linear interaction terms between the modes in Ec and Es that have to be taken
into account for the parameterization. Although one could still apply formally the backward–
forward method of Sect. 4 to derive parametric families of parameterizations, a more reason-
able approach consists of proceeding directly from the Galerkin ODE systems obtained by
projecting the original PDEonto thesemodes. Thisway,we are indeed left with the theory and
techniques presented in this article, and by determining the equations for the perturbed vari-
able about a mean state and work within the eigenbasis of the linearized operator, we can then
use the dynamically-based formulas of Sect. 4 to calculate andoptimize the parameterizations.
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Appendix: Parameterization Defect Minimization Algorithm

We present in this Appendix a simple gradient-descent method to solve efficiently the
minimization problem (4.35) in order to determine the optimal τ -value, τ ∗, for the parame-
terization, Φn(τ,β, ξ), given by (4.34). As shown below, the method allows furthermore for
making apparent the dependence of the parameterization defect on statistical moments (up
to order 4) of the original system’s solution.

To present the method, we first recast the parameterization defect associated with Φn ,

Qn(τ, T ) = 1

T

∫ T

0

∣∣Πn y(t) − Φn(τ,β,Πcy(t))
∣∣2 dt, (A.1)
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into a matrix format. For this purpose, we arrange the coefficients Dn
i, j (τ,β)Bn

i, j involved

in the expression of Φn(τ,β, ξ) into an m2 × 1 vector d(τ ) so that the indices (i, j)’s are
arranged in lexicographical order; namely the kth component of d(τ ) is given by

dk(τ ) = Dn
i, j (τ,β)Bn

i, j , k = 1, . . . , m2, (A.2)

where (i, j) is the unique low-mode pair of indices satisfying

(i − 1)m + j = k, with i, j ∈ {1, . . . , m}. (A.3)

More precisely, the index pair (i, j) in (A.2) is determined by:
⎧
⎪⎨

⎪⎩

i = k − mod(k, m)

m
+ 1 and j = mod(k, m), if mod(k, m) 	= 0,

i = k

m
and j = m, otherwise.

(A.4)

Similarly, we define an m2 × 1 vector γ (τ ), whose components are given by

γk(τ ) = V n
i, j (τ,β)Fj (Bn

i, j + Bn
j,i ), k = 1, . . . , m2. (A.5)

Now, given the solution y(t) to the underlying N -dimensional ODE system (4.16) over
[0, T ], we introduce

uk(t) = Πk y(t), k = 1, . . . , m,

where Πk denotes the projection onto the mode ek ; see (4.19).
We define next the column vectors Q1, Q2, Q̂2 and Q3 of size m2 × 1 as well as the

matrices Q̃2, Q̃3 and Q4 of size m2 × m2 as follows:

(Q1)p = 〈u p1〉T , p = 1, . . . , m2,

(Q2)p = 〈u p1u p2〉T , p = 1, . . . , m2,

( Q̂2)p = 〈unu p1〉T , p = 1, . . . , m2,

(Q3)p = 〈unu p1u p2〉T , p = 1, . . . , m2,

( Q̃2)pq = 〈u p1uq1〉T , p, q = 1, . . . , m2,

( Q̃3)pq = 〈u p1uq1uq2〉T , p, q = 1, . . . , m2,

(Q4)pq = 〈u p1u p2uq1uq2〉T , p, q = 1, . . . , m2, (A.6)

where z denotes the complex conjugate of z in C, 〈·〉T denotes the time average over [0, T ],
and the low-mode index pair (p1, p2) (resp. (q1, q2)) relates to p (resp. q) according to (A.4),
namely where p (resp. q) plays the role of k and (p1, p2) (resp. (q1, q2)) that of (i, j) in
(A.4).

Besides, let us recall the constant terms given in theRHSof (4.33) for the parameterization,
Φn(τ,β, ξ):

αn(τ ) =
m∑

i, j=1

U n
i, j (τ,β)Bn

i, j Fi Fj − 1 − eτβn

βn
Fn . (A.7)

Thus, we rewrite the parameterization defect Q(τ, T ) recalled in (A.1) as follows:

Qn(τ, T ) = d(τ )∗ Q4d(τ ) − 2Re
(
Q∗

3d(τ )
)+ 2Re

(
γ (τ )∗ Q̃3d(τ )

)+ γ (τ )∗ Q̃2γ (τ )

− 2Re
(
Q̂

∗
2γ (τ )

)+ 2Re
(
αn(τ )Q∗

2d(τ )
)+ 2Re

(
αn(τ )Q∗

1γ (τ )
)

+ 〈unun〉T − 2Re
(
αn(τ )〈un〉T

)+ αn(τ )αn(τ ), (A.8)
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where M∗ denotes the conjugate transpose of a given vector or matrix M .
Note also

d

dτ
Qn(τ, T ) = 2Re

(
d(τ )∗ Q4d

′(τ ) − Q∗
3d

′(τ ) + γ ′(τ )∗ Q̃3d(τ ) + γ (τ )∗ Q̃3d
′(τ )

+ γ (τ )∗ Q̃2γ
′(τ ) − Q̂

∗
2γ

′(τ ) + α′
n(τ )Q∗

2d(τ ) + αn(τ )Q∗
2d

′(τ )

+ α′
n(τ )Q∗

1γ (τ ) + αn(τ )Q∗
1γ

′(τ ) − α′
n(τ )〈un〉T + α′

n(τ )αn(τ )
)
. (A.9)

With the above expression ofQn(τ, T ) and of its derivative, the minimization ofQn(τ, T )

in the τ -variable can nowbeperformed efficiently by application of a gradient-descentmethod
as described in Algorithm 1. Note that if the first moments up to the 4th order are known,
then the determination of τ ∗ by Algorithm 1 does not require any data from direct integration
of the full system. There is a vast literature about moment closure techniques and we refer
to [110] for a recent survey on the topic.

Algorithm 1: Find the optimal τ for the minimization problem (4.35) using a gradient-
descent
Setup: Let [0, T ] be a training interval, and δt = T /K with K > 0. We assume that for each k in
{0, . . . , K − 1}, a numerical solution of Eq. (4.16) is computed, which is denoted by yk .

Input: It consists of collecting the following projections of the numerical solution

⋃

k=0,...,K

(uk
1, . . . , uk

m ; uk
n),

where uk
i = 〈 yk , e∗i 〉 for i = 1, . . . , m, and uk

n = 〈 yk , e∗n〉, with e∗j ’s denoting the generalized
eigenvectors associated with A in Eq. (4.16).
Output: The optimal τ -value, τ∗, that minimizes (A.1) is obtained as follow:

1 Set parameter values for τ , δτ and ε, which represent respectively the initial guess of τ∗, the initial step
size of τ , and the convergence tolerance for the iteration. For instance,

τ = 0; % initial guess

δτ = 0.1; % initial step size of τ

ε = 10−10; % convergence tolerance

2 Compute Q1, Q2, Q̂2, Q̃2, Q3, Q̃3, and Q4 defined in (A.6) as well as 〈unun〉T and 〈un〉T
appearing in (A.8) by using a standard numerical quadrature.

3 Evaluate Q′ = d
dτ Q(τ, T ) by using (A.9);

while |Q′| > ε do

Set τδ = τ − sgn(Q′)δτ ;
ComputeQ′

δ = d
dτ Q(τδ, T ) by using (A.9);

if |Q′
δ | > ε and sgn(Q̃′) 	= sgn(Q′) then

δτ = δτ/2;

else
τ = τ̃ ;

Q′ = Q̃′;
end

end
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