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Abstract
We introduce a natural stochastic extension, called SSP, of the abelian sandpilemodel (ASM),
which shares many mathematical properties with ASM, yet radically differs in its physical
behavior, for example in terms of the shape of the steady state and of the avalanche size
distribution. We establish a basic theory of SSP analogous to that of ASM, and present
a brief numerical study of its behavior. Our original motivation for studying SSP stems
from its connection to the LLL algorithm established in another work by Ding et al. (LLL
and stochastic sandpile models, https://sites.google.com/view/seungki/). The importance of
understanding how LLL works cannot be stressed more, especially from the point of view
of lattice-based cryptography. We believe SSP serves as a tractable toy model of LLL that
would help further our understanding of it.

Keywords Stochastic sandpile model · Abelian sandpile model · The LLL algorithm ·
Lattice reduction

1 Introduction

1.1 Overview

Let us start by recalling ASM ([3,5], also see [6]) on a one-dimensional lattice. Let AL be the
cycle graph whose vertices V (AL) consist of L + 1 elements, say V (AL) = {v1, . . . , vL+1},
and the (undirected) edges are defined by E(AL) = {(vi , vi+1) : i = 1, . . . , L} ∪
{(vL+1, v1)}. We designate vL+1 as the sink. Fix two positive integers T and I , preferably
T ≥ 2I .

We temporarily refer to I as the “toppling strength” and T as the threshold. That is,
toppling at site vi is to subtract 2I grains from the pile on vi and add I grains to each of its
neighbors. A configuration on AL is called stable if and only if all non-sink vertices have< T
grains. Fix another positive integer J coprime to I , preferably J ≈ I . One then considers
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the following Markov chain on the space of the stable configurations of ASM: given a stable
configuration on AL , obtain the next stable configuration by first adding J grains to any
randomly chosen non-sink site, and then stabilizing the resulting configuration.1

On the other hand, consider the following simple stochastic variant of ASM, which we
named SSP. SSP is exactly the same as ASM except for the toppling procedure: first one
samples γ uniformly from {1, 2, . . . , 2I } (so that γ hasmean≈ I ) and then subtract 2γ grains
from site vi and add γ to each of the two neighboring sites. One can of course associate a
Markov chain to SSP analogously to the above discussion: add I grains to a random site and
then stabilize.

Our original motivation for studying SSP does not come from physics, but from a study
of the practical behavior of the LLL algorithm [10]. The LLL algorithm is one of the funda-
mental tools in computational mathematics used for lattice basis reduction, with numerous
applications to number theory and cryptography—see the book [13] for an extensive treat-
ment on the subject. Despite its celebrated status, much of its behavior in practice has been
shrouded in complete mystery. For example, the most well-known problem concerns the
quantity called the root Hermite factor (RHF), defined as

log (RHF) = 1

(L + 1)2

L∑

i=1

(L + 1 − i)ri , (1)

where ri is the pile height at vi , in sandpile language. From the physical perspective, one
could think of RHF as an average pile height, weighted in a certain way. It is a theorem from
[10] that the RHF of LLL has a sharp upper bound by (4/3)1/4 ≈ 1.075, but empirically one
observes RHF ≈ 1.02 most of the time—see [12] for details. This phenomenon has been
well-known since the birth of LLL in 1982, yet there has been not even a vague heuristic as
to why this must happen.

Recently, we argued in [7] that LLL behaves like a sandpile model, and that this idea
explains much of its practical behavior all at once, in particular this RHF problem. The
remaining difficulty is that LLL as a sandpile model is nonabelian, which is difficult to study
analytically. This motivated us to propose SSP, as an abelian toy model for LLL.

Figure 1 compares the empirical average steady state density of LLL and SSP. The resem-
blance therein should come as surprising, since the two algorithms originate from very
different fields of study, lattice reduction and statistical physics, respectively. We hope that
the present paper helps build a bridge between them, to the benefit of both areas.

1.2 In This Paper

In the next section, we develop a basic mathematical theory of SSP. As in the case of ASM,
we impose a monoid structure on the set of stable configurations, which we show is abelian
(Theorem 4), and we prove the existence of the unique steady state (Theorem 5). Many of our
results can be proved using the operator algebra method e.g. as in [15], but here we introduce
a different idea, which is useful for picturing the “shape” of the steady state. With its help we
are able to prove that the average log(RHF) of SSP over the steady state is strictly bounded
away from the worst-case by a constant independent of system size L (Proposition 8). This is
precisely what one wants to show with LLL, and hopefully our idea generalizes to this case,
the only obstacle being its non-abelian toppling rule.

1 The only reason to impose the condition (J , I ) = 1 is to prevent the pile heights at each site from being
concentrated on a select few congruence classesmodulo I ; it is not somuch an essential condition as a cosmetic
one.
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A stochastic variant of the abelian sandpile model 713

Fig. 1 The empirical steady state density profile of LLL (left) and SSP (right), with L = 100. x- and y-axes
represent the site index and the height, respectively. It would be ideal to take a higher L , but then running LLL
would become cumbersome, which has complexity O(L5)

In Sect. 3, we provide some preliminary numerical studies on the statistical behavior of
SSP, concerning its avalanche size distribution and its steady state. Though we still need
a more extensive investigation, it seems that SSP has much in common with other one-
dimensional stochastic models, such as the abelian Manna model and the Oslo rice-pile
model. From the LLL perspective, it is especially interesting that these seemingly unrelated
models exhibit the same boundary phenomenon as can be seen in Figure 1 (see [8] and [15]).

1.3 RelatedWorks

There exists a number of stochastic extensions of ASM in the literature, each randomizing
different aspects of ASM. The Oslo model [8] mentioned above topples the same as ASM,
but the threshold at each site is set to random at the beginning and after toppling on that site.
The sticky rice model [11] again topples the same as ASM, but with a random probability
a site is regarded stable regardless of its height, hence “sticky”—one may think of this
as the Oslo model in which there is a nonzero probability that the threshold is ∞. In the
continuous conserved Manna model (CCMM) of [1], the toppling method is randomized as
in SSP; however, unlike SSP, it is not the amount of sand taken from the toppled site but its
distribution among its neighbors that is randomized—see [2] for another example along this
line.

It seems to us that our method here can be adapted to the above-mentioned models as well,
quite straightforwardly for CCMM because the thresholds are fixed, and less so for others
but possible, by assigning a separate coordinate for each possible threshold value. Possibly
the resulting steady state is more convenient to analyze than that of SSP.

2 Mathematical Properties of SSP

2.1 Setup

In the literature on sandpiles, there seem to exist two sets of notations, one that is physics-
oriented and one that is mathematics-oriented—heights versus configurations, sites versus
vertices, relaxations versus stabilizations, and so on. This paper mostly uses the latter, and
there are several words that we made up ourselves. In any case, we provide the definition of
every term that we use below.
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714 S. Kim, Y. Wang

Like ASM, SSP is played on a finite undirected graph G = (V , E), equipped with
a designated vertex called sink, which we denote here by s. Throughout this paper, we
assume that the graph obtained from G by removing s is connected. In addition, let ℘ be
a probability mass function supported on a finite subset of Z>0, and let T be an integer
satisfying T ≥ max{i : i ∈ supp℘}, which we sometimes refer to as the threshold.

A pure configuration is a function c : V \{s} → Z. A (mixed) configuration is a formal
finite sum of pure configurations of form

∑
pi [ci ], where pi are positive real numbers such

that
∑

pi = 1, and ci are pure configurations. The role the bracket notation [.] here is to
clarify that this is a formal sum. We define configurations this way, since toppling in SSP
leads to multiple probabilistic results, as will be explained below.

A pure configuration c is called stable if c(v) < T for all v ∈ V \{s}, and called nonneg-
ative if c(v) ≥ 0 for all v ∈ V \{s}. A configuration is called stable or nonnegative if it is a
formal sum of stable or nonnegative pure configurations, respectively.

Toppling a pure configuration c at a non-sink vertex v goes as follows: (i) sample γ

according to ℘, (ii) subtract γ · deg(v) from c(v) iii) for each w ∼ v add γ · deg(v,w) to
c(w), where w ∼ v means (w, v) ∈ E , and deg(v,w) is the number of edges connecting
v and w. Denote the outcome by Tv(c). If c(v) ≥ T , we call this toppling legal. It is clear
that, unless℘ is supported on a singleton set, toppling a pure configuration results in a mixed
configuration.

A choice algorithm is a map A : {unstable pure configurations} → V \{s}, such that
c(A(c)) ≥ T . Fixing a choice algorithm A, we can define what it means to topple a mixed
configuration C = ∑

pi [ci ]. For a pure configuration c, define
T (c) := TA(c).

Then we define T (C) := ∑
pi T (ci ), the outcome of toppling C once. The stabilization

C◦ of C is the outcome of toppling C repeatedly until it becomes stable. Later we will show
that C◦ is independent of A.

Remark It is possible to extend the definition of a choice algorithm to a map into the set of
probability mass functions on V \{s}, so that A(c)(v), the probability that toppling occurs at
v when the current configuration is c, is nonzero only if c(v) ≥ T , and

T (c) :=
∑

v∈V \{s}
A(c)(v)Tv(c).

All the results in this paper carry over to this generalization.

As in the case of ASM, we can define an operation ⊕ on the set of nonnegative stable
configurations. If c and d are pure stable configurations, we define c ⊕ d = (c + d)◦,
where c + d is defined so that (c + d)(v) = c(v) + d(v). In general, if C = ∑

pi [ci ] and
D = ∑

q j [d j ], then we define C + D = ∑
i, j pi q j [ci + d j ] and accordingly C ⊕ D =

(C + D)◦ = ∑
i, j pi q j [ci ⊕ d j ].

Because we assumed that T ≥ max{i : i ∈ I }, for any nonnegative configurations c
and d , c ⊕ d = (c + d)◦ is nonnegative as well. Later, we will show that ⊕ is abelian and
associative, that the set of nonnegative stable configurations form a semigroup under this
operation, whose minimal ideal consists of a single element which is the steady state.

2.2 Stabilization is Independent of Choice Algorithms

We start by defining what we temporarily call an increment stack. An increment stack con-
sists of |V \{s}| sequences, each of which is indexed by an element of V \{s}, whose entries
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A stochastic variant of the abelian sandpile model 715

are chosen from the elements of supp℘; thus it has the form S = (γv,i )v∈V \{s}
i≥1

, with each

γv,i ∈ supp℘. The set of all increment stacks is given a topology and a measure as fol-
lows: the cylinder sets, i.e. sets of form Y (m, (vk, ik, pk)mk=1) = {(γv,i )v∈V \{s}

i≥1
: γvk ,ik =

pk, k = 1, . . . ,m}, form the base for the closed sets, and the measure μ is defined by
μ(Y (m, (vk , ik, pk)mk=1)) = ∏m

k=1 ℘(pk). This notion simulates the randomness in the
amount being toppled during a stabilization process: SSP is equivalent to first sampling
an increment stack S according to μ, and if one must topple at v for the i-th time, remove
γv,i ·deg(v) unit of sand from v and distribute it equally among the neighbors of v (respecting
the multiplicities).

For a function k : V \{s} → Z≥0, a substack S(k(v)) of an increment stack S =
(γv,i )v∈V \{s}

i≥1
is a finite-length sequence of form (γv,i(v)) v∈V \{s}

1≤i(v)≤k(v)

. We define the following

partial order on the set of substacks: S(k(v)) ≤ S(l(v)) if k(v) ≤ l(v) for v ∈ V \{s}. Given
a pure configuration c, if for every v ∈ V \{s}

c(v) −
k(v)∑

i=1

γv,i · deg(v) +
∑

w∼v

k(w)∑

i=1

γw,ideg(w, v) < T ,

or equivalently, if toppling, legally or illegally, according to S(k(v)) stabilizes c—then
S(k(v)) is called a stabilizing substack of c.

Lemma 1 For any given increment stack S and pure configuration c, there exists a unique
minimal stabilizing substack of c.

Proof Suppose P := S(k(v)) and Q := S(l(v)) are two distinct minimal stabilizing sub-
stacks. Define r(v) = min(k(v), l(v)), and let R := S(r(v)) be another substack; by
assumption R < P and R < Q. Then, for every non-sink v,

c(v) −
r(v)∑

i=1

γv,i · deg(v) +
∑

w∼v

r(w)∑

i=1

γw,ideg(v,w) < T .

Therefore R is a stabilizing substack, contradicting the minimality of P and Q. �
Given an increment stack S and a pure configuration c, a choice algorithm A induces a

stabilizing substack S(kA(v)), where kA(v) is the number of timesAwould topple on v until
it stabilizes c.

Proposition 2 Any choice algorithm induces the minimal stabilizing substack.

Proof Write M := S(m(v)) for the minimal stabilizing substack, and N := S(kA(v)) for
the substack induced by a choice algorithm A. Imagine A toppling an input configuration
c, one vertex at a time, and consider a situation in which A has just toppled on v1 ∈ V
for m(v1) times, v1 being the first vertex at which this occurs. Observe that, at this point,
the configuration is stabilized at v1. Hence A cannot topple more on v1, at least not until it
topples on some neighborhood w of v1 more than m(w) times.

Suppose v2 is the second vertex at which A topples on v2 for m(v2) times. By the same
argument as above, A cannot topple on v2 more than m(v2) times until it topples on some
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716 S. Kim, Y. Wang

w ∼ v2 more than m(w) times. Repeating, we see that on no vertices v can A topple more
than m(v) times. This proves that N ≤ M , but since M is minimal we must have M = N .

�
An immediate consequence of Proposition 2 is that, for any configuration C , pure or non-

pure, its stabilization C◦ is independent of the choice algorithmA. Indeed, C◦ is determined
solely by the measure μ on the set of all increment stacks, and the minimal stabilizing
substack of each increment stack. Therefore, the notion of a choice algorithm is somewhat
superfluous from a theoretical viewpoint.

2.3 ⊕ is Abelian and Associative

It is clear by definition that ⊕ is abelian. We will now show that ⊕ is associative as well.
Since (F ⊕G) ⊕ H = ((F +G)◦ + H)◦ and F ⊕ (G ⊕ H) = (F + (G + H)◦)◦, it suffices
to show that

Proposition 3 For nonnegative configurations C and D,

(C◦ + D)◦ = (C + D)◦, (2)

or equivalently,
C◦ ⊕ D = C ⊕ D.

Proof Assume first that C and D are pure configurations. Fix an increment stack S =
(γv,i )v∈V \{s}

i≥1
. Let S(k(v)) and S(l(v)) be the minimal stabilizing substacks forC and C +D,

respectively. Note S(k(v)) ≤ S(l(v))—this is where we use the nonnegativity of C and D.
Consider the left-hand side of (2), namely (C◦ + D)◦. A priori, we need two increment

stacks for each of the two stabilizations: T1 for the inner term C◦ and T2 for the outer one.
Write S′ = (γv,i+k(v))v∈V \{s}

i≥1
. It suffices to prove that

μ({T1 : T1(k(v)) = S(k(v))}) · μ({T2 : T2(l(v) − k(v)) = S′(l(v) − k(v))})
= μ({R : R(l(v)) = S(l(v))}),

or, in other words, that carrying out both stabilizations on the left-hand side of (2) using only
one increment stack S induces no distortion on the measure μ. But this is clear from the
definition of μ.

It remains to consider the case in which C and D are not necessarily pure configurations.
Write C = ∑

pi [ci ] and D = ∑
q j [d j ]. Then

C◦ ⊕ D =
∑

piq j (c
◦
i ⊕ d j ) =

∑
piq j (ci ⊕ d j ) = C ⊕ D,

as desired. �
Remark If the nonnegativity assumption is not present, Proposition 3 fails. In fact, it fails for
ASM as well.

Thanks to our results so far, we have the following

Theorem 4 The set of all nonnegative stable configurations of a SSP forms a commutative
monoid under ⊕.
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A stochastic variant of the abelian sandpile model 717

2.4 The Existence of Unique Steady State

Denote the monoid in Theorem 4 by M . A steady state S ∈ M is an element such that

S ⊕ C = S for all C ∈ M .

It is clear from this definition that a steady state, if exists, is unique.

Theorem 5 Assume the greatest common divisor of the elements of supp℘ equals 1. Then
M has a steady state.

There is no loss of generality incurred by the assumption in the theorem, since if we divide
all elements of supp℘ by the g.c.d. then we obtain essentially the same model.

Our proof of Theorem 5 relies almost entirely on the following lemma.

Lemma 6 Let p : {1, 2, . . . , n} → R≥0 such that
∑

p(i) = 1, and such that the g.c.d. of the
elements of supp p equals 1. Consider the n × n matrix

A =

⎡

⎢⎢⎢⎢⎢⎣

p(1) 1 0 0 . . . 0
p(2) 0 1 0 . . . 0
p(3) 0 0 1 . . . 0

...
...

...
...

. . .
...

p(n) 0 0 . . . . . . 0

⎤

⎥⎥⎥⎥⎥⎦

with the first column filled with p(i), the superdiagonal with 1, and 0 elsewhere. Then its
(complex right) eigenvalue with the largest modulus is 1, which has multiplicity 1, with the
eigenvector ⎡

⎢⎢⎢⎣

r(1)
r(2)

...

r(n)

⎤

⎥⎥⎥⎦ (3)

where r(k) = ∑
i≥k p(i).

Proof The characteristic equation of A equals

χA(λ) = λn − p(1)λn−1 − . . . − p(n − 1)λ − p(n).

We first show that 1 is an eigenvalue of multiplicity one. Certainly χA(1) = 0. Also since

χ ′
A(λ) = nλn−1 − (n − 1)p(1)λn−2 − . . . − p(n − 1)

and n > (n − 1)p(1) + . . . p(n − 1), χ ′
A(1) �= 0. It is straightforward to check that (3) is a

solution to Ax = x . This proves the latter two claims of the lemma.
If |λ| > 1, then |λ|n >

∑
p(i)|λ|n−i , so it cannot be a root of χA. Therefore it suffices to

show that 1 is the only complex eigenvalue with modulus 1. Suppose |λ| = 1 and χA(λ) = 0.
Then the triangle inequality implies that

|χA(λ)| ≥ |λn | − p(1)|λn−1| − . . . − p(n − 1)|λ| − p(n) = 0,

and that the equality holds if and only if all contributing powers of λ point to the same
direction, i.e. λn−i = λn for all i ∈ supp p. In other words, λ is an i-th root of unity for all
i ∈ supp p. But since the g.c.d. of the elements of supp p equals 1 by assumption, λ = 1 is
forced. �
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An immediate consequence of Lemma6 is that, for any x ∈ R
n , Akx approaches a constant

multiple of (3) as k → ∞. This is how we use Lemma 6 in the argument below.

Proof of Theorem 5 Write V \{s} = {v1, v2, . . . , vL }, and let n be the smallest positive integer
such that supp℘ ⊆ {1, . . . , n}. Define τi to be the toppling operator at vi with increment
1 (hence τi coincides with the toppling operator of the standard ASM on G), so that Tvi =∑

j ℘( j)τ j
i , where Tvi is the toppling operator of SSP.

Define r : {0, . . . , n − 1} → R by r(k) = C
∑n

i>k ℘(i), where the constant factor C is
set so that

∑
r(k) = 1, that is,

C =
⎛

⎝
n∑

i=1

n∑

j=i

℘( j)

⎞

⎠
−1

.

For any pure configuration c, define

S(c) :=
n−1∑

k1=0

· · ·
n−1∑

kL=0

⎛

⎝
L∏

j=1

r(k j )τ
k j
j

⎞

⎠ [c].

One can think of S(c) as a distribution supported on
∏L

i=1 ki points on the space of
(pure) configurations, which turn out to form the shape of a parallelepiped; see Fig. 2 for
an illustration in case L = 2, supp℘ = {1, 2, 3, 4, 5}. The point on the upper-right corner
corresponds to [c], and other points are obtained by toppling [c] in various directions; see
again Figure 2 for an illustration.

Write I (·) for the indicator function of the statement inside the parenthesis, i.e. if it is
satisfied, I (·) = 1, otherwise zero. From Lemma 6, it follows that

n−1∑

k1=0

· · ·
n−1∑

kL=0

⎛

⎝
L∏

j=1

r(k j )τ
k j
j

⎞

⎠ T I (ki=0)
vi

[c]

=
n−1∑

k1=0

· · ·
n−1∑

kL=0

⎛

⎝
L∏

j=1

r(k j )τ
k j
j

⎞

⎠ τi [c]

= S(τi c). (4)

Fig. 2 The “parallelepiped”
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A stochastic variant of the abelian sandpile model 719

This means that, if we “push” the parallelepiped-shaped distribution in the direction of τi
by applying Tvi to the face of the parallelepiped corresponding to that direction, we obtain the
same distribution on the parallepiped, except that the upper-right corner of the parallelepiped
moves from [c] to [τi c].

We choose R to be the set of all recurrent configurations (see e.g. [5] for the definition) of
ASMonG, whose threshold on each vertex is set uniformly to T , rather than the conventional
deg v. For convenience, let us temporarily write

S(R) := 1

|R|
∑

c∈R

S(c).

We will show that S(R)◦ is the steady state.
By Proposition 3, it suffices to show that (S(R) + vi )

◦ = S(R)◦ for all i = 1, . . . , L . By
the theory of ASM, R + vi = {c + vi : c ∈ R} contains exactly one representative of each
of the equivalence classes of configurations i.e. for each c′ ∈ R + vi , there exists exactly
one c ∈ R such that c′ stabilizes to c in ASM. By (4), S(c′)◦ = S(c)◦, and therefore, by
Proposition 3 again,

(S(R) + vi )
◦ =

⎛

⎝ 1

|R|
∑

c′∈R+vi

S(c′)

⎞

⎠
◦

=
⎛

⎝ 1

|R|
∑

c′∈R+vi

S(c′)◦
⎞

⎠
◦

=
(

1

|R|
∑

c∈R

S(c)◦
)◦

= S(R)◦,

as desired. �
The point of the following proposition is that, in a SSP, if we start from any configuration,

and repeat sufficiently many times the Markov process of adding a sand grain at random—
e.g. add 1

L

∑
vi—and re-stabilizing, then we obtain a configuration that is arbitrarily close

to the steady state. In the context of LLL, in place of the Markov chain one takes a large
input, which is why the proposition below is stated the way it is.

Proposition 7 We continue with the notations of Theorem 5. In addition, below we interpret a
pure configuration as an L-dimensional vectorwith integer entries, and amixed configuration
as a finitely supported function on the set of pure configurations. Then we impose the typical
Euclidean metric on the space of pure or mixed configurations accordingly.

For any ε > 0, there exists D > 0 such that the stabilization c◦ of any non-negative pure
configuration c whose distance from origin is greater than D is within an ε distance of S(c′)◦
with respect to the uniform norm, where c′ is the pure configuration that is recurrent and is
equivalent to c under the ASM on G.

Proof If c is far enough from the origin, then it must be toppled at each vertex arbitrarilymany
times in order for it to become stabilized. So without loss of generality, assume that c can be
legally toppled at every vertex. Write V \{s} = {v1, v2, . . . , vL } as earlier, and consider the
configuration (

L∏

i=1

Tvi

)
c =

n−1∑

k1=0

· · ·
∑

kL=0

⎛

⎝
L∏

j=1

℘(k j )τ
k j
j

⎞

⎠ [c]. (5)

(5), like S(c), may be thought of as a distribution on a parallelepiped illustrated in Figure
2. By Lemma 6, if we “push” the parallelepiped—in the manner similar to (4)—from every
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direction sufficiently many times, the weight on each and every point will be arbitrarily close
to

∏L
j=1 r(k j ). Hence, if c is sufficiently far enough from the origin, the stabilization of (5)

will be arbitrarily close to S(c′). This completes the proof. �
The steady state alone forms the minimal ideal of the commutative monoid M of the

nonnegative stable configurations of SSP. One may think this is disappointing, since its
counterpart in ASM has a very rich theory. However, the theory of the abelian sandpile group
can be extended to SSP in a straightforward way, if phrased in terms of the cosets of the
“translations” < τi : i = 1, . . . , L >, since SSP respects this structure. Indeed, in our proof
of Theorem 5, it can be seen that the underlying ASM theory plays a role. Our SSP theory is
building up on top of the ASM theory, rather than replacing it.

2.5 The Shape of the Steady State on AL

Ideally, we would like to prove the various quantitative properties of the steady state that
we observe in Fig. 1: the middle values are almost identical to one another, but near the
boundaries there is a sharp drop in pile height, et cetera. This can be interpreted as the
following combinatorial problem. Consider the parallelepiped in Fig. 2, and suppose [c] is
a stable configuration; it may help to think of [c] as the maximal stable configuration, i.e.
has height T − 1 on all sites. Then some configurations on the parallelepiped are stable e.g.
[τ 31 τ 22 c], but others may not be. Because [c] is stable, we cannot legally push the entire face
of the parallelepiped as we have done in the proofs of Theorem 5 and Proposition 7. Instead,
we must “fold” the parts of the parallelepiped that are outside the set of stable configurations.
Understanding the steady state then amounts to understanding the resulting distribution on
the “folded” parallelepiped—they are identical. In some sense, this parallelepiped-folding
replaces the role of the burning algorithm (see [5], also [4]) in the study of the steady state.

The difficulty lies in describing this folded distribution in a mathematically concise man-
ner. The best we can prove at the moment is that there exists a gap, whose size is independent
of the system size L , between the average-case and theworst-caseRHF (1) of SSPon AL . This
is in analogy with the folklore observation that there exists a gap between the average-case
and the worst-case RHF of the LLL algorithm.

Proposition 8 Let C be as in the proof of Theorem 5. Then for any ε > 0 and L sufficiently
large, the steady state of SSP on AL has the average RHF bounded from above by T /2 −
C−1/e2 + ε.

Remark Note that the maximum log(RHF) equals (T − 1)L/2(L + 1) ≈ T /2. For the SSP
in the introduction i.e. ℘ = (uniform distribution on {1, . . . , 2I − 1}), C−1 ≈ I so the
proposition yields the bound T /2 − I/e2, whereas experimentally we have ≈ T /2 − I/4.

Proof of Proposition 8 As in the remark above, the greatest possible log(RHF) equals M :=
(T − 1)L/2(L + 1). For a > 0, we will estimate the number of pure stable configurations
whose RHF is greater than M − a. If c satisfies such a condition, then writing si = T − c(i),
from (1) it follows that

a >
1

(L + 1)2

L∑

i=1

(L + 1 − i)si . (6)

Moreover, this is an if-and-only-if condition. Hence it comes down to measuring the
volume of the set of vectors (s1, . . . , sL), si > 0, such that (6) holds. This set forms a
simplex, with one vertex at origin, and L other vertices given by
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(
0, . . . ,

a(L + 1)2

L + 1 − i
, . . . , 0

)

for each i = 1, . . . , L , whose only non-zero entry is the i-th entry. The volume of this simplex
equals

aL(L + 1)2L

(L!)2 ,

which, by Stirling’s formula, is strictly bounded by aLe2L for all sufficiently large L . Fur-
thermore, the maximum possible probability mass of the steady state is given by CL . Hence,
for L large, the portion of the steady state lying on the set (RHF) > M − a is arbitrary small
if

a < C−1/e2.

This completes the proof. �

3 Behavior of SSP on One-Dimensional Lattices

In this section, we present a pilot numerical study on the behavior of SSP pertaining to quan-
titative properties of its steady state, whose existence is established in the previous section.
We restrict our attention to SSP on one-dimensional grids AL for L = 400, 4000, 40000,
with T = 400 and ℘ the uniform distribution on {1, . . . , 100}, adding 50(= E(℘)) grains to
a random site for each step in the associated Markov chain.

Fig. 3 The avalanche size distribution of SSP. Gray, orange, blue graphs represent cases L =
400, 4000, 40, 000 respectively
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There are many interesting ways of doing experiments with SSP, due to the flexibility in
the choice of ℘. One could, for example, adjust the granularity, or try a different family of
distributions, to observe how it affects the critical exponents or the rate of convergence to
those as L → ∞. We hope to be able to carry out more extensive experiments at a later time.

3.1 Avalanche Size Distribution

Figure 3 presents the log-log scale graph of the avalanche size—i.e. the number of sites on
which at least one toppling occurred during a stabilization—distribution of SSP. For each
system size L = 400, 4000, 40, 000, we made one million trials. The x-axis represents log2
of avalanche sizes, and the y-axis represents log2 of the number of occurrences.

Fig. 4 The average steady state density of SSP

Fig. 5 Graph of i versus log(h̃ − h(i)), for L = 40, 000. The auxiliary blue line is of slope ≈ −0.86
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Figure 3 clearly suggests a power law, plus a delta distribution near log2 L . The data points
for L = 40, 000, excluding those at the tail, form a line of slope ≈ −0.98. We conjecture
that the slope will converge to −1 in the L limit. Our brief experiment in the continuum
limit—that is, we allow real numbers for pile heights, and sample ℘ uniformly from an
interval—also suggests the critical exponent of 1 as well.

It may be amusing to recall the behavior of one-dimensional ASM, which is well-known
to behave in the totally opposite way, i.e. (avalanche size) ∝ (frequency). On the other hand,
quite a few stochastic models in dimension 1 are known to demonstrate a power law [8,9,15].

3.2 Steady State Density Profile

Figure 4 presents the (empirical) steady state density profile of SSP for system sizes 400,
4000, 40,000, respectively. More precisely, the horizontal axis is the site index i , and the
vertical axis is h(i), the average of the pile height at i over the steady state. The values in
the middle seem to stabilize at ≈ 176.55 =: h̃, which we take to be the approximation of the
critical height, and in the extremes at ≈ 152.5.

The finite-size scaling theory (FSS; see Section III of [8] for a concise summary of its
implications) provides a satisfactory account for the curvy shape at the boundary. Figure 5
shows the graph of i versus log2(h̃ − h(i)), for L = 40, 000. As FSS predicts, the points
of the graph near the boundary show an excellent agreement with the line of slope −0.86,
which suggests that the critical exponent ν is approximately 1/0.86 ≈ 1.1628. Again, the
same value of ν is suggested in the continuum limit.

Acknowledgements We thank Deepak Dhar, Phong Nguyen, and Su-Chan Park for helpful comments and
suggestions.
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