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Abstract

We study the 2d stationary fluctuations of the interface in the SOS approximation of the non
equilibrium stationary state found in De Masi et al. (J Stat Phys 175:203-221, 2019). We
prove that the interface fluctuations are of order N 1/4 "N the size of the system. We also
prove that the scaling limit is a stationary Ornstein—Uhlenbeck process.
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1 Introduction

The non equilibrium stationary states (NESS) for diffusive systems in contact with reservoirs
have been extensively studied, one of the main targets being to understand how the presence
of a current affects what seen in thermal equilibrium. In particular it has been shown that
fluctuations in NESS have a non local structure as opposite to what happens in thermal
equilibrium. The theory of such phenomena is well developed, [1,5] but mathematical proofs
are restricted to very special systems (SEP, [6], KMP, [8], chain of oscillators, [2] .. .).

The general structure of the NESS in the presence of phase transitions is a very difficult and
open problem not only mathematically, also a theoretical understanding is lacking. However
a breakthrough came recently from a paper by De Masi et al. [4], where they prove that the
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NESS can be computed explicitly for a quite general class of Ginzburg—Landau stochastic
models which include phase transitions.

The main pointin [4] is that the NESS is still a Gibbs state but with the original Hamiltonian
modified by adding a slowly varying chemical potential. Thus for boundary driven Ginzburg—
Landau stochastic models the analysis of the NESS is reduced to an equilibrium Gibbsian
problem and, at least in principle, very fine properties of their structure can be investigated
which is unthinkable for general models.

In particular we can study cases where there are phase transitions and purpose of this
paper is to give an indication that the 2d NESS interface is much more rigid than in thermal
equilibrium.

The analysis in [4] includes a system where the Ising model is coupled to a Ginzburgh—
Landau process. In the corresponding NESS the distribution of the Ising spin is a Gibbs
measure with the usual nearest neighbour ferromagnetic interaction plus a slowly varying
external magnetic field.

In particular in the 2d square Ay := [0, N] x [-N, N]N 7?2 the NESS un(o)is

1
pn(o) = Z—e—ﬁﬂm, o=(x) e{-1,1}xe€Ay)
N

Hy(o) = H" () + > 2 o(x), HS"(0) = Y Loz e2=1(0,1)
xelAy X, yEAN
e =yl=1

where b > 0 is fixed by the chemical potentials at the boundaries.

bx -er .
is

We assume B > S, thus since the slowly varying external magnetic field

positive in the half upper plane and negative in the half lower plane, we expect the existence
of an interface, namely a connected “open line” A in the dual lattice which goes from left to
right and which separates the region with the majority of spins equal to 1 to the one with the
majority of spins equal to —1.

The problem of the microscopic location of the interface has been much studied in equilib-
rium without external magnetic field and when the interface is determined by the boundary
conditions: + boundary conditions on A§ N {x - e2 > 0} and — boundary conditions on
A§ N{x-ex <0}

It is well known since the work initiated by Gallavotti [7], that in the 2d Ising model at
thermal equilibrium the interface fluctuates by the order of ~/N, N the size of the system.

In this paper we argue that at low temperature (much below the critical value) and in
the presence of a stationary current produced by reservoirs at the boundaries the interface is
much more rigid as it fluctuates only by the order N!/4.

We study the problem with a drastic simplification by considering the SOS approximation
of the interface. Namely we consider the simplest case where the interface A is a graph, namely
A is described by a function s, x € {0, ..., N} with integers values in Z. The corresponding
Ising configurations are spins equal to —1 below s, and +1 above s,. Namely o (x, i) = 1 if
i =2syando(x,i) = —1ifi < s,.

The interface is then made by a sequence of horizontal and vertical segments and the Ising
energy of such configurations is |A|. We normalise the energy by subtracting the energy of
the flat interface so that the normalised energy is
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N

Do lse = st == N

x=1

i.e. the sum of the lengths of the vertical segments.
The energy due to the external magnetic field is normalised by subtracting the energy of
the configuration when all s, are equal to 0. This is (below we set b = 1)

Thus we get the SOS Hamiltonian

N N
1
Hy(s) =5 D si+ ) lse = sl (1.1)
x=0 x=1

We prove that the stationary fluctuations of the interface in this SOS approximation scaled
by N!/4 convergence to a stationary Ornstein—Unhlenbeck process.

The problem addressed in this article is the behavior of the interface in the NESS and the
aim is to argue that its fluctuations are more rigid than in thermal equilibrium as indicated
by the SOS approximation. Thus in the SOS approximation we prove the N'/4 behavior in
the simplest setting of Sect. 2.

More general results similar to those in [9] presumably apply. We cannot use directly the
results in [9] because their SOS models have an additional constraint (the interface is in the
upper half plane). Our proofs have several points in common with [9], but since we work in
a more specific setup with less constrains, they are considerably simpler and somehow more
ntuitive.

2 Model and Results

We consider Ay = {0,..., N} x Z and denote the configuration of the interface with
s ={sy € Z,x = 0,..., N}. The interface increments are denoted by n, = sy — sx_1 €
Z,x=1,...,N.
Let 7 a symmetric probability distribution on Z aperiodic and such that
Ze‘”’ﬂ(r;) < +o00 Vla| < ag, for some ag > 0 2.1
nezZ

We denote o2 the variance of 7w and as we shall see the result does not depend on the particular
choice of 7 but only on the variance o 2.

For s, 5 € Z define the positive kernel

s2+§2
Tn(s,s) =e 2N (s —5). 2.2)

Call Ty f(s) the integral operator with kernel Ty. Ty is a symmetric positive operator in
£2(Z), and it can be checked immediately that it is Hilbert—Schmidt, consequently compact.
Then the Krein—Rutman theorem [11] applies, thus there is a strictly positive eigenfunction
hyn € €2(Z) and a strictly positive eigenvalue Ay > 0:
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D Tn(s.sHhn(s") = Anhn(s), Zh (s) =1, (2.3)

s/
The eigenvalue Ay < 1,and Ay — 1 as N — oo, see Theorem 3.1.
We then observe that the Gibbs distribution vy with the Hamiltonian given in (1 1) and

with the values at the boundaries distributed according to the measure iy (s)e 2N can be
expressed in terms of the kernel 7 and the double-geometric distribution

1
_ —Inl — —Inl
n(n)—ve n V—E e
n
In fact

1 7 ul :
un(s) = Z—h(so)e% e W Ziao st [T S h(sw)e?

1
= Z-hn(s0) e 2 Dt (i) ]'[n(m)fw(sm

x=1
= —/m(so) H Ty (se—1. 50)hn (sy) (2.4)
x=1
with Zy the partition function.
Call (s
N s /

N(s,s") = ————=Tn(s,5") (2.5)

b Il (s)

pn defines an irreducible positive-recurrent Markov chain on Z with reversible measure
given by 12 v (8). We call Py the law of the Markov chain starting from the invariant measure
3, (s).
Observe that vy (s) in (2.4) is the Py -probability of the trajectory s, indeed from (2.5) we
get
N N N
VN (s) = —im(so) []7v o1 sy Gy = 2N 12 (s0) []pnGit.50  (26)
x=1 N x=1
which proves that Zy = }»% and that v(s) = Py (s).
We define the rescaled variables

s[tNl/ZJ

.
V) =

t=0, 1,...,N1/2, [1 = integer part

then SN (t) is extended to ¢ € [0, 1] by linear interpolation, in this way we can consider the
induced distribution Py on the space of continuous function C ([0, 1]).

We denote by £y the expectation with respect to Py .

Our main result is the following Theorem.

Theorem 2.1 The process {§N (t),t € [0, 1]} converges in law to the stationary Ornstein—

Uhlenbeck process with variance o /2. Moreover Nlim Axﬁ =e 2
—00

The paperis organized as follows: in Sect. 3 we give a priori estimates on the eigenfunctions

hy and on the eigenvalues Ay, in Sect. 4 we prove convergence of the eigenfunctions 7y
and identify the limit, in Sect. 5 we prove Theorem 2.1.
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3 Estimates on the Eigenfunctions and the Eigenvalues

Theorem 3.1 The operator Ty defined in (2.2) has a maximal positive eigenvalue Ay and a
positive normalized eigenvector hy (s) € 02(Z) as in (2.3) with the following properties:

(i) hy is a symmetric function.

(1) [lAnlloo < 1 forall N.

c
(iii) There exists ¢ so that 1 — —— < Ay < 1.
VN

Proof That hy(s) is positive follows by the Krein—Rutman theorem, [11], also Ay is not
degenerate, its eigenspace is one-dimensional. The symmetry follows from the symmetry of

Tn, since h(—s) is also eigenfunction for A .
The £, bound follows from

hn 1% = sup hy()* <D hy(s)® =1. 3.1)
N
N
The upper bound in (iii) easily follows from

<Y (s = Dhy )y E) < % Z (s —5) (hn()> + hy(3?) < 1

s,5

having used that " hy(s)> = 1.
To prove the lower bound in (iii) we use the variational formula
Yoo In(s, sHR(s)A(s")
AN = sup - 3.2)
h Yo h(s)?
By choosing & with " i(s)> = 1, and using the inequality e > 1 — x, we have a lower
bound

>3 1 —Hh($)hE) — — Zs (s — $h(s)h(5) (3.3)

YY

Observe that, since Y, h(s)? = 1,

//\

s n(s —3) (h(s)2 + h(s) )

% Zszn(s — $h(s)h() 2N

N

oo Zs2h< T Z(s + )’ (h()

=— Zszh(s) + —2

Thus

Zn(s —Dh()h(E) — — Zszh( 2 — (3.4)

_SA

—1/2
For o > 0, we choose h(s) = hy(s) := Cq e*as2/4’ with Cy = <ZJ ewﬂ/g) . Observe
that fora — 0

‘J&Zef‘”z/z —/efrz/zdr
N

< Cua l«/&Z(aszeﬂ”z/z - /rzefrz/zdr‘ < Cua
N
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Thus
Zszha(s)2 =a '+ 0®@) as a—0. (3.5)

s

We next prove that
ao?

D7l = sHha(ha(s) > 1- =

5,8’

(3.6)

To prove (3.6) observe that /g (s)hie (s + 7) = he(s)2e~@T/4=57/2 then

Y w(s = ha(ha(s) =D hals) Y 7w(Dhals + 1)

5,8’ s

— Z ha(s)z Z N(t)eiatz/é‘e‘ia”/z
N T

—z

Using again that e™* > 1 — z and the parity of 4, and of w we get

Z hy, (s)z Z n(r)efar2/4efasr/2
s T

> ;ha(s)zg:ﬂ(r) (1- %12) (1- %) —1- %

which proves (3.6).
We choose @ = N~1/2 and from (3.4), (3.5) and (3.6) we then get

iy > 1o "2+1 02+0(N_3/2) (3.7)
NZim N e 2N : '

which gives the lower bound. O

X
Given s let s, be the position at x of the random walk starting at s, namely s, = s + Z Nk

k=1
where {n;}, are i.i.d. random variables with distribution 7r. By an abuse of notation we will

denote by 7 also the probability distribution of the trajectories of the corresponding random

walk and by [E the expectation with respect to the law of the random walk which starts from s.
We will use the local central limit theorem as stated in Theorem (2.1.1) in [12] [see in

particular formula (2.5)]. There exists a constant ¢ not depending on » such that for any s:

n B n c
|7T<];77kzs>—l7<’;ﬁk=5)|<n3/2 (3.8)

where

n
1 _ 2
ﬁ E Nk =S = —e 202n
<k=1 )) 2mo?n

By iterating (2.3) n times we get

I (s) = %ES (e727 Zimot h(sn)) (3.9)
N
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Theorem 3.2 There exist positive constants c, C (independent of N) such that

2

exp[ _ i] (3.10)

C
N1/8
Proof Below we will write & (s) for the eigenfunction &y (s), and A for Ay .

Because of the symmetry of £, it is enough to consider s > 0. From (3.9) we get

h(s) < )Lin[]E (e*% Los%) ]1/2[Es(h2(s,,))]1/2 G.11)

To estimate E, (h%(s,)) we use (3.8),

By (B (s)) = ) 7 (Z Mk = s — s) h*(sn)

k=0

Sn

<)p (Z Mk = 5y — s> R (sn) + 3/2 Zh2<sn>

1 c )
< gt e
K > . K
< ﬁZh )= N (3.12)

where K is a constant independent of N.
Thus for n = +/N we get

h(s) <

2‘§

&

For @ € (0, 1) we consider
z=inf{x : s, <s(1 —a)} (3.14)

and we split the expectation on the right hand side of (3.13)

z—1 n
]E (e N Z/\ 0 Sx ) < ES (e_% Zx:()s.%l[zg”]) +]E.S (g_% Zx:05§1[1>n])

2(l ot) 752(170()2(n+]) (315)
<Es (e 1[z<n] +e N
Calling M, := s, —s,and A (a) = log E(e®") for |a| < ag, see (2.1), we get that e@Mx—*A@)
is a martingale, so that
1= ]ES (eaMzm:—zAnA(a)) 2 Es (eaMz—zA(a) 1[z<n]) (3 16)

Also M, < —as and thus, choosing a < 0, we have aM,; > —aas, so that:
E(e_ZA(a)I[zén]> < fas

Since A(a) = %02512 + O(a®) choosing a = —% we get

_(-a)’s? _ Va(-a)s?
lEs(e N Zl[zgn])ée 20N1/2
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Recalling (3.15), we have

n _ﬁa(lfa)xz 2(1=-a)2 @
Eg (g_% 2 x=0 5;%) <e 2NT/2 4 e—LM
For n = /N we thus get that there is a constant b so that

1/2 bs2
EGERE] 2 <o 3.17)

From (iii) of Theorem 3.1 there is B > 0 so that AN > B, thus from (3.13) and (3.17) we
get (3.10). ]

4 Convergence and Identification of the Limit
We start the section with a preliminary lemma.

Lemma4.1 Thereis b > 0 so that

b

D7 =) (w(s) = hn )’ < 175

S, 5

4.1)

Proof Using that 3" h,(s)*> = 1 we have

D o wls =5 (hn(s) — hy () = 2Zn(s —hy () =2 7(s —Hhy ()N ()

5,5 5,5

=22y =2 (1= 2N (s 5y ()hn 5)
4.2)

By (iii) of Theorem 3.1 2(1—Ay) < 5—% By using that 1 —e* < x andthat )" s2hy(s) < ¢’

by Theorem 3.2 we have

2) (1= e N1 (s~ Hhy (5)hn ) < Z(s +5)7(s — D[ () + h3®)]

o o2 N el
T 2N 2N
From this (4.1) follows. ]
Define for r € R
h% () = NY4% ([rN'*]), [1= integer part (4.3)

Proposition 4.2 The following holds.

(1) The sequence of measures "2 y()dr in R is tight and any limit measure is absolutely
continuous with respect to | the Lebesgue measure.
(2) The sequence of functions hN (r)y: =N 1/8p ([rN1/4]) is sequentially compact in L? (R).
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Proof As a straightforward consequence of Theorem 3.2, we have that

2

h3,(r) < Ce™¢" (4.4)

It follows that for any € there is k so that / ﬁN (r)dr > 1 — €, which proves tightness of
1<k

the sequence of probability measures h2 v (r)dr on R. From (4.4) we also get that any limit
measure must be absolutely continuous.

To prove that the sequence (71N (r))n>1 is sequentially compact in L?(R) we prove below
that there exists a constant C such that for any N and any § > 0:

/ (in(r +8) — iy (1) dr < C8? 4.5)

Assume that (1) > 0, then

f (in(r+8) —hin) dr =3 (hn(s + BNY4D) — hy(s))?

s

[5N1/4] 2

=> | D0 v+ —hns+i—1)

i=1

[BN1/4] o PN
ST Z Y w) (hn(s +i) —hy(s +i— 1)
i=1
[§N1/4)2 52
ST Zn(s 5) (hn(s) — hy(3)?* < =

The condition 77 (1) > 0 can be relaxed easily by a slight modification of the above argument.
From (4.4) and (4.5), applying the Kolmogorov—Riesz compactness theorem (see e.g.

[10]), we get that n ~ is sequentially compact in L2(R). O
We next identify the limit.

Proposition 4.3 Any limit point u(r) ofﬁN (r) in L? satisfies in weak form

u(r) = 45: (e 5o B d?u(Bl)) (4.6)
where B is a Brownian motion with variance o? and with By = r furthermore
A= lim )»Nf which exists.

N—o00

The unique solution of (4.6) (up to a multiplicative constant) is u(r) = exp{—r2/20} and
r=e 92

Proof Givenr callry = [rN!/4], iterating (2.3) /N times (assuming that /N is an integer)
we get

~ 1 N IR 53 1/4
hy(r) = W ErN<exp{ - v } hN(N sm)> 4.7

N X=
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where E% is the expectation w.r.t. the random walk which starts from ry.

X
SerN+Z'7x, x=1..VN (4.8)
By the invariance principle,
S — N
S — 0B 1el0.1] (4.9)

in law, where B; is a standard Brownian motion which starts from 0.

Take a subsequence along which ﬁN converges strongly in LZ(R) and call u(r) the limit
point. Choosing a test function ¢ € L%(R), and denoting m, (s) = 7 (ZZ=1 Nk = s), we get
along that sequence

N,|/4Z¢(N 1/4 /)IEN(exp{ _ zf Z (N1/4) } ’f{N(N*l/éts\/ﬁ) —u(N71/4s\/ﬁ’)
N () ()
= NS (N g (s =) ([T v =) )

12
< N,1/4Z ‘(p(N’l/“s/)‘ <Z”1Jﬁj (s — ) ‘EN(NAMS) — u(Nl/4_g)‘2)
-

12 12
) < 1/422”[f1 ’hN(N P —uv- 1/45)‘)
12

) (N—l/“z )EN(N—I/“s) —u(N—l/“s))z)

— 0
L2 N—oo

( 1/42‘9"(1\] 145
172

< ‘/4Z‘¢(N 145

<cH¢||Lz||hN —u

(4.10)
Since the exponential on the right hand side of (4.7) is a bounded functional of the random
walk, from (4.9) we get (along the chosen sequence),

hm IE <eXpl_2fZ<N1/4 }M(N71/4s\/ﬁ)>

= llm EO (exp{ 2\/‘ Z (SxN-II/ZN) } (N*l/4s\ﬁN))
- Eo(e—%fo'WB-v“) 4y (0 B +r)) @.11)

where [y is the expectation w.r.t. the law of a standard Brownian motion starting at 0 and
the limits are intended in the weak L? sense.
Since . w is converging strongly in L2 (along the subsequence we have chosen) and the

expectation on the right hand side of (4.7) has a finite limit, we get that the limit of )\{
must exists.
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Observe that for a standard Brownian motion {By}sc[0,1] We have that

I !
exp{ - 5/0 (0 Bs +1)%ds — /O (0B + r)st}, is a martingale.

Furthermore by Ito’s formula

2 o2

1 1 ,
—0 ) (UBs-i-V)st=—5(031+r)2+?+7

Thus

1 1
1=E (exp{ — %/0 (0 Bg +r)2ds —/(; (0 By +r)dBS}>

=% (exp | ]/I(B+)2d l(B+)2+r2+0]
=IE(exp 2005rs2001r T3

that implies
e—% — 60/2E<(3_fOI(UB“'J'_r)ste P (UB1+r)2)

Comparing with (4.6) we identify u(r) and A. ]
We thus have the following corollary of Proposition 4.2 and Proposition 4.3.

Corollary 4.4 The sequence of measures E%v (r)dr in R converges weakly to the Gaussian

measure g*(r)dr where g(r) = (7'[0)71/467"2/2‘7'

Moreover for any ¥, ¢ € Cp(R) and any t € [0, 1]

1 1/4 1/4
Nlmxf NWZhN(N YN~

N 1 e N] S2 1
E; (exp{ Wi Z(:) ﬁ] hn(N™ [f)w(N s[zW]))

=72 / Y (gIE, (71 0B M6 B)g(o By) )dr *.12)
where K, is the expectation w.r.t. the law of the Brownian motion starting at r.

Proof From Proposition 4.3 we have that any subsequence of hy(r) converges in L2(R) to

=r%/20 byt since IIh ;2 = 1 we get that ¢ must be equal to (7o) ~'/4. This together with
(1) of Proposition 4.2 concludes the proof.
The proof of (4.12) is an adaptation of (4.10) and (4.11). |

5 Proof of Theorem 2.1

Recall that Pn and Ey denote respectively the law and the expectation in C([0, 1]) of the
process S N(@) = N~ 1/4 sy n1/2) induced by the law of the Markov chain with transition
probabilities given in (2.5) and initial distribution the invariant measure n? y(rdr.

Proposition 5.1 The finite dimensional distributions of §N (1), t €10, 1], converge in law to
those of the stationary Ornstein—Uhlenbeck.
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Proof For any k, any 0 < 71 < --- < 7 < | and any collection of continuous bounded
functions with compact support ¢o, 1, ..., settingt;, =t — -1, i =1,...,k, 70 =0
we have

én (oG @1 B (1) -+ 9 B (10)))

=N Y TiGoeoiy Y

r0€N7|/4Z
VNl 52 [1nVN] &
EY (6 v RN 901(r1)EN(6 2w D > ¢2(r2)
[tx /N )2( ~
By 1<e /7 Zeco * hy (rk)(ﬂk(”k)) : ))
where r; = N~V 4[ Z”’ VN ] Then from a ripetute use of (4.12) we get

Jim_£x (¢S 01 G e)e2 S () - e B (1) )

_ My — (ks
- ekg/zfg(ro)w(ro)IEro (6 o oB g (o By) e B'Yg"k(B’k)g(B’k»dm
o

To conclude the proof of Theorem 2.1 we need to show tightness of Py in C ([0, 1]); this
is a consequence of Proposition 5.2 below, see Theorem 12.3, Eq. (12.51) of [3].

Proposition 5.2 There is C so that for all N,

v By - 3x@)") < e, (5.1)
Proof

v (S = 3v)")

N1/21 \)2( -
_erhN(s)EN (e 2/ a0 7 Sy — sNHy? hN(s[N|/2,])>

< )»Xf/» Z hy(s)EY ((SN () — sN_1/4)4 hN(s[Nl/z,]))

4
12 (5.2)

s—s

< Oy Y I ) (s = ) |

s,s’

where 7, (s) = (ZZ:l N = s). By Proposition 2.4.6 in [12], if 7 is aperiodic with finite
4th moments, as in our case, we have the bound

4
7, (5) < i (ﬁ) , Vs eZ. (5.3)

nl/z |S|

From this estimate it follows that the right hand side of (5.2) is bounded by

2
<t Ck_thN(s)hN(s)ﬁ=C’t3/2)\;,“/ﬁN_1/4 (Zh;v(s)) ,

A.S

By (3.10) we have that ) hy(s) < N8 and the bound follows. ]

@ Springer



426 A.D. Masi et al.

Acknowledgements We thank S. Shlosman for helpful discussions. A.DM thanks very warm hospitality at
the University of Paris-Dauphine where part of this work was performed. This work was partially supported
by ANR-15-CE40-0020-01 grant LSD.

References

1. Bertini, L., De Sole, A., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Macroscopic fluctiation theory. Rev.
Mod. Phys. 87, 593 (2015)
2. Bernardin, C., Olla, S.: Fourier law for a microscopic model of heat conduction. J. Stat. Phys. 121,
271-289 (2005)
3. Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968)
4. De Masi, A., Olla, S., Presutti, E.: A note on Fick’s law with phase transitions. J. Stat. Phys. 175, 203-21
(2019)
5. Derrida, B., Lebowitz, J.L., Speer, E.R.: Free energy functional for nonequilibrium systems: an exactly
solvable case. Phys. Rev. Lett. 87, 150601 (2001)
6. Derrida, B., Lebowitz, J.L., Speer, E.R.: Large deviation of the density profile in the steady state of the
open symmetric simple exclusion process. J. Stat. Phys. 107(3/4), 599-634 (2002)
7. Gallavotti, G.: The phase separation line in the two-dimensional Ising model. Commun. Math. Phys. 27,
103-136 (1972)
8. Kipnis, C., Marchioro, C., Presutti, E.: Heat flow in an exactly solvable model Journ. Stat. Phys. 27, 65-74
(1982)
9. loffe, D., Shlosman, S., Velenik, Y.: An invariance principle to Ferrari—-Spohn diffusions. Commun. Math.
Phys. 336, 905-932 (2015)
10. Hanche-Olsen, Harald, Holden, Helge: The Kolmogorov—Riesz compactness theorem. Exp. Math. 28(4),
385-394 (2010). https://doi.org/10.1016/j.exmath.2010.03.001
11. Krein, M.G., Rutman, M.A.: Linear operators leaving invariant a cone in a Banach space. Ann. Math.
Soc. Transl. 26, 128 (1950)
12. Lawler, G.E, Limic, V.: Random Walk: A Modern Introduction. Cambridge Studies in Advanced Math-
ematics, vol. 123. Cambridge University Press, Cambridge (2010)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

@ Springer


https://doi.org/10.1016/j.exmath.2010.03.001

	Interface Fluctuations in Non Equilibrium Stationary States: The SOS Approximation
	Abstract
	1 Introduction
	2 Model and Results
	3 Estimates on the Eigenfunctions and the Eigenvalues
	4 Convergence and Identification of the Limit
	5 Proof of Theorem 2.1
	Acknowledgements
	References




