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Abstract
We study the derivation of second ordermacroscopic trafficmodels from kinetic descriptions.
In particular, we recover the celebrated Aw–Rascle model as the hydrodynamic limit of an
Enskog-type kinetic equation out of a precise characterisation of the microscopic binary
interactions among the vehicles. Unlike other derivations available in the literature, our
approach unveils the multiscale physics behind the Aw–Rascle model. This further allows
us to generalise it to a new class of second order macroscopic models complying with the
Aw–Rascle consistency condition, namely the fact that no wave should travel faster than the
mean traffic flow.

Keywords Traffic models · Boltzmann and Enskog-type descriptions · Macroscopic
equations · Kinetic derivation · Hydrodynamic limit

Mathematics Subject Classification 35Q20 · 35Q70 · 90B20

1 Introduction

The kinetic description of vehicular traffic is probably one of the first examples in which
methods of the statistical physics were applied to a particle system which was not a standard
gas. Such an approach was initiated by the Russian physicist Ilya Prigogine in the sixties
[17,34–36], in an attempt to explain the emergence of collective properties as a result of
individual ones in systems composed by human beings instead of molecules. In more recent
times, the application of kinetic equations to various systems of interacting agents (see for
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instance [5,37,44] for application to traffic flows) has gained a lot of momentum. These
equations, andmore in general themathematical-physical theory onwhich they are grounded,
have proved to be powerful tools to increase the understanding of multi-agent systems,
particularly as far as the exploration of the interconnections among their properties at different
scales is concerned [26,31].

Coming back to vehicular traffic, in the literature there exists at least two other modelling
approaches based on differential equations. On one hand, there are the so-called microscopic
models, which describe the vehicles as point particles moving according to prescribed accel-
eration/deceleration laws. We recall here, in particular, the well known follow-the-leader and
optimal velocity models [2,16]. On the other hand, there are the macroscopic models, which,
inspired by the hyperbolic conservation/balance laws of fluid dynamics, treat the vehicles as
a continuum with density [33]. In this case, one distinguishes between first order models,
which rely on the mass conservation only, cf. e.g. [7,24,38], and second order models, which
include also an equation for the conservation or the balance of the mean speed, cf. e.g. [32].
Second order models allow one to overcome the issue of the unbounded acceleration of the
vehicles, which first order models may suffer from, see [23] for a very recent contribution on
this. However, they may fail to reproduce the correct anisotropy of the interactions among
the vehicles, namely the fact that vehicles are mainly influenced by the dynamics ahead than
by those behind them. This issue was first pointed out by Daganzo in [8] and later solved
by Aw and Rascle [1] and, independently, by Zhang [45]. They proposed a heuristic second
order hyperbolic traffic model, whose characteristic speeds never exceed the speed of the
flow. In this way, the small disturbances produced by a vehicle propagate more slowly than
the vehicles themselves, thereby guaranteeing that the movement of each vehicle affects only
the vehicles behind.

An interesting theoretical problem, left largely unexplored in the original papers [1,45],
is the derivation of the Aw–Rascle macroscopic model from first principles. In [18,21,22],
the authors were the first to obtain the Aw–Rascle model as a hydrodynamic limit of a
kinetic description based on an Enskog-type equation. Their approach is very much inspir-
ing, because it suggests to look at the Enskog-type kinetic description instead of the more
classical Boltzmann-type one. On the other hand, in these cited works, the authors do not
focus on the explicit characterisation of fundamental microscopic interactions able to gener-
ate, at the macroscopic level, the Aw–Rascle model. Moreover, in [21,22] the hydrodynamic
limit is performed by postulating the existence of an equilibrium kinetic distribution func-
tion, which is not exhibited explicitly. In addition, partly heuristic closures of other terms
appearing in the equations are used. In [19,20], the authors introduce a Vlasov–Fokker–
Planck model of multilane traffic, which, up to suitable simplifications, they use to obtain
the Aw–Rascle model via the method of moments. Their Vlasov–Fokker–Planck equation
shares some similarities with some equations that we deal with in this paper. Nevertheless,
the primary focus of the authors is in turn not the explicit characterisation of an elementary
particle physics leading ultimately to the Aw–Rascle hydrodynamics. Indeed, their starting
point is the Vlasov–Fokker–Planck model itself, which is somehow postulated by appealing
to heuristic considerations. Furthermore, the authors do not take advantage of any explicit
local equilibrium distribution to close the hydrodynamic equations. Instead, they obtain the
Aw–Rascle model by assuming that the temperature/pressure term, which would still depend
on the kinetic distribution function, may be dropped from the hydrodynamic equations.
More recently, also the direct link between follow-the-leader microscopic models and the
Aw–Rascle macroscopic model has been explored. In particular, in [9,10] the authors prove
that the trajectories of the former converge, in the 1-Wasserstein metric, to the unique entropy
solution of the latter when a suitable large particle limit is considered. Their strategy con-
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sists in interpreting the follow-the-leader model as a discrete Lagrangian approximation of
the target macroscopic model. We observe that this approach, although successful from the
analytical point of view, does not explain the actual multiscale physics behind the derivation
of the Aw–Rascle model from a microscopic particle model.

In this paper, we investigate the possibility to obtain the Aw–Rascle model as the hydro-
dynamic limit of kinetic descriptions of the traffic system. The highlights of our study, which
differentiate it from the other contributions recalled above, may be summarised as follows:

• we derive explicitly a minimal set of fundamental features of the microscopic inter-
actions among the vehicles, necessary to generate the Aw–Rascle macroscopic model.
Furthemore, we link some key elements of the Aw–Rascle model, such as e.g., the so-
called “traffic pressure”, to precise characteristics of the microscopic interactions. We
observe that, in the modelling of multi-agent systems, the microscopic model of the agent
behaviour is often largely heuristic and, as such, somewhat arbitrary. In this respect, our
result helps to identify a paradigmatic class of interaction rules among the vehicles, which
give rise to a physically consistent macroscopic traffic model;

• we elucidate the multiscale physical structure underlying the Aw–Rascle model. In par-
ticular, we show that an Enskog-type kinetic description, as opposed to a Boltzmann-type
one, is ultimately necessary to derive it, because the anticipatory nature of the Aw–Rascle
dynamics may be understood as the hydrodynamic result of local and non-local micro-
scopic interactions happening on different time scales;

• taking advantage of the previous analysis, we show how to generalise the Aw–Rascle
model to new classes of second order macroscopic traffic models, which take correctly
into account the anisotropy of the interactions among the vehicles.

In more detail, the paper is organised as follows: in Sect. 2, we discuss the microscopic
interactions at the basis of the whole theory. In Sect. 3, we show that a Boltzmann-type kinetic
description does not give rise to the Aw–Rascle model in the hydrodynamic limit nor, more
in general, to a macroscopic model correctly reproducing the anisotropy of the vehicle inter-
actions Conversely, in Sect. 4, we prove that the original Aw–Rascle model can be obtained
as the hydrodynamic limit of an Enskog-type kinetic description and we stress, in particular,
the role played by spatially non-local interactions among the vehicles towards this result.
In Sect. 5, we exploit the Enskog-type hydrodynamics to extend the Aw–Rascle model to a
new class of second order macroscopic traffic models, whose characteristic speeds are slower
than the mean speed of the flow. We derive these models from a suitable generalisation of
the interactions discussed in Sect. 2 and we establish a direct link between the new terms
appearing in the macroscopic equations and the features of the new microscopic interaction
rules. In Sect. 6,we present several numerical experiments,which both validate the theoretical
passage from the kinetic to the hydrodynamic descriptions and highlight analogies and differ-
ences among the various macroscopic models obtained in the hydrodynamic limit. Finally, in
Sect. 7, we present some concluding remarks andwe briefly sketch further research prospects.

2 Microscopic Binary Interactions

One of the leading ideas in kinetic theory is that the important interactions among the particles
of the system are binary, i.e. each of them involves two particles at a time. Interactions
involving simultaneously more than two particles are neglected as higher order effects. In
our case, taking inspiration from [41], we express a general binary interaction between any
two vehicles as
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v′ = v + γ I (v, v∗; ρ) + D(v)η, v′∗ = v∗, (1)

where v, v∗ and v′, v′∗ are the pre- and post-interaction speeds, respectively, of the interacting
vehicles. Furthermore, I is a function modelling the speed variation of the v-vehicle due to
the leading v∗-vehicle, which, in contrast, does not change speed because of the front-rear
anisotropy of the interactions in the traffic stream. We assume that the interaction rule (1) is
parametrised by the traffic density ρ:

ρ(t, x) :=
∫ 1

0
f (t, x, v) dv,

where f : R+ × R × [0, 1] → R+ is the kinetic distribution function, because the global
traffic conditions may influence the reactions of the individual drivers. Finally, η is a centred
random variable, i.e. such that 〈η〉 = 0 with 〈·〉 denoting expectation, taking into account
stochastic fluctuations of the driver behaviour with respect to the deterministic law expressed
by I . We denote by σ 2 > 0 the variance of η. The function D models the speed-dependent
intensity of such a stochastic fluctuation. As far as the variables and the coefficients in (1)
are concerned, we will assume

v, v∗, ρ, γ ∈ [0, 1], D(·) ≥ 0.

In particular, the unitarymaximumvalues of the speed of the vehicles and of the traffic density
have to be understood as dimensionless, referred to suitable maximum physical values.

The binary rules (1) do not conserve, either pointwise or on average, the mean speed of
the interacting vehicles, indeed

v′ + v′∗ = v + v∗ + γ I (v, v∗; ρ) + D(v)η, 〈v′ + v′∗〉 = v + v∗ + γ I (v, v∗; ρ).

This is clearly reasonable in view of the physics of vehicle interactions as opposed to that
of molecule collisions in classical gas dynamics. Nevertheless, as it is well known in the
approach to hydrodynamics by local equilibrium closures, see e.g. [3,4,14], in order to obtain
a second order macroscopic traffic model, namely a model composed of a self-consistent
pair of macroscopic equations, it is necessary that the binary interactions (1) conserve locally
both the traffic density ρ and the global mean speed u defined by

u(t, x) := 1

ρ(t, x)

∫ 1

0
v f (t, x, v) dv.

Indeed, in this way the local “Maxwellian”, i.e. the local equilibrium speed distribution
generated by (1), is parametrised by the conserved quantities ρ, u, which play the role of the
unknowns in the hydrodynamic equations.

The local conservation ofu requires a suitable assumptionon the binary interaction rule (1).
We recall that if the vehicles are assumed to be homogeneously distributed in space then a
statistical description of the superposition of many interactions among them in any point x
is provided by the homogeneous Boltzmann-type equation, cf. [31]:

∂t

∫ 1

0
ϕ(v) f (t, x, v) dv = 1

2
(Q( f , f ), ϕ), (2)

where ϕ : [0, 1] → R is any test function, also called an observable quantity, and Q is the
bilinear interaction operator, whose action on a test function ϕ is defined as

(Q( f , g), ϕ) :=
∫ 1

0

∫ 1

0
〈ϕ(v′) − ϕ(v)〉 f (t, x, v)g(t, x, v∗) dv dv∗.
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Here, 〈·〉 denotes the average with respect to the distribution of the random variable η con-
tained in v′. Equation (2) is said to be homogeneous because the space variable plays in it
the role of a parameter, so that the statistical description of the traffic is actually the same
in every point x . Choosing ϕ(v) = 1, we immediately deduce the local conservation of the
traffic density, indeed ∂tρ = 0. With ϕ(v) = v we obtain instead

∂t u = γ

2ρ

∫ 1

0

∫ 1

0
I (v, v∗; ρ) f (t, x, v) f (t, x, v∗) dv dv∗,

therefore u is locally conserved provided

∫ 1

0

∫ 1

0
I (v, v∗; ρ) f (t, x, v) f (t, x, v∗) dv dv∗ = 0, ∀ t ∈ R+, x ∈ R, ρ ∈ [0, 1].

(3)
A possible class of functions I satisfying (3), which we will henceforth consider throughout
the paper, is

I (v, v∗; ρ) := �(v∗; ρ) − �(v; ρ) (4)

for a given � : [0, 1] × [0, 1] → R.
We conclude this section by observing that, in order to be physically admissible, the

binary rules (1) should guarantee v′, v′∗ ∈ [0, 1] for every choice of v, v∗, ρ ∈ [0, 1]. This
condition is also necessary for the validity of the Boltzmann-type equation in the form (2),
namely with a constant (unitary, in this case) collision kernel on the right-hand side, which
corresponds to considering vehicles as Maxwellian particles. While v′∗ ∈ [0, 1] is obvious,
it may be hard to prove, in general, that the same is a priori true also for v′. Nevertheless, in
the simple prototypical case

�(v; ρ) := λ(ρ)v, (5)

where λ : [0, 1] → R+ is a prescribed density-dependent function, it can be proved [41]
that a sufficient condition for v′ ∈ [0, 1] is that η and D satisfy

{
|η| ≤ c(1 − γ λ(ρ))

cD(v) ≤ min{v, 1 − v} (6)

for an arbitrary constant c > 0. This implies that η is bounded and D vanishes for v = 0, 1.
In the particular case D = 0, a simpler sufficient condition for v′ ∈ [0, 1] is instead

λ(ρ) ≤ 1
γ
.

The choice (4)–(5) leads to the binary interaction

v′ = v + γ λ(ρ)(v∗ − v) + D(v)η, v′∗ = v∗. (7)

Apart from the stochastic contribution, by interpreting γ as the (small) duration of the inter-
action we see that the acceleration of the v-vehicle, i.e. v′−v

γ
, is proportional to the relative

speed with the leading v∗-vehicle, i.e. λ(ρ)(v∗ −v). This is consistent with the general struc-
ture of microscopic follow-the-leader traffic models [16], the function λ playing the role of
the sensitivity of the drivers.
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3 Hydrodynamics from a Boltzmann-Type Description

A local kinetic description of traffic flow is provided by the following inhomogeneous
Boltzmann-type equation in weak form:

∂t

∫ 1

0
ϕ(v) f (t, x, v) dv + ∂x

∫ 1

0
vϕ(v) f (t, x, v) dv = 1

2
(Q( f , f ), ϕ), (8)

which, by means of the second term on the right-hand side, extends (2) taking into account
also the transport of the vehicles in space according to the kinematic relationship ẋ = v. See
[35,36].

The usual way to derive macroscopic equations for the hydrodynamic parameters, such
as ρ and u, is to choose ϕ(v) = vn , n = 0, 1, 2, . . . , in (8). This procedure is however
endless, because the transport term generates systematically a moment of order n + 1 in the
nth equation, thereby never making the latter closed. In order to overcome such a difficulty,
a typical strategy consists in introducing the following hyperbolic scaling of space and time:

x → 2

ε
x, t → 2

ε
t, (9)

with 0 < ε � 1, so that (8) becomes1

∂t

∫ 1

0
ϕ(v) f (t, x, v) dv + ∂x

∫ 1

0
vϕ(v) f (t, x, v) dv = 1

ε
(Q( f , f ), ϕ) (10)

In this equation, ε plays conceptually the role of the Knudsen number of the classical kinetic
theory. If ε is sufficiently small then locally the interactions are much faster than the dis-
placement of the vehicles. As a consequence, a fluid dynamic regime is conceivable, in which
the local equilibrium distribution quickly produced by the interactions is simply transported
by the traffic stream. This allows one to solve (10) by splitting the contributions of the
interactions and of the transport:

∂t

∫ 1

0
ϕ(v) f (t, x, v) dv = 1

ε
(Q( f , f ), ϕ) (11)

∂t

∫ 1

0
ϕ(v) f (t, x, v) dv + ∂x

∫ 1

0
vϕ(v) f (t, x, v) dv = 0, (12)

analogously to what is commonly done in the numerical solution of the Boltzmann equation
[11,12,30], see also [14].

The idea is now that if we are able to identify from (11) the local Maxwellian Mρ,u

parametrised by the two conserved quantities ρ, u, cf. Sect. 2, then we may plug it into (12)
to obtain the hydrodynamic equations satisfied by ρ, u.

3.1 The Case D �= 0

Unfortunately, when D �= 0 in (1) it is in general not possible to compute explicitly the steady
distributions of the homogeneous Boltzmann-type equation (11). However, at least in some
particular regimes, onemay rely on powerful asymptotic procedures, which transform (11) in
partial differential equations more amenable to analytical solutions. One of such procedures

1 Also the variables x, t of the distribution function f are scaled according to (9). However, in order to avoid
introducing additional notations, we still denote by f (t, x, v) the scaled distribution function.
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is the so-called quasi-invariant interaction limit, introduced in [6,40] and reminiscent of the
grazing collision limit applied to the classical Boltzmann equation [42,43].

Let us assume that the system is locally close to equilibrium, so that each binary inter-
action (1) produces a very small transfer of speed from the leading to the rear vehicle. In
particular, we may obtain such an effect by setting

γ = σ 2 = ε, (13)

which, for ε small, implies that both the deterministic and the stochastic parts of the interaction
are small. In this situation, if ϕ is sufficiently smooth then the difference ϕ(v′)−ϕ(v) in (11)
can be expanded in Taylor series about v. After some computations, this yields

∂t

∫ 1

0
ϕ(v) f (t, x, v) dv =

∫ 1

0

∫ 1

0
ϕ′(v)I (v, v∗; ρ) f (t, x, v) f (t, x, v∗) dv dv∗

+ 1

2

∫ 1

0
ϕ′′(v)D2(v) f (t, x, v) dv + Rε

ϕ( f , f ),

where Rε
ϕ( f , f ) is a bilinear reminder, which, under the assumptions that I is bounded and

η has bounded third order moment (i.e., 〈|η|3〉 < +∞), is asymptotic to
√

ε when ε → 0+,
see [41] for the details. On the whole, Rε

ϕ( f , f ) → 0 for ε → 0+, so that in such a limit we
obtain that f satisfies the equation

∂t

∫ 1

0
ϕ(v) f (t, x, v) dv =

∫ 1

0

∫ 1

0
ϕ′(v)I (v, v∗; ρ) f (t, x, v) f (t, x, v∗) dv dv∗

+ 1

2

∫ 1

0
ϕ′′(v)D2(v) f (t, x, v) dv.

(14)

Integrating by parts the terms on the right-hand side, along with suitable conditions on f at
v = 0, 1 such that the boundary terms vanish (see again [41] for the details), we recognise
that this is the weak form of the following Fokker–Planck equation:

∂t f = 1

2
∂2v

(
D2(v) f

) − ∂v

((∫ 1

0
I (v, v∗; ρ) f (t, x, v∗) dv∗

)
f

)
, (15)

whose solutions approximate the large time behaviour of (11) in the quasi-invariant regime.
In particular, the equilibrium solution to (15), i.e. the local Maxwellian Mρ,u , satisfies

1

2
∂v

(
D2(v)Mρ,u

) −
(∫ 1

0
I (v, v∗; ρ)Mρ,u(v∗) dv∗

)
Mρ,u = 0,

which, for the binary interaction (7), cf. also (4)–(5), becomes

1

2
∂v

(
D2(v)Mρ,u

) − λ(ρ)(u − v)Mρ,u = 0,

whence

Mρ,u(v) = C

D2(v)
exp

(
2λ(ρ)

∫
u − v

D2(v)
dv

)
,

C > 0 being a normalisation constant to be fixed in such a way that
∫ 1
0 Mρ, u(v) dv = ρ.

123
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To proceed further, we have to choose a diffusion coefficient D. A closed form of Mρ,u

is obtained, for instance, with2 D(v) = √
v(1 − v) and reads

Mρ,u(v) = ρ
v2λ(ρ)u−1(1 − v)2λ(ρ)(1−u)−1

B(2λ(ρ)u, 2λ(ρ)(1 − u))
, (16)

where B(·, ·) is the beta function. On the whole, we notice that 1
ρ
Mρ,u(v) is the probability

density function of a beta random variable, interestingly quite consistent with some recent
experimental findings about the speed distribution in traffic flow [25,28]. Entropy arguments
can be invoked [15] to prove that (16) is the unique and globally attractive steady solution
with mass ρ to (15) with binary rules (7).

Remark 3.1 Equation (14) may be rewritten as

∂t

∫ 1

0
ϕ(v) f (t, x, v) dv = (P( f ), ϕ),

where the Fokker–Planck operator P is defined, in weak form, as

(P( f ), ϕ) :=
∫ 1

0

∫ 1

0
ϕ′(v)I (v, v∗; ρ) f (t, x, v) f (t, x, v∗) dv dv∗

+ 1

2

∫ 1

0
ϕ′′(v)D2(v) f (t, x, v) dv,

or equivalently, in strong form, as

P( f )(t, x, v) :=1

2
∂2v

(
D2(v) f (t, x, v)

)

− ∂v

((∫ 1

0
I (v, v∗; ρ) f (t, x, v∗) dv∗

)
f (t, x, v)

)
.

Thequasi-invariant limit performed above implies thatQ canbe consistently approximated
by P in the regime in which γ , σ 2 are small and the frequency of the interactions is high.

Plugging (16) into (12) along with the choices ϕ(v) = 1, v, and recalling the known
formulas for the moments of a beta random variable, we obtain the following second order
macroscopic model: ⎧⎨

⎩
∂tρ + ∂x (ρu) = 0

∂t (ρu) + ∂x

(
ρu

2λ(ρ)u + 1

2λ(ρ) + 1

)
= 0.

(17)

Introducing the vector of the conserved quantitiesU := (ρ, u)T , and assuming for simplicity
that λ > 0 is constant, (17) can be rewritten in quasilinear vector form as

∂tU + A(U )∂xU = 0, A(U ) :=
(

u ρ
u(1−u)
(2λ+1)ρ

(2λ−1)u+1
2λ+1

)
. (18)

In particular, the eigenvalues of A are

μ± := u + 1 − 2u

2(2λ + 1)
± 1

2(2λ + 1)

√
1 + 8λu(1 − u).

2 We observe that such a function D does not comply with (6), because of the vertical tangents at v = 0, 1.
Nevertheless, it can be obtained as the uniform limit, for ε → 0+, of a sequence of functions Dε(v), which
instead satisfy (6) for every ε > 0, see [40]. This justifies its use in the Fokker–Planck equation (15), i.e. after
performing the quasi-invariant limit.
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Since obviously u ∈ [0, 1], μ± are both real, hence system (17) is hyperbolic. As it is well
known, μ± represent the speeds of propagation of the small disturbances in the flow and, in
macroscopic trafficmodels, they are required not to exceed themean speed u of the flow itself.
This consistency condition, established in [1] in a successful attempt to cure the drawbacks
of second order macroscopic traffic models put in evidence in [8], is meant to preserve, at
the macroscopic level, the front-rear anisotropy of the microscopic vehicle interactions. We
will henceforth call this the Aw–Rascle condition.

Unfortunately, for model (17) it is immediately evident that

μ+ ≥ u + 1 − u

2λ + 1
> u ∀ u ∈ [0, 1),

thus the hydrodynamic derivation based on the Boltzmann-type local equilibrium closure
fails, in general, to produce macroscopic traffic models consistent with the Aw–Rascle con-
dition.

3.2 The Case D = 0

If D = 0 in (1), i.e. if the stochastic fluctuations ascribable to the driver behaviour are
neglected, then it is much easier to compute the Maxwellian Mρ,u directly from (11). In fact,
we see straightforwardly that with I given by (4) and for any (continuous) � the distribution

Mρ,u(v) = ρδ(v − u), (19)

where δ is the Dirac delta distribution, makes the right-hand side of (11) vanish. Moreover, if
� is given in particular by (5) and 0 ≤ λ(ρ) < 1 then from (11) with ϕ(v) = v2 we deduce
that the energy of the system converges asymptotically in time to u2 regardless of the initial
condition. This implies that (19) is the unique and globally attractive steady solution to the
interaction step (11). The Maxwellian (19) is also called a monokinetic distribution, because
it expresses the fact that all vehicles travel locally at the same speed, which coincides with
the mean speed of the flow.

Plugging (19) into (12), we obtain the following second order macroscopic model:{
∂tρ + ∂x (ρu) = 0

∂t (ρu) + ∂x (ρu2) = 0.
(20)

In particular, taking advantage of the first equation, we can rewrite the second equation in the
non-conservative form ∂t u + u∂xu = 0 and, finally, the whole system in quasilinear vector
form as

∂tU + A(U )∂xU = 0, A(U ) :=
(
u ρ

0 u

)
. (21)

Notice that, due to the monokinetic Maxwellian (19), system (20) is pressureless. Conse-
quently, the matrix A(U ) has two coincident eigenvalues μ± = u, which formally comply
with the Aw–Rascle condition. Nevertheless, model (20) is much more trivial than the actual
Aw–Rascle model [1].

4 Hydrodynamics from an Enskog-Type Description

The discussion set forth in Sect. 3 has shown that, in general, the local equilibrium closure
applied to a Boltzmann-type kinetic description of traffic flow fails to yield Aw–Rascle-type
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hydrodynamic models. On the other hand, in [21] the authors already pointed out some
inconsistencies in the fluid dynamic behaviour of second order macroscopic traffic models
so derived, such as e.g. the inability to reproduce density waves propagating backwards. In
particular, they identified the source of such a problem in the local nature of the interactions,
namely the fact that in (8) the two interacting vehicles occupy the same position x . Actually,
also in the classical Boltzmann equation the colliding gas molecules are supposed to occupy
the same space position at the moment of the collision. However, in that case their velocities
are not forced to be non-negative, like in the case of the vehicle speeds. This allows one to
have, at the macroscopic level, a gas density flowing in principle in any direction.

In order to overcome such difficulties, in [21] the authors suggested to derive macroscopic
traffic models from an Enskog-type kinetic description, in which, similarly to the classical
Enskog equation for high density gases, the interacting vehicles are not supposed to occupy
the same position. Specifically, the Enskog-type equation for vehicular traffic takes the form
of a modification of the Boltzmann-type equation (8):

∂t

∫ 1

0
ϕ(v) f (t, x, v) dv + ∂x

∫ 1

0
vϕ(v) f (t, x, v) dv

= 1

2

∫ 1

0

∫ 1

0
〈ϕ(v′) − ϕ(v)〉 f (t, x, v) f (t, x + H , v∗) dv dv∗,

(22)

where H > 0 is the headway between the v-vehicle and the leading v∗-vehicle, which here
we assume to be constant for simplicity.

If H is small with respect to the characteristic distances along the road, we can write

f (t, x + H , v∗) = f (t, x, v∗) + ∂x f (t, x, v∗)H + o(H),

whence, suppressing the term o(H), we approximate (22) as

∂t

∫ 1

0
ϕ(v) f (t, x, v) dv + ∂x

∫ 1

0
vϕ(v) f (t, x, v) dv

= 1

2

∫ 1

0

∫ 1

0
〈ϕ(v′) − ϕ(v)〉 f (t, x, v) f (t, x, v∗) dv dv∗

+ H

2

∫ 1

0

∫ 1

0
〈ϕ(v′) − ϕ(v)〉 f (t, x, v)∂x f (t, x, v∗) dv dv∗.

From here, performing again the hyperbolic scaling (9) of space and time, we find

∂t

∫ 1

0
ϕ(v) f (t, x, v) dv + ∂x

∫ 1

0
vϕ(v) f (t, x, v) dv

= 1

ε

∫ 1

0

∫ 1

0
〈ϕ(v′) − ϕ(v)〉 f (t, x, v) f (t, x, v∗) dv dv∗

+ H

2

∫ 1

0

∫ 1

0
〈ϕ(v′) − ϕ(v)〉 f (t, x, v)∂x f (t, x, v∗) dv dv∗,

(23)

ε playing again a role analogous to that of the Knudsen number. In particular, if ε is small
we can describe the hydrodynamic regime by means of the following splitting:

∂t

∫ 1

0
ϕ(v) f (t, x, v) dv = 1

ε
(Q( f , f ), ϕ) (24)

∂t

∫ 1

0
ϕ(v) f (t, x, v) dv + ∂x

∫ 1

0
vϕ(v) f (t, x, v) dv = H

2
(Q( f , ∂x f ), ϕ). (25)
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Notice that (24) is actually the same equation as (11). In particular, if we consider the
regime of small γ , σ 2 expressed by the scaling (13) then, in view of Remark 3.1, we can
consistently replace (viz. approximate) (24) with

∂t

∫ 1

0
ϕ(v) f (t, x, v) dv = (P( f ), ϕ). (26)

Conversely, unlike (12), the transport step (25) contains a correction on the right-hand
side, strictly related to the non-locality of the interactions. With reference to the interac-
tion rules (7), we observe that the correction term is such that

(Q( f , ∂x f ), 1) = 0, (Q( f , ∂x f ), v) = ρ2γ λ(ρ)∂xu. (27)

In practice, the idea behind system (24)–(25) may be paraphrased as follows: one deter-
mines a local Maxwellian Mρ,u from (24), as if the interacting vehicles were localised in
the same space position. As a matter of fact, this is analytically doable in the quasi-invariant
regime, taking advantage of the Fokker–Planck approximation (26) of (24). Next, one trans-
ports Mρ,u by means of (25), including a suitable correction to the pure transport (12) due
to the actual non-locality of the interactions. In this transport step, the parameter γ appear-
ing on the right-hand side of (25), cf. (27), will be assumed small, consistently with the
quasi-invariant regime invoked to solve (24).

4.1 The Case D �= 0

In the case D �= 0, we can repeat the same steps as in Sect. 3.1 to find the local
Maxwellian (16). Plugging it into (25) with ϕ(v) = 1, v, and recalling furthermore the
interaction rule (7), we find the following second order macroscopic model:

⎧⎨
⎩

∂tρ + ∂x (ρu) = 0

∂t (ρu) + ∂x

(
ρu

2λ(ρ)u + 1

2λ(ρ) + 1

)
= ρ2 γ λ(ρ)H

2
∂xu,

(28)

which, assuming again λ > 0 constant for simplicity, can be written in quasilinear vector
form as

∂tU + A(U )∂xU = 0, A(U ) :=
(

u ρ
u(1−u)
(2λ+1)ρ

(2λ−1)u+1
2λ+1 − γ λ(λ−1)H

2λ+1 ρ

)
,

where, as usual,U := (ρ, u)T . Notice that, if H = 0, both model (28) and the matrix A(U )

reduce consistently to model (17) and matrix A(U ) found in Sect. 3.1.
The eigenvalues of A(U ) are, in this case,

μ± := 4λu + 1

2(2λ + 1)
− γ λHρ

4
±

√
1 + 8λu(1 − u)

(2(2λ + 1))2
+

(
γ λHρ

4

)2

+ γ λHρ

4(2λ + 1)
(2u − 1).

Considering that u ∈ [0, 1], we estimate:

μ+ ≥ 4λu + 1

2(2λ + 1)
− γ λHρ

4
+

√
1

(2(2λ + 1))2
+

(
γ λHρ

4

)2

− γ λHρ

4(2λ + 1)

= 4λu + 1

2(2λ + 1)
− γ λHρ

4
+

√(
1

2(2λ + 1)
− γ λHρ

4

)2
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Fig. 1 The region of the state
space {(ρ, u) ∈ R+ × [0, 1)}
where the greatest eigenvalue of
system (28) surely exceeds the
flow speed u. The dash-dotted
line has equation

u = 1 − (2λ+1)γ λH
2 ρ

= 4λu + 1

2(2λ + 1)
− γ λHρ

4
+

∣∣∣∣ 1

2(2λ + 1)
− γ λHρ

4

∣∣∣∣
and, assuming ρ < 2

(2λ+1)γ λH , we continue this computation as

= 2λu + 1

2λ + 1
− γ λHρ

2
= u + 1 − u

2λ + 1
− γ λHρ

2
.

Finally, if we further restrict ourselves to the case u < 1, ρ <
2(1−u)

(2λ+1)γ λH (which is a sub-case

of the one previously considered), we have 1−u
2λ+1 − γ λHρ

2 > 0, whence we concludeμ+ > u.
As Fig. 1 shows, the interpretation is that there exists a non-empty subregion of the state

space {(ρ, u) ∈ R+ × [0, 1)} where μ+ certainly violates the Aw–Rascle condition. Notice
that, for H → 0+, such a subregion expands to cover the whole state space, consistently
with the fact that, as already observed, model (28) reduces to model (17).

4.2 The Case D = 0 and the Aw–Rascle Model

If D = 0 then (24) with the interaction rules (7) admits again the Maxwellian (19) as unique
and globally attractive local equilibrium. Plugging it into (25) yields

⎧⎨
⎩

∂tρ + ∂x (ρu) = 0

∂t (ρu) + ∂x (ρu2) = ρ2 γ λ(ρ)H

2
∂xu.

(29)

Using the first equation, the second equation of this system can be rewritten as

∂t u +
(
u − ρ

γλ(ρ)H

2

)
∂xu = 0, (30)

which coincides with the Aw–Rascle equation for the mean speed upon identifying

p′(ρ) := γ λ(ρ)H

2
, (31)

where p = p(ρ) denotes the traffic “pressure”. With this definition, (30) can be formally
further recast as ∂t (u + p(ρ))+ u∂x (u + p(ρ)) = 0, so that finally system (29) can be given
the usual form of the Aw–Rascle model:{

∂tρ + ∂x (ρu) = 0

∂t (u + p(ρ)) + u∂x (u + p(ρ)) = 0.
(32)
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In quasilinear vector form this reads

∂tU + A(U )∂xU = 0, A(U ) :=
(
u ρ

0 u − ρ p′(ρ)

)
,

whence we see that the eigenvalues of A(U ) are μ− = u − ρ p′(ρ), μ+ = u with clearly
μ− ≤ u, because λ(ρ) ≥ 0, hence p′(ρ) ≥ 0, by assumption (in other words, the traffic
pressure p is a non-decreasing function of the traffic density ρ).

Summarising, we have been able to recover the Aw–Rascle model organically from first
principles of the kinetic theory out of the following microscopic features of the binary inter-
actions among the vehicles:

(i) interactions change only the speed of the vehicles in such a way that the global mean
speed is locally conserved;

(ii) the possible randomness in the behaviour of the drivers is neglected, i.e. driver behaviour
is modelled as purely deterministic;

(iii) interactions are non-local in space, i.e. a headway H > 0 between the interacting
vehicles is taken into account.

Recalling (7) and (31), the first two features are realised by means of the interaction rules

v′ = v + 2

H
p′(ρ)(v∗ − v), v′∗ = v∗.

Notice, in particular, that the driver sensitivityλ(ρ) turns out to be proportional to the variation
of the traffic pressure and inversely proportional to the headway between the interacting
vehicles. Thus, the steeper the increase in the traffic pressure, or the closer the leading v∗-
vehicle, the prompter the reaction of the v-driver, which is a quite meaningful model of driver
behaviour. Moreover, the third feature indicates that Enskog-type equations are the natural
kinetic setting for the hydrodynamic derivation of the Aw–Rascle model.

Remark 4.1 The proposed derivation of the Aw–Rascle model requires that both parameters
γ , H are sufficiently small. This may give the impression that p′ in (31) has to be neces-
sarily very small. However, as discussed in Sect. 2, we recall that for D = 0 the physical
admissibility of the microscopic interaction rules imposes λ(ρ) ≤ 1

γ
, whence we deduce that

γ λ(ρ) = O(1). Therefore, the only small parameter left in (31) is actually H . Considering
that (31) defines the derivative of pwith respect to ρ, the smallness of H simply indicates that
the variations of the traffic pressure within the traffic stream are as small as the characteristic
length over which the microscopic interactions among the vehicles take place. This is indeed
physically consistent and does not imply that the traffic pressure itself is mandatorily small.

5 Generalisations of the Aw–Rascle Model

The procedure followed in Sect. 4.2 to derive the Aw–Rascle model from the microscopic
interactions (7) can be fruitfully exploited to obtain classes of second order macroscopic
traffic models complying with the Aw–Rascle condition.

Let us consider the interaction rules (1) with I given by (4) and D = 0, i.e.

v′ = v + γ (�(v∗; ρ) − �(v; ρ)) , v′∗ = v∗.

ThemonokineticMaxwellian (19) is still an equilibrium to (24), indeed (Q(Mρ,u, Mρ,u), ϕ)

= 0 for every test function ϕ. Moreover, considering that ∂x Mρ,u = ∂xρ δ(v − u) −
ρ∂xu δ′(v − u), we compute
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(Q(Mρ,u, ∂x Mρ,u), 1) = 0, (Q(Mρ,u, ∂x Mρ,u), v) = ρ2γ ∂v�(u; ρ)∂xu,

whence, plugging Mρ,u into (25) together with ϕ(v) = 1, v, we determine the following
macroscopic model: ⎧⎨

⎩
∂tρ + ∂x (ρu) = 0

∂t (ρu) + ∂x (ρu2) = ρ2 γ ∂v�(u; ρ)H

2
∂xu.

(33)

Again, using the first equation we can rewrite the second equation in non-conservative
form as

∂t u +
(
u − ρ

γ ∂v�(u; ρ)H

2

)
∂xu = 0,

which makes it evident that the quasilinear vector form of system (33) is

∂tU + A(U )∂xU = 0, A(U ) :=
(
u ρ

0 u − ρ
γ∂v�(u; ρ)H

2

)
.

The eigenvalues of A(U ), i.e. μ− = u − ρ
γ∂v�(u; ρ)H

2 and μ+ = u, satisfy the Aw–Rascle
condition provided

∂v�(u; ρ) ≥ 0 ∀ (ρ, u) ∈ R+ × [0, 1], (34)

for then it results clearly μ− ≤ u. Under (34), we may therefore call (33) a generalised Aw–
Rascle model. We observe that (34) requires essentially that � be a non-decreasing function
of the speed v for all the physically admissible values of the parameter ρ.

Motivated by the introduction of the traffic pressure defined by (31), which allows one
to rewrite the Aw–Rascle model in the form (32), we introduce now a generalised traffic
pressure P = P(ρ, u) defined by the relationships

∂ρ P = γ ∂v�(u; ρ)H

2
∂u P, P(0, u) = u, (35)

which allows us to rewrite the generalised Aw–Rascle model (33) in the form{
∂tρ + ∂x (ρu) = 0

∂t P(ρ, u) + u∂x P(ρ, u) = 0.

In practice, P generalises the expression u + p(ρ) in (32). If, for instance, the function
� is such that ∂v�(u; ρ) does not depend on u then from (35) we determine precisely
P(ρ, u) = u+ p(ρ)with p′(ρ) := γ ∂v�(ρ)H

2 , thereby recovering the Aw–Rascle model (32)
with ∂v�(ρ) = λ(ρ).

6 Numerical Experiments

In this section, we focus on the numerical description of themodels introduced so far.We start
from an analysis of the microscopic model of Sect. 2, which describes the interactions among
the vehicles through a binary collision approach. Next, we analyse the various mesoscopic
approaches detailed in Sects. 3, 4, investigating in particular the role of the scaling parameter
ε. Then, we end with some numerical comparisons between the macroscopic traffic models
obtained in the hydrodynamic limit and their corresponding kinetic descriptions. In particular,
we show that, for ε so small that the interactions lead quicly to a local equilibrium, the Enskog
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model is equivalent to the Aw–Rascle macroscopic model, as anticipated by the theoretical
results of Sect. 4. We also show the anticipating nature of the Enskog model compared to the
more standard Boltzmann model.

6.1 Test 1: Microscopic Model and Trend to Equilibrium

We consider the binary rule (7), which entails the conservation of both the mass and the
global mean speed of the vehicles. In Sect. 3.1, we have shown that the system reaches a
local equilibrium when the number of interactions grows if the effect of each interaction is
sufficiently small, i.e. if we are in the so-called quasi-invariant regime. Therefore, we assume,
in particular, the quasi-invariant scaling (13) so that, with the choice D(v) = √

v(1 − v) for
the diffusion coefficient, we expect the beta probability density function (16) as the local
Maxwellian.

Such a Maxwellian depends, on one hand, on the average speed of the vehicles. Since this
parameter does not play an important role in the convergence to equilibrium, in the numerical
simulations of this sectionwe consider simply a fixed value, specifically u = 0.6 so as tomake
the resulting distribution asymmetric. On the other hand, theMaxwellian depends also on the
sensitivity parameter λ(ρ), whose value strongly affects the shape of the distribution. For the
moment, instead of prescribing λ as a function of ρ, we consider directly several values of
λ, namely λ = 1, 2, 3, 4, and we compare the corresponding Maxwellians emerging from
the microscopic dynamics with the analytical expression (16) found in the quasi-invariant
limit. Moreover, we analyse the convergence of the microscopic model to the equilibrium
for two different values of the scaling parameter, specifically ε = 10−1 and ε = 10−3.
As far as the stochastic fluctuation in (7) is concerned, we consider a uniformly distributed
random variable η ∼ U([−0.5, 0.5]). As a matter of fact, we notice that the particular type
of distribution of η does not affect the final Maxwellian but only the transient regime towards
it.

In Fig. 2, we show the equilibrium distributions obtained with the microscopic dynam-
ics (7) scaled according to (13). The curves have been obtained by using 103 vehicles and
by averaging the steady state solution over 105 realisations. In each plot, we also represent
the analytical steady state (16) of the Fokker–Planck equation (15) and the initial distribu-
tion f0 of the vehicles, which has been taken uniform in the interval [0.5, 2.5]. In all the
tested scenarios, an extremely good agreement between the microscopic interaction dynam-
ics and the Fokker–Planck asymptotics is obtained for ε = 10−3, which better mimics the
quasi-invariant limit ε → 0+.

Finally, we notice that, for D = 0, the Maxwellian can be determined directly from the
Boltzmann-type equation (11) as explained in Sect. 3.2, hence, in particular, without resorting
to approximate asymptotic procedures. Such aMaxwellian is therefore exact in every regime
of the microscopic parameters and, for this reason, there is no need to report here a numerical
comparison.

6.2 Boltzmann-TypeModelWith andWithout Stochasticity

Weconsider now a space non-homogeneous scenario andwe report results for theBoltzmann-
type description of traffic flow coming from (10) under the binary interaction model (7)
along with the quasi-invariant scaling (13). We start by giving the details of the discretisation
technique.
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Fig. 2 Test 1. Different equilibria of the microscopic interaction model (7) under the quasi-invariant scal-
ing (13). Left column: ε = 10−1, right column: ε = 10−3. From top to bottom, the interaction parameter λ

increases from 1 to 4, leading to different shapes of the equilibrium distribution
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6.2.1 A Monte Carlo Method for the BoltzmannModel

Equation (10) is discretised using a Monte Carlo approach, in which we define an ensemble
of N particles (representing the vehicles) {Xk(t), Vk(t)}Nk=1, where Xk(t) ∈ � ⊆ R is the
position and Vk(t) ∈ [0, 1] the speed of the kth car at time t . Here, � is the space domain.
We then approximate the distribution function f by means of the empirical distribution

μ(t, x, v) := mp

N∑
k=1

δ(x − Xk(t)) ⊗ δ(v − Vk(t)),

where the mass mp of a particle (viz. vehicle) is defined as

mp := 1

N

∫
�

ρ0(x) dx,

ρ0 denoting the initial density of the vehicles.Upon introducing in�×[0, 1] a space and speed
mesh with cell centres (x j , v) and mesh widths �x , �v, respectively, an approximation of
the particle density f (t, x, v) can be obtained as an histogram by computing

f (t, x j , v) =
∫ v+�v/2

v−�v/2

∫ x j+�x/2

x j−�x/2
dμ(t, x, v). (36)

Likewise, an empirical position density is obtained as

ρ(t, x j ) =
∫ 1

0

∫ x j+�x/2

x j−�x/2
dμ(t, x, v). (37)

We are now ready to describe the details of the Monte Carlo discretisation. This is based
on the strong form of (10), which, by choosing formally ϕ(·) = δ(· − v), can be written as

∂t f (t, x, v) + v∂x f (t, x, v)

= 1

ε

[〈∫ 1

0

∫ 1

0
δ(v′

1 − v) f (t, x, v1) f (t, x, v2) dv1 dv2

〉
− ρ(t, x) f (t, x, v)

]
,

(38)

wherewe have denoted by v1, v2 the pre-interaction speeds (dummy integration variables) and
by v′

1 the post-interaction speed of the first vehicle. The Monte Carlo method corresponding
to (38) is obtained by splitting the interaction and the transport steps, exactly in the same
spirit as (11), (12), cf. [13,29].

Transport Each car advances from time tn over a time interval of length �t by changing its
position according to

Xn+1
k = Xn

k + V n
k �t .

This gives an intermediate empirical distribution:

μ̃n(x, v) := mp

N∑
n=1

δ(x − Xn+1
k ) ⊗ δ(v − V n

k ),

whence the intermediate particle density f̃ n(x j , v) and position density ρ̃n(x j ) can be
computed using (36), (37).

Interaction Next, we solve the interaction step:
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Algorithm 1 Nanbu-like algorithm for (40)
1: for each cell j do
2: define Nn

j := total number of cars in the cell j at time tn = n�t

3: define Nn
int, j :=

[
ρ̃nj �t

ε
·
Nn
j

2

]
, where [·] is a stochastic truncation to the closest integer

4: select uniformly Nn
int, j pairs (k, h) of vehicles in the cell j

5: let the selected pairs interact and, for each of them, set Vn+1
k = V ′

k , V
n+1
h = V ′

h,∗ according to the
interaction rule (7) with the scaling (13)

6: for all the remaining vehicles, set Vn+1
k = Vn

k
7: end for

∂t f (t, x, v)

= 1

ε

[〈∫ 1

0

∫ 1

0
δ(v′

1 − v) f (t, x, v1) f (t, x, v2) dv1 dv2

〉
− ρ(t, x) f (t, x, v)

]
,

which, by defining the gain operator

Q+( f , f )(t, x, v) :=
〈∫ 1

0

∫ 1

0
δ(v′

1 − v) f (t, x, v1) f (t, x, v2) dv1 dv2

〉
, (39)

can be approximated as

f n+1(x, v) =
(
1 − ρ̃n(x)�t

ε

)
f̃ n(x, v) + ρ̃n(x)�t

ε
Q+( f̃ n, f̃ n)(x, v). (40)

At the Monte Carlo level, (40) can be interpreted as follows:

• with probability 1 − ρ̃n(x)�t
ε

, the interacting vehicle does not change speed;

• with probability ρ̃n(x)�t
ε

, the interacting vehicle changes speed to a new value V n+1
k ,

which is determined by means of Algorithm 1 below.

We observe that the explicit time discretisation (40) requires a stability condition of the type

max
x∈�

ρ̃n(x)�t

ε
≤ 1

in order for the coefficients of the convex combination (40) to be actual probabilities. This
is indeed the choice performed in the numerical results presented in the sequel.

The Algorithm 1, used to compute the post-interaction speed, relies on a so-called Nanbu-
type method [27], which is similar to the approach developed for the standard Boltzmann
equation of gas dynamics.

6.2.2 A Finite VolumeMethod for the Hydrodynamic Limit of the BoltzmannModel

We now detail also the discretisation of the hydrodynamic models (17), (20). We use a fifth
order WENO method combined with a Rusanov flux for the hyperbolic derivatives [39].
Thus, given a generic flux function F(U ) with U ∈ R

n , we first reconstruct the unknown
valuesU−,U+ at the interfaces and then we employ the numerical Rusanov flux defined as:

H(U−, U+) := 1

2

[
F(U+) + F(U−) − �(F ′)S(U+ −U−)

]
,

�(F ′) := max
U∈[U−,U+]

∣∣λ(F ′(U ))
∣∣ ,
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where S ∈ R
n×n is a transformation matrix and maxU∈[U−,U+]

∣∣λ(F ′(U ))
∣∣ is the maximum

modulus of the eigenvalues of the Jacobian matrix F ′ of the flux.
For system (17), the Jacobianmatrix is given in (18).Moreover, we considerU = (ρ, q)T

with q = ρu and the corresponding two components of the flux at the interface:

f̂i+ 1
2

= 1

2

[
f (q+

i+ 1
2
) + f (q−

i+ 1
2
) − �(ρ, q)(ρ+

i+ 1
2

− ρ−
i+ 1

2
)

]

ĝi+ 1
2

= 1

2

[
g(ρ, q)+

i+ 1
2

+ g(ρ, q)−
i+ 1

2
− �(ρ, q)

(
q+
i+ 1

2
− q−

i+ 1
2

)] (41)

with f (q) = q , g(ρ, q) = q 2λ(ρ)q/ρ+1
2λ(ρ)+1 and

�(ρ, q) = q

ρ
+ 1 − 2q/ρ

2(2λ + 1)
± 1

2(2λ + 1)

√
1 + 8λq

ρ

(
1 − q

ρ

)
.

For system (20), the Jacobian matrix is given in (21). The unknowns Q = (ρ, q)T are
the same as before, but the fluxes are different:

f̂ ∗
i+ 1

2
= 1

2

[
f ∗(q+

i+ 1
2
) + f ∗(q−

i+ 1
2
) − �∗(ρ, q)(ρ+

i+ 1
2

− ρ−
i+ 1

2
)

]

ĝ∗
i+ 1

2
= 1

2

[
g∗(ρ, q)+

i+ 1
2

+ g∗(ρ, q)−
i+ 1

2
− �∗(ρ, q)(q+

i+ 1
2

− q−
i+ 1

2
)

] (42)

with f ∗(q) = q , g∗(ρ, q) = qu and �∗(ρ, q) = q/ρ.
The reconstruction of ρ, q at the grid interfaces i ± 1/2, necessary for the application of

the formulas (41), (42), may be performed as follows. Let w denote either ρ or q . Then the
values w−

i+1/2, w
+
i−1/2 are obtained as

w−
i+ 1

2
=

2∑
r=0

ωrw
(r)
i+ 1

2
, w+

i− 1
2

=
2∑

r=0

ωr w̃
(r)
i+ 1

2

with weights

ωr = αr∑2
s=0 αs

, αr = dr
(ε + βr )2

, ω̃r = α̃r∑2
s=0 α̃s

, α̃r = d̃r
(ε + βr )2

,

and with the standard smooth indicators

β0 = 13

12
(wi − 2wi+1 + wi+2)

2 + 1

4
(3wi − 4wi+1 + wi+2)

2

β1 = 13

12
(wi−1 − 2wi + wi+1)

2 + 1

4
(wi−1 + wi+1)

2

β2 = 13

12
(wi−2 − 2wi−1 + wi )

2 + 1

4
(3wi−2 − 4wi−1 + wi )

2,

where ε = 10−8, d0 = d̃2 = 3
10 , d1 = d̃1 = 3

5 , d2 = d̃0 = 1
10 . The values w

(r)
i± 1

2
represent

the third order reconstructions of the pointwise values w̄i . They are obtained through the
formulas

w
(r)
i+ 1

2
=

2∑
j=0

cr j w̄i−r+ j , w
(r)
i− 1

2
=

2∑
j=0

c̃r j w̄i−r+ j , r = 0, 1, 2,
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Table 1 Coefficients cr j for the
fifth order space WENO
reconstruction on equispaced grid
points

r j

0 1 2

0 1
3

5
6 − 1

6

1 − 1
6

5
6

1
3

2 1
3 − 7

6
11
6

where w̄i−r+ j are the pointwise values of the unknown evaluated in the points xi−r , . . . ,

xi−r+2. Since we use evenly spaced grid points, the coefficients cr j can be precomputed as
indicated in Table 1.

Finally, we use a second order Runge–Kutta explicit time discretisation. In particular, the
time step �t is chosen according to the stability condition �t = 0.2�x/maxx∈�{μ+, μ−},
where μ± are the eigenvalues of the Jacobian matrix of the flux, cf. Sects. 3.1, 3.2.

6.2.3 Test 2: Boltzmann Versus Hydrodynamics for D �= 0

We now compare the results produced by the inhomogeneous Boltzmann-type model (10)
for ε small with those produced by the macroscopic model (17) obtained from the former
with the local equilibrium closure in the hydrodynamic limit ε → 0+.

We consider the space domain � = [−10, 10] with periodic boundary conditions, which
mimics a circuit. To the macroscopic model, we prescribe the following initial condition:

ρ0(x) =
{
0.75 if x < 0

0.25 if x ≥ 0,
u0(x) =

{
0.5 if x < 0

0.9 if x ≥ 0,
(43)

which defines a Riemann problem with the discontinuity (shock) located at x = 0. Notice
that, due to the periodic boundary conditions, there is actually also a second discontinuity
located at the boundary of �, whose left and right states are switched with respect to those
of the discontinuity at x = 0.

To reproduce such an initial condition at the kinetic level, we use N = 104 particles and
we consider a partition of the space domain� in 100 pairwise disjoint cells. Within each cell,
we distribute uniformly a number of vehicles ρ0(x j )/mp , x j ∈ � being the centre of the j th
cell, with speed equal to u0(x j ) plus a small uniform perturbation of the order p(x j )u0(x j ),
where p(x j ) = 2 · 10−1 if x j < 0 and p(x j ) = 10−2 if x j ≥ 0. Hence, we are imposing a
non-equilibrium initial condition. Figure 3 shows the resulting initial distribution f0(x, v)

on the left panel and the corresponding density and mean speed, which clearly mimic (43)
consistently, on the right panel.

In Fig. 4, we compare the evolution of the system at the computational time t = 6
calculated via the hydrodynamic and the Boltzmann-type kinetic model. In particular, as
far as the latter is concerned, in the microscopic binary interactions (7) we fix λ(ρ) = ρ,
η ∼ U([−0.5, 0.5]) and we use the quasi-invariant scaling (13). We consider three different
orders of magnitude of the scaling parameter: ε = 10−3, 10−2, 10−1 (from the top to the
bottom of Fig. 4). For ε = 10−3, we observe a very good matching between the kinetic and
the macroscopic solutions, consistently with the fact that the macroscopic model has been
obtained from the kinetic model in the limit ε → 0+. Conversely, for larger values of ε

some differences appear, because the interactions in the kinetic model are actually farther
and farther from the local equilibrium. For instance, for ε = 10−2 the maximummean speed
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Fig. 3 Test 2. Left: initial distribution f0(x, v). Right: density and mean speed corresponding to f0(x, v),
which mimic consistently the initial condition (43) of the hydrodynamic model

computed with the kinetic model is nearly 0.7, thus visibly lower than the maximum one
computed with the macroscopic model, i.e. 0.9. This is probably due to diffusive effects,
which get more important far from equilibrium. Moreover, we notice that the rarefaction
waves characterising the macroscopic solution are slightly shifted rightwards in the kinetic
solution. For ε = 10−1, we observe even more marked differences with the hydrodynamic
solution: themean speed computedwith the kinetic model approaches a nearly constant value
around 0.5 while the waves are much more dampened and shifted rightwards.

6.2.4 Test 3: Boltzmann Versus Hydrodynamics for D = 0

Now, we test the case in which the driver behaviour does not contain any stochasticity.
Thus, the idea is to repeat the same simulations of Sect. 6.2.3, with however D = 0 in the
interaction rules (7) and still taking the scaling γ = ε into account, cf. (13). In the limit
ε → 0+, The expected local equilibrium distribution is the Dirac delta (19), which leads
to different dynamics for both the density and the mean speed of the vehicles. Indeed, the
obtained hydrodynamic equations are, in this case, the so-called pressureless gas dynamics
equations, cf. (20).

We prescribe again the initial condition (43) and we use the same parameters as in the
previous test, cf. Sect. 6.2.3. Moreover, we solve the Boltzmann-type equation (10) by means
of the same Monte Carlo method described in Algorithm 1, cf. Sect. 6.2.1, and the hydrody-
namics equations (20) by means of the same Finite Volume method described in Sect. 6.2.2.

Figure 5 shows the results of this test, in particular the density and the mean speed of the
vehicles on the left and the kinetic distribution function in the phase space on the right for
ε = 10−3, 10−2, 10−1 (from top to bottom). The differences with respect to Test 2, cf. Fig. 4,
are evident by observing the shape of the kinetic distribution function. Compared to the case
which includes the stochastic driver behaviour, here f is definitely close to a Dirac delta for
ε = 10−3. Moreover, also for larger values of ε the distribution function exhibits important
differences with respect to the previous case, although it is not actually concentrated around
the mean speed. By analysing the results in terms of the macroscopic parameters, we observe
that the density of the vehicles features an incipient vacuum formation near x = 5, due to
a rarefaction caused by the faster vehicles moving rightwards. Such a vacuum formation is
well reproduced by the kinetic solution, especially for ε = 10−3. Conversely, near x = −5
we observe a peak in the density due to faster vehicles reaching the slow traffic region from
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Fig. 4 Test 2. Left: density and mean speed at the computational time t = 6 obtained with the hydrodynamic
model (17) and the Boltzmann-type kinetic model (10) with D �= 0 in the binary interactions (7). Right:
kinetic distribution in the phase space. From top to bottom, the scaling parameter ε grows from 10−3 to 10−2

and 10−1

behind. This makes simultaneously the mean speed decrease because of the congestion. Such
a density peak is again very much well reproduced by the kinetic solution for ε = 10−3,
while for larger values of ε, i.e. far from the hydrodynamic regime, the kinetic solution shows
a bump profile with a considerably lower maximum. Parallelly, the mean speed exhibits a
much stronger rarefaction wave than in the hydrodynamic case.
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Fig. 5 Test 3. Left: density and mean speed at the computational time t = 6 obtained with the hydrodynamic
model (20) and the Boltzmann-type kinetic model (10) with D = 0 in the binary interactions (7). Right:
kinetic distribution in the phase space. From top to bottom, the scaling parameter ε grows from 10−3 to 10−2

and 10−1

6.3 Enskog-TypeModelWith andWithout Stochasticity

We pass now to the case of Enskog-type kinetic dynamics. As it is clear from Sect. 4, in this
case we have two different types of interactions: quick local ones, described by (24), and
slower non-local ones modelled by (25). In the sequel, we first describe a suitable numerical
algorithm consistent with such a splitting of the interaction dynamics, then we compare the
kinetic results with the hydrodynamic ones by distinguishing again the cases D �= 0 and
D = 0 in the microscopic interaction rules (7) with the quasi-invariant scaling (13).
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6.3.1 A Monte Carlo Method for the Enskog Model

In order to derive a Monte Carlo method for the approximation of the Enskog-type model,
we first rewrite (23) in strong form by choosing formally ϕ(·) = δ(· − v):

∂t f (t, x, v) + v∂x f (t, x, v)

= 1

ε

[〈∫ 1

0

∫ 1

0
δ(v′

1 − v) f (t, x, v1) f (t, x, v2) dv1 dv2

〉
− ρ(t, x) f (t, x, v)

]

+ H

2

[〈∫ 1

0

∫ 1

0
δ(v′

1 − v) f (t, x, v1)∂x f (t, x, v2) dv1 dv2

〉
− ∂xρ(t, x) f (t, x, v)

]
,

(44)

where we have again switched to the notation v1, v2 for the pre-interaction speeds (dummy
integration variables) and to v′

1 for the post-interaction speed of the first vehicle. Next, we
choose the size �x of the spatial mesh as a submultiple of the headway H , i.e. such that
H = k�x with k ∈ N. In particular, we fix k = 1 and we approximate the space derivatives
at the right-hand side with the upwind formula:

∂x f (t, x, v2) ≈ f (t, x + �x, v2) − f (t, x, v2)

�x
,

∂xρ(t, x) ≈ ρ(t, x + �x) − ρ(t, x)

�x
.

This produces the following approximation of the right-hand side of (44):

1

ε

[〈∫ 1

0

∫ 1

0
δ(v′

1 − v) f (t, x, v1) f (t, x, v2) dv1 dv2

〉
− ρ(t, x) f (t, x, v)

]

+1

2

[〈∫ 1

0

∫ 1

0
δ(v′

1 − v) f (t, x, v1) f (t, x + �x, v2) dvdv2

〉

−ρ(t, x + �x) f (t, x, v)

]
, (45)

where we have further approximated the constant 1
ε

− 1
2 in front of the first term with 1

ε
,

considering that we are interested in the regime of small ε.
Starting from (45), the Monte Carlo method is composed of three steps.

Transport Each car advances from time tn over a time interval of length �t by changing its
position according to

Xn+1
k = Xn

k + V n
k �t,

whence an intermediate particle density f̃ n(x j , v) and the corresponding macroscopic den-
sity ρ̃n(x j ) can be computed using (36), (37).

Local interaction Invoking the gain operator (39), from (45)with the splitting (24)we update
f̃ n in consequence of the quick local interactions as

˜̃f n(x, v) =
(
1 − ρ̃n(x)�t

ε

)
f̃ n(x, v) + ρ̃(x)�t

ε
Q+( f̃ n, f̃ n)(x, v). (46)

From ˜̃f n , we also compute the new macroscopic density ˜̃ρn .
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Non-local interaction Defining from (45) the Enskog gain operator:

Q+
E ( f , f )(t, x, v) :=

〈∫ 1

0

∫ 1

0
δ(v′

1 − v) f (t, x, v1) f (t, x + �x, v2) dv1 dv2

〉
,

we finally update ˜̃f n by taking into account also the contribution of the non-local dynamics:

f n+1(x, v) =
(
1 −

˜̃ρn(x + �x)�t

2

)
˜̃f n(x, v) +

˜̃ρ(x + �x)�t

2
Q+

E (
˜̃f n, ˜̃f n)(x, v).

(47)
At the Monte Carlo level, (46)–(47) may be interpreted as follows:

• in (46),with probability 1− ρ̃n(x)�t
ε

the interactingvehicle does not change speed,whereas

with probability ρ̃n(x)�t
ε

it changes speed from V n
k to a new value Ṽ n

k computed bymeans
of (7) with the quasi-invariant scaling (13). Such a change of speed is possibly caused
by another vehicle located within the same cell of the spatial grid (local interaction);

• in (47), with probability 1 − ˜̃ρn(x+�x)�t
2 the interacting vehicle does not change speed,

while with probability
˜̃ρn(x+�x)�t

2 it changes speed from Ṽ n
k to a new value V n+1

k , which
is computed again with (7)–(13) but considering now another vehicle located in the next
cell of the spatial grid (non-local interaction).

The implementation of this algorithm follows very closely the one detailed in Algorithm 1,
thus it is not given here explicitly.

6.3.2 A Finite VolumeMethod for the Hydrodynamic Limit of the Enskog Model

We now briefly discuss also the numerical approximation of the hydrodynamic equa-
tions (28), (29).

Both macroscopic models are discretised using a fifth order WENO method combined
with a Rusanov flux for the hyperbolic derivatives, as discussed in Sect. 6.2.2. In both cases,
the unknown is U = (ρ, q)T with q = ρu. Moreover, for (28) the numerical flux is given
by (41) while for (29) it is given by (42) with the same choices of f , g, �, f ∗, g∗, �∗
indicated in Sect. 6.2.2. Also the reconstruction of the macroscopic parameters ρ, q at the
grid interfaces follows the same lines outlined in Sect. 6.2.2.

The only difference, which requires an ad hoc discussion, is the discretisation of the term

ρ2 γ λ(ρ)H

2
∂xu

appearing on the right-hand side of (28), (29), which does not have a counterpart in mod-
els (17), (20) because it is produced by the non-locality of the Enskog interaction operator.
We treat this term simply by a time splitting approach. Thus, we first compute

ρ
n+1/2
i = ρn

i − �t

�x

(
f̂ n
i+ 1

2
− f̂ n

i− 1
2

)
, qn+1/2

i = qni − �t

�x

(
ĝn
i+ 1

2
− ĝn

i− 1
2

)
,

as if we were solving (17), (20), and then we update

ρn+1
i = ρ

n+1/2
i , qn+1

i = qn+1/2
i − �t(ρn+1

i )
2 γ λ(ρn

i )H

2
· u

n+1/2
i+1 − un+1/2

i

�x
.

Finally,wefix the time step according to the stability condition�t = 0.2�x/maxx∈�{μ+,

μ−}, where μ± are the eigenvalues of the Jacobian matrix of the flux, cf. Sects. 4.1, 4.2, and
we use a second order Runge–Kutta time discretisation.
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Fig. 6 Test 4. Left: density and mean speed at the computational time t = 6 obtained with the hydrodynamic
model (28) and the Enskog-type kinetic model (23) with D �= 0 in the binary interactions (7). Right: kinetic
distribution in the phase space. From top to bottom, the scaling parameter ε grows from 10−3 to 10−2 and
10−1

6.3.3 Test 4: Enskog Versus Hydrodynamics for D �= 0

The setting of this test is the same as that of Sect. 6.2.3 as far as the details of both the
model and the numerical discretisation are concerned, so as to allow for a straightforward
comparison. Figure 6 shows the results of the present test in terms of the density and the
mean speed of the vehicles on the left and of the kinetic distribution function in the phase
space on the right for increasing values of the scaling parameter from ε = 10−3 to ε = 10−2

and ε = 10−1 (top to bottom). In particular, the density and the mean speed are computed
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both from the Enskog-type kinetic model (23) and from the corresponding hydrodynamic
model (28). As expected from the theory, a good matching between the kinetic and the
hydrodynamic solutions is obtained for ε = 10−3.

With respect to the Boltzmann-type kinetic model, cf. Fig. 4, we observe that the Enskog-
type solution exhibits either a more pronounced peak near x = −5 for ε = 10−2 or a more
pronounced incipient vacuum formation near x = 5 for ε = 10−1. On the other hand, for
ε = 10−1 the mean speed seems to approach again the constant value 0.5. Instead, the two
kinetic solutions, and therefore also the corresponding macroscopic ones, are quite similar
to each other near the hydrodynamic regime, namely, in this test, for ε = 10−3.

6.3.4 Test 5: Enskog Versus Hydrodynamics for D = 0 (Aw–Rascle Model)

Also this test shares the same modelling and numerical setting as the previous Tests 3, 4
discussed in Sects. 6.2.3, 6.3.3. In this case, we compare the Enskog-type kinetic model (23)
with no microscopic randomness in the driver behaviour (D = 0 in the binary interactions)
and the corresponding hydrodynamic model (29), which, as shown in Sect. 4.2, turns out to
be the Aw–Rascle macroscopic traffic model.

Figure 7 shows the results of this test in terms of the density and the mean speed of the
vehicles on the left and of the kinetic distribution function in the phase space on the right for
increasing values of the scaling parameter from ε = 10−3 to ε = 10−2 and ε = 10−1 (top to
bottom). Compared to the case D �= 0, cf. Sect. 6.3.3 and Fig. 6, the qualitative differences are
evident. For small ε, we observe again a very good agreement between the hydrodynamic and
the kinetic solutions, as expected from the theory. In particular, the hydrodynamic results are
similar to those obtained in the Boltzmann-type case, cf. Fig. 5: the rarefaction wave featured
by the macroscopic density on the right-hand side of the space domain is stronger, leading to
values close to zero, while the peak of the density on the left-hand side of the space domain
gets much more pronounced in the limit ε → 0+. For increasing ε, the location of the density
peak shifts rightwards in the kinetic solution and the peak value diminishes.

6.4 Comparison of the Hydrodynamic Models

Finally, we compare the macroscopic models (17), (20), (28), (29) obtained in the hydrody-
namic limit. The numerical discretisation is the same as that described in Sects. 6.2.2, 6.3.2,
however here we use a finer spatial grid made of 500 cells in order to better highlight the
differences among the various cases.

Test 6 We begin from the same Riemann problem that we have considered so far, namely
the one described by the initial conditions (43). In Fig. 8, we report the macroscopic density
and the mean speed produced by the four models at the computational time t = 12. We
clearly observe that the hydrodynamic models (20), (29), obtained from the Boltzmann-type
and the Enskog-type kinetic descriptions with D = 0, respectively, show the most relevant
differences. In particular, the solution of model (29) is shifted leftwards with respect to that
of model (20) and, furthermore, it produces milder congestion states due to the anticipatory
ability of the drivers. Conversely, the hydrodynamic models (17), (28), obtained from the
Boltzmann-type and the Enskog-type kinetic descriptions with D �= 0, respectively, feature
very little differences from each other, due to the smoothing role played by the microscopic
diffusion.

Test 7 We now consider the propagation of an initially smooth wave, that we choose as
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Fig. 7 Test 5. Left: density and mean speed at the computational time t = 6 obtained with the hydrodynamic
model (29) and the Enskog-type kinetic model (23) with D = 0 in the binary interactions (7). Right: kinetic
distribution in the phase space. From top to bottom, the scaling parameter ε grows from 10−3 to 10−2 and
10−1

ρ0(x) = 1

3

[
2 + sin

(π

5
x
)]

, u0(x) = 1

2 + sin
(

π
5 x

) . (48)

Figure 9 shows that the results are qualitatively analogous to those of the previous test: the
two hydrodynamic models with D �= 0, namely (17) and (28), do not exhibit important
differences, which are instead more marked in the case D = 0 between the hydrody-
namic models (20) and (29). For D = 0, a density congestion arises. More specifically, in
model (20), obtained from the Boltzmann-type description, the congestion is stronger, while
in model (29), obtained from the Enskog-type description, it is milder due to the anticipatory
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Fig. 8 Test 6. Density ρ (left) and mean speed u (right), both at the computational time t = 12, computed
with the four hydrodynamic models (17), (20), (28), (29), starting from the initial condition (43) and with
periodic boundary conditions

Fig. 9 Test 7. Density ρ (left) and mean speed u (right), both at the computational time t = 12, computed
with the four hydrodynamic models (17), (20), (28), (29), starting from the initial condition (48) and with
periodic boundary conditions

nature of the interactions among the vehicles, which start to slow down before reaching the
queue. Conversely, for D �= 0 we observe a regularising effect of the microscopic diffusion
on the macroscopic traffic, together with wave propagation phenomena similar to the case of
a linear hyperbolic system.

Test 8 Finally, we increase the strength of the interaction with the vehicles ahead, so as to
ascertain the effect of the anticipatory nature of the interactions in the Enskog-type setting.
In this test, we confine ourselves to the case D = 0, namely we compare the pressureless
hydrodynamic model (20) with the Aw–Rascle hydrodynamic model (29). In particular, we
set λ(ρ) = 10ρ, while we remind that, so far, we have always used λ(ρ) = ρ. All of the
other parameters are set as in the previous tests. Furthermore, we prescribe the following
initial condition:

ρ0(x) =
{
0.25 if x < 0

0.75 if x ≥ 0,
u0(x) =

{
0.2 if x < 0

0.4 if x ≥ 0
(49)
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Fig. 10 Test 8. Density (left) and mean speed (right) at successive times computed with the hydrodynamic
models (20), (29) starting from the initial condition (49) and with periodic boundary conditions
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and we assign periodic boundary conditions. Similarly to (43), this setting defines a Riemann
problem with two discontinuities located in x = 0 and at the boundary of the domain,
respectively.

Figure 10 shows the evolution of the density and of the mean speed, respectively, at the
successive computational times t = 2.5, 5, 7.5, 10. We clearly see that the Aw–Rascle
model (29), obtained from the Enskog-type description with D = 0, is able to anticipate the
situation of the traffic ahead and to account for a backward propagation of density waves.
This also allows themodel to produce bounded congestion states. Conversely, the pressureless
model (20), obtained from the Boltzmann-type description with D = 0, forms a stronger and
stronger localised congestion, which moves forward. At the same time, in the Aw–Rascle
model the mean speed is lower than that of the pressureless model in correspondence of the
traffic congestion.

The same qualitative results, here investigated in the limit hydrodynamic models, hold
for the Boltzmann-type and the Enskog-type kinetic models with a small enough scaling
parameter ε > 0. Consistently with what was argued in [21], this indicates that, in spite of the
non-negativity of themicroscopic speeds, theEnskog-type description, unlike theBoltzmann-
type one, is able to account for backward propagating density waves. Not surprisingly, then,
it constitutes an appropriate basis for the derivation of the hydrodynamic Aw–Rascle model
from kinetic principles.

7 Conclusions

In this paper, we have proved that the macroscopic Aw–Rascle traffic model [1], proposed
independently also by Zhang [45], may be fruitfully explained as the hydrodynamic limit
of an Enskog-type kinetic description. In particular, we have shown that the non-locality
of the microscopic interactions among the vehicles plays a fundamental role in conferring
the anticipatory nature on the macroscopic dynamics. More precisely, our results indicate
that such a large scale anticipatory behaviour is produced by the superposition of quick
local interactions and slow background actions, that the drivers perform to adapt their pace
to the mean flow. Background actions are not present in a more standard Boltzmann-type
kinetic description, which explains why, as already implied in [21], the Aw–Rascle model
cannot be obtained therefrom. However, our study has highlighted that the non-locality of the
interactions is not sufficient, by itself, to produce, in the macroscopic limit, the Aw–Rascle
model. It is also necessary that the microscopic rules followed by the vehicles, here written as
a relaxation towards the speed of the leading vehicle (follow-the-leader), are deterministic,
i.e. free from stochastic contributions caused by the driver behaviour. Indeed, in this way the
local interactions drive the system quickly towards the local mean speed of the flow without
fluctuations. If present, instead, the random fluctuations generate a standard gas-dynamical
pressure-like term in the macroscopic equations, which, as explained in [1], is typically
responsible for the violation of the Aw–Rascle condition.

By relying on this sound mathematical-physical understanding, we have used the Enskog-
type kinetic description and the related hydrodynamic limit to generalise the Aw–Rascle
model to a new class of second order macroscopic traffic models, which satisfy the Aw–
Rascle condition. Also for such new models, it has been possible to link precisely the key
macroscopic features, such as e.g., the Aw–Rascle traffic pressure responsible for the antic-
ipatory dynamics, to structural properties of the microscopic binary rules modelling the
behaviour of the vehicles.
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We believe that the link we have established in this paper between the kinetic approach
and possibly generalised versions of the Aw–Rascle model may pave the way for the future
investigation of hierarchical control problems, from the level of single vehicles (driver-
assist/autonomous vehicles) to that of the aggregate flow, in the spirit of [41] and with
specific focus on second order macroscopic traffic models.
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