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Abstract
We study the hydrodynamic scaling limit for the Glauber–Kawasaki dynamics. It is known
that, if the Kawasaki part is speeded up in a diffusive space-time scaling, one can derive the
Allen–Cahn equation which is a kind of the reaction–diffusion equation in the limit. This
paper concerns the scaling that the Glauber part, which governs the creation and annihilation
of particles, is also speeded up but slower than the Kawasaki part. Under such scaling, we
derive directly from the particle system the motion by mean curvature for the interfaces
separating sparse and dense regions of particles as a combination of the hydrodynamic and
sharp interface limits.

Keywords Hydrodynamic limit · Motion by mean curvature · Glauber–Kawasaki
dynamics · Allen–Cahn equation · Sharp interface limit

Mathematics Subject Classification Primary 60K35; Secondary 82C22 · 74A50

1 Introduction

In this paper, we consider the Glauber–Kawasaki dynamics, that is the simple exclusion
process with an additional effect of creation and annihilation of particles, on a d-dimensional
periodic square lattice of size N with d ≥ 2 and study its hydrodynamic behavior. We
introduce the diffusive space-time scaling for the Kawasaki part. Namely, the time scale of
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particles performing random walks with exclusion rule is speeded up by N 2. It is known
that, if the time scale of the Glauber part stays at O(1), one can derive the reaction–diffusion
equation in the limit as N → ∞.

This paper discusses the scaling under which the Glauber part is also speeded up by the
factor K = K (N ), which is at the mesoscopic level. More precisely, we take K such as
K → ∞ satisfying K ≤ const × (log N )1/2, and show that the system exhibits the phase
separation. In other words, if we choose the rates of creation and annihilation in a proper way,
then microscopically the whole region is separated into two regions occupied by different
phases called sparse and dense phases, and the macroscopic interface separating these two
phases evolves according to the motion by mean curvature.

1.1 Known Result on Hydrodynamic Limit

Before introducing our model, we explain a classical result on the hydrodynamic limit for
the Glauber–Kawasaki dynamics in a different scaling from ours. Let Td

N := (Z/NZ)d =
{1, 2, . . . , N }d be the d-dimensional square lattice of size N with periodic boundary con-

dition. The configuration space is denoted by XN = {0, 1}Td
N and its element is described

by η = {ηx }x∈Td
N
. In this subsection, we discuss the dynamics with the generator given by

LN = N 2LK + LG , where

LK f (η) = 1

2

∑

x,y∈Td
N :|x−y|=1

{
f
(
ηx,y)− f (η)

}
,

LG f (η) =
∑

x∈Td
N

cx (η)
{
f
(
ηx)− f (η)

}
,

for a function f on XN . The configurations ηx,y and ηx ∈ XN are defined from η ∈ XN as

(ηx,y)z =

⎧
⎪⎨

⎪⎩

ηy if z = x,

ηx if z = y,

ηz if z �= x, y,

(ηx )z =
{
1 − ηz if z = x,

ηz if z �= x .

The flip rate c(η) ≡ c0(η) in theGlauber part is a nonnegative local function onX := {0, 1}Zd

(regarded as that on XN for N large enough), cx (η) = c(τxη) and τx is the translation acting
on X or XN defined by (τxη)z = ηz+x , z ∈ Z

d or Td
N . In fact, c(η) has the following form:

c(η) = c+(η)(1 − η0) + c−(η)η0, (1.1)

where c+(η) and c−(η) represent the rates of creation and annihilation of a particle at x = 0,
respectively, and both are local functions which do not depend on the occupation variable η0.

LetηN (t) = {ηN
x (t)}x∈Td

N
be theMarkovprocess onXN generated by LN . Themacroscop-

ically scaled empirical measure on Td , that is [0, 1)d with the periodic boundary, associated
with a configuration η ∈ XN is defined by

αN (dv; η) = 1

Nd

∑

x∈Td
N

ηxδx/N (dv), v ∈ T
d ,

and we set

αN (t, dv) = αN (dv; ηN (t)), t ≥ 0. (1.2)
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Motion by Mean Curvature from Glauber–Kawasaki Dynamics 185

Then, it is known that the empirical measure αN (t, dv) converges to ρ(t, v)dv as N → ∞
in probability (multiplying a test function on T

d ) if this holds at t = 0. Here, ρ(t, v) is a
unique weak solution of the reaction–diffusion equation

∂tρ = �ρ + f (ρ), v ∈ T
d , (1.3)

with the given initial value ρ(0), dv is the Lebesgue measure on T
d and

f (ρ) = Eνρ [(1 − 2η0)c(η)], (1.4)

where νρ is the Bernoulli measure on Zd with mean ρ ∈ [0, 1]. This was shown by De Masi
et al. [8]; see also [7] and [13] for further developments in the Glauber–Kawasaki dynamics.
We use the same letter f for functions on XN and the reaction term defined by (1.4), but
these should be clearly distinguished.

From (1.1), the reaction term can be rewritten as

f (ρ) = Eνρ [c+(η)(1 − η0) − c−(η)η0]
= c+(ρ)(1 − ρ) − c−(ρ)ρ,

if c± are given as the finite sum of the form:

c±(η) =
∑

0/∈
�Zd

c±



∏

x∈


ηx , (1.5)

with some constants c±

 ∈ R. Note that c±(ρ) := Eνρ [c±(η)] are equal to (1.5) with ηx

replaced by ρ. We give an example of the flip rate c(η) and the corresponding reaction term
f (ρ) determined by (1.4).

Example 1.1 Consider c±(η) in (1.1) of the form

c+(η) = a+ηn1ηn2 + b+ηn1 + c+ > 0,

c−(η) = a−ηn1ηn2 + b−ηn1 + c− > 0,
(1.6)

with a±, b±, c± ∈ R and n1, n2 ∈ Z
d such that three points {n1, n2, 0} are different. Then,

f (ρ) = −(a+ + a−)ρ3 + (a+ − b+ − b−)ρ2 + (b+ − c+ − c−)ρ + c+. (1.7)

In particular, under a suitable choice of six constants a±, b±, c±, one can have

f (ρ) = −C(ρ − α1)(ρ − α∗)(ρ − α2), (1.8)

with some C > 0, 0 < α1 < α∗ < α2 < 1 satisfying α1 + α2 = 2α∗; see the example
in Sect. 8 of [13] with α∗ = 1/2 given in 1-dimensional setting. Namely, f (ρ) is bistable
with stable points ρ = α1, α2 and unstable point α∗, and satisfies the balance condition∫ α2
α1

f (ρ)dρ = 0.

For the reaction term f of the form (1.8), the Eq. (1.3) considered on R instead of Td

admits a traveling wave solution which connects two different stable points α1, α2, and its
speed is 0 due to the balance condition. The traveling wave solution with speed 0 is called a
standing wave. See Sect. 4.2 for details.
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186 T. Funaki , K. Tsunoda

1.2 Our Model andMain Result

Themodelwe concern in this paper is theGlauber–Kawasaki dynamicsηN (t) = {ηN
x (t)}x∈Td

N

on XN with the generator LN = N 2LK + K LG with another scaling parameter K > 0. The
parameter K depends on N as K = K (N ) and tends to ∞ as N → ∞.

If we fix K so as to be independent of N , then, as we saw in Sect. 1.1, we obtain the
reaction–diffusion equation for ρ ≡ ρK (t, v) in the hydrodynamic limit:

∂tρ = �ρ + K f (ρ), v ∈ T
d . (1.9)

The partial differential equation (PDE) (1.9)with the large reaction term K f , which is bistable
and satisfies the balance condition as in Example 1.1, is called the Allen–Cahn equation. It
is known that as K → ∞ the Allen–Cahn equation leads to the motion by mean curvature;
see Sect. 4. Our goal is to derive it directly from the particle system.

For our main theorem, we assume the following five conditions on the creation and anni-
hilation rates c±(η) and the mean uN (0, x) = E[ηN

x (0)], x ∈ T
d
N of the initial distribution

of our process.

(A1) c±(η) have the form (1.6) with n1, n2 ∈ Z
d , both of which have at least one positive

components, and three points {n1, n2, 0} are different.
(A2) The corresponding f defined by (1.4) or equivalently by (1.7) is bistable, that is, f has

exactly three zeros 0 < α1 < α∗ < α2 < 1 and f ′(α1) < 0, f ′(α2) < 0 hold, and it
satisfies the balance condition

∫ α2
α1

f (ρ)dρ = 0.

(A3) c+(u) is increasing and c−(u) is decreasing in u = {unk }2k=1 ∈ [0, 1]2 under the partial
order u ≥ v defined by unk ≥ vnk for k = 1, 2, where c±(u) are defined by (1.6) with
ηnk replaced by unk .

(A4) ‖∇NuN (0, x)‖ ≤ C0K
(= C0K (N )

)
for some C0 > 0, where ∇Nu(x) := {N (u(x +

ei ) − u(x))}di=1 with the unit vectors ei ∈ Z
d of the direction i and ‖ · ‖ stands for the

standard Euclidean norm of Rd .
(A5) uN (0, v), v ∈ T

d defined by (2.5) from uN (0, x) satisfies the bound (4.3) at t = 0.

The condition (A5) implies that a smooth hypersurface �0 in Td without boundary exists
and uN (0, v) defined by (2.5) converges to χ�0(v) weakly in L2(Td) as N → ∞, see (4.7)
taking t = 0. We denote for a closed hypersurface � which separates Td into two disjoint
regions,

χ�(v) :=
{

α1, for v on one side of �,

α2, for v on the other side of �.
(1.10)

It is known that a smooth family of closed hypersurfaces {�t }t∈[0,T ] in Td , which starts from
�0 and evolves being governed by the motion by mean curvature (4.1), exists until some time
T > 0; recall d ≥ 2 and see the beginning of Sect. 4 for details. Note that the sides of �t in
(1.10) with � = �t is kept under the time evolution and determined continuously from those
of �0. We need the smoothness of �t to construct super and sub solutions of the discretized
hydrodynamic equation in Theorem 4.6.

Let μN
0 be the distribution of ηN (0) on XN and let νN

0 be the Bernoulli measure on XN

with mean uN (0) = {uN (0, x)}x∈Td
N
. Recall that uN (0, x) is the mean of ηx under μN

0 for

each x ∈ T
d
N . Our another condition with δ > 0 is the following.

(A6)δ The relative entropy at t = 0 defined by (2.4) behaves as H(μN
0 |νN

0 ) = O(Nd−δ0) as
N → ∞with some δ0 > 0 and K = K (N ) → ∞ satisfies 1 ≤ K (N ) ≤ δ(log N )1/2.
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Motion by Mean Curvature from Glauber–Kawasaki Dynamics 187

The main result of this paper is now stated as follows. Recall that αN (t) is defined by
(1.2).

Theorem 1.1 Assume the six conditions (A1)–(A6)δ with δ > 0 small enough chosen depend-
ing on T . Then, we have

lim
N→∞ P

(∣∣∣〈αN (t), ϕ〉 − 〈χ�t , ϕ〉
∣∣∣ > ε

)
= 0, t ∈ [0, T ], (1.11)

for every ε > 0 and ϕ ∈ C∞(Td), where 〈α, ϕ〉 or 〈χ�, ϕ〉 denote the integrals on T
d of ϕ

with respect to the measures α or χ�(v)dv, respectively.

The proof of Theorem 1.1 consists of two parts, that is, the probabilistic part in Sects. 2
and 3, and the PDE part in Sect. 4. In the probabilistic part, we apply the relative entropy
method of Jara and Menezes [24,25], which is in a sense a combination of the methods due
to Guo et al. [22] and Yau [31]. In the PDE part, we show the convergence of solutions of
the discretized hydrodynamic equation (2.2) with the limit governed by the motion by mean
curvature. More precise rate of convergence in (1.11) is given in Remark 3.1.

We give some explanation for our conditions. If we take a+ = 32, b+ = 0, c+ =
3, a− = 0, b− = −16, c− = 19 in Example 1.1, we have c+(u) = 32un1un2 + 3, c−(u) =
−16un1 +19 and f (ρ) has the form (1.8) withC = 32, α1 = 1/4, α∗ = 1/2 and α2 = 3/4 so
that the conditions (A1)–(A3) are satisfied. For simplicity,wediscuss in this paper c±(η)of the
form (1.6) only, however one can generalize our result tomore general c±(η) given as in (1.5).
The corresponding f may have several zeros, but we may restrict our arguments in the PDE
part to a subinterval of [0, 1], onwhich the conditions (A2) and (A3) are satisfied. The entropy
condition in (A6)δ is satisfied, for example, if dμN

0 = gNdνN
0 and log ‖gN‖∞ ≤ CNd−δ0

holds for some C > 0.
In the probabilistic part, we only need the following condition weaker than (A5).

(A7) u− ≤ uN (0, x) ≤ u+ for some 0 < u− < u+ < 1.

For convenience, we take u± such that 0 < u− < α1 < α2 < u+ < 1 by making u−
smaller and u+ larger if necessary; see the comments given belowTheorem4.1. The condition
(A7) with this choice of u± is called (A7)′. Under this choice of u±, the condition (A3) can
be weakened and it is sufficient if it holds for u ∈ [u−, u+]2. The conditions (A1), (A4),
(A6)δ , (A7) are used in the probabilistic part, while (A2), (A3), (A5) are used in the PDE
part. To be precise, (A2), (A3) are used also in the probabilistic part but in a less important
way; see the comments below Theorem 2.1.

The derivation of the motion by mean curvature and the related problems of pattern
formation in interacting particle systems were discussed by Spohn [29] rather heuristically,
and by De Masi et al. [11], Katsoulakis and Souganidis [26], Giacomin [21] for Glauber–
Kawasaki dynamics. De Masi et al. [9,10], Katsoulakis and Souganidis [27] studied Glauber
dynamics with Kac type long range mean field interaction. Related problems are discussed
by Caputo et al. [3,4]. Similar idea is used in Hernández et al. [23] to derive the fast diffusion
equation from zero-range processes. Bertini et al. [2] discussed from the viewpoint of large
deviation functionals.

In particular, the results of [26] are close to ours. They consider the Glauber–Kawasaki
dynamics with generator λ−2(ε−2LK + LG) under the spatial scaling (λε)−1, where λ =
λ(ε) (↓ 0) should satisfy the condition limε↓0 ε−ζ ∗

λ(ε) = ∞ with some ζ ∗ > 0. If we write
N = (λε)−1 as in our case, the generator becomes N 2LK + λ−2LG so that λ−2 plays a role
similar to our K = K (N ). They analyze the limit of correlation functions.
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188 T. Funaki , K. Tsunoda

On the other hand, our analysis makes it possible to study the limit of the empirical
measures, which is more natural in the study of the hydrodynamic limit, under a milder
assumption on the initial distribution μN

0 . Moreover, we believe that our relative entropy
method has an advantage to work for a wide class of models in parallel. Furthermore, this
method is applicable to study the fast-reaction limit for two-component Kawasaki dynamics,
which leads to the two-phase Stefan problem, see [12].

Finally, we make a brief comment on the case that f is unbalanced:
∫ α2
α1

f (ρ)dρ �= 0.

For such f , the proper time scale is shorter and turns out to be K−1/2t , so that the Eq. (1.9)
is rescaled as

∂tρ = K−1/2�ρ + K 1/2 f (ρ), v ∈ T
d .

It is known that this equation exhibits a different behavior in the sharp interface limit as
K → ∞, see p. 95 of [16]. The present paper does not discuss this case.

2 Relative EntropyMethod

We start the probabilistic part by formulating Theorem 2.1. This gives an estimate on the
relative entropy of our system with respect to the local equilibria and implies the weak law
of large numbers (2.6) as its consequence. We compute the time derivative of the relative
entropy to give the proof of Theorem 2.1. In Sects. 2 and 3, it is unnecessary to assume d ≥ 2,
so that we discuss for all d ≥ 1 including d = 1.

2.1 The Entropy Estimate

From (1.1), the flip rate cx (η) ≡ c(τxη) of the Glauber part has the form

cx (η) = c+
x (η)(1 − ηx ) + c−

x (η)ηx , (2.1)

where c±
x (η) = c±(τxη) with c±(η) of the form (1.5). Let uN (t) = {uN (t, x) ∈ [0, 1]}x∈Td

N
be the solution of the discretized hydrodynamic equation:

∂t u
N (t, x) = �NuN (t, x) + K f N

(
x, uN (t)

)
, x ∈ T

d
N , (2.2)

where f N (x, u) is defined by

f N (x, u) = (1 − ux )c
+
x (u) − uxc

−
x (u), (2.3)

for u ≡ {ux = u(x)}x∈Td
N
and

�Nu(x) := N 2
∑

y∈Td
N :|y−x |=1

(u(y) − u(x)) = N 2
d∑

i=1

(u(x + ei ) + u(x − ei ) − 2u(x)) .

Note that c±
x (u) := Eνu [c±

x (η)] are given by (1.5) with ηx replaced by ux and νu is the
Bernoulli measure with non-constant mean u = u(·). In the following, we assume that c±(η)

have the form (1.6) and, in this case, we have

f N (x, u) = −(a+ + a−)uxux+n1ux+n2 + a+ux+n1ux+n2

− (b+ + b−)uxux+n1 − (c+ + c−)ux + b+ux+n1 + c+.
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Motion by Mean Curvature from Glauber–Kawasaki Dynamics 189

Let μ and ν be two probability measures on XN . We define the relative entropy of μ with
respect to ν by

H(μ|ν) :=
∫

XN

dμ

dν
log

dμ

dν
dν (≥ 0), (2.4)

if μ is absolutely continuous with respect to ν, H(μ|ν) := ∞, otherwise. Let μN
t be the

distribution of ηN (t) on XN and let νN
t be the Bernoulli measure on XN with mean uN (t) =

{uN (t, x)}x∈Td
N
. The following result plays an essential role to prove Theorem 1.1.

Theorem 2.1 We assume the conditions (A1)–(A4) and (A7)′. Then, if (A6)δ holds with small
enough δ > 0, we have

H(μN
t |νN

t ) = o(Nd), t ∈ [0, T ],
as N → ∞. The constant δ > 0 depends on T > 0.

Note that the condition (A7)′, i.e. (A7) with an additional condition on the choice of u±,
combined with the comparison theorem implies that the solution uN (t, x) of the discretized
hydrodynamic equation (2.2) satisfies that u− ≤ uN (t, x) ≤ u+ for all t ∈ [0, T ] and
x ∈ T

d
N ; see the comments given below Theorem 4.1. The conditions (A2) and (A3) are used

only to show this bound for uN (t, x).

2.2 Consequence of Theorem 2.1

We define the macroscopic function uN (t, v), v ∈ T
d associated with the microscopic func-

tion uN (t, x), x ∈ T
d
N as a step function

uN (t, v) =
∑

x∈Td
N

uN (t, x)1B( x
N , 1

N )(v), v ∈ T
d , (2.5)

where B( x
N , 1

N ) = ∏d
i=1[ xiN − 1

2N ,
xi
N + 1

2N ) is the box with center x/N and side length
1/N . Then the entropy inequality (see Proposition A1.8.2 of [28] or Sect. 3.2.3 of [17])

μN
t (A) ≤ log 2 + H(μN

t |νN
t )

log{1 + 1/νN
t (A)} , A ⊂ XN ,

combined with Theorem 2.1 and Proposition 2.2 stated below shows that

lim
N→∞ μN

t (Aε
N ,t ) = 0, (2.6)

for every ε > 0, where

Aε
N ,t ≡ Aε

N ,t,ϕ :=
{
η ∈ XN ;

∣∣∣〈αN , ϕ〉 − 〈uN (t, ·), ϕ〉
∣∣∣ > ε

}
, ϕ ∈ C∞(Td).

Proposition 2.2 There exists C = Cε > 0 such that

νN
t (Aε

N ,t ) ≤ e−CNd
.

Proof Set and observe

X := 〈αN , ϕ〉 − 〈uN (t, ·), ϕ〉 = 1

Nd

∑

x∈Td
N

{
ηx − uN (t, x)

}
ϕ
( x

N

)
+ o(1),
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190 T. Funaki , K. Tsunoda

as N → ∞. Then, we have

νN
t (Aε

N ,t ) ≤ e−γ εNd
EνN

t

[
eγ Nd |X |]

≤ e−γ εNd
{
EνN

t

[
eγ Nd X

]
+ EνN

t

[
e−γ Nd X

]}
,

for every γ > 0, where we used the elementary inequality e|x | ≤ ex + e−x to obtain the
second inequality. By the independence of {ηx }x∈Td

N
under νN

t , the expectations inside the
last braces can be written as

EνN
t [e±γ Nd X ] =

∏

x∈Td
N

EνN
t [e±γ {ηx−ux }ϕx+o(1)]

=
∏

x∈Td
N

{
e±γ (1−ux )ϕx ux + e∓γ uxϕx (1 − ux )

}
+ o(1),

where ux = uN (t, x) and ϕx = ϕ(x/N ). Applying the Taylor’s formula at γ = 0, we see
∣∣∣e±γ (1−ux )ϕx ux + e∓γ uxϕx (1 − ux ) − 1

∣∣∣ ≤ Cγ 2, C = C‖ϕ‖∞ ,

for 0 < γ ≤ 1. Thus we obtain

νN
t (Aε

N ,t ) ≤ e−γ εNd+Cγ 2Nd
,

for γ > 0 sufficiently small. This shows the conclusion. ��

2.3 Time Derivative of the Relative Entropy

For a function f on XN and a measure ν on XN , set

DN ( f ; ν) = 2N 2DK ( f ; ν) + KDG( f ; ν), (2.7)

where

DK ( f ; ν) = 1

4

∑

x,y∈Td
N :|x−y|=1

∫

XN

{
f
(
ηx,y)− f (η)

}2
dν,

DG( f ; ν) =
∑

x∈Td
N

∫

XN

cx (η)
{
f (ηx ) − f (η)

}2
dν.

Take a family of probability measures {νt }t≥0 on XN differentiable in t and a probability
measurem onXN as a reference measure, and setψt (η) := (dνt/dm)(η). Assume that these
measures have full supports inXN . We denote the adjoint of an operator L on L2(m) by L∗,m

in general. Then we have the following proposition called Yau’s inequality; see Theorem 4.2
of [17] or Lemma A.1 of [25] for the proof.

Proposition 2.3

d

dt
H(μN

t |νt ) ≤ −DN

⎛

⎝
√
dμN

t

dνt
; νt

⎞

⎠+
∫

XN

(L∗,νt 1 − ∂t logψt )dμN
t , (2.8)

where 1 stands for the constant function 1(η) ≡ 1, η ∈ XN .

We apply Proposition 2.3 with νt = νN
t to prove Theorem 2.1.
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Motion by Mean Curvature from Glauber–Kawasaki Dynamics 191

2.4 Computation of L
∗,�Nt
N 1 − @t logÃt

We compute the integrand of the second term in the right hand side of (2.8). Similar com-
putations are made in the proofs of Lemma 3.1 of [20], Appendix A.3 of [25] and Lemmas
4.4–4.6 of [17]. We introduce the centered variable η̄x and the normalized centered variable
ωx of ηx under the Bernoulli measure with mean u(·) = {ux }x∈Td

N
as follows:

η̄x = ηx − ux and ωx = η̄x

χ(ux )
,

where χ(ρ) = ρ(1− ρ), ρ ∈ [0, 1]. We first compute the contribution of the Kawasaki part.

Lemma 2.4 Let ν = νu(·) be a Bernoulli measure on XN with mean u(·) = {ux }x∈Td
N
. Then,

we have

L∗,ν
K 1 = −1

2

∑

x,y∈Td
N :|x−y|=1

(uy − ux )
2ωxωy +

∑

x∈Td
N

(�u)x ωx , (2.9)

where (�u)x = ∑
y∈Td

N :|y−x |=1(uy − ux ).

Proof Take a test function f on XN and compute
∫

XN

L∗,ν
K 1 · f dν =

∫

XN

LK f dν = 1

2

∑

η∈XN

∑

x,y∈Td
N :|x−y|=1

{
f (ηx,y) − f (η)

}
ν(η)

=
∑

η∈XN

∑

x,y∈Td
N :|x−y|=1

f (η)
uy − ux

ux (1 − uy)
1{ηx=1,ηy=0}ν(η),

where 1A denotes the indicator function of a setA ⊂ XN . To obtain the second line, we have
applied the change of variables ηx,y �→ η, and then the identity

ν(ηx,y) =
{

(1 − ux )uy

ux (1 − uy)
1{ηx=1,ηy=0} + (1 − uy)ux

uy(1 − ux )
1{ηy=1,ηx=0} + 1{ηx=ηy }

}
ν(η),

and finally the symmetry in x and y. Since one can rewrite 1{ηx=1,ηy=0} as η̄x (1 − η̄y) −
η̄xuy − η̄yux + ux (1 − uy), we have

L∗,ν
K 1 =

∑

x,y∈Td
N :|x−y|=1

uy − ux
ux (1 − uy)

{
η̄x (1 − η̄y) − η̄xuy − η̄yux + ux (1 − uy)

}
.

However, the sum of the last term vanishes, while the sum of the second and third terms is
computed by exchanging the role of x and y in the third term and in the end we obtain

L∗,ν
K 1 =

∑

x,y∈Td
N :|x−y|=1

{
uy − ux

ux (1 − uy)
η̄x (1 − η̄y) − (uy − ux )2

(1 − ux )ux (1 − uy)
η̄x

}
. (2.10)

The right hand side in (2.10) can be further rewritten as

−
∑

x,y∈Td
N :|x−y|=1

uy − ux
ux (1 − uy)

η̄x η̄y +
∑

x∈Td
N

(�u)x

χ(ux )
η̄x , (2.11)
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by computing the coefficient of η̄x in (2.10) as

(uy − ux )

{
1

ux (1 − uy)
− (uy − ux )

(1 − ux )ux (1 − uy)

}
= uy − ux

χ(ux )
,

which gives (�u)x by taking the sum in y. Finally, the first term in (2.11) can be symmetrized
in x and y and we obtain (2.9). ��

The following lemma is for the Glauber part. Recall that the flip rate cx (η) is given by
(2.1) with c±(η) of the form (1.5) in general.

Lemma 2.5 The Bernoulli measure ν = νu(·) is the same as in Lemma 2.4. Then, we have

L∗,ν
G 1 =

∑

x∈Td
N

(
c+
x (η)

ux
− c−

x (η)

1 − ux

)
η̄x

= F(ω, u) +
∑

x∈Td
N

f N (x, u)ωx , (2.12)

where f N (x, u) is given by (2.3) and

F(ω, u) =
∑

x∈Td
N

∑


�Zd :|
|≥2

c
(u·+x )
∏

y∈


ωy+x ,

with a finite sum in 
 with |
| ≥ 2 and some local functions c
(u) of u (= {ux }x∈Zd ) for
each 
. In particular, if c±(η) have the form (1.6), we have

F(ω, u) =
∑

x∈Td
N

a(ux , ux+n1 , ux+n2)ωxωx+n1 +
∑

x∈Td
N

b(ux , ux+n1 , ux+n2)ωxωx+n2

+
∑

x∈Td
N

c(ux , ux+n1 , ux+n2)ωxωx+n1ωx+n2 , (2.13)

where a, b, c are shift-invariant bounded functions of u defined by

a(ux , ux+n1 , ux+n2) = χ(ux+n1)
[{a+(1 − ux ) − a−ux }ux+n2 + b+(1 − ux ) − b−ux

]
,

b(ux , ux+n1 , ux+n2) = χ(ux+n2){a+(1 − ux ) − a−ux }ux+n1 ,

c(ux , ux+n1 , ux+n2) = χ(ux+n1)χ(ux+n2){a+(1 − ux ) − a−ux },
respectively.

Proof The first identity in (2.12) is shown by computing
∫
XN

L∗,ν
G 1 · f dν for a test function

f and applying the change of variables ηx �→ η as in the proof of Lemma 2.4; note that

cx (η
x ) = c+

x (η)ηx + c−
x (η)(1 − ηx ),

and

ν(ηx ) =
{
1 − ux
ux

ηx + ux
1 − ux

(1 − ηx )

}
ν(η).

To see the second identity in (2.12), we recall (1.5) and note that

∏

y∈


ηy =
∏

y∈


(η̄y + uy) =
∑

∅�=A⊂


⎛

⎝
∏

y∈
\A
uy

⎞

⎠
∏

y∈A

η̄y +
∏

y∈


uy,
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for 0 /∈ 
 � Z
d . Therefore, we have

(
c+
x (η)

ux
− c−

x (η)

1 − ux

)
η̄x = (the term containing two or more η̄’s) +

(
c+
x (u)

ux
− c−

x (u)

1 − ux

)
η̄x .

Since the last term is equal to f N (x, u)ωx , this shows the second identity with

F(ω, u) =
∑

x∈Td
N

{(
c+
x (η)

ux
− c−

x (η)

1 − ux

)
−
(
c+
x (u)

ux
− c−

x (u)

1 − ux

)}
η̄x

=
∑

x∈Td
N

{(1 − ux )(c
+
x (η) − c+

x (u)) − ux (c
−
x (η) − c−

x (u))}ωx .

In particular, for c±(η) = c±
0 (η) of the form (1.6), we have

c+(η) − c+(u) = a+(ηn1ηn2 − un1un2) + b+(ηn1 − un1)

= a+(η̄n1 η̄n2 + un2 η̄n1 + un1 η̄n2) + b+η̄n1 ,

c−(η) − c−(u) = a−(η̄n1 η̄n2 + un2 η̄n1 + un1 η̄n2) + b−η̄n1 .

This leads to the desired formula (2.13). ��
We have the following lemma for the last term in (2.8).

Lemma 2.6 Recalling that νt = νu(t,·), u(t, ·) = {ux (t)}x∈Td
N
, is Bernoulli, we have

∂t logψt =
∑

x∈Td
N

∂t ux (t)ωx,t , (2.14)

where ωx,t = η̄x/χ(ux (t)).

Proof The proof is straightforward. In fact, we have by definition

ψt (η) = νt (η)

m(η)
=
∏

x {ux (t)ηx + (1 − ux (t))(1 − ηx )}
m(η)

,

and therefore,

∂t logψt (η) =
∑

x

∂t ux (t)(2ηx − 1)

ux (t)ηx + (1 − ux (t))(1 − ηx )

=
∑

x

{
∂t ux (t)

ux (t)
1{ηx=1} − ∂t ux (t)

1 − ux (t)
1{ηx=0}

}
.

This shows the conclusion. ��
The results obtained in Lemmas 2.4, 2.5 and 2.6 are summarized in the following corollary.

Note that the discretized hydrodynamic equation (2.2) exactly cancels the first order term
in ω. Therefore only quadratic or higher order terms in ω survive. We denote the solution
uN (t) = {uN (t, x)}x∈Td

N
of (2.2) simply by u(t) = {ux (t)}x∈Td

N
.

Corollary 2.7 We have

L
∗,νN

t
N 1 − ∂t logψt = −N 2

2

∑

x,y∈Td
N :|x−y|=1

(uy(t) − ux (t))
2ωx,tωy,t + K F(ωt , u(t)),
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where ωt = (ωx,t ). In particular, when c±(η) are given by (1.6), omitting to write the
dependence on t, this is equal to

− N 2

2

∑

x,y∈Td
N :|x−y|=1

(uy − ux )
2ωxωy

+ K

⎧
⎪⎨

⎪⎩

∑

x∈Td
N

ω̃(a)
x ωx+n1 +

∑

x∈Td
N

ω̃(b)
x ωx+n2 +

∑

x∈Td
N

ω̃(c)
x ωx+n1ωx+n2

⎫
⎪⎬

⎪⎭
,

=: V1 + Va + Vb + Vc, (2.15)

where ω̃
(a)
x stands for a(ux , ux+n1 , ux+n2)ωx , and ω̃

(b)
x and ω̃

(c)
x are defined similarly.

3 Proof of Theorem 2.1

We prove in this section Theorem 2.1. In view of Proposition 2.3 and Corollary 2.7, our goal
is to estimate the following expectation under μt by the Dirichlet form N 2DK (

√
ft ; νt ) and

the relative entropy H(μt |νt ) itself, where ft = dμt/dνt and μt = μN
t , νt = νN

t :

∫

XN

⎧
⎪⎨

⎪⎩
−N 2

2

∑

x,y∈Td
N :|x−y|=1

(uy(t) − ux (t))
2ωx,tωy,t + K F(ωt , u(t))

⎫
⎪⎬

⎪⎭
dμt . (3.1)

Note that the condition (A7)′ implies that χ(ux (t))−1 = χ(uN (t, x))−1 appearing in the
definition ofωx,t is bounded; see the comments given belowTheorem 4.1. From the condition
(A4) combinedwithProposition 4.3 stated below, thefirst term in (3.1) can be treated similarly
to the second, but with the front factor K replaced by K 2; see Sect. 3.3 for details.

3.1 Replacement by Local Sample Average

Recall that we assume c±(η) have the form (1.6) by the condition (A1) so that F(ω, u) has
the form (2.13). With this in mind, recall the definition of Va defined in (2.15):

Va ≡ Va(ω, u) = K
∑

x∈Td
N

ω̃(a)
x ωx+n1 ,

where ω̃
(a)
x is defined in Corollary 2.7. The first step is to replace Va by its local sample

average V �
a defined by

V �
a := K

∑

x∈Td
N

←−−−
(ω̃(a)· )x,�

−−−−→
(ω·+n1)x,�, � ∈ N,

where

−→g x,� := 1

|
�|
∑

y∈
�

gx+y,
←−g x,� := 1

|
�|
∑

y∈
�

gx−y,
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for functions g = {gx (η)}x∈Td
N
and 
� = [0, � − 1]d ∩ Z

d . Since � will be smaller than N ,

one can regard 
� as a subset of Td
N . The reason that we consider both

−→g x,� and
←−g x,� is to

make h�, j
x defined by (3.4) satisfy the condition h�, j

x (ηx,x+e j ) = h�, j
x (η) for any η ∈ XN .

Proposition 3.1 Weassume the conditions of Theorem 2.1 andwrite ν = νu(·) and dμ = f dν

by omitting t. For κ > 0 small enough, we choose � = N
1
d (1−κ) when d ≥ 2 and � = N

1
2−κ

when d = 1. Then, the cost of this replacement is estimated as
∫

(Va − V �
a ) f dν ≤ ε0N

2DK (
√

f ; ν) + Cε0,κ

(
H(μ|ν) + Nd−1+κ

)
, (3.2)

for every ε0 > 0 with some Cε0,κ > 0 when d ≥ 2 and the last Nd−1+κ is replaced by N
1
2+κ

when d = 1.

The first step for the proof of this proposition is the flow lemma for the telescopic sum.
We call � = {�(x, y)}x∼y:x,y∈G a flow on a finite graph G connecting two probability
measures p and q on G if �(x, y) = −�(y, x) and

∑
z∼x �(x, z) = p(x) − q(x) hold for

all x, y ∈ G : x ∼ y. We define a cost of a flow � by

‖�‖2 := 1

2

∑

x∼y

�(x, y)2.

The following lemma has been proved in Appendix G of [25].

Lemma 3.2 (Flow lemma) For each � ∈ N, let p� be the uniform distribution on 
� and set
q� := p� ∗ p�. Then, there exists a flow �� on 
2�−1 connecting the Dirac measure δ0 and
q� such that ‖��‖2 ≤ Cdgd(�) with some constant Cd > 0, independent of �, where

gd(�) =

⎧
⎪⎨

⎪⎩

�, if d = 1,

log �, if d = 2,

1, if d ≥ 3.

The flow stated in Lemma 3.2 is constructed step by step as follows. For each k =
0, . . . , �−1, we first construct a flow��

k connecting pk and pk+1 such that supx, j |��
k (x, x+

e j )| ≤ ck−d with some c > 0. Then we can obtain the flow �� connecting δ0 and p� by
simply summing up ��

k : �� := ∑�−1
k=0 ��

k . It is not difficult to see that the cost of �� is
bounded by Cgd(�). Finally, we define the flow �� connecting δ0 and q� by

��(x, x + e j ) :=
∑

z∈
�

��(x − z, x − z + e j )p�(z),

whose cost is bounded by Cdgd(�); see [25] for more details.
Recall p�(y) defined in Lemma 3.2 and note that p� can be regarded as a probability

distribution on T
d
N . Set p̂�(y) = p�(−y), then we have

g ∗ p� =
∑

y∈Td
N

gx−y p�(y) = 1

|
�|
∑

y∈
�

gx−y = ←−g x,�,
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and similarly g ∗ p̂� = −→g x,�. Therefore,

V �
a = K

∑

x∈Td
N

(ω̃(a)· ∗ p�)x (ω·+n1 ∗ p̂�)x

= K
∑

x∈Td
N

⎛

⎜⎝
∑

y∈Td
N

ω̃(a)
y p�(x − y)

⎞

⎟⎠

⎛

⎜⎝
∑

z∈Td
N

ωz+n1 p�(z − x)

⎞

⎟⎠

= K
∑

y∈Td
N

ω̃(a)
y

∑

z∈Td
N

ωz+n1 p� ∗ p�(z − y)

= K
∑

y∈Td
N

ω̃(a)
y (ω·+n1 ∗ q̂�)y,

where q� is defined in Lemma 3.2 and q̂�(y) := q�(−y). Note that supp q� ⊂ 
2�−1 =
[0, 2� − 2]d ∩ Z

d . Let �� be a flow given in Lemma 3.2. Accordingly, since �� is a flow
connecting δ0 and q�, one can rewrite

Va − V �
a = K

∑

x∈Td
N

ω̃(a)
x

⎧
⎪⎨

⎪⎩
ωx+n1 −

∑

y∈Td
N

ωx−y+n1 q̂�(y)

⎫
⎪⎬

⎪⎭

= K
∑

x∈Td
N

ω̃(a)
x

∑

y∈Td
N

ωx+y+n1(δ0(y) − q�(y))

= K
d∑

j=1

∑

x∈Td
N

ω̃(a)
x

∑

y∈Td
N

ωx+y+n1{��(y, y + e j ) − ��(y − e j , y)}

= K
d∑

j=1

∑

x∈Td
N

ω̃(a)
x

∑

y∈Td
N

(ωx+y+n1 − ωx+(y+e j )+n1)�
�(y, y + e j )

= K
d∑

j=1

∑

x∈Td
N

⎛

⎜⎝
∑

y∈Td
N

ω̃
(a)
x−y−n1�

�(y, y + e j )

⎞

⎟⎠ (ωx − ωx+e j ).

For the last line, we introduced the change of variables x + y + n1 �→ x for the sum in x .
Thus, we have shown

Va − V �
a = K

d∑

j=1

∑

x∈Td
N

h�, j
x (ωx − ωx+e j ), (3.3)

where
h�, j
x =

∑

y∈
2�−1

ω̃
(a)
x−y−n1�

�(y, y + e j ). (3.4)

Note that h�, j
x satisfies h�, j

x (ηx,x+e j ) = h�, j
x (η) for any η ∈ XN . Indeed, in (3.4),

ω̃
(a)
x−y−n1(η

x,x+e j ) �= ω̃
(a)
x−y−n1(η) only if x − y − n1 = x or x + e j , namely, y = −n1

or y = −n1 − e j , but these y are not in 
2�−1 due to the condition (A1) for n1.
Another lemma we use is the integration by parts formula under the Bernoulli measure

νu(·) with a spatially dependent mean. We will apply this formula for the function h = h�, j
x .
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Lemma 3.3 (Integration by parts) Let ν = νu(·) and assume u− ≤ ux , uy ≤ u+ holds for
x, y ∈ T

d
N : |x − y| = 1 with some 0 < u− < u+ < 1. Let h = h(η) be a function satisfying

h(ηx,y) = h(η) for any η ∈ XN . Then, for a probability density f with respect to ν, we have
∫

h(ηy − ηx ) f dν =
∫

h(η)ηx
(
f (ηx,y) − f (η)

)
dν + R1,

and the error term R1 = R1,x,y is bounded as

|R1| ≤ C |∇1
x,yu|

∫
|h(η)| f dν,

with some C = Cu−,u+ > 0, where ∇1
x,yu = ux − uy.

Proof First we write
∫

h(ηy − ηx ) f dν =
∑

η∈XN

h(η)(ηy − ηx ) f (η)ν(η).

Then, by the change of variables ηx,y �→ η and noting the invariance of h under this change,
we have

∑

η∈XN

h(η)ηy f (η)ν(η) =
∑

η∈XN

h(η)ηx f (η
x,y)ν(ηx,y).

To replace the last ν(ηx,y) by ν(η), we observe

ν(ηx,y)

ν(η)
= 1{ηx=1,ηy=0}

(1 − ux )uy

ux (1 − uy)
+ 1{ηx=0,ηy=1}

ux (1 − uy)

(1 − ux )uy
+ 1{ηx=ηy }

= 1 + rx,y(η),

with

rx,y(η) = 1{ηx=1,ηy=0}
uy − ux

ux (1 − uy)
+ 1{ηx=0,ηy=1}

ux − uy

(1 − ux )uy
.

By the condition on u, this error is bounded as

|rx,y(η)| ≤ C0|∇1
x,yu|, C0 = Cu−,u+ > 0.

These computations are summarized as
∫

h(ηy − ηx ) f dν =
∫

h(η)ηx f (η
x,y)(1 + rx,y(η))dν −

∫
h(η)ηx f (η)dν

=
∫

h(η)ηx
(
f (ηx,y) − f (η)

)
dν +

∫
h(η)ηx f (η

x,y)rx,y(η)dν.

For the second term denoted by R1, applying the change of variables ηx,y �→ η again, we
have

|R1| =
∣∣∣∣∣∣

∑

η∈XN

h(η)ηy f (η)rx,y(η
x,y)ν(ηx,y)

∣∣∣∣∣∣

=
∣∣∣∣∣∣

∑

η∈XN

h(η)ηy f (η)rx,y(η
x,y)

(
1 + rx,y(η)

)
ν(η)

∣∣∣∣∣∣
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≤ C0|∇1
x,yu|(1 + C0|∇1

x,yu|)
∫

|h(η)| f dν ≤ C |∇1
x,yu|

∫
|h(η)| f dν,

since |ηy | ≤ 1 and |∇1
x,yu| ≤ 2. This completes the proof. ��

We apply Lemma 3.3 to Va −V �
a given in (3.3). However, ωx = (ηx −ux )/χ(ux ) in (3.3)

depends on ux which varies in space. We need to estimate the error caused by this spatial
dependence.

Lemma 3.4 (1) Assume that ν = νu(·) and h = h(η) satisfy the same conditions as in
Lemma 3.3. Then, we have

∫
h(ωy − ωx ) f dν =

∫
h(η)

ηx

χ(ux )

(
f (ηx,y) − f (η)

)
dν + R2,

and the error term R2 = R2,x,y is bounded as

|R2| ≤ C |∇1
x,yu|

∫
|h(η)| f dν,

with some C = Cu−,u+ > 0.

(2) In particular, for h�, j
x defined in (3.4), we have

∫
h�, j
x (ωx − ωx+e j ) f dν = −

∫
h�, j
x

ηx

χ(ux )

(
f (ηx,x+e j ) − f (η)

)
dν + R2,x, j , (3.5)

and

|R2,x, j | ≤ C |∇1
x,x+e j u|

∫
|h�, j

x (η)| f dν.

Proof By the definition of ωx , we have
∫

h(ωy − ωx ) f dν =
∫

h

(
ηy

χ(uy)
− ηx

χ(ux )

)
f dν −

∫
h

(
uy

χ(uy)
− ux

χ(ux )

)
f dν

=: I1 − I2.

For I2, we have
∣∣∣∣

uy

χ(uy)
− ux

χ(ux )

∣∣∣∣ ≤ 1

χ(ux )χ(uy)

{
χ(ux )|uy − ux | + |ux ||χ(ux ) − χ(uy)|

}

≤ C |∇1
x,yu|.

On the other hand, I1 can be rewritten as

I1 =
∫

h

χ(ux )
(ηy − ηx ) f dν +

∫
h

(
1

χ(uy)
− 1

χ(ux )

)
ηy f dν

=: I1,1 + I1,2.

For I1,1, one can apply Lemma 3.3 to obtain

I1,1 = 1

χ(ux )

∫
h(ηx,y)ηx

(
f (ηx,y) − f (η)

)
dν + 1

χ(ux )
R1.

Finally for I1,2, observe that
∣∣∣∣

1

χ(uy)
− 1

χ(ux )

∣∣∣∣ = |χ(ux ) − χ(uy)|
χ(ux )χ(uy)

≤ C
∣∣∣∇1

x,yu
∣∣∣ .

123



Motion by Mean Curvature from Glauber–Kawasaki Dynamics 199

Therefore, we obtain (1). Since h�, j
x (ηx,x+e j ) = h�, j

x (η) for any η ∈ XN , taking y = x + e j
and changing the sign of both sides, (2) is immediate from (1). ��

We can estimate the first term in the right hand side of (3.5) by the Dirichlet form of the
Kawasaki part and obtain the next lemma.

Lemma 3.5 Let ν = νu(·) satisfy the condition in Lemma 3.3 with y = x + e j . Then, for
every β > 0, we have

∫
h�, j
x (ωx − ωx+e j ) f dν ≤ βDK ;x,x+e j (

√
f ; ν) + C

β

∫ (
h�, j
x

)2
f dν + R2,x, j ,

with some C = Cu−,u+ > 0, where

DK ;x,y( f ; ν) = 1

4

∫

XN

{ f (ηx,y) − f (η)}2dν,

is a piece of the Dirichlet formDK ( f ; ν) corresponding to the Kawasaki part considered on
the bond {x, y} : |x − y| = 1 and the error term R2,x, j is given by Lemma 3.4.

Proof For simplicity, wewrite y for x+e j . By decomposing f (ηx,y)− f (η) = (√
f (ηx,y)+√

f (η)
)(√

f (ηx,y) − √
f (η)

)
, the first term in the right hand side of (3.5) is bounded by

βDK ;x,y(
√

f ; ν) + 2

βχ(ux )2

∫ (
h�, j
x

)2 { f (ηx,y) + f (η)}dν,

for every β > 0. Applying the change of variables ηx,y �→ η, the second term of the last
expression is equal to and bounded by

2

βχ(ux )2

∫ (
h�, j
x

)2
(1 + ν(ηx,y)

ν(η)
) f dν ≤ C

β

∫ (
h�, j
x

)2
f dν.

This shows the conclusion. ��
We now give the proof of Proposition 3.1.

Proof of Proposition 3.1 By Lemma 3.5, choosing β = ε0N 2/K with ε0 > 0, we have

∫
(Va − V �

a ) f dν = K
d∑

j=1

∑

x∈Td
N

∫
h�, j
x (ωx+e j − ωx ) f dν

≤ ε0N
2DK (

√
f ; ν) + CK 2

ε0N 2

d∑

j=1

∑

x∈Td
N

∫ (
h�, j
x

)2
f dν

+ K
d∑

j=1

∑

x∈Td
N

R2,x, j . (3.6)

For R2,x, j , since |∇1
x,x+e j u| ≤ CK/N from the condition (A4) combined with Proposition

4.3 stated below, estimating |h�, j
x | ≤ 1 + (h�, j

x )2, we have

K |R2,x, j | ≤ CK 2

N

∫ (
1 +

(
h�, j
x

)2)
f dν.
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Thus, estimating 1/N ≤ 1 for the second term of (3.6) (though this term has a better constant
CK 2/N 2, the same term with CK 2/N arises from K |R2,x, j |), we obtain
∫

(Va − V �
a ) f dν ≤ε0N

2DK (
√

f ; ν) + Cε0K
2

N

d∑

j=1

∑

x∈Td
N

∫ (
h�, j
x

)2
f dν + CK 2Nd−1.

(3.7)

��
We assume without loss of generality that N/2� is an integer and that n1 = (1, . . . , 1)

for notational simplicity. Then, for the second term of the right hand side in (3.7), we first
decompose the sum

∑
x∈Td

N
as
∑

y∈
2�

∑
z∈(2�)Td

N
regarding x = z+ y. Note that the random

variables {h�, j
z+y}z∈(2�)Td

N
are independent for each y ∈ 
2�. Recall that dμ = f dν. Then,

applying the entropy inequality, we have

∑

x∈Td
N

∫ (
h�, j
x

)2
f dν ≤ 1

γ

∑

y∈
2�

⎛

⎜⎝H(μ|ν) + log
∫

exp

⎧
⎪⎨

⎪⎩
γ

∑

z∈(2�)Td
N

(
h�, j
z+y

)2
⎫
⎪⎬

⎪⎭
dν

⎞

⎟⎠

= 1

γ
(2�)d

⎛

⎜⎝H(μ|ν) +
∑

z∈(2�)Td
N

log
∫

exp

{
γ
(
h�, j
z+y

)2}
dν

⎞

⎟⎠ .

Now we apply the concentration inequality (see Appendix B of [24]) for the last term:

Lemma 3.6 (Concentration inequality) Let {Xi }ni=1 be independent random variables with
values in the intervals [ai , bi ]. Set X̄i = Xi − E[Xi ] and σ̄ 2 = ∑n

i=1(bi − ai )2. Then, for
every γ ∈ [0, (σ̄ 2)−1], we have

log E

⎡

⎣exp

⎧
⎨

⎩γ

(
n∑

i=1

X̄i

)2
⎫
⎬

⎭

⎤

⎦ ≤ 2γ σ̄ 2 (≤ 2).

In fact, since h�, j
x is a weighted sum of independent random variables, from this lemma,

we have

log
∫

e
γ
(
h�, j
x

)2
dν ≤ 2,

for every γ ≤ C0/σ
2, where C0 is a universal constant and σ 2 is the variance of h�, j

x . On
the other hand, it follows from the flow lemma that σ 2 ≤ Cdgd(�). Therefore, we have

∑

x∈Td
N

∫ (
h�, j
x

)2
f dν ≤ 1

γ
(2�)d

(
H(μ|ν) + 2

( N
2�

)d)
.

Thus, taking γ −1 = (Cdgd(�))/C0, we have shown
∫

(Va − V �
a ) f dν ≤ ε0N

2DK (
√

f ; ν) + CK 2�dgd(�)

N

(
H(μ|ν) + Nd

�d

)
+ CK 2Nd−1,

(3.8)
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with some C = Cε0 > 0. For κ > 0 small enough, choose � = N
1
d (1−κ) when d ≥ 2 and

� = N
1
2−κ when d = 1. Then, recalling 1 ≤ K ≤ δ(log N )1/2 in the condition (A6)δ , when

d ≥ 2, we have

K 2�dgd(�)

N
≤ δ2N−κgd(�) log N ≤ 1, Nd

�d
= Nd−1+κ , K 2Nd−1 ≤ Nd−1+κ , (3.9)

which shows (3.2). When d = 1,

K 2�2

N
≤ δ2N−2κ log N ≤ 1,

N

�
= N

1
2+κ , K 2Nd−1 ≤ N κ . (3.10)

This shows the conclusion for d = 1 and the proof of Proposition 3.1 is complete. ��

3.2 Estimate on
∫
V�
afd�u(·)

The next step is to estimate the integral
∫
V �
a f dν. We assume the same conditions as

in Proposition 3.1 and therefore Theorem 2.1. We again decompose the sum
∑

x∈Td
N
as

∑
y∈
2�

∑
z∈(2�)Td

N
and then, noting the (2�)-dependence of

←−−−
(ω̃

(a)· )x,�
−−−→
(ω·+e)x,�, use the

entropy inequality, the elementary inequalityab ≤ (a2+b2)/2 and the concentration inequal-
ity to show

∫
V �
a f dν ≤ K

γ

∑

y∈
2�

⎧
⎪⎨

⎪⎩
H(μ|ν) +

∑

z∈(2�)Td
N

log Eν[eγ
←−−−
(ω̃

(a)· )z+y,�
−−−→
(ω·+e)z+y,� ]

⎫
⎪⎬

⎪⎭

≤ K (2�)d

γ

{
H(μ|ν) + Nd

(2�)d
C1γ �−d

}
,

for γ = c�d with c > 0 small enough. Roughly saying, by the central limit theorem, both←−−−
(ω̃

(a)· )x,� and
−−−→
(ω·+e)x,� behave as C2�

−d/2N (0, 1) in law for large �, respectively, where
N (0, 1) denotes a Gaussian random variable with mean 0 and variance 1. This effect is
controlled by the concentration inequality. When d ≥ 2, we chose � = N

1
d (1−κ) so that we

obtain ∫
V �
a f dν ≤ C3K

(
H(μ|ν) + Nd−1+κ

)
. (3.11)

When d = 1, we chose � = N
1
2−κ so that we obtain (3.11) with Nd−1+κ replaced by N

1
2+κ .

3.3 Estimates on Three Other Terms Vb,Vc,V1

Two terms Vb and Vc defined in (2.15) can be treated exactly in a same way as Va and we
have similar results to Proposition 3.1 and (3.11) for these two terms.

The term V1 requiresmore careful study. Aswe pointed out at the beginning of this section,
the condition (A4) combined with Proposition 4.3 shows that

N 2(uy(t) − ux (t))
2 ≤ CK 2, t ∈ [0, T ], x, y ∈ T

d
N : |x − y| = 1. (3.12)

Therefore, the front factor behaves like K 2 instead of K . Noting this, for the replacement
of V1 with V �

1 , we have a similar bound (3.8) with K replaced by K 2. However, since
K ≤ δ(log N )1/2, one can absorb even K 2 by the factor N κ with κ > 0 as in (3.9) and (3.10)
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(with K replaced by K 2). Thus, the bound (3.2) in Proposition 3.1 holds also for V1 − V �
1 in

place of Va − V �
a .

On the other hand, (3.11) should be modified as
∫

V �
1 f dν ≤ C4K

2(H(μ|ν) + Nd−1+κ
)
. (3.13)

Note that (3.12) holds with K instead of K 2 in an averaged sense in (t, x) as we will see in
Lemma 4.4. But this is not enough to improve (3.13) with K 2 to K .

3.4 Completion of the Proof of Theorem 2.1

Finally, from Propositions 2.3, 3.1 (for Va, Vb, Vc, V1) and (3.11) (for Va, Vb, Vc), (3.13) (for
V1), choosing ε0 > 0 small enough such that 4ε0 < 2, we obtain

d

dt
H(μt |νt ) ≤ CK 2H(μt |νt ) + O(Nd−α),

with some 0 < α < 1 (α = 1 − κ) when d ≥ 2 and 0 < α < 1/2 (α = 1/2 − κ) when
d = 1. Thus, Gronwall’s inequality shows

H(μt |νt ) ≤
(
H(μ0|ν0) + t O(Nd−α)

)
eCK 2t .

Noting H(μ0|ν0) = O(Nd−δ0) with δ0 > 0 and eCK 2t ≤ NCtδ2 from 1 ≤ K ≤ δ(log N )1/2

in the condition (A6)δ , this concludes the Proof of Theorem 2.1, if we choose δ > 0 small
enough.

Remark 3.1 The above argument actually implies H(μN
t |νN

t ) = O(Nd−δ∗) for some δ∗ > 0.
From Theorem 4.1, the probability in the left hand side of (1.11) is bounded above by
μN
t (Aε/2

N ,t ) for N sufficiently large, recall Aε
N ,t defined below (2.6). On the other hand, from

the proof of Proposition 2.2, there exists a constant C0, which depends only on ‖ϕ‖∞, such
that νN

t (Aε/2
N ,t ) ≤ e−C0ε

2Nd
. These estimates together with the entropy inequality show that

P
(∣∣∣〈αN (t), ϕ〉 − 〈χ�t , ϕ〉

∣∣∣ > ε
)

≤ C

ε2
N−δ∗ ,

for N sufficiently large. This gives the rate of convergence in the limit (1.11).

4 Motion byMean Curvature fromGlauber–Kawasaki Dynamics

The rest is to study the asymptotic behavior as N → ∞ of the solution uN (t) of the discretized
hydrodynamic equation (2.2), which appears in (2.6). We also give a few estimates on uN (t)
which were already used in Sect. 3.

Theorem 4.1 formulated below is purely a PDE type result, which establishes the sharp
interface limit for uN (t) and leads to the motion by mean curvature. Recall that we assume
d ≥ 2. A smooth family of closed hypersurfaces {�t }t∈[0,T ] in T

d is called the motion by
mean curvature flow starting from �0, if it satisfies

V = κ, t ∈ [0, T ],
�t |t=0 = �0,

(4.1)
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where V is the inward normal velocity of �t and κ is the mean curvature of �t multiplied by
(d − 1). It is known that if �0 is a smooth hypersurface without boundary, then there exists
a unique smooth solution of (4.1) starting from �0 on [0, T ] with some T > 0; cf. Theorem
2.1 of [5] and see Sect. 4 of [16] for related references. In fact, by using the local coordinate
(d, s) for x in a tubular neighborhood of �0 where d = d(x) is the signed distance from
x to �0 and s = s(x) is the projection of x on �0, �t is expressed as a graph over �0 and
represented by d = d(s, t), s ∈ �0, t ∈ [0, T ], and the Eq. (4.1) for �t can be rewritten as
a quasilinear parabolic equation for d = d(s, t). A standard theory of quasilinear parabolic
equations shows the existence and uniqueness of smooth local solution in t . We cite [1] as an
expository reference for the definitions of mean curvature, motion by mean curvature flow
and Allen–Cahn equation. As we mentioned above, Sect. 4 of [16] also gives a brief review
of these topics.

The limiting behavior of uN (t) as N → ∞ is given by the following theorem. Recall that
the solution {uN (t, x), x ∈ T

d
N } is extended as a step function {uN (t, v), v ∈ T

d} on T
d as

in (2.5).

Theorem 4.1 Under the conditions (A2), (A3) and (A5), for t ∈ [0, T ] and v /∈ �t ,
uN (t, v), v ∈ T

d converges as N → ∞ to χ�t (v) defined by (1.10) from the hypersur-
face �t in T

d moving according to the motion by mean curvature (4.1).

Combining the probabilistic result (2.6) with this PDE type result, we have proved that
αN (t) converges to χ�t in probability when multiplied by a test function ϕ ∈ C∞(Td). This
completes the proof of our main Theorem 1.1.

Under the condition (A7)′, especiallywith u± chosen as 0 < u− < α1 < α2 < u+ < 1, by
the comparison theorem (Proposition 4.5 below) for the discretized hydrodynamic equation
(2.2) and noting that, if uN (0, x) ≡ u− (or u+), the solution uN (t, x) ≡ uN (t) of (2.2)
increases in t toward α1 (or decreases to α2) by the condition (A2), the condition uN (0, x) ∈
[u−, u+] implies the same for uN (t, x). In particular, this shows χ(uN (t, x)) ≥ c > 0 with
some c > 0 for all t ∈ [0, T ] and x ∈ T

d
N .

4.1 Estimates on the Solutions of the Discretized Hydrodynamic Equation

We give estimates on the gradients of the solutions u(t) ≡ uN (t) = {ux (t)}x∈Td
N
of the

discretized hydrodynamic equation (2.2). These were used to estimate the contribution of
the first term in (3.1) and also R2,x, j in (3.6) as we already mentioned. Let pN (t, x, y) be
the discrete heat kernel corresponding to �N on T

d
N . Then, we have the following global

estimate in t .

Lemma 4.2 There exist C, c > 0 such that

‖∇N pN (t, x, y)‖ ≤ C√
t
pN (ct, x, y), t > 0,

where ∇Nu(x) = {N (u(x + ei ) − u(x))}di=1 and ‖ · ‖ stands for the standard Euclidean
norm of Rd as we defined before.

Proof Let p(t, x, y) be the heat kernel corresponding to the discrete Laplacian � on Z
d .

Then, we have the estimate

‖∇ p(t, x, y)‖ ≤ C√
1 ∨ t

p(ct, x, y), t > 0, x, y ∈ Z
d ,
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with some constants C, c > 0, independent of t and x, y, where ∇ = ∇1. For example, see
(1.4) in Theorem 1.1 of [6] which discusses more general case with random coefficients; see
also [30]. Then, since

pN (t, x, y) =
∑

k∈NZd

p(N 2t, x, y + k),

the conclusion follows. ��
We have the following L∞-estimate on the gradients of uN .

Proposition 4.3 For the solution uN (t, x) of (2.2), we have the estimate

‖∇NuN (t, x)‖ ≤ K (C0 + C
√
t), t > 0,

if ‖∇NuN (0, x)‖ ≤ C0K holds.

Proof From Duhamel’s formula, we have

uN (t, x) =
∑

y∈Td
N

uN (0, y)pN (t, x, y) + K
∫ t

0
ds

∑

y∈Td
N

f N (y, uN (s))pN (t − s, x, y).

By noting f N (x, u) is bounded and applying Lemma 4.2, we obtain the conclusion. ��
It is expected that ∇NuN behaves as

√
K near the interface by the scaling property (see

Sect. 4.2 of [17] and also as Theorem 4.6 below suggests) and decays rapidly in K far from
the interface where uN (t, x) would be almost flat. In this sense, the estimate obtained in
Proposition 4.3 may not be the best possible. In a weak sense, one can prove the behavior
ux (t) − uy(t) ∼ √

K/N (instead of K/N ) for x, y : |x − y| = 1 as in the next lemma.

Lemma 4.4 We have

1

2

∑

x∈Td
N

ux (T )2 +
∫ T

0
N 2

∑

x,y∈Td
N :|x−y|=1

(ux (t) − uy(t))
2dt ≤ CK NdT + 1

2
Nd .

Proof By multiplying ux (t)
( = uN (t, x)

)
to the both sides of (2.2) and taking the sum in x ,

we have

1

2

d

dt

⎧
⎪⎨

⎪⎩

∑

x∈Td
N

ux (t)
2

⎫
⎪⎬

⎪⎭
=
∑

x∈Td
N

ux (t)�
Nux (t) + K

∑

x∈Td
N

ux (t) f
N (x, u(t))

≤ −N 2
∑

x,y∈Td
N :|x−y|=1

(ux (t) − uy(t))
2 + CK Nd .

Here, we have used the bound ux f N (x, u) ≤ C . Since
∑

x∈Td
N
ux (0)2 ≤ Nd , we have the

conclusion. ��

4.2 Proof of Theorem 4.1

For the proof of Theorem 4.1, we rely on the comparison argument for the discretized
hydrodynamic equation (2.2); cf. [14], Proposition 4.1 of [15], Lemma 2.2 of [18] and
Lemma 4.3 of [19].
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Assume that f N (x, u), u = (ux )x∈Td
N

∈ [0, 1]Td
N has the following property: If u =

(ux )x∈Td
N
, v = (vx )x∈Td

N
satisfies u ≥ v (i.e., uy ≥ vy for all y ∈ T

d
N ) and ux = vx for

some x , then f N (x, u) ≥ f N (x, v) holds. Note that f N (x, u) given in (2.3) with c±(η) of
the form (1.6) has this property, since c+

x (u) is increasing and c−
x (u) is decreasing in u in

this partial order by the condition (A3).

Proposition 4.5 Let u±(t, x) be super and sub solutions of

∂t u
±(t, x) = �Nu±(t, x) + K f N (x, u±), x ∈ T

d
N . (4.2)

Namely, u+ satisfies (4.2) with “≥”, while u− satisfies it with “≤” instead of the equality.
If u−(0) ≤ u+(0), then u−(t) ≤ u+(t) holds for all t > 0. In particular, one can take the
solution of (4.2) as u+(t, x) or u−(t, x).

Proof Assume that u+(t) ≥ u−(t) and u−(t, x) = u+(t, x) hold at some (t, x). Since u±
are super and sub solutions of (4.2), we have

∂t (u
+ − u−)(t, x) ≥ �N (u+ − u−)(t, x) + K

(
f N (x, u+) − f N (x, u−)

)
.

On the other hand, noting that

�N (u+ − u−)(t, x) = N 2
∑

±ei

(
(u+ − u−)(t, x ± ei ) − (u+ − u−)(t, x)

)

= N 2
∑

±ei

(u+ − u−)(t, x ± ei ) ≥ 0,

and that f N (x, u+) − f N (x, u−) ≥ 0 by the assumption, we have ∂t (u+ − u−)(t, x) ≥ 0.
This shows that u−(t) can not exceed u+(t) for all t > 0. ��

For δ ∈ R with |δ| sufficiently small, one can find a traveling wave solution U =
U (z; δ), z ∈ R, which is increasing in z and its speed c = c(δ) by solving an ordinary
differential equation:

U ′′ + cU ′ + { f (U ) + δ} = 0, z ∈ R,

U (±∞) = U∗±(δ),

where U∗−(δ) < U∗+(δ) are two stable solutions of f (U ) + δ = 0. Note that U∗−(0) =
α1,U∗+(0) = α2 and c(0) = 0. The solutionU (z; δ) is unique up to a translation and one can
choose U (z; δ) satisfying Uδ(z; δ) ≥ 0; see [5], p. 1288. Note also that the traveling wave
solutionU is associated with the one-dimensional version of the reaction–diffusion equation
and not with the discrete equation (4.2). Indeed, u(t, z) := U (z − ct) solves the equation

∂t u = ∂2z u + f (u) + δ, z ∈ R,

which is a one-dimensional version of (1.3) or (1.9) with K = 1 considered on the whole
line R in place of Td with f replaced by f + δ and connecting two stable solutions U∗±(δ)

at z = ±∞.
Let �t , t ∈ [0, T ] be the motion of smooth hypersurfaces in T

d determined by (4.1). Let
d̃(t, v), t ∈ [0, T ], v ∈ T

d be the signed distance function from v to �t , and similarly to [5],
p.1289, let d(t, v) be a smooth modification of d̃ such that

d = d̃, if |d̃(t, v)| < d0,

d0 < |d| ≤ 2d0 and dd̃ > 0, if d0 ≤ |d̃(t, v)| < 2d0,
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|d| = 2d0 and dd̃ > 0, if |d̃(t, v)| ≥ 2d0,

where d0 > 0 is taken such that d̃(t, v) is smooth in the domain {(t, v); |d̃(t, v)| < 2d0, t ∈
[0, T ]}. We define two functions ρ±(t, v) ≡ ρK± (t, v) by

ρ±(t, v) = U
(
K 1/2(d(t, v) ± K−aem2t );±K−1m3e

m2t
)
, a,m2,m3 > 0.

Applying Proposition 4.5 and repeating computations of Lemma 3.4 in [5], we have the
following theorem for uN (t, v) defined by (2.5) from the solution uN (t, x) of (2.2). The
functions ρ±(t, v) describe the sharp transition of uN (t, ·) and change their values quickly
from one side to the other crossing the interface �t to the normal direction.

Theorem 4.6 We assume the conditions (A2), (A3) and (A5), in particular {�t }t∈[0,T ] is
smooth and the following inequality (4.3) holds at t = 0. The condition on K can be relaxed
and we assume K ≤ CN 2/3 for K = K (N ) → ∞. Then, taking m2,m3 > 0 large enough,
there exists N0 ∈ N such that

ρ−(t, v) ≤ uN (t, v) ≤ ρ+(t, v), (4.3)

holds for every a > 1/2, t ∈ [0, T ], v = x/N , x ∈ T
d
N and N ≥ N0.

Proof Let us show that

LN ,Kρ+ := ∂ρ+
∂t

− �Nρ+ − K f N (x, ρ+) ≥ 0,

for every N ≥ N0 with some N0 ∈ N. We decompose

LN ,Kρ+ = LKρ+ + (�ρ+ − �Nρ+) + K ( f (ρ+( x
N )) − f N (x, ρ+)), (4.4)

where � is the continuous Laplacian on Td and

LKρ+ = ∂ρ+
∂t

− �ρ+ − K f (ρ+(v)). (4.5)

The term LKρ+ can be treated as in [5], from the bottom of pp. 1291–1293. Note that ε−2

in their paper corresponds to K here, and they treated the case with a non-local term, which
we don’t have. Since we can extend m1εem2t in the definition of super and sub solutions in
their paper to K−aem2t (i.e., we can take K−a instead of m1ε) for every a > 0, we briefly
repeat their argument by adjusting it to our setting. The case with noise term is discussed by
[14], pp. 412–413.

In fact, LKρ+ can be decomposed as

LKρ+ = T1 + T2 + T3 + m3e
m2t ,

where

T1 =
{

∂d

∂t
+ K−am2e

m2t − �d + K 1/2c(K−1m3e
m2t )

}
K 1/2Uz,

T2 = {
1 − |∇d|2} KUzz,

T3 = K−1m3m2e
m2tUδ,

by just writing K−a instead of m1ε (i.e., here m1 = K 1/2−a ↘ 0) in [5], p. 1292 noting that
W (ν, δ) = c(δ),U (z; ν, δ) = U (z; δ) and C2 = 0 in our setting. Repeating their arguments,
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one can show that, if m2 is large enough compared with m3, T1, T2 ≥ −C hold for some
C > 0, and T3 ≥ 0 since Uδ ≥ 0. Therefore, we obtain

LKρ+ ≥ m3e
m2t − 2C . (4.6)

For the rest in (4.4), since d(t, v) and U (z) so that ρ± are smooth in v, we have

�ρ+(t, x
N ) − �Nρ+(t, x

N ) = O
(
N 2( K 1/2

N

)3) = O
(
K 3/2

N

)
,

K
(
f (ρ+(t, x

N )) − f N (x, ρ+(t, ·))) = K · O
(
K 1/2

N

)
.

The first one follows from Taylor expansion for �Nρ+ up to the third order term, while
the second one follows by taking the expansion up to the first order term. Therefore, if
K = O(N 2/3), these terms stay bounded in N and are absorbed by LKρ+ estimated in (4.6)
with m3 chosen large enough. Thus, we obtain LN ,Kρ+ ≥ 0. The lower bound by ρ−(t, v)

is shown similarly. ��
Theorem 4.1 readily follows fromTheorem 4.6 by noting that we have from the definitions

of ρ±(t, v) = ρK± (t, v),

lim
K→∞ ρK± (t, v) = U (±∞; 0) =

{
α1, if d̃(t, v) < 0,

α2, if d̃(t, v) > 0,
(4.7)

for t ∈ [0, T ] and v /∈ �t .

Remark 4.1 The choice ±K−1m3em2t in the definition of the super and sub solutions is the
best. In fact, in stead of K−1, if we take K β−1 with β > 0, then we may consider m3 = K β

but this diverges so that m2 also must diverge. On the other hand, if β < 0, as the above
proof shows, we don’t have a good control.
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