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Abstract
For diffusive many-particle systems such as the SSEP (symmetric simple exclusion process)
or independent particles coupled with reservoirs at the boundaries, we analyze the density
fluctuations conditioned on the current integrated over a large time. We determine the con-
ditioned large deviation function of the density by a microscopic calculation. We then show
that it can be expressed in terms of the solutions of Hamilton–Jacobi equations, which can
be written for general diffusive systems using a fluctuating hydrodynamics description.

Keywords Large deviation function · Fluctuating hydrodynamics · Non-equilibrium steady
state · Symmetric simple exclusion process

1 Introduction

In recent years, there has been a growing interest [1–9] in characterizing trajectories con-
ditioned on rare events. Such questions appear in a wide range of topics, including protein
folding [10], chemical reactions [11,12], stochastic models of gene expression [13], atmo-
spheric activities [14], glassy systems [15,16], disordered media [17]. One motivation is to
find efficient algorithms where the rare events become typical such that they are computa-
tionally easy to generate [2,11,18–21]. To calculate the probability of rare events one needs
to understand how these rare events are created and how they relax. In these activities, a
major interest concerns conditioning on an atypical value of an empirical observable, such as
the integrated current, the empirical density, the entropy production, or the activity [22–28].
How do the fluctuations get affected by such conditioning, and what is the effective dynamics
in this conditioned ensemble? These are questions we address in this present work.
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Fig. 1 A diffusive system of
length L coupled with two
reservoirs at different densities
ρa and ρb at the boundary

ρa ρb

L

ForMarkov processes, in particular, for systemswith few degrees of freedom and evolving
according to a Langevin equation, it is known [1,8,15,16,23,29–33] how to describe the
conditioned dynamics when the time window for the empirical observable is large. In this
paper, we see how the same ideas [29] can be extended to systems with many degrees of
freedom.

Wework here in the steady state of a one-dimensional diffusive system of length L coupled
with reservoirs at the boundary, as shown in Fig. 1. Under a diffusive re-scaling of space i

and time τ , defining
(

i
L , τ

L2

)
≡ (x, t) for large L , these systems are described [34–39] by

a hydrodynamic density ρ(x, t) and current j(x, t) whose time evolution is governed by a
fluctuating hydrodynamics equation

∂tρ(x, t) = −∂x j(x, t) with j(x, t) = −D(ρ(x, t)) ∂xρ(x, t) + η(x, t) (1a)

where D(ρ) is the diffusivity and η(x, t) is a Gaussian white noise with zero mean and
covariance

〈
η(x, t)η(x ′, t ′)

〉 = 1

L
σ(ρ(x, t)) δ(x − x ′) δ(t − t ′) (1b)

where σ(ρ) is the mobility. The density ρ(x, t) could be the density of particles or of energy
depending on the system. Themicroscopic details of the system are embedded in the functions
D(ρ) and σ(ρ). The pre-factor 1

L in the covariance of η(x, t) is due to coarsegraining, which
makes the noise strength weak for large L [34,36,39,40].

Our interest is in the statistics of the steady state density ρ(x) when conditioned on the
integrated current QT over a time interval [0, T ], for large T . Individual statistics of ρ(x)
and QT have already been studied [36,40–49]. For the conserved dynamics (1), when the
density is bounded inside the bulk, the probability P(QT ) of QT for large T has a large
deviation description and the large deviation function is independent of where the current is
measured [42,43,49]. On the other hand, in the steady state, the probability of ρ(x) has also
a large deviation form when the system size L is large [36,40,41,44]. These two probabilities
are given by

P(QT = q T ) ∼ e−T L Φ(q) and P[ρ(x)] ∼ e−L F[ρ(x)] (2)

for T and L both being large, whereΦ(q) andF[ρ(x)] are the corresponding large deviation
functions. Here, the precise meaning of the symbol∼ is that limL→∞ limT→∞ log P(QT =qT )

L T

= −Φ(q) and limL→∞ log P[ρ(x)]
L = −F[ρ(x)].

In contrast to (2), the conditioned probability of ρ(x, t) depends (as we will see in regions
I, II, III, IV, and V of Fig. 2) on where QT is measured. Therefore, we define an empirical
observable

Q(α)
T =
∫ 1

0
dx α(x)

∫ T

0
dt j(x, t) with

∫ 1

0
dx α(x) = 1. (3)
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Fig. 2 A schematic time evolution of the density profile ρ(x, t) when conditioned on Q(α)
T in (3) measured

over a large time interval [0, T ]. The system starts in its steady state far in the past, then reaches a quasi-
stationary state for 1 � t and 1 � T − t , and finally for t � T it relaxes to its steady state. Different shaded
regions denote different parts of the evolution: (I) t < 0, (II) t ≥ 0 but small, (III) 1 � t and 1 � T − t , (IV)
T − t > 0 but small, and (V) t ≥ T

Here, α(x) is arbitrary except for the normalization1 in (3). A choice of α(x) = δ(x − x0)
corresponds to the current being measured at x0.

We denote by P(α)
t [ρ(x)|Q] the conditioned probability of a density profile ρ(x) at time

t given that Q(α)
T takes value Q while the system is in its steady state. For large T and L , it

has the large deviation form

P(α)
t [ρ(x)|Q = qT ] ∼ e−L ψ

(α)
t [ρ(x),q] (4)

where ψ
(α)
t [ρ(x), q] is the conditioned large deviation function.

Our goal is to determine this conditioned large deviation function ψ
(α)
t [ρ(x), q]. For the

diffusive systems studied in this paper, cross-correlations of the density and the current can
be derived from ψ

(α)
t [ρ(x), q]. This way, the function plays the role of free energy [36] in

an ensemble where q is fixed. Large deviation functions are also important in understanding
non-equilibrium phase transitions in theoretical models [27,43,47,49–51] and in experiments
[52].

In this paper, we will give ψ
(α)
t [ρ(x), q] at t = 0, in the intermediate quasi-stationary

state (t � 1 and T − t � 1), and at t = T (indicated in Fig. 2) for diffusing independent
particles and for the symmetric simple exclusion process [36]. Our results for the latter are in
a perturbation expansion in small density. A hydrodynamic description of these two examples
is given by (1) with D(ρ) = 1 and σ(ρ) = 2ρ for the diffusing independent particles, and
D(ρ) = 1 and σ(ρ) = 2ρ(1 − ρ) for the symmetric simple exclusion process.

We shall start by a microscopic calculation on these models where we determine the
conditioned probability in terms of the left and right eigenvectors associated to the largest
eigenvalue of a tilted matrix [29]. Then, taking a hydrodynamic limit of the conditioned
probability we derive ψ

(α)
t [ρ(x), q]. For example, in the quasi-stationary state (regime III in

Fig. 2), we will see that

ψ
(α)
t [ρ(x), q] ≡ ψqs[ρ(x), q] = ψ

(α)
left [ρ(x), q] + ψ

(α)
right[ρ(x), q] (5)

up to an additive constant (subscript “qs” denotes “quasi-stationary”), where ψ
(α)
left and ψ

(α)
right

are related [29] to the left and right eigenvectors of a tilted matrix (see Sect. 2.5 for a precise
definition). We will see later that these two functions ψ

(α)
left [ρ(x), q] and ψ

(α)
right[ρ(x), q] have

in fact the following physical interpretation in terms of the large deviation function defined
in (4).

ψ
(α)
left [ρ(x), q] = ψ

(α)
0 [ρ(x), q] − F[ρ(x)] (6a)

1 The normalization for α(x) in (3) ensures that the probability P(Q(α)
T = qT ) has the large deviation form

(2) with the same large deviation function Φ(q), independent of α(x).
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ρ̄qs(x)

ρ(x, t)

ρ̄qs(x)fluctuation relaxation
t0

time (t)

Fig. 3 A schematic path ρ(x, t) leading to a fluctuation in density at t = t0 in the quasi-stationary regime,
and its subsequent relaxation to the quasi-stationary density ρ̄qs(x)

ψ
(α)
right[ρ(x), q] = ψ

(α)
T [ρ(x), q] (6b)

up to an additive constant, where F[ρ(x)] is the unconditioned large deviation function of
the density, as defined in (2).

We shall show (see (28)) that ψ
(α)
left and ψ

(α)
right have a simple dependence on α(x), which

cancels in the expression (5) for ψqs[ρ(x), q]. In other regions of Fig. 2, e.g. at t = 0 and

t = T , ψ(α)
t [ρ(x), q] does depend on α(x).

In addition, we shall see that the conditioned dynamics for large T , can be effectively
described by a fluctuating hydrodynamics equation with an additional driving field, which
can be expressed in terms of ψ

(α)
left and ψ

(α)
right. For example, in the quasi-stationary regime,

the path ρ(x, t) leading to a fluctuation at t0 with 1 � t0 and 1 � T − t0 (illustrated in Fig.
3), follows, for t < t0,

∂tρ(x, t) = ∂x

⎧
⎨
⎩D(ρ)∂xρ − σ(ρ)

⎛
⎝Φ ′(q) α(x) + ∂x

δψ
(α)
right

δρ(x, t)

⎞
⎠+ η(x, t)

⎫
⎬
⎭ (7a)

with η(x, t) being a Gaussian white noise of zero mean and covariance (1b). Similarly, the
path ρ(x, t) for subsequent relaxation (t ≥ t0) follows

∂tρ(x, t) = ∂x

{
D(ρ)∂xρ − σ(ρ)

(
Φ ′(q) α(x) − ∂x

δψ
(α)
left

δρ(x, t)

)
+ η(x, t)

}
(7b)

Comparing (7b) with (1a) one can see that, in the quasi-stationary regime, the effect of

conditioning on (3) is a driving field E = Φ ′(q) α(x) − ∂x
δψ

(α)
left

δρ(x,t) . Similarly, for (7a) the

driving field is E + ∂x
δψqs

δρ(x,t) , as seen from (5). In absence of conditioning, (7a) reduces to
the effective dynamics found in [53].

These equations (7), including the noise, are expected to hold in thewhole quasi-stationary
regime. That in this regime the noise part is of the form given in (7) is not surprising. Afterall,
the microscopic dynamics is a Markov process and it is known that the dynamics in the
conditioned ensemble is also a Markov process [1,8,23,29].

In the later part of this paper, we shall show that these results are consistent with a
macroscopic approach starting from (1) for a rather general D(ρ) and σ(ρ). In this approach,
ψ

(α)
left and ψ

(α)
right are solution of the Hamilton–Jacobi equations

∫ 1

0
dx

{
σ(ρ)

2

(
∂x

δψ
(α)
left

δρ(x, t)
− Φ ′(q)α(x) + D(ρ)∂xρ

σ(ρ)

)2
− (D(ρ)∂xρ)2

2σ(ρ)

}

= Φ ′(q) q − Φ(q) (8a)
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Fig. 4 Transition rates for
independent particles on a
one-dimensional chain coupled
with reservoirs of density ρa and
ρb . The number of particles
ni ≥ 0 at a site i is arbitrary

nini

ρa

n1
ρb

nL

i

∫ 1

0
dx

{
σ(ρ)

2

⎛
⎝∂x

δψ
(α)
right

δρ(x, t)
+ Φ ′(q)α(x) − D(ρ)∂xρ

σ(ρ)

⎞
⎠

2

− (D(ρ)∂xρ)2

2σ(ρ)

}

= Φ ′(q) q − Φ(q) (8b)

One should note that all our results for the conditioned process are in the large T limit.
We present this paper in the following order. In Sect. 2, we discuss the microscopic

framework for analyzing the conditioned probability in a general lattice gas model and intro-
duce conditioned large deviation function in the hydrodynamic limit. Our calculation is in
a weighted ensemble, which is known [1,8,23,29–31] to be equivalent to the conditioned
process in the large T limit (through an equivalence of ensembles). We use this procedure
to derive ψ

(α)
t [ρ(x), q] for the diffusing independent particles in Sect. 3, and for the sym-

metric simple exclusion process in Sect. 4. Using this microscopic approach we describe
the conditioned dynamics in Sect. 5. In Sects. 6 and 7, we show how our expressions of the
large deviation function ψ

(α)
t [ρ(x), q] fit with the Hamilton–Jacobi equations derived from

a macroscopic approach starting from the fluctuating hydrodynamics description (1).

2 Microscopic Analysis Using the TiltedMatrix

Let us first recall a few earlier results [1,8,16,23,29–32,54] for a Markov process conditioned
on an empirical measure by writing them for the two examples: (a) diffusing independent
particles and (b) the symmetric simple exclusion process. These are defined on a finite one-
dimensional lattice of L sites where particles jump between neighboring sites following a
continuous time τ update rule (see Figs. 4 and 5). The jump rates at the boundary correspond
to coupling to reservoirs of density ρa and ρb [36]. In both examples, a configuration is
specified by the set of occupation variables n ≡ {n1, . . . , nL }.

The microscopic analogue of the empirical observable (3) is

Q(λ)
N =

L∑
i=0

λi × number of jumps from site i to i + 1
during the time interval [0, N ] (9)

where λ ≡ {λ0, . . . , λL } with λi being real valued parameters. A jump from site i + 1 to
i is counted as a jump from site i to i + 1 with a negative sign. (Here, i = 0 denotes the
left reservoir and i = L + 1 denotes the right reservoir.) Similar to the condition in (3) we
consider

L∑
i=0

λi = 1. (10)
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Fig. 5 Transition rates of
particles in the symmetric simple
exclusion process on a
one-dimensional chain coupled
with reservoirs of density ρa and
ρb . A site is occupied at most by
one particle at a time

11ρa

1− ρa ρb

1− ρb

2.1 TiltedMatrix

Instead of conditioning on the value ofQ(λ)
N , it is more convenient [1,8,29–31,54] to work in

the ensemble where events are weighted by a factor eκQ(λ)
N . By analogy [1,8,23,29,31,33,55]

with equilibrium thermodynamics, we shall refer to this ensemble as the canonical ensemble
and the ensemble where Q(λ)

N is fixed as the micro-canonical ensemble. For large N , these
two ensembles are equivalent (see Sect. 2.3).

In the canonical ensemble, we need to introduce the following tilted matrix [29]

M(λ)
κ (n′,n) =

{
eκ
∑L

i=0 λi Ji(n′,n)M0(n′,n) for n′ 
= n,

−∑n′′ 
=nM0(n′′,n) for n′ = n
(11)

where M0(n′,n) is the transition rate from configuration n to n′ in the original (without
condition) dynamics and for this transition,

Ji (n′,n) =

⎧⎪⎨
⎪⎩

1, if a particle jumps from i to i + 1,

−1, if a particle jumps from i + 1 to i,

0, if no particle jumps between i and i + 1.

The scaled cumulant generating function of Q(λ)
N , defined by

μ(κ) = lim
N→∞

log
〈
eκQ(λ)

N

〉

N
, (12)

is the largest eigenvalue of M(λ)
κ [29] such that

∑
n

M(λ)
κ (n′,n)R(κ,λ)(n) = μ(κ)R(κ,λ)(n′) (13a)

∑
n′

L(κ,λ)(n′)M(λ)
κ (n′,n) = μ(κ)L(κ,λ)(n) (13b)

where R(κ,λ) and L(κ,λ) are the associated right and left eigenvectors, respectively.
At times of our interest, namely τ = 0, τ = N , and in the quasi-stationary regime, the

probability P(κ,λ)
τ (n) of a configuration n in the canonical ensemble can be expressed (see

[8,29,56]) in terms of these eigenvectors up to normalization constants.

– At time τ = 0,

P(κ,λ)
0 (n) = L(κ,λ)(n) R(0,λ)(n) (14a)

– at time τ = N ,

P(κ,λ)
N (n) = R(κ,λ)(n) (14b)
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– and in the quasi-stationary regime, i.e. 1 � τ with 1 � N − τ ,

P(κ,λ)
qs (n) = L(κ,λ)(n)R(κ,λ)(n). (14c)

2.2 Dependence on �

In our examples, the number of particles is conserved inside the bulk of the system, which
means

Ji−1(n′,n) − Ji (n′,n) = n′
i − ni

for all 1 ≤ i ≤ L and equivalently

Ji (n′,n) = J0(n′,n) −
i∑

j=1

(n′
j − n j ).

This conservation of particles leads to a symmetry of the tilted matrix and its eigenvectors. To
see this, we use the above relation in (11).Here, using

∑L
i=1 λi
∑i

j=1 n j =∑L
i=1 ni
∑L

j≥i λ j

and the normalization (10) we get
[
eκ
∑L

i=1 n
′
i

∑L
j≥i λ j
]
M(λ)

κ (n′,n)
[
e−κ
∑L

i=1 ni
∑L

j≥i λ j
]

= Mκ (n′,n)

where Mκ is the tilted matrix for the case where λ0 = 1 and λi = 0 for rest of the sites.
Denoting the eigenvectors of Mκ as (R(κ), L(κ)), we get

R(κ,λ)(n)
[
eκ
∑L

i=1 ni
∑L

j≥i λ j
]

= R(κ)(n) (15a)

L(κ,λ)(n)
[
e−κ
∑L

i=1 ni
∑L

j≥i λ j
]

= L(κ)(n). (15b)

Moreover, the eigenvalue μ(κ) is same in the two cases, which shows that it is independent
of λ.

This gives the λ-dependence of the probabilities (14). For example, using (15) in (14c)
we see that in the quasi-stationary regime, the probability P(κ,λ)

qs is independent λ (given the
normalization in (10)),

P(κ,λ)
qs (n) ≡ P(κ)

qs (n). (16)

2.3 An Equivalence of Ensembles: Canonical Versus Micro-canonical

For large time N , there is [1,8,23,29–31] an equivalence between the canonical ensemble
and the micro-canonical ensemble, where Q(λ)

N is fixed. In this equivalence, the conditioned

probability P(λ)
τ (n|Q) of a configuration n at time τ given Q(λ)

N = Q is related to the

probability P(κ,λ)
τ (n) in the canonical ensemble by

P(λ)
τ (n|Q = vN ) � P(φ′(v),λ)

τ (n) for large time N , (17)

where φ(v) is the Legendre transform of the eigenvalue μ(κ), defined by

φ(v) = v κ − μ(κ) with μ′(κ) = v. (18)
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This also means [36,42,43,49] that the probability of Q(λ)
N has a large deviation form given

by

P(Q(λ)
N = vN ) ∼ e−Nφ(v) for large time N . (19)

In this work, our results for the micro-canonical ensemble are obtained from the canonical
ensemble using the equivalence (17).

2.4 Hydrodynamic Limit

Our main interest is the probability in the hydrodynamic limit, which is defined in the scaled
coordinates (x, t) ≡ ( i

L , τ
L2 ) for large L , with N = L2T and λi = 1

L α(x) such that

Q(λ)
N � L Q(α)

T for large L,

with Q(α)
T given in (3). In this hydrodynamic limit,

φ
(
v = q

L

)
� 1

L
Φ(q), μ(κ) � 1

L
χ(κ) (20)

and they are related (due to (18)) by

Φ(q) = q κ − χ(κ) for χ ′(κ) = q. (21)

This scaling (20) is well known [42,43,48,49] and this will be confirmed in our examples.
For the probability of occupation variables n, taking a hydrodynamic limit means [36,38,

57] coarse-graining the system over boxes of width w with 1 � w � L , such that each box
has a total density ρ(x) which varies smoothly on the hydrodynamic scale x . If P(n) is the
probability of amicroscopic configuration n, then the probability P[ρ(x)] of a hydrodynamic
density profile ρ(x) is

∑
n∈ρ(x)

P(n) � P[ρ(x)] (22)

where the summation is over all n that correspond to the profile ρ(x) (see for example Sect.
3).

The right eigenvectorR(κ,λ) has an interpretation of a probability (see (14b)) and therefore,
its hydrodynamic limit is similarly defined by

∑
n∈ρ(x)

R(κ,λ)(n) � r (κ,α)[ρ(x)] (23a)

In comparison, L(κ,λ) by itself does not have an interpretation of a probability. Considering
(14a, 14c), we define the hydrodynamic limit for the left eigenvector as

L(κ,λ)(n) � �(κ,α)[ρ(x)] (23b)

for each configuration n that corresponds to the profile ρ(x). (Note that in contrast to (23a)
there is no summation over n in (23b).)

Using this construction of the hydrodynamic limit in (23), we see that the probability in
(14) leads to the probability of density ρ(x), which

– at t = 0 is given by

P(κ,α)
t=0 [ρ(x)] � �(κ,α)[ρ(x)] r (0,α)[ρ(x)], (24a)
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– at t = T is given by

P(κ,α)
t=T [ρ(x)] � r (κ,α)[ρ(x)], (24b)

– and in the quasi-stationary regime (1 � t and 1 � T − t) is given by

P(κ,α)
qs [ρ(x)] ≡ P(κ)

qs [ρ(x)] � �(κ,α)[ρ(x)] r (κ,α)[ρ(x)], (24c)

up to normalization constants.

Remark Note that to obtain both (24a) and (24c)wehave replaced the sum
∑

n∈ρ(x) L(n)R(n)

by �[ρ(x)]∑n∈ρ(x) R(n) for large L . We will see that this relation is satisfied for the two
models that we consider in this paper. It is expected to remain valid for more general diffusive
systems [58].

2.5 Large Deviation Function

In our examples we shall see that the hydrodynamic limit of the eigenvectors have a large
deviation form given by

r (κ,α)[ρ(x)] ∼ e−L ψ
(κ,α)
right [ρ(x)] (25a)

�(κ,α)[ρ(x)] ∼ e−L ψ
(κ,α)
left [ρ(x)] (25b)

Using them in (24) gives

P(κ,α)
t [ρ(x)] ∼ e−L ψ

(κ,α)
t [ρ(x)] (26)

with the large deviation function

– at t = 0,

ψ
(κ,α)
0 [ρ(x)] = ψ

(κ,α)
left [ρ(x)] + ψ

(0,α)
right [ρ(x)] (27a)

– at t = T ,

ψ
(κ,α)
T [ρ(x)] = ψ

(κ,α)
right [ρ(x)] (27b)

– and in the quasi-stationary regime, i.e. t � 1 and T − t � 1,

ψ
(κ,α)
t [ρ(x)] ≡ ψ(κ)

qs [ρ(x)] = ψ
(κ,α)
left [ρ(x)] + ψ

(κ,α)
right [ρ(x)] (27c)

where all these equalities are up to an additive constant (independent of ρ(x)).

Remark From (15) we see that the large deviation functions in (25) have a simple dependence
on α(x), given by

ψ
(κ,α)
right [ρ(x)] = V (κ)

right[ρ(x)] + κ

∫ 1

0
dx ρ(x)

∫ 1

x
dy α(y) (28a)

ψ
(κ,α)
left [ρ(x)] = V (κ)

left [ρ(x)] − κ

∫ 1

0
dx ρ(x)

∫ 1

x
dy α(y) (28b)

where V (κ)
right[ρ(x)] and V (κ)

left [ρ(x)] are the large deviation functions associated to R(κ) and

L(κ) in (15) (following a definition similar to (23) and (25)).
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3 Independent Particles

In this section, we analyze the simple case of a system of independent particles with transition
rates defined in Fig. 4. Considering the symmetry (15) it is sufficient to analyze the case
λ0 = 1, and λi = 0 for i ≥ 1. In the rest of our analysis, we shall consider this case, unless
explicitly stated otherwise.

In this case the tilted matrix (11) is

[Mκ · Ω] (n) = eκρaΩ(n1 − 1, . . .) + e−κ (n1 + 1)Ω(n1 + 1, . . .)

+ (nL + 1)Ω(. . . , nL + 1) + ρbΩ(. . . , nL − 1)

+
L−1∑
i=1

[
(ni + 1)Ω(. . . , ni + 1, ni+1 − 1, . . .)

+ (ni+1 + 1)Ω(. . . , ni − 1, ni+1 + 1, . . .)

]

− (ρa + 2n1 + . . . + 2nL + ρb)Ω(n)

where Ω(n) is the component of an arbitrary state vector Ω in the configuration space.
The eigenvalue equations (13) become

[
Mκ · R(κ)

]
(n) = μ(κ) R(κ)(n) (29a)

[
L(κ) · Mκ

]
(n) = μ(κ) L(κ)(n) (29b)

One can check that the right and left eigenvectors are of the form

R(κ)(n) =
L∏

i=1

anii
ni ! e

−ai (30a)

L(κ)(n) =
L∏

i=1

bnii (30b)

where (ai , bi ) are positive numbers to be determined. With this ansatz the eigenvalue equa-
tions (29) lead to

e−κa1 + aL − ρa − ρb − μ(κ) +
L∑

i=1

[
eκδi,1

ai−1

ai
+ ai+1

ai
− 2

]
ni = 0

eκρab1 + ρbbL − ρa − ρb − μ(κ) +
L∑

i=1

[
e−κδi,1

bi−1

bi
+ bi+1

bi
− 2

]
ni = 0

with a0 = ρa , aL+1 = ρb, and b0 = 1 = bL+1. As the occupation variables ni are arbitrary,
for the equations to be satisfied, their coefficients must vanish. This leads to a set of coupled
linear equations for ai and bi , which can be easily solved, and we get, for 1 ≤ i ≤ L ,

ai = ρa

(
1 − i

L + 1

)
eκ + ρb

i

L + 1
(31a)

bi =
(
1 − i

L + 1

)
e−κ + i

L + 1
(31b)
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with the largest eigenvalue

μ(κ) = μni(κ) = ρa

L + 1

(
eκ − 1

)+ ρb

L + 1

(
e−κ − 1

)
(32)

3.1 Hydrodynamic Limit

In the hydrodynamic limit, from (32) it is easy to confirm (20), which gives

χ(κ) ≡ χni(κ) = ρa
(
eκ − 1

)+ ρb
(
e−κ − 1

)
(33)

For the hydrodynamic limit of the right eigenvector, defined in (23a), we decompose the
system into M = L/w boxes each containing w sites and define

r (κ)(ρ1, . . . , ρM ) =
∑
n

R(κ)(n)

where the sum is over all configurations with ρmw particles in the m-th box. Then, using
(30a) we get

r (κ)(ρ1, . . . , ρM ) =
M∏

m=1

⎧⎨
⎩
∑
nm1

· · ·
∑
nmw

[
a
nm1
m1

nm1 !
· · · a

nmw
mw

nmw ! e
−am1 ···−amw

]
δρmw,

∑
i nmi

⎫⎬
⎭

where mi denotes the site index of the i-th site of the mth box, and δi, j is the Kronecker
delta. Using an identity

∞∑
n1=0

∞∑
n2=0

an11
n1!

an22
n2! δn,n1+n2 = (a1 + a2)n

n!

and that ai is slowly varying such that ai � a(mw
L ) when the site i is in the m-th box, and

defining ρm = ρ(mw
L ) we get

r (κ)(ρ1, . . . , ρM ) �
M∏

m=1

[
w a(mw

L )
]w ρ(mw

L )

[w ρ(mw
L )]! e−w a(mw

L )

Then, for 1 � w � L , using the Stirling’s formula we get (following the definition
(23a, 25a, 28a))

r (κ)(ρ1, . . . , ρM ) � r (κ)[ρ(x)] ∼ e−L V (κ)
right[ρ(x)]

with

V (κ)
right[ρ(x)] = Hni[ρ(x), a(x)] (34a)

where we defined

Hni[ρ(x), a(x)] =
∫ 1

0
dx

[
ρ(x) log

ρ(x)

a(x)
− ρ(x) + a(x)

]
(34b)

and

a(x) = ρa (1 − x) eκ + ρbx (34c)
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For the left eigenvector, the hydrodynamic limit (23b) is simple to construct from (30b),

which (following the definition (23b,25b,28b)) leads to �(κ)[ρ(x)] ∼ e−L V (κ)
left [ρ(x)] with

V (κ)
left [ρ(x)] =

∫ 1

0
dx ρ(x) log

1

b(x)
(35a)

and

b(x) = e−κ (1 − x) + x (35b)

Remark The κ = 0 corresponds to the case without a condition on the empirical observable.
So, the steady state large deviation function of density Fni[ρ(x)] = V (0)

right[ρ(x)] is
Fni[ρ(x)] = Hni[ρ(x), ρ̄free(x)] with ρ̄free(x) = ρa(1 − x) + ρbx (36)

3.2 Large Deviation Function

Expressions for ψ
(κ,α)
left and ψ

(κ,α)
right for an arbitrary α(x) follow from (28). Using this result in

(27) we get the large deviation function at three different times, all of which are of the form

ψ
(κ,α)
t [ρ(x)] = Hni[ρ(x), ρ̄(κ,α)

t (x)] (37)

with the average density profile

– at t = 0,

ρ̄
(κ,α)
0 (x) = ρ̄free(x)

[
(1 − x)e−κ

∫ x
0 dyα(y) + x eκ

∫ 1
x dyα(y)

]
(38a)

– at t = T ,

ρ̄
(κ,α)
T (x) = ρa(1 − x)eκ

∫ x
0 dyα(y) + ρb x e

−κ
∫ 1
x dyα(y) (38b)

– and in the quasi-stationary regime,

ρ̄qs(x) = ρ̄free(x) + x(1 − x)
[
ρa
(
eκ − 1

)+ ρb
(
e−κ − 1

)]
(38c)

4 Symmetric Simple Exclusion Process

In this section, we analyze the one-dimensional symmetric simple exclusion process with the
transition rates defined in Fig. 5. We indicate how to perform a low-density expansion. Our
results will be limited to the first two terms in this expansion, although it is straightforward to
extend our approach to higher orders. Considering the symmetry (15) we will analyze only
the case λ0 = 1, and λi = 0 for i ≥ 1.

4.1 A Representation of the Eigenvectors

A configuration can be specified by the position of the particles. In a configuration with m
occupied sites {i1, . . . , im} we denote the component of the eigenvectors as

R(κ)(n) ≡ R(κ)(i1, . . . , im) and L(κ)(n) ≡ L(κ)(i1, . . . , im) (39)

We normalize such that the component of both eigenvectors in the empty configuration is 1.
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4.2 A perturbation Solution for Small Density

For finite L , the Perron-Frobenius theorem [59] assures that the largest eigenvalue of the
tilted matrix is non-degenerate. Expressions of the eigenvalue and eigenvectors exist [60,61],
but it is hard to extract from them the large scale behaviors. Here, we use a perturbation
expansion in small ρa and ρb, where it is possible to systematically solve the eigenvalue
equation order by order. We write

μ(κ) = μ0(κ) + μ1(κ) + μ2(κ) + · · · (40a)

R(κ) = R(κ)
0 + R(κ)

1 + R(κ)
2 + · · · (40b)

L(κ) = L(κ)
0 + L(κ)

1 + L(κ)
2 + · · · (40c)

with increasing orders in ρa and ρb.
For ρa = ρb = 0, allR(κ)

n = 0 except for the empty configuration and one hasμ0(κ) = 0.
Considering that the injection rates of particles into the system are of order one in density
whereas the extraction rates are of order zero, it is also clear that at order n in ρa and ρb,
the R(κ)

n of configurations with more than n occupied sites vanish. (This is evident in the
block-diagonal structure of the tilted matrix given in Appendix A.) Therefore,

R(κ)
0 (i) = 0,

R(κ)
0 (i, j) = R(κ)

1 (i, j) = 0,

R(κ)
0 (i, j, k) = R(κ)

1 (i, j, k) = R(κ)
2 (i, j, k) = 0,

and so on. Here we present the solution up to only the second order.
The equations one needs to solve up to the second order in ρa and ρb are given in the

Appendix A. Since at this orderR(κ)
2 of configurations with 3 or more occupied sites vanish,

the hierarchy closes. For arbitrary L , we get the solution

μ1(κ) = ρa

L + 1

(
eκ − 1

)+ ρb

L + 1

(
e−κ − 1

)
(41a)

μ2(κ) = − (eκ − 1)2

6(L + 1)2
[
2L
(
ρ2
a + ρaρbe

−κ + ρ2
be

−2κ)+ ρ2
a + 4ρaρbe

−κ + ρ2
be

−2κ]

(41b)

in agreement with an earlier result [56]. The right eigenvector, up to the second order, is given
by

R(κ)
1 (i) = eκρa

(
1 − i

L + 1

)
+ ρb

i

L + 1
(42a)

R(κ)
2 (i) = eκρ2

a

(
1 − i

L + 1

)
+ ρ2

b
i

L + 1

− (eκρa − ρb
)2 i

6L

(
1 − i

L + 1

)[
e−κ

(
2 − i

L + 1

)
+ 1 + i

L + 1

]
(42b)

R(κ)
2 (i, j) − R(κ)

1 (i)R(κ)
1 ( j) = − (ρaeκ − ρb)

2

(L + 1)

i

L

(
1 − j

L + 1

)
for j ≥ i (42c)
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As the probabilities (14) are always a product of a left and a right eigenvector, we will only
need the following orders for the left eigenvector.

L(κ)
0 (i) = e−κ

(
1 − i

L + 1

)
+ i

L + 1
(43a)

L(κ)
1 (i) = (e−κ − 1

)2 i

6L

(
i

L + 1
− 1

)[
eκρa

(
2 − i

L + 1

)
+ ρb

(
1 + i

L + 1

)]

(43b)

L(κ)
0 (i, j) − L(κ)

0 (i) L(κ)
0 ( j) = −

(
e−κ − 1

)2
(L + 1)

i

L

(
1 − j

L + 1

)
for j ≥ i (43c)

Remarks – For the symmetric simple exclusion process, the eigenvalue equation can be
systematically solved to arbitrary order. The “miracle” which makes an explicit solution
possible in practice is that at every order, the eigenvectors are low degree polynomials
of the site indices i . This is special to the exclusion process, and may not apply to other
diffusive systems.

– At the first order in ρa and ρb, the expressions of eigenvalue and eigenvectors coincide
with that of the independent particles case in Sect. 3.

4.3 Cumulants of the OccupationVariable

One can then derive the cumulants of the occupation variables from the probability (14). For
example, at time τ = N , using (14b) and the representation (39) we get

〈ni 〉 = 1

N

(
R(κ)(i) +

∑
j 
=i

R(κ)(i, j) + · · ·
)

〈
nin j
〉 = 1

N

(
R(κ)(i, j) +

∑
k 
=i, j

R(κ)(i, j, k) + · · ·
)

where the normalization N = 1 +∑i R(κ)(i) +∑i
∑

j 
=i R(κ)(i, j) + · · · .
Using this with the perturbation solution of the eigenvectors we can construct a perturba-

tion expansion of the cumulants for the low density limit. For example, at the second order
in ρa and ρb, the average occupation of a site i at time τ = N is

〈ni 〉 = R(κ)
1 (i) + R(κ)

2 (i) −
(
R(κ)

1 (i)
)2 +
∑
j 
=i

(
R(κ)

2 (i, j) − R(κ)
1 (i)R(κ)

1 ( j)
)

+ · · ·(44a)

and the connected correlation
〈
nin j
〉
c = R(κ)

2 (i, j) − R(κ)
1 (i)R(κ)

1 ( j) + · · · (44b)

For time τ = 0 and for the quasi-stationary state (see (14)) we can similarly write the average
occupations and their correlations by replacing R(κ) by R(0)L(κ) or R(κ)L(κ) in (44).

4.4 Hydrodynamic Limit

It is straightforward to take the hydrodynamic limit of the expressions (42) and (43), which
can be used to derive the hydrodynamic limit of the cumulants of the occupation variables.
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For large L , we define

�(κ)(x) � L(κ)
0 (x L) + L(κ)

1 (x L)

= e−κ (1 − x) + x − 1

6
(e−κ − 1)2x(1 − x)

[
eκρa(2 − x) + ρb(1 + x)

]
(45)

and

g(κ)
left(x, y) � L

[
L(κ)
0 (xL, yL) − L(κ)

0 (xL) L(κ)
0 (yL)

]

= −(e−κ − 1)2x(1 − y) for y ≥ x . (46)

Similarly, from (42) we define

r (κ)(x) � R(κ)
1 (x L) + R(κ)

2 (x L)

= eκ
(
ρa + ρ2

a

)
(1 − x) + (ρb + ρ2

b

)
x

− 1

6
(eκρa − ρb)

2x(1 − x)
[
1 + x + (2 − x) e−κ

]
(47)

and

g(κ)
right(x, y) � L

[
R(κ)

2 (xL, yL) − R(κ)
1 (xL) R(κ)

1 (yL)
]

= −(eκρa − ρb)
2x(1 − y) for y ≥ x . (48)

Remark In taking the hydrodynamic limit of the perturbation expansion we have assumed
that the limits of large L and small density can be exchanged. We will see that the resulting
large deviation functions are consistent with the macroscopic analysis in Sect. 7.2.

4.4.1 Cumulants of Density

At time τ = 0, in the quasi-stationary regime, and at τ = L2T (the hydrodynamic time
t = T ) the cumulants of the occupation variables are of the form (see (44))

〈nxL 〉 � ρ̄(x) = u(x) [1 − u(x)] +
∫ 1

0
dy c(x, y) (49a)

〈nxL nyL 〉c � 1

L
c(x, y) (49b)

for large L , up to the second order in ρa and ρb, where

– at t = 0,

u(x) = �(κ)(x)r (0)(x) (50a)

c(x, y) = �(κ)(x)�(κ)(y)g(0)
right(x, y) + r (0)(x)r (0)(y)g(κ)

left(x, y) (50b)

– in the quasi-stationary state,

u(x) = �(κ)(x)r (κ)(x) (51a)

c(x, y) = �(κ)(x)�(κ)(y)g(κ)
right(x, y) + r (κ)(x)r (κ)(y)g(κ)

left(x, y) (51b)

– at t = T ,

u(x) = r (κ)(x) and c(x, y) = g(κ)
right(x, y) (52)

Explicit expressions of the cumulants are given in Appendix B.
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4.4.2 Large Deviation Function

Here, we show how to derive a small density expansion of the large deviation function in
(26) from the above expansion of the cumulants of the density.

Take an arbitrary probability distribution P(n) where the occupation variables are either
0 or 1. Then, one can write

L∏
i=1

ehi ni =
L∏

i=1

[
1 + ni

(
ehi − 1

)]

where hi are real valued parameters. If one expands this product, averages over P(n), and
uses the fact that cumulants of order k scale like ρa and ρb to the power k, then one gets, for
finite L ,

log

〈
L∏

i=1

ehi ni

〉
=

L∑
i=1

〈ni 〉
(
ehi − 1

)
− 1

2

L∑
i=1

〈ni 〉2
(
ehi − 1

)2

+
L∑

i=1

L∑
j>i

〈
nin j
〉
c

(
ehi − 1

) (
eh j − 1

)
+ · · ·

In the hydrodynamic limit, when hi � h( i
L ), 〈ni 〉 � ρ̄( i

L ), and
〈
nin j
〉
c � 1

L c(
i
L ,

j
L ), we

get for the generating functional

log

〈
L∏

i=1

ehi ni

〉
� L G[h(x)]

with

G[h(x)] =
∫ 1

0
dx
(
eh(x) − 1

)
ρ̄(x) − 1

2

∫ 1

0
dx
(
eh(x) − 1

)2
ρ̄(x)2

+
∫ 1

0
dx
∫ 1

x
dy
(
eh(x) − 1

) (
eh(y) − 1

)
c(x, y) + · · · (53)

Then, P[ρ(x)] has [7,36] the large deviation form (26) with the large deviation function
ψ[ρ(x)] given by the Legendre transformation

ψ[ρ(x)] =
∫ 1

0
dx h(x) ρ(x) − G[h(x)] (54)

where h(x) is the solution of δG[h]
δh(x) = ρ(x).

The small density expansion of (53, 54) is then straightforward to get from the perturbation
expansion of the cumulants. It gives

ψ[ρ(x)] � Hsep[ρ(x), ρ̄(x), c(x, y)] (55a)

where up to the second order in ρa and ρb,

Hsep[ρ(x), ρ̄(x), c(x, y)] =
∫ 1

0
dx

[
ρ(x) log

ρ(x)

ρ̄(x)
+ (1 − ρ(x)) log

1 − ρ(x)

1 − ρ̄(x)

]

− 1

2

∫ 1

0
dx
∫ 1

0
dy

(
ρ(x)

ρ̄(x)
− 1

)(
ρ(y)

ρ̄(y)
− 1

)
c(x, y) (55b)
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The expression (55) remains valid at all times with ρ̄(x) and c(x, y) being replaced by their
expressions in Sect. 4.4.1. For the unconditioned case, where ρ̄(x) and c(x, y) are given
by (49) for κ = 0, one can verify that this perturbation expansion result is consistent with
previously known expressions [36,40,44].

4.4.3 Small Density Expansion of �(�), V (�)
left and V

(�)
right

It is straightforward to take the hydrodynamic limit of (41), which confirms (20) at the level
of a small density expansion with

χ(κ) = ρa
(
eκ − 1

)+ ρb
(
e−κ − 1

)− 1

3

(
1 − e−κ

)2 (
e2κρ2

a + eκρaρb + ρ2
b

)+ · · · (56)

This is in agreement with earlier findings in [42,56].
For λ0 = 1 and λi = 0 for i ≥ 1, the large deviation functions ψ

(κ,α)
left ≡ V (κ)

left and

ψ
(κ,α)
right ≡ V (κ)

right (see (28)). An expression for V
(κ)
left can be derived by taking the hydrodynamic

limit (23b,25b) of L(κ). For a configuration n, where the occupation variables are either 0 or
1, we write

logL(κ) =
∑
i

ni logL(κ)(i) +
∑
i< j

ni n j log

[
1 + L(κ)(i, j) − L(κ)(i)L(κ)( j)

L(κ)(i)L(κ)( j)

]
+ · · ·

using the representation in (39). Then, from the perturbation expansion (40c, 43) and taking
the hydrodynamic limit (23b,25b) we get

V (κ)
left [ρ] =

∫ 1

0
dx ρ(x) log

1

�(κ)(x)
− 1

2

∫ 1

0
dx
∫ 1

0
dy

ρ(x) ρ(y)

�(κ)(x) �(κ)(y)
g(κ)
left(x, y) + · · ·(57)

where �(κ)(x) and g(κ)
left(x, y) are defined in (45) and (46).

In comparison, it is harder to derive an expression for V (κ)
right by taking the hydrodynamic

limit of the expression (42) for R(κ). It is much easier to derive using the relation (27b) and
the result (49, 55) at time T . This gives

V (κ)
right[ρ(x)] = Hsep

[
ρ(x), ρ̄T (x), g(κ)

right(x, y)
]

(58a)

with ρ̄T (x) = r (κ)(x)
(
1 − r (κ)(x)

)
+
∫ 1

0
dy g(κ)

right(x, y) (58b)

up to the second order in ρa and ρb, and an additive constant.

Remark We have checked (details in Appendix C) that the result (57), and the expression of
ψ

(κ)
qs and ψ

(κ)
T obtained from (55) satisfy the relation (27c).

5 Effective Dynamics

In the canonical ensemble, the biased dynamics is Markovian and one can write [1,5,6,
8,23,29,62] the transition rates in terms of the tilted Matrix. For example, in the quasi-
stationary regime, the transition rate W (κ,λ)

qs (n′,n) from a microscopic configuration n to

123



168 B. Derrida, T. Sadhu

another configuration n′ is given by [29]

W (κ,λ)
qs (n′,n) = L(κ,λ)(n′)

L(κ,λ)(n)
M(λ)

κ (n′,n) for n′ 
= n. (59a)

This means, a spontaneous fluctuation at time τ0 in the quasi-stationary regime (1 � τ0 and
1 � N − τ0), relaxes following this dynamics (59a).

Similarly, the path leading to a spontaneous fluctuation can be described by a time reversal
of (59a). The transition rate W(κ,λ)

qs (n′,n) of this time-reversed process can be constructed
[63] using the quasi-stationary distribution (14c), which gives

W(κ,λ)
qs (n′,n) = R(κ,λ)(n′)

R(κ,λ)(n)
M(λ)

κ (n,n′) for n′ 
= n. (59b)

For the two examples considered in this paper (the independent particles and the symmetric
simple exclusion process), it is straightforward to see that the effective dynamics (59a) with
(11) correspond to re-weighting the jump rates of particles (see Figs. 4 and 5): the jump rate
for a particle from site i to i + 1 is weighted by a factor eEi , whereas the jump rate from
i + 1 to i is weighted by e−Ei , where

Ei (n) = κ λi + log
L(κ,λ)(̂n)

L(κ,λ)(n)
for all 0 ≤ i ≤ L, (60a)

with

n̂ j = n j − δ j,i + δ j,i+1 for all 1 ≤ j ≤ L. (60b)

Similar re-weighting of jump rates can be seen for the time reversed dynamics (59b).We note
that, in general, the jump rates for the dynamics are non-local functions of the occupation
variables n.

Hydrodynamic Limit

In the large L limit, when x = i
L and λi = 1

L α(x), (60) becomes

Ei (n) � 1

L
e(x) with e(x) = κ α(x) − ∂x

δψ
(κ,α)
left

δρ(x)
. (61)

In a hydrodynamic description (1), the effect of such a weak bias can be incorporated (see
[64] for another example) within the linear response theory, where e(x) acts as an external
driving field. This leads to the following dynamics.

Relaxation A spontaneous fluctuation of hydrodynamic density in the quasi-stationary state
relaxes following ∂tρ(x, t) = −∂x j(x, t) with

j(x, t) = −D(ρ(x, t))∂xρ(x, t) + σ(ρ(x, t))

{
κ α(x) − ∂x

δψ
(κ,α)
left

δρ(x, t)

}
+ η(x, t)

(62a)

where η(x, t) is a Gaussian white noise of zero mean and covariance (1b).

A somewhat similar analysis based on (59b) leads to the following dynamics:
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Fluctuation The path leading to a fluctuation in the quasi-stationary state is described by
∂tρ(x, t) = −∂x j(x, t) with

j(x, t) = −D(ρ(x, t))∂xρ(x, t) + σ(ρ(x, t))

⎧
⎨
⎩κ α(x) + ∂x

δψ
(κ,α)
right

δρ(x, t)

⎫
⎬
⎭+ η(x, t)

(62b)

Remarks – The time evolution of the most probable density profile leading to a fluctuation
and its subsequent relaxation are the zero noise case of (62b) and (62a). We have verified
this explicitly for the independent particles starting from their microscopic dynamics.
For the symmetric simple exclusion process, we checked this up to the second order in
a low density expansion.

– The effective dynamics (7) in the micro-canonical ensemble are readily obtained from
(62) using the ensemble equivalence (21).

6 Macroscopic Analysis

The two examples discussed in Sects. 3 to 5 are governed [36,39,42,53], for large L , by the
fluctuating hydrodynamics equation (1). Our goal here is to show that the large deviation
functions (34, 35) and (57,58) are consistent with a macroscopic approach. Besides this, the
macroscopic analysis applies for a general class of models where the microscopic details
enter in the terms D(ρ) and σ(ρ).

Much of the results can be inferred by drawing an analogy of (1) to a Langevin equation in
the weak noise limit, as in [29]. In this analogy, a simple quantity is the generating function,
which for (1) is defined by

G(κ,α)
T [r(x), s(x)] =

∫
dQ eLκ Q P(α)

T [r(x), Q|s(x)] (63)

where P(α)
T [r(x), Q|s(x)] is the joint probability of a density profile ρ(x, T ) = r(x) at

the hydrodynamic time t = T , and Q(α)
T = Q in (3), given the density ρ(x, 0) = s(x) at

t = 0. Similarly to the Langevin equation [29], one expects, for large L and T , the generating
function to have the form

G(κ,α)
T [r(x), s(x)] ∼ eT L χ(κ)−L ψ

(κ,α)
right [r(x)]−L ψ

(κ,α)
left [s(x)] (64)

where χ(κ),ψ(κ,α)
right , andψ

(κ,α)
left are the same quantities as in (20) and (25). Starting from (64)

we now obtain a variational formulation as in [34–36,40].

6.1 AVariational Formulation

For large L , the probability of a certain time evolution of ρ(x, t) and j(x, t) inside the time
window [0, T ], which follows (1) is given by [34,36]

P[ρ(x, t), j(x, t)] ∼ exp

[
−L
∫ 1

0
dx
∫ T

0
dt

( j(x, t) + D(ρ)∂xρ(x, t))2

2σ(ρ)

]
(65)
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Fig. 6 A schematic of the optimal
evolution of density for the
variational problem (67), where at
the intermediate time the density
is time independent ρ̄qs(x) 0 T

s(x)

r(x)ρ̄qs(x)

where ∼ means that sub-leading terms in large L are neglected. Using this, the generating
function (63) can be written as a path-integral

G(κ,α)
T [r(x), s(x)] ∼

∫
D[ρ, j]eLS(κ,α)

T [ρ, j] (66a)

with

S(κ,α)
t f −ti [ρ, j] =

∫ t f

ti
dt
∫ 1

0
dx

{
κ α(x) j(x, t) − ( j(x, t) + D(ρ)∂xρ(x, t))2

2σ(ρ)

}
(66b)

with ti = 0 and t f = T . The path integral in (66a) is over all paths {ρ(x, t), j(x, t)}
satisfying ∂tρ = −∂x j with the initial density profile ρ(x, 0) = s(x) and the final density
profile ρ(x, T ) = r(x).

For large L and T , assuming a single optimal path, we get the large deviation form (64)
with

T χ(κ) − ψ
(κ,α)
right [r(x)] − ψ

(κ,α)
left [s(x)] = max

ρ, j
S(κ,α)
T [ρ, j] (67)

where the optimization is over all paths (ρ(x, t), j(x, t)) satisfying the conditions mentioned
earlier.

In a rather general class of systems [49], the optimal path for (67) starts at the given density
profile ρ(x, 0) = s(x) but soon becomes time independent ρ(x, t) = ρ̄qs(x) and remains at
this density until only close to the final time T where it changes to ρ(x, T ) = r(x). (This
assumption for the time independence of the optimal profile for t � 1 and T − t � 1 is
equivalent to assuming the additivity principle [42].) This is illustrated in the schematic in
Fig. 6. In this paper, we shall only consider situations where this scenario holds. For examples
where this breaksdown see [48,65].

Remarks 1. The probability (65) does not include the contribution of reservoirs. This applies
to density profiles ρ(x) which are fixed at the boundary, i.e. ρ(0, t) = ρa and ρ(1, t) =
ρb. This is justified when the coupling with the reservoirs is strong, so that fluctuations
of density at the boundary relax to the reservoir density in a time scale much faster than
the hydrodynamic time scale.

2. The formula (67) means

χ(κ) = lim
T→∞

1

T
max
ρ, j

S(κ,α)
T [ρ, j] (68)

which leads to the well-known result [36,42]

χ(κ) = max
q

{κ q − Φ(q)} ; Φ(q) = min
ρ̄qs

∫ 1

0
dx

(
q + D(ρ̄qs)∂x ρ̄qs(x)

)2
2σ(ρ̄qs)

(69)

which agrees [36,42] with (33) and (56) for the independent particles and for the sym-
metric simple exclusion process.
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6.2 Hamilton–Jacobi Equation

In (67), the deviation of the optimal path from ρ̄qs(x) near t = 0 and t = T (see Fig. 6)

are important and they contribute to ψ
(κ,α)
right and ψ

(κ,α)
left . Here, we show how this variational

formula (67) leads to a pair of Hamilton–Jacobi equations for ψ
(κ,α)
right and ψ

(κ,α)
left .

We start by deriving the equation for ψ
(κ,α)
left . For this, we use (see remark after Eq. (24))

G(κ,α)
T [r(x), s(x)] �

∫
D[ρ] G(κ,α)

T−t [r(x), ρ(x)] G(κ,α)
t [ρ(x), s(x)] (70)

for 0 < t < T , which can be seen from the definition (63). We consider infinitesimal t > 0
but large T , such that T − t is large. This means, we can use (64) for G(κ,α)

T−t [r(x), ρ(x)]. On
the other hand, using the Action formulation (66) we write, for an infinitesimal t ,

G(κ,α)
t [ρ(x), s(x)] ∼ exp

[
t L
∫ 1

0
dx

{
κ α(x) j(x) − ( j(x) + D(s)∂x s(x))2

2σ(s)

}]

where ρ(x) � s(x) − t ∂x j(x). Using this in (70) and a saddle point analysis for large L we
get

ψ
(κ,α)
left [s(x)] � tχ(κ) − max

j(x)

{
−ψ

(κ,α)
left [s(x) − t ∂x j(x)]

+ t
∫ 1

0
dx

(
κ α(x) j(x) − ( j(x) + D(s)∂x s(x))2

2σ(s)

)}

Expanding ψ
(κ,α)
left [s(x) − t ∂x j(x)] in a Taylor series up to linear order in t , and then using

an integration by parts, we get

χ(κ) � max
j(x)

{
δψ

(κ,α)
left

δs(1)
j(1) − δψ

(κ,α)
left

δs(0)
j(0)

+
∫ 1

0
dx

[(
κ α(x) − ∂x

δψ
(κ,α)
left

δs(x)

)
j(x) − ( j(x) + D(s)∂x s(x))2

2σ(s)

]}
(71)

For density profiles which are fixed at the boundary (see the remark 1 in Sect. 6.1), one can
see from (28,35, 57) that

δψ
(κ,α)
left

δs(x)
= 0 at x = 0 and at x = 1, (72)

for the two systems we study in this paper. Similar conditions occurred already in earlier
works [34,53]. Using this in (71) and optimizing over j(x) leads to

∫ 1

0
dx

⎡
⎣σ(s)

2

(
∂x

δψ
(κ,α)
left

δs(x)
− κ α(x) + D(s)s′(x)

σ (s)

)2
− (D(s)s′(x))2

2σ(s)

⎤
⎦ = χ(κ) (73a)

where we denote s′(x) ≡ ∂x s(x).
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A similar analysis (by considering small decrement around the time T ) leads to an anal-
ogous equation for ψ

(κ,α)
right .

∫ 1

0
dx

⎡
⎢⎣σ(r)

2

⎛
⎝∂x

δψ
(κ,α)
right

δr(x)
+ κ α(x) − D(r)r ′(x)

σ (r)

⎞
⎠

2

− (D(r)r ′(x))2

2σ(r)

⎤
⎥⎦ = χ(κ)

(73b)

These two are the Hamilton–Jacobi equations associated to the variational problem (67).
Their micro-canonical analogue (8) can be obtained by the ensemble equivalence (21).

6.3 Optimal Path

In (71) the optimal current

jopt(x) = −D(s)∂x s(x) + σ(s)

(
κ α(x) − ∂x

δψ
(κ,α)
left

δs(x)

)
(74)

This means that the optimal path ρopt(x, t) near t = 0 follows

∂tρopt = ∂x

{
D(ρopt)∂xρopt − σ(ρopt)

(
κ α(x) − ∂x

δψ
(κ,α)
left

δρopt

)}
(75)

It is straightforward to extend the argument for t ≥ 0 but T − t � 1 (region II of Fig. 2) and
show that the dynamics is the same.

A similar analysis in the derivation of (73b) shows that the optimal path ρopt(x, t) in region
IV of Fig. 2 is described by

∂tρopt = ∂x

⎧
⎨
⎩D(ρopt)∂xρopt − σ(ρopt)

⎛
⎝κ α(x) + ∂x

δψ
(κ,α)
right

δρopt

⎞
⎠
⎫
⎬
⎭ (76)

In the quasi-stationary state (76) also describes the optimal path leading to a fluctuation
and (75) describes the optimal path of relaxation (see illustration in Fig. 3).

6.4 Fixed point of the dynamics

Using (73) we show in Appendix D that along the optimal path (75),

d

dt
ψ(κ)
qs [ρopt(x, t)] = −

∫ 1

0
dx

σ(ρopt(x, t))

2

(
∂x

δψ
(κ)
qs [ρopt(x, t)]
δρopt(x, t)

)2
(77)

with ψ
(κ)
qs given in (27c). Since σ(ρ) is positive, this means d

dt ψ
(κ)
qs [ρopt(x, t)] = 0 if and

only if ∂x
δψ

(κ)
qs [ρopt(x,t)]
δρopt(x,t)

= 0. (The case κ = 0 has been discussed earlier in [53].)

The exampleswe consider here have a unique quasi-stationary density ρ̄qs,where
δψ

(κ)
qs

δρ̄qs(x)
=

0. Then (77) implies that ρ̄qs is an attractive fixed point of (75) (see Fig. 3).

123



Large Deviations Conditioned on Large Deviations II 173

For ρ̄qs the optimal current (74) is jopt = χ ′(κ), which can be seen from (69). Then, we
get

−D(ρ̄qs)∂x ρ̄qs + σ(ρ̄qs)

(
κ α(x) − ∂x

δψ
(κ,α)
left

δρ̄qs(x)

)
= χ ′(κ)

which leads to

∂x
δψ

(κ,α)
left

δρ̄qs(x)
= κ α(x) − χ ′(κ) + D(ρ̄qs)∂x ρ̄qs(x)

σ (ρ̄qs)
(78a)

A similar calculation for (76) lead to

∂x
δψ

(κ,α)
right

δρ̄qs(x)
= −κ α(x) + χ ′(κ) + D(ρ̄qs)∂x ρ̄qs(x)

σ (ρ̄qs)
(78b)

These give conditions for the solution of (73). It is well-known [53,66] that, there are
multiple solutions of a Hamilton–Jacobi equation. For the two examples studied in this work,
the relevant solution of (73) follows the boundary condition (78) and (see (72))

δψ
(κ,α)
left

δρ(x)
= 0 and

δψ
(κ,α)
right

δρ(x)
= 0 at x = 0 and x = 1,

for density profiles ρ(x)

with ρ(0) = ρa and ρ(1) = ρb. (79)

6.5 Conditioned Stochastic Dynamics

In Sect. 5 we have shown using a microscopic analysis that, in the quasi-stationary state,
conditioned dynamics is given by a fluctuating hydrodynamics equation (62). Here, we give
a derivation using the macroscopic approach.

In the quasi-stationary state, if P[ρ, j |ρi ] is the probability of a path {ρ(x, t), j(x, t)}
in a time window [ti , t f ] (for 1 � ti < t f and 1 � T − t f ) given an initial density
ρ(x, ti ) = ρi (x), then using (63) and (66b) one can write

P[ρ, j |ρi ] =
G(κ,α)

T−t f
[ρT , ρ f ] eLS

(κ,α)
t f −ti

G(κ,α)
T−ti

[ρT , ρi ]
where we denote ρ(x, t f ) = ρ f (x) and ρ(x, T ) = ρT (x). Then, for large L , using (26) and
(64) we get

P[ρ, j |ρi ] ∼ e
−L(t f −ti )χ(κ)+Lψ

(κ,α)
left [ρi ]−Lψ

(κ,α)
left [ρ f ]+LS(κ,α)

t f −ti
[ρ, j]

(80)

This expression can be simplified by using

ψ
(κ,α)
left [ρ f ] − ψ

(κ,α)
left [ρi ] =

∫ 1

0
dx
∫ t f

ti
dt ∂tρ

δψ
(κ,α)
left [ρ]

δρ(x, t)

=
∫ 1

0
dx
∫ t f

ti
dt j(x, t) ∂x

(
δψ

(κ,α)
left [ρ]

δρ(x, t)

)
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where the last equality is obtained by using ∂tρ = −∂x j , integration by parts, and the
boundary condition (79). In addition, we use (73a) to write

(t f − ti )χ(κ)

=
∫ 1

0
dx
∫ t f

ti
dt

⎡
⎣σ(ρ)

2

(
∂x

δψ
(κ,α)
left

δρ(x, t)
− κ α(x) + D(ρ)∂xρ(x, t)

σ (ρ)

)2
− (D(ρ)∂xρ(x))2

2σ(ρ)

⎤
⎦

Using the above two results in (80) and following a simple algebra we get

P[ρ, j |ρi ] ∼ eL Ŝ[ρ, j] (81a)

with the Action

Ŝ[ρ, j] = −
∫ t f

ti
dt
∫ 1

0
dx

{
j(x, t) + D(ρ)∂xρ(x, t) + σ(ρ)

(
∂x

δψ
(κ,α)
left

δρ(x,t) − κ α(x)

)}2

2σ(ρ)

(81b)

Comparing with (65) one can clearly see that the conditioned dynamics in the quasi-
stationary state is given by a fluctuating hydrodynamics equation ∂tρ(x, t) = −∂x j(x, t)
with j(x, t) in (62a). This describes, how a spontaneous fluctuation relaxes in the quasi-
stationary state.

On the other hand, (62b) shows the path leading to a fluctuation. This is given by a time
reversal of (62a), which can be constructed (for example see eq. 2.15 of [53]) by using
that P(κ,α)

qs [ρ] is the steady state of (62a). This gives a fluctuating hydrodynamics equation

∂tρ(x, t) = −∂x

{
j(x, t) + σ(ρ)∂x

δψ
(κ)
qs

δρ(x,t)

}
with the j(x, t) in (62a). Then, using (27c) one

gets (62b).

7 Solution in Specific Examples

Here, we show how to check that the results for ψ
(κ,α)
left and ψ

(κ,α)
right derived in Sects. 3 and 4

using a microscopic analysis, are indeed solution of the Hamilton–Jacobi equations (73).

7.1 Independent Particles

In this case, using (28b) and (33) in (73a) we get

∫ 1

0
dx

⎡
⎣ρ(x)

(
∂x

δV (κ)
left

δρ(x)

)2
+ ρ′(x)

(
∂x

δV (κ)
left

δρ(x)

)⎤
⎦ = ρa

(
eκ − 1

)+ ρb
(
e−κ − 1

)
(82)

Expression (35a) for V (κ)
left gives

∂x
δV (κ)

left

δρ(x)
= (e−κ − 1)

b(x)
and

(
∂x

δV (κ)
left

δρ(x)

)2
= (e−κ − 1)

(
1

b(x)

)′
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With this, the left hand side of (82) becomes

(e−κ − 1)
∫ 1

0
dx

[
ρ(x)

(
1

b(x)

)′
+ ρ′(x)

b(x)

]
= (e−κ − 1)

∫ 1

0
dx

(
ρ(x)

b(x)

)′

= (e−κ − 1)

(
ρ(1)

b(1)
− ρ(0)

b(0)

)

From the boundary condition ρ(0) = ρa , ρ(1) = ρb, and using (35b) we see that the above
expression agrees with the right hand side of (82).

Moreover, one can check that the solution (28b,35a) is consistent with the boundary
condition (78, 79).

A similar calculation shows thatψ(κ)
right in (28a, 34a) is a solution of (73b)with the boundary

condition (78, 79).

7.2 Symmetric Simple Exclusion Process

In this case, our solution for ψ
(κ,α)
left and ψ

(κ,α)
right in (28, 57, 58) are for small density. We have

explicitly verified, up to the second order in density, that these are solutions of the Hamilton–
Jacobi equations (73) and they satisfy the boundary condition (78, 79). The analysis is similar
to that of the independent particles in Sect. 7.1. In fact, at the leading order in density, they
are identical.

8 Summary

In the present work we have tried to determine the probability of the density (4) in a diffusive
many-particle system conditioned on the time-integrated current (3) for large T . This is
a generalization to extended systems of earlier works on conditioned stochastic processes
[8,16,23,29–32].Wemostlyworkedwith the canonical ensemblewhere dynamics isweighted
by the current (3). However, the equivalence of ensembles allows to make predictions for the
conditioned process (see Sect. 2). We give explicit expressions for a system of independent
particles (Sect. 3) and the symmetric simple exclusion process (Sect. 4).

In the hydrodynamic limit, the conditioned probability of the density ρ(x) is characterized
by the large deviation functionψ

(κ,α)
t [ρ] in (26). For the two systems considered in this paper,

we have calculated ψ
(κ,α)
t [ρ] at three different times of the evolution, namely, at t = 0, at

t = T , and in the quasi-stationary regime. These are, in general, related by (see (27))

ψ
(κ,α)
0 [ρ] + ψ

(κ,α)
T [ρ] = ψ(κ,α)

qs [ρ] + F[ρ] (83)

with F defined in (2).
In the second half of the paper, we used amacroscopic approach, whereψ

(κ,α)
t is expressed

(see (27)) in terms of ψ
(κ,α)
left and ψ

(κ,α)
right , which are solutions of a pair of Hamilton–Jacobi

equations (73). These solutions also act as the potential for an additional field that drives the
conditioned process (see (62) and Sect. 6.5). Using this macroscopic approach we verified
the microscopic results for the two specific examples (see Sect. 7).

The macroscopic formulation is expected to work for a wide class of diffusive systems
where the microscopic details enter in the two functions D(ρ) and σ(ρ) in (1). This is in the
spirit of themacroscopic fluctuation theory [34]. It would be interesting to findmore examples
for explicit solutions of ψ

(κ,α)
left and ψ

(κ,α)
right using both the microscopic and the macroscopic
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approach. Because the SSEP conditioned on the current is known to be described by an XXX
spin chain with additional boundary terms, one could try to relate our results to other choices
of boundary densities and κ by a rotational symmetry [67,68]. For systems on a ring, where
the unconditioned state is in equilibrium, the calculation may be simpler. However, due to the
periodic boundary condition, the optimal profile in the quasi-stationary state could become
time dependent (see [48,65,69]), in contrast with the two examples studied in the present
work.

In the unconditioned case (κ = 0), the spatial correlations of density follow simple
differential equations [39,70],whose solutions canbe formally expressed in termsof aGreen’s
function. It would be interesting to see if there are similar equations for the conditioned case,
especially in the quasi-stationary state.

Acknowledgements We thank T. Bodineau for his useful comments related to (27c) and (83).

Appendix

A TiltedMatrix for the Symmetric Simple Exclusion Process

Here, we explicitly write the eigenvalue equation for the tilted matrix in a symmetric simple
exclusion process of arbitrary length L . For λ0 = 1 and λi = 0 for i ≥ 1, we use the
representation (39) for the eigenvectors with a normalization such that the component of
both right and left eigenvectors for the empty configuration is 1. We write the eigenvalue
equation up to the two particle sector.

For the right eigenvector, defining R(κ)(i, j) = 0 for i = j , we get the following set of
coupled equations.

– Empty-particle sector.

μ + ρa + ρb = e−κ (1 − ρa)R(κ)(1) + (1 − ρb)R(κ)(L)

– Single-particle sector.

◦ For 1 < i < L ,

(μ + ρa + ρb)R(κ)(i) −
[
R(κ)(i − 1) − 2R(κ)(i) + R(κ)(i + 1)

]

= e−κ (1 − ρa)R(κ)(1, i) + (1 − ρb)R(κ)(i, L)

◦ For i = 1,

(μ + ρa + ρb)R(κ)(1) −
[
2ρaR(κ)(1) − 2R(κ)(1) + R(κ)(2)

]

= eκρa + (1 − ρb)R(κ)(1, L)

◦ For i = L ,

(μ + ρa + ρb)R(κ)(L) −
[
R(κ)(L − 1) − 2R(κ)(L) + 2ρbR(κ)(L)

]

= e−κ (1 − ρa)R(κ)(1, L) + ρb

– Two-particle sector.
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◦ For 1 < i < j < L ,

(μ + ρa + ρb)R(κ)(i, j) −
[
R(κ)(i − 1, j) + R(κ)(i, j − 1) − 4R(κ)(i, j)

+ R(κ)(i + 1, j) + R(κ)(i, j + 1)

]
− 2R(κ)(i, j)δi+1, j

= e−κ (1 − ρa)R(κ)(1, i, j) + (1 − ρb)R(κ)(i, j, L)

◦ For 1 = i < j < L ,

(μ + ρa + ρb)R(κ)(1, j) −
[
2ρaR(κ)(1, j) + R(κ)(1, j − 1) − 4R(κ)(1, j) + R(κ)(2, j)

+ R(κ)(1, j + 1)

]
− 2R(κ)(1, j)δ2, j = eκρaR(κ)( j) + (1 − ρb)R(κ)(1, j, L)

◦ For 1 < i < j = L ,

(μ + ρa + ρb)R(κ)(i, L) −
[
R(κ)(i − 1, L) + R(κ)(i, L − 1)

− 4R(κ)(i, L) + R(κ)(i + 1, L)

+ 2ρbR(κ)(i, L)

]
− 2R(κ)(i, L)δi,L−1 = e−κ (1 − ρa)R(κ)(1, i, L) + ρbR(κ)(i)

Similarly, for the left eigenvector, we defineL(κ)(i, j) = 0 for i = j , and get the following
set of equations.

– Empty particle sector.

μ + ρa + ρb = eκρaL(κ)(1) + ρbL(κ)(L)

– Single particle sector.

◦ For 1 < i < L ,

(μ + ρa + ρb)L(κ)(i) −
[
L(κ)(i − 1) − 2L(κ)(i) + L(κ)(i + 1)

]

= eκρaL(κ)(1, i) + ρbL(κ)(i, L)

◦ For i = 1,

(μ + ρa + ρb)L(κ)(1) −
[
2ρaL(κ)(1) − 2L(κ)(1) + L(κ)(2)

]

= e−κ (1 − ρa) + ρbL(κ)(1, L)

◦ For i = L ,

(μ + ρa + ρb)L(κ)(L) −
[
L(κ)(L − 1) − 2L(κ)(L) + 2ρbL(κ)(L)

]

= eκρaL(κ)(1, L) + (1 − ρb)

– Two particle sector.

◦ For 1 < i < j < L ,

(μ + ρa + ρb)L(κ)(i, j) −
[
L(κ)(i − 1, j) + L(κ)(i, j − 1) − 4L(κ)(i, j)
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+ L(κ)(i + 1, j) + L(κ)(i, j + 1)

]
− 2L(κ)(i, j)δi+1, j

= eκρaL(κ)(1, i, j) + ρbL(κ)(i, j, L)

◦ For 1 = i < j < L ,

(μ + ρa + ρb)L(κ)(1, j) −
[
2ρaL(κ)(1, j) + L(κ)(1, j − 1) − 4L(κ)(1, j) + L(κ)(2, j)

+ L(κ)(1, j + 1)

]
− 2L(κ)(1, j)δ2, j = e−κ (1 − ρa)L(κ)( j) + ρbL(κ)(1, j, L)

◦ For 1 < i < j = L ,

(μ + ρa + ρb)L(κ)(i, L) −
[
L(κ)(i − 1, L) + L(κ)(i, L − 1) − 4L(κ)(i, L) + L(κ)(i + 1, L)

+ 2ρbL(κ)(i, L)

]
− 2L(κ)(i, L)δi,L−1 = eκρaL(κ)(1, i, L) + (1 − ρb)L(κ)(i)

It is easy to see a pattern in the equations and using this we can write the equations for
an arbitrary particle sector. It is then possible to systematically solve the equations order by
order using the perturbation expansion in small density as given in Sect. 4.2.

B Cumulants for the Symmetric Simple Exclusion Process

We write the cumulants of density using a set of parameters

z = eκ , h = eκ − 1, s = ρah, and p = 1 − ρb

ρa z
(84)

which was used earlier [56]. In terms of these, the cumulants in (49) have the following
expression.

– At t = 0,

ρ̄(x) = ρa

z

{
(1 + xh)(1 + xh − (pz)x) + s

6z
(1 − x)

[
6 + 2xh

(
7 − z + xh(6 − z + 2xh)

)

− (pz)x
(
10 + 2z + xh(16 − 2z + 7xh)

)+ (pz)2x
(
2 + x(5 + 3xh)

)]+ O(s2)

}
,

c(x, y) = −ρ2
a

z2
x(1 − y)

{
2h2(1 + xh)(1 + yh) − h(pz)

(
2 + 3h(x + y) + 4h2xy

)

+ (pz)2
(
1 + h(x + y) + 2h2xy

)+ O(s)

}
for x ≤ y.

– In the quasi-stationary state,

ρ̄(x) ≡ ρ̄qs(x) = ρa

{
(1 − px)(1 + xh)

− sx(1 − x)

[
h + p

3
(7 − z + 2xh) − p2

3
(1 + x)(2 + xh)

]
+ O(s2)

}
,

c(x, y) = −ρ2
a x(1 − y)

{
p2(1 + hx)(1 + hy) + h2(1 − px)(1 − py) + O(s)

}
for x ≤ y.

123



Large Deviations Conditioned on Large Deviations II 179

– at t = T ,

ρ̄(x) = ρa z

{
1 − px + s

(1 − x)

6

[−6 + p2x(2 − x)
]+ O(s2)

}
,

c(x, y) = −ρ2
a z

2x(1 − y)

{
p2 + O(s)

}
for x ≤ y.

C Small Density Expansion of V (�)
left

Here, we show that the expression of V (κ)
left in (57) agrees with ψ

(κ)
qs − ψ

(κ)
T , up to an additive

constant, as expected from (27c). To see this, we use (55a) and we get

ψ(κ)
qs [ρ] − ψ

(κ)
T [ρ] =

∫ 1

0
dx log

1 − ρ̄T (x)

1 − ρ̄qs(x)
+ 1

2

∫ 1

0
dx
∫ 1

0
dy
{
cT (x, y) − cqs(x, y)

}

+
∫ 1

0
dx ρ(x) log

[
ρ̄T (x)

1 − ρ̄T (x)

1 − ρ̄qs(x)

ρ̄qs(x)

]

−
∫ 1

0
dx ρ(x)

∫ 1

0
dy

{
cT (x, y)

ρ̄T (x)
− cqs(x, y)

ρ̄qs(x)

}

− 1

2

∫ 1

0
dx
∫ 1

0
dy ρ(x)ρ(y)

{
cqs(x, y)

ρ̄qs(x)ρ̄qs(y)
− cT (x, y)

ρ̄T (x)ρ̄T (y)

}
+ · · ·

(85)

where the subscripts T and qs refer to the cumulants (49) at time t = T and in the quasi-
stationary state. (In the third line of the above equationwe used that cT (x, y) and cqs(x, y) are
symmetric under exchange of x and y.) The terms in the first line are constant and therefore
ignored. For the rest of the terms we use

cqs(x, y) � �(κ)(x)�(κ)(y)cT (x, y) + ρ̄T (x)ρ̄T (y)g(κ)
left(x, y)

ρ̄qs(x) � �(κ)(x)ρ̄T (x)
[
1 − �(κ)(x)ρ̄T (x)

]
+ �(κ)(x)ρ̄T (x)2

− �(κ)(x)
∫ 1

0
dy
(
1 − �(κ)(y)

)
cT (x, y) + ρ̄T (x)

∫ 1

0
dy ρ̄T (y)g(κ)

left(x, y)

up to the second order in ρa and ρb, which can be seen from (50) and (52).
Then, it is straightforward to see that, up to the second order in ρa and ρb,

ρ(x)ρ(y)

{
cqs(x, y)

ρ̄qs(x)ρ̄qs(y)
− cT (x, y)

ρ̄T (x)ρ̄T (y)

}
� ρ(x)ρ(y)

g(κ)
left(x, y)

�(κ)(x)�(κ)(y)

and

log

[
ρ̄T (x)

1 − ρ̄T (x)

1 − ρ̄qs(x)

ρ̄qs(x)

]
−
∫ 1

0
dy

{
cT (x, y)

ρ̄T (x)
− cqs(x, y)

ρ̄qs(x)

}
� log

1

�(κ)(x)

This shows that the expression in (85) agrees with V (κ)
left in (57), up to an additive constant.
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D AH-Theorem

To derive (77) we write, along the optimal path (75),

d

dt
ψ(κ,α)
qs =

∫ 1

0
dx

δψ
(κ,α)
qs

δρopt
∂tρopt

Then, using (75) and an integration by parts we get

d

dt
ψ(κ,α)
qs = −

∫ 1

0
dx

{
∂x

δψ
(κ,α)
qs

δρopt

}{
D(ρopt)∂xρopt + σ(ρopt)

(
∂x

δψ
(κ,α)
left

δρopt
− κα(x)

)}

where we use
δψ

(κ,α)
qs

δρopt(x,t)
= 0 at the boundary x = 0 and 1 (due to (27c) and (79)). To simplify

the expression, we use

∫ 1

0
dx

{
∂x

δψ
(κ,α)
qs

δρopt

}⎧⎨
⎩D(ρopt)∂xρopt + σ(ρopt)

2

⎛
⎝∂x

δψ
(κ,α)
left

δρopt
− ∂x

δψ
(κ,α)
right

δρopt
− 2κα(x)

⎞
⎠
⎫⎬
⎭ = 0

which is obtained by subtracting (73b) from (73a) and then using (27c). From the above two
equations we get (77).
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