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Abstract
We study linear statistics of a class of determinantal processes which interpolate between
Poisson and GUE/Ginibre statistics in dimension 1 or 2. These processes are obtained by
performing an independent Bernoulli percolation on the particle configuration of a log-
gas confined in a general potential. We show that, depending on the expected number of
deleted particles, there is a universal transition for mesoscopic linear statistics. Namely, at
small scales, the point process behave according to random matrix theory, while, at large
scales, it needs to be renormalized because the variance of any linear statistic diverges.
The crossover is explicitly characterized as the superposition of a H1- or H1/2-correlated
Gaussian noise depending on the dimension and an independent Poisson process. The proof
consists in computing the limits of the cumulants of linear statistics using the asymptotics of
the correlation kernel of the process.

Keywords Random matrix theory · Determinantal point processes · Cumulants method

1 Introduction and Results

1.1 Introduction

In these notes, we consider a log-gas, also known as β-ensemble or one component plasma,
in dimension 1 or 2 at inverse temperature β = 2. Let X = R equipped with the Lebesgue
measure dμ = dx or C equipped with the area measure dμ = dA = rdrdθ

π
. Let also

V ∈ C2(X) be a real-valued function such that for a ν > 0,

V (z) ≥ (1 + ν) log |z| as |z| → ∞. (1.1)
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1344 G. Lambert

We consider the probability measure on XN with density GN (x) = e−βH N
V (x)/ZN

V where
the Hamiltonian is

H N
V (x) =

∑

1≤i< j≤N

log |xi − x j |−1 + N
N∑

j=1

V (x j ). (1.2)

Regardless of the dimension d, the condition β = 2 implies that if a configuration
(λ1, . . . , λN ) is sampled from GN , then the point process � := ∑N

k=1 δλk is determinantal
with a correlation kernel

K N
V (z, w) =

N−1∑

k=0

ϕk(z)ϕk(w), (1.3)

with respect to μ. Moreover, for all k ≥ 0,

ϕk(x) = Pk(x)e
−NV (x), (1.4)

where {Pk}∞k=0 is the sequence of orthonormal polynomials1 with respect to the weight
e−2NV (x) on L2(μ). It turns out that for β = 2, the density GN also corresponds to the
joint law of the eigenvalues of the ensemble of Hermitian (or normal) matrices with weight
e−2N Tr V (M) on X = R (or X = C). In particular, when V (z) = |z|2, these correspond to the
well-know Gaussian Unitary (GUE) and Ginibre ensembles respectively. It is well known
that if the condition (1.1) holds, the thermodynamical limit of the log-gas is described by an
equilibriummeasure which has compact support. Moreover, if the potential V ∈ C2(X), then
the equilibrium measure is absolutely continuous and we let 
V be its density. This implies
that for any bounded test function f ∈ C(X), as N → +∞,

1

N
E
[
�( f )

] =
∫

f (x)uN
V (x)dμ(x) →

∫
f (x)
V (x)dμ(x), (1.5)

where the expected density of states is given by uN
V (x) = N−1K N

V (x, x). The asymptotics
(1.5) follows either from potential theory for general β > 0 or from the asymptotics of the
correlation kernel (1.3) when β = 2. We refer to [4, Section 2.6] for a proof of the large
deviation principle in dimension 1 and to [18] for analogous results for Coulomb gases in
higher dimension and further references.

In the following, we consider the problem of describing the fluctuations of the so-called
thinned log-gases in dimension d = 1, 2. In general, a thinned or incomplete point process is
defined by performing a Bernoulli percolation on the configuration of a the original process.
That is the incomplete log-gas, denoted by �̂, is obtained by deleting independently each
particle with probability qN ∈ (0, 1) or by keeping it with probability pN = 1− qN . It turns
out that the incomplete process �̂ is also determinantal with correlation kernel K̂ N

V (z, w) =
pN K N

V (z, w); see the appendix A for a short proof. In the context of random matrix theory,
this procedure was first considered by Bohigas and Pato [8,9] who showed that it gives rise to
a crossover to Poisson statistics and the problem of rigorously analyzing this transition in the
context of Coulomb gases was popularized by Deift in [23, Problem 2]. Indeed, these types
of transitions are supposed to arise in many different contexts in statistical physics, such as
the localization/delocalization phenomena, the crossover from chaotic to regular dynamics
in the theory of quantum billiards, or in the spectrum of certain band random matrices, see
[27,28,50] and reference therein. Although such transitions are believed to be non-universal,

1 For any k ≥ 0, Pk is a polynomial of degree k and its leading coefficient is positive.
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Incomplete Determinantal Processes:... 1345

the model of Bohigas and Pato is arguably one of the most tractable to study this phenomenon
because it is determinantal. In a different context, the effect of thinning determinantal process
on statistical inferences has been recently discussed in [40] and it should be emphasized that
the general strategy explained in Sect. 2 applies to more general determinantal processes,
see Theorem 2.2. For instance, our method applies to the Sine and the ∞-Ginibre processes
which describes the local limits of the log-gases in dimensions 1 and 2 respectively. In fact,
this paper is motivated by an analogous result obtained recently by Berggren and Duits for
smooth linear statistics of the incomplete Sine and CUE processes [6]. Based on the fact
that these processes come from integrable operators, they fully characterized the transition
for a large class of mesoscopic linear statistics and suggested that it should be universal
for thinned point processes coming from random matrix theory. There are also results for
the gap probabilities of the critical thinned ensembles. In [14,15], for the Sine process,
Deift et al. computed very detailed asymptotics for the crossover from the Wigner surmise
to the exponential distribution making rigorous a prediction of Dyson [26], and Charlier–
Claeys obtained an analogous result for the CUE [19]. The contribution of this paper is to
elaborate on universality for smooth linear statistics of β-ensemble in dimension 1 or 2 when
β = 2. Although our proof relies on the determinantal structure of these models, instead
of the connection with Riemann-Hilbert problems used in the previous works, we apply the
cumulants method which appears to be very robust to study the asymptotic fluctuations of
smooth linear statistics.

Let us point out that based on the theory of [30], an alternative correlation kernel for the
incomplete process is

K̂ N
V (z, w) =

∞∑

k=0

J N
k ϕk(z)ϕk(w), (1.6)

where (J N
k )∞k=1 is a sequence of i.i.d. Bernoulli random variables with expected values

E[J N
k ] = pN1k<N . This shows that removing particles builds up randomness in the system

andwhen the disorder becomes sufficiently strong, it will behave like a Poisson process rather
than according to random matrix theory.

To keep the analysis as simple as possible, we will restrict ourself to real-analytic V ,
although the results should be valid for more general potential as well (especially in dimen-
sion 1 where the asymptotics of the correlation kernels have been studied in great generality).
We keep track of the transition by looking at linear statistics �̂( f ) = ∑

f (λ) for smooth test
functions, where the sum is over the configuration of the incomplete log-gas. The random
matrix regime is characterized by the property that the fluctuations of �̂( f ) are of order 1
and described by a universal Gaussian noise as the number of particles tends to infinity. On
the other hand, in the Poisson regime, the variance of any non-trivial statistic diverges and,
once properly renormalized, the point process converges in distribution to a white noise. In
the remainder of this introduction, we first formulate our assumptions and main results for
the fluctuations of the incomplete 2-dimensional log-gases. Then, we will present analogous
results in dimension 1.

In what follows, we let Ckc (S ) be the set of functions with k continuous derivatives and
compact support in S ⊂ X and we use the notation:

∂ = (∂x − i∂y)/2 , ∂ = (∂x + i∂y)/2 and � = ∂∂.

If 
V is the equilibrium density function, we also denote

SV := {
x ∈ X : 
V (x) > 0

}
. (1.7)
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1346 G. Lambert

1.2 Main Results for 2-Dimensional Coulomb Gases

If the potential V is real-analytic and satisfies the condition (1.1), then the log-gas lives on
the compact setSV ⊂ C which is called the droplet and the equilibrium density is given by

V = 2�V 1SV . It is also well known that the bulk fluctuations of a two dimensional log-gas
around its equilibrium configuration are described by a centered Gaussian process X with
correlation structure:

E
[
X( f )X(g)

] = 1

4

∫

C

∇ f (z) · ∇g(z) dA(z) =
∫

C

∂ f (z)∂g(z)dA(z), (1.8)

for any (real-valued) smooth functions f and g. Modulo constants, the RHS of formula (1.8)
defines a Hilbert space, denoted H1(C), with norm:

‖ f ‖2H1(C)
=
∫

C

|∂ f (z)|2 dA(z). (1.9)

Therefore the stochastic process X is called a H1-Gaussian noise. The central limit theorem
(CLT) was first established for the Ginibre process by Rider and Viràg [45] for C1 test
functions with at most exponential growth at infinity. For general real-analytic potentials, it
was proved in [3] that for any smooth function f with compact support, one has as N → ∞,

�( f ) − E
[
�( f )

] ⇒ X( f †) (1.10)

where f † is the (unique) continuous and bounded function on C such that f † = f on the
droplet SV and � f † = 0 on C\SV . Actually, when supp( f ) ⊂ SV , we have f † = f on
C and the CLT was obtained previously in the paper [2] from which part of our method is
inspired. We also refer to [10,41] for more recent proofs which hold for general β > 0. By
convention, in (1.8) and below, ⇒ means that the convergence holds in distribution and that
all moments of the random variable converge.

In order to describe the crossover from the H1-Gaussian noise to white noise, let 
η be a
mean-zero Poisson process with intensity η ∈ L∞(X). This process is characterized by the
fact that for any function f ∈ Cc(X), the Laplace transform of the random variable 
η( f ) is
well-defined and given by

logE
[
exp
η( f )

] =
∫

X

(
e f (z) − 1 − f (z)

)
η(z)dμ(z). (1.11)

Theorem 1.1 Let X be a H1-Gaussian noise and 
τ
V be an independent Poisson process
with intensity τ
V where τ > 0 defined on the same probability space. Let f ∈ C3c (SV ),
pN = 1 − qN , and let TN = NqN . As N → ∞ and qN → 0, we have

�̂( f ) − E
[
�̂( f )

] ⇒ X( f ) if TN → 0, (1.12)

�̂( f ) − E
[
�̂( f )

]
√
TN

⇒ N
(
0,
∫

f (z)2
V (z)dA(z)

)
if TN → ∞, (1.13)

�̂( f ) − E
[
�̂( f )

] ⇒ X( f ) + 
τ
V (− f ) if TN → τ. (1.14)

The proof of Theorem 1.1 is based on the cumulants’ method and it is explained in details
in Sect. 2. In particular, we formulate a result—Theorem 2.2—valid for general determinantal
point process and might be of independent interest. The details of the proof of Theorem 1.1
are given in Sect. 3.2. Our method relies on the approximations of the correlation kernel
K N
V from [2]—see Lemma 3.1 below—and it restricts us to work with test functions which
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Incomplete Determinantal Processes:... 1347

are supported inside the bulk. However, the result should be true for general functions if we
replace f by f † on the RHS of (1.12) and (1.14).

Theorem 1.1 can be interpreted as follows. In the regime NqN → 0, virtually no particles
are deleted and linear statistics behave according to randommatrix theory. On the other hand,
in the regime NqN → ∞, the variance of a linear statistic diverge. So, if we renormalize the
random variable �̂( f ), we obtain a classical CLT and (1.13) shows that the limit is described
by a white noise supported on SV whose intensity is the equilibrium measure 
V . In the
critical regime, when the expected number of deleted particles equals τ > 0, the limiting
process is the superposition of a H1-correlatedGaussian noise and an independentmean-zero
Poisson process applied to − f . Finally, by using formula (1.11), it is not difficult to check
that as τ → ∞, the random variable


τ
V (− f )√
τ

⇒ N
(
0,
∫

f (z)2
V (z)dA(z)

)
,

so that the critical regime clearly interpolates between (1.12) and (1.13).
In fact, the crossover is more interesting at mesoscopic scales. Namely, the density of a

log-gas is of order N and one can also investigate fluctuations at small scales by zooming
inside the bulk of the process. If LN ↗ ∞, x0 ∈ SV , and f ∈ Cc(C), we consider the test
function

fN (z) = f
(
LN (z − x0)

)
. (1.15)

The regime LN = N 1/d is called microscopic and it was shown in [2, Proposition 7.5.1]
that when d = 2,

�( fN ) ⇒ �∞

V (x0)( f ),

where the process �∞
ρ is called the ∞-Ginibre process with density ρ > 0. It is a determi-

nantal process on C with correlation kernel

K∞
ρ (z, w) = ρeρ(2zw−|z|2−|w|2)/2. (1.16)

Based on the argument from [2], it is straightforward to verify that the incomplete process
has a local limit as well:

�̂( fN ) ⇒ �̂∞

V (x0);p( f ) as pN → p and N → ∞. (1.17)

For any 0 < p ≤ 1, �̂∞

;p is a (translation invariant) determinantal process on C with corre-

lation kernel pK∞

 (z, w). This process is constructed by running an independent Bernoulli

percolation with parameter p on the point configuration of the ∞-Ginibre process with den-
sity ρ > 0. In particular, (1.17) shows that one needs to delete a non-vanishing fraction of
the N particles of the gas in order to get a local limit which is different from random matrix
theory. It was proved in [44] that, as the density ρ → ∞, the fluctuations of the ∞-Ginibre
process are of order 1 and described by the H1-Gaussian noise:

�∞
ρ ( f ) − ρ

∫

C

f (z)dA(z) ⇒ X( f )

for any f ∈ H1 ∩ L1(C). Therefore it is expected that, in the mesoscopic regime, i.e. LN =
o(

√
N ), the asymptotic fluctuations of the linear statistic �( fN ) are universal and described

by X( f ). However, to our best knowledge, a proof was missing from the literature and, in
Sect. 3, we show that this fact follows quite simply by combining the ideas from [44] and
[2].
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1348 G. Lambert

Theorem 1.2 Let x0 ∈ SV , f ∈ C3c (C), α ∈ (0, 1/2), and let fN be given by formula (1.15)
with LN = Nα . Then, we have as N → ∞,

�( fN ) − E
[
�( fN )

] ⇒ X( f ).

Using the samemethod, we can also describe the fluctuations of smoothmesoscopic linear
statistics of a incomplete Coulomb gas.

Theorem 1.3 LetX be a H1-Gaussian noise and
τ be an independent Poisson process with
constant intensity τ > 0 on C. Let x0 ∈ SV , f ∈ C3c (SV ), α ∈ (0, 1/2), and let fN be the
mesoscopic test function given by formula (1.15) with LN = Nα . We also let pN = 1 − qN
and TN = NqN L

−2
N 
V (x0). We have as N → ∞ and qN → 0,

�̂( fN ) − E
[
�̂( fN )

] ⇒ X( f ) if TN → 0,

�̂( fN ) − E
[
�̂( fN )

]
√
TN

⇒ N
(
0,
∫

f (z)2dA(z)

)
if TN → ∞,

�̂( fN ) − E
[
�̂( fN )

] ⇒ X( f ) + 
τ (− f ) if TN → τ.

The proof of Theorem 1.3 follows the same strategy are that of Theorem 1.1 and the
technical differences are explained in Sect. 3.2. This result shows that, at mesoscopic scales,
the transition occurs when the mesoscopic density of deleted particles which is given by
the parameter TN > 0 converges to a positive constant τ . In contrast to previous results,
this transition appears to be non-Gaussian and it is somewhat surprising that it can also
be described in an elementary way. In dimension 1, one can obtain a crossover from GUE
eigenvalues to a Poisson process by letting independent points evolved according to Dyson’s
Brownian motion. This leads to a determinantal process sometimes called the deformed GUE
whose kernel depends on the diffusion time, see [32]. This model also exhibit a transition
which has been analyzed for mesoscopic linear statistics in [25] and it was proved that the
critical fluctuations are Gaussian. One can also consider non-intersecting Brownian motions
on a cylinder. It turns out that this point process describes the positions of free fermions
confined in a harmonic trap at a temperature τ > 0. It was established in [34], see also [21],
that the corresponding grand canonical ensemble is determinantal with a correlation kernel
of the form (1.6) with for k ≥ 0,

E[J N
k ] = 1

1 + exp
( k−N

τ

) .

For sufficiently small temperature, this systembehaves like its ground-state, theGUE,while it
behaves like a Poisson process at larger temperature. It was proved in [35] that this leads to yet
another crossover where non-Gaussian fluctuations are observed at the critical temperature.
However, to the author’s knowledge, in contrast to the incomplete ensembles considered here,
the critical processes discovered in [35] cannot be described in simple terms like Theorem 1.5
below.

1.3 Main Results for Eigenvalues of Unitary Invariant Hermitian RandomMatrices

For 1-dimensional log-gases, for general β > 0 and for a large class of potentials, Johansson
established in [31] the existence of the equilibrium measure and also managed to describe
the fluctuations around the equilibrium configuration. To state the result in a universal way,
note that one can make an affine rescaling of the potential and assume thatIV ⊂ [−1, 1]. If
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V is a polynomial and IV = (−1, 1), Johansson proved that linear statistics of the process
� satisfy a central limit theorem:

�( f ) − N
∫

R

f (x)
V (x)dx ⇒ Y( f ) as N → ∞, (1.18)

for any f ∈ C2(R) such that f ′(x) grows at most polynomially as |x | → ∞. The process Y
is a centered Gaussian noise defined on [−1, 1] with covariance structure:

E
[
Y( f )Y(g)

] = 1

4

∞∑

k=1

kck( f )ck(g). (1.19)

In (1.19), ck( f ) denote the Fourier–Chebyshev coefficients of the function f :

ck( f ) = 2

π

∫ 1

−1
f (x)Tk(x)

dx√
1 − x2

, (1.20)

where (Tk)∞k=0 are the Chebyshev polynomials of the first kind.2 The CLT (1.18) holds for
more general potentials and for other orthogonal polynomial ensembles as well, see [43, Sec-
tion 11.3] or [12,17,39] and it is known that the one-cut condition, i.e. the assumption that
the support of the equilibrium measure is connected, is necessary. Otherwise, the asymptotic
fluctuations of a generic linear statistic �( f ) are still of order 1 but are not Gaussian, see
[13,42,46]. In fact, the one-cut condition is closely related to the fact the recurrence coef-
ficients [see formula (4.1)] which defines the orthogonal polynomials (Pk)k≥0 appearing in
the correlation kernel (1.3) satisfy for any j ∈ Z,

lim
N→∞ aNN+ j = 1/2 and lim

N→∞ bNN+ j = 0; (1.21)

see Remark 4.2 below. Like for 2-dimensional Coulomb gas, we obtain analogous transitions
for the eigenvalues of random unitary invariant Hermitian matrices.

Theorem 1.4 Let pN = 1− qN , TN = NqN , and suppose that the recurrence coefficients of
the orthogonal polynomials {Pk}∞k=0 satisfy the conditions (1.21). Then, for any polynomial
Q, we obtain as N → ∞ and qN → 0,

�̂(Q) − E
[
�̂(Q)

] ⇒ Y(Q) if TN → 0,

�̂(Q) − E
[
�̂(Q)

]
√
TN

⇒ N
(
0,
∫

R

Q(x)2
V (x)dx

)
if TN → ∞,

�̂(Q) − E
[
�̂(Q)

] ⇒ Y(Q) + 
τ
V (−Q) if TN → τ,

where the Poisson process 
τ
V is independent from the Gaussian process Y and both are
defined on IV = (−1, 1).

The proof of Theorem 1.4 is also based on the cumulants’ method and on Theorem 2.2.
However, the technical details, which are explained in Sects. 4.1 and 4.2, rely on the formu-
lation from [39] and are very different from that of the proof of Theorem 1.1.

We also obtain the counterpart of Theorem 1.4 for mesoscopic linear statistics. For any
function f ∈ L1(R), we define its Fourier transform :

f̂ (u) =
∫

R

f (x)e−2π i xudx .

2 Tk (cos θ) = cos(kθ) for any k ≥ 0 and θ ∈ R.
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1350 G. Lambert

We let Z be a mean-zero Gaussian process on R with correlation structure:

E
[
Z(h)Z(g)

] =
∫ ∞

0
uĥ(u)ĝ(u)du. (1.22)

Since Var
[
Z( f )

] = ‖ f ‖H1/2(R), the process Z is usually called the H1/2—Gaussian noise.
It describes the mesoscopic fluctuations of the eigenvalues of Hermitian random matrices,
see [16,29,38], as well as the mesoscopic fluctuations of the log-gases for general β > 0,
[5], and of certain random band matrices in the appropriate regime [27,28].

Theorem 1.5 We let x0 ∈ IV , f ∈ C2c (R), α ∈ (0, 1), and fN (x) = f
(
Nα(x − x0)

)
. We

also let pN = 1 − qN and TN = qN N 1−α
V (x0). We obtain as N → ∞ and qN → 0,

�̂( fN ) − E
[
�̂( fN )

] ⇒ Z( f ) if TN → 0, (1.23)

�̂( fN ) − E
[
�̂( fN )

]
√
TN

⇒ N
(
0,
∫

R

f (x)2dx

)
if TN → ∞, (1.24)

�̂( fN ) − E
[
�̂( fN )

] ⇒ Z( f ) + 
τ (− f ) if TN → τ, (1.25)

where the Poisson process 
τ has constant intensity τ > 0 on R and is independent from
the H1/2—Gaussian noise Z.

The proof of Theorem 1.5 is quite similar to that of Theorem 1.3. It follows the strategy
explained in Sect. 2 and is based on the asymptotics for the correlation kernel K N

V in terms of
the sine-kernel, see [37]. The details relies on the method from [38] and are given in Sect. 4.3.

1.4 Overview of the Rest of the Paper

In Sect. 2, we present the strategy of the proofs of the results from Sects. 1.2 and 1.3. We
begin by reviewing Soshnikov’s cumulants’ method. Then, we explain how to apply it to the
incomplete ensemble �̂ and we obtain a general result—Theorem 2.2—which characterizes
the transition from Gaussian to Poisson statistics for general determinantal point processes.
The rest of the paper consists in verifying the assumptions of Theorem 2.2 for determinantal
log-gases in dimensions 1 and 2. In Sect. 3, we prove Theorems 1.1–1.3 for the 2-dimensional
log-gases. The proof relies on estimates for the correlation kernel (1.3) which come from the
paper [2] and are collected in the Appendix B. In Sect. 4, we provide the details of the proofs
of Theorems 1.4 and 1.5 by relying on the method from [39] and [38] respectively.

In the following, C > 0 denotes a numerical constant which changes from line to line.
For any n ∈ N, we let for all x ∈ Xn ,

dμn(x) = dμ(x1) · · · dμ(xn).

If (uN ) and (vN ) are two sequences, we use the notation:

uN � vN if lim
N→∞(uN − vN ) = 0.

2 Outline of the Proof

In this section, we consider a general state spaceXwhich is a complete separablemetric space
equipped with a Radon measure μ as in [30,47] and let � be a sequence of determinantal
point processes on X with correlation kernels K N which are reproducing:
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∫

X
K N (z, x)K N (x, w)dμ(x) = K N (z, w). (2.1)

One may think of the parameter N ∈ N as the density of particles. Since it is generally the
case in the context of random matrix theory, we shall also assume that the kernels K N are
continuous on X×X, Hermitian symmetric, and that they define locally trace-class integral
operators acting on L2(X, μ).

The cumulants’ method to analyze the asymptotic distribution of linear statistic of deter-
minantal processes goes back to the work of Costin and Lebowitz [20] for count statistics
of the Sine process. The general theory was developed by Soshnikov in [47–49] and sub-
sequently applied to many different ensembles coming from random matrix theory, see for
instance [2,16,17,35,38,39,44,45].

In this section, we show how to implement the cumulants’ method to describe the
asymptotics law of linear statistics of the incomplete ensemble �̂ with correlation kernel
pN K N (z, w) when the density of particles 0 < pN < 1 converges to 1 in the large N limit.

Let

� =
∞⋃

l=1

{
k = (k1, . . . , kl) ∈ N

l}

and let �(k) = l denote the length of the tuple k. Let us denote the set of compositions of the
integer n > 0 by

{
k � n

} = {
k ∈ � : k1 + · · · + kl = n}.

We also denote by n ∈ � the trivial composition. For any map ϒ : � �→ R, for any
function f : X → R, and for any n ∈ N, we define for all x ∈ Xn ,

ϒn[ f ](x) =
∑

k�n
ϒ(k)

∏

1≤ j≤�(k)

f (x j )
k j . (2.2)

If k � n, we let M(k) = n!
k1! · · · kl ! be the corresponding multinomial coefficient and for all

integers n ≥ 1 and m ∈ {0, . . . , n}, we define the coefficients

γ n
m =

∑

k�n

(−1)�(k)

�(k)

(
�(k)

m

)
M(k). (2.3)

We will also use the notation: δk(n) =
{
1 if n = k

0 else
for any k ∈ Z.

Lemma 2.1 For all n ∈ N, we have γ n
0 = δ1(n) and γ n

1 = (−1)n.

Proof The coefficients (2.3) have the generating function:

∞∑

n=1

n∑

m=0

γ n
m
xnqm

n! = − log
(
1 + (1 + q)(ex − 1)

)
.

In particular, setting q = 0, we see that γ n
0 = δ1(n). Moreover, since

∞∑

n=1

γ n
1
xn

n! = d

dq
log
(
1 + (1 + q)(ex − 1)

)∣∣∣∣
q=0

= 1 − e−x ,

we also see that γ n
1 = (−1)n . ��
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1352 G. Lambert

Given a test function f : X → R, say locally integrable with compact support, the cumulant
generating function of the random variable �( f ) is

logE
[
exp(λ�( f ))

] =
∞∑

n=1

λn

n! C
n
K N [ f ].

It was proved by Soshnikov that under our general assumptions, the cumulants Cn
K [ f ] char-

acterize the law of the linear statistics �( f ) and that for any n ∈ N,

Cn
K N [ f ] = −

n∑

l=1

(−1)l

l

∑

k�n
�(k)=l

M(k)

∫

Xl
x0=xl

f (x1)
k1 · · · f (xl)kl

∏

1≤ j≤l

K N (x j , x j−1)dμl(x).

(2.4)

Under stronger assumptions, for instance if the kernel K N has finite rank, this formula
makes sense also for test functions which are not necessarily compactly supported. We use
the convention that the variables x0 and xl are identified in the previous integral. Since we
assume that the correlation kernel K N is reproducing, we can rewrite this formula:

Cn
K N [ f ] = −

∑

k�n

(−1)�(k)

�(k)
M(k)

∫

Xn
x0=xn

f (x1)
k1 · · · f (xl)kl

∏

1≤ j≤n

K N (x j , x j−1)dμn(x)

= −
∫

Xn
x0=xn

ϒn
0 [ f ](x)

∏

1≤ j≤n

K N (x j , x j−1)dμn(x), (2.5)

where for any k ∈ �,

ϒ0(k) = (−1)�(k)

�(k)
M(k). (2.6)

A simple observation which turns out to be very important when it comes to asymptotics is
that, by Lemma 2.1, for all n ≥ 2,

∑

k�n
ϒ0(k) = γ n

0 = 0. (2.7)

For any m ∈ N, we define3

⎧
⎨

⎩
ϒm(k) = (−1)�(k)

�(k)

(
�(k)

m

)
M(k) if �(k) ≥ 2

ϒm(k) = −δ1(m) − γ n
m if k = n

. (2.8)

These functions are constructed so that we have for all n,m ∈ N,
∑

k�n
ϒm(k) = 0. (2.9)

According to formula (2.4), the cumulants of the process �̂ with correlation kernel K̂N =
pN K N are given by

Cn
K̂ N [ f ] = −

n∑

l=1

(−1)l

l
plN

∑

k�n
�(k)=l

M(k)

∫

Xl
x0=xl

f (x1)
k1 · · · f (xl)kl

∏

1≤ j≤l

K N (x j , x j−1)dμl(x).

3 By convention
( l
m
) = 0 if m > l.
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Since the kernel K N is reproducing, if we set qN = 1− pN , using the binomial formula, we
obtain

Cn
K̂ N [ f ] = Cn

K N [ f ] −
n∑

m=1

(−qN )mγ n
m

∫

X
f (x)nK N (x, x)dμ(x)

−
n∑

m=1

(−qN )m
∫

Xn
x0=xn

ϒn
m[ f ](x)

∏

1≤ j≤n

K N (x j , x j−1)dμn(x).

(2.10)

We are now ready to state our general result from which Theorems 1.1, 1.3, 1.4 and 1.5
in the introduction follow.

Theorem 2.2 Let 0 < qN < 1 be a sequence which converges to 0 as N → +∞. Under
our general assumptions above, let fN be a sequence of functions for which the cumulants
Cn
K N [ fN ] are well-defined for all n, N ∈ N and the following conditions hold:

1. There exists a (Radon) measure η on X, a function f ∈ L p(η) for any p ≥ 2, and a
sequence MN ↗ +∞ as N → +∞ such that for all n ≥ 1,

1

MN

∫

X
fN (x)nK N (x, x)dμ(x) �

∫

X
f (x)ndη(x). (2.11)

2. For all n ≥ 2 and all m ≥ 1, as N → +∞
∣∣∣∣∣∣

∫

Xn
x0=xn

ϒn
m[ fN ](x)

∏

1≤ j≤n

K N (x j , x j−1)dμn(x)

∣∣∣∣∣∣
= o

(
q−1
N ∨ MN

)
. (2.12)

3. There exists σ > 0 such that for all n ∈ N,

lim
N→∞Cn

K N [ fN ] =
{

σ 2 if n = 2

0 if n > 2
. (2.13)

Then, depending on the parameter TN = qN MN > 0, we distinguish three different
asymptotic regimes for the linear statistic �̂( fN ) of the thinned point process with density
pN = 1 − qN :

(i) If TN → 0 as N → +∞,

�̂( fN ) − E
[
�̂( fN )

] ⇒ N (0, σ 2).

(ii) If TN → τ with τ > 0 as N → +∞,

�̂( fN ) − E
[
�̂( fN )

] ⇒ X + 
τη( f ),

where X ∼ N (0, σ 2) and 
τη is Poisson process on X with intensity τη independent
from X.

(iii) If TN → +∞ as N → +∞,

�̂( fN ) − E
[
�̂( fN )

]
√
TN

⇒ N
(
0,
∫

f (x)2dη(x)
)
.

Before giving our proof of Theorem 2.2, let us make two remarks about the Assumptions
(2.11)–(2.13).
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1354 G. Lambert

Remark 2.1 For any function g : X → R+, we have E[�(g)] =
∫

X
g(x)K N (x, x)dμ(x),

so that one can interpret (2.11) as a condition about the mean of the point process �. In
contrast, (2.12) can be seen as a condition about the fluctuations of the incomplete point
process. We also implicitely assume that for n = 2, the RHS of (2.11) is positive, so that
the measure η is non-trivial and puts mass on the support of f . Then the random variables
N (0, ∫ f (x)2dη(x)

)
and 
τη( f ) are non zero for any τ > 0. In order to handle mesoscopic

linear statistics, we have allowed our test functions to depend on the parameter N . However,
for simplicity, one can think of the case where fN = f is a smooth and compactly supported
test function.

Remark 2.2 Instead of (2.13), we could assume that the cumulants of the linear statistics
�( fN ) converge to that of a random variable X which is not necessarily Gaussian. Then, the
conclusion (ii) of Theorem 2.2 remains true and we obtain a crossover from a non-Gaussian
process to a Poisson process. For instance, thismore general situation ariseswhen considering
linear statistics of 1-dimensional log-gases in the multi-cut regime.

Proof Observe that it follows from formula (2.10) and the condition (2.12) that the cumulants
of the linear statistic �̂( fN ) satisfy for all n ≥ 2 as N → +∞,

Cn
K̂ N [ fN ] = Cn

K N [ fN ] −
n∑

m=1

(−qN )mγ n
m

∫

X
fN (x)nK N (x, x)dμ(x) + o(1 ∨ TN ),

where TN = qN LN . Then, using the condition (2.11), we obtain for any n ≥ 2, as N → +∞,

Cn
K̂ N [ fN ] = Cn

K N [ fN ] + TN

n−1∑

m=0

(−qN )mγ n
m+1

(∫

X
fN (x)ndη(x) + o(1)

)
+ o(1 ∨ TN ).

(2.14)

Let us observe that in the previous sum, regardless of the regime we consider, since qN → 0
as N → +∞, only the term m = 0 is asymptotically relevant. For instance, if we assume
that TN = τ + o(1) with τ ≥ 0, this implies that

Cn
K̂ N [ fN ] = Cn

K N [ fN ] + τγ n
1

∫

X
fN (x)ndη(x) + o(1).

On the one hand by Lemma 2.1, since γ n
1 = (−1)n and using the condition (2.13), we obtain

for any n ≥ 2

lim
N→+∞Cn

K̂ N [ fN ] = σ 21n=2 + (−1)nτ
∫

X
fN (x)ndη(x). (2.15)

In the regime (i)—which corresponds to τ = 0—this shows that the linear statistic �̂( fN ),
once centered, converges in distribution (as well as in the sense of moments) to a Gaussian
random variable with variance σ 2. Let us observe that by formula (1.11), if τ > 0, the second
term on the RHS of (2.15) corresponds to the nth cumulant of the random variable 
τη( f ).
This proves the claim in the regime (ii).

On the other hand, in the regime (iii) where TN → +∞, we see from (2.14) that the
variance Cn

K̂ N [ fN ] diverges as N → +∞. Thus, in order to have a non-trivial limit, we

need to renormalize the linear statistic �̂( fN ). Namely, we consider instead the test function
gN = fN/

√
TN and it follows from (2.14) that for all n ≥ 2, as N → +∞

Cn
K̂ N [gN ] = 1n=2

(∫

X
f (x)2dη(x) + o(qN )

)
+ o(1).
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These asymptotics show that in the the regime (iii),
�̂( fN )−E

[
�̂( fN )

]
√
TN

converges in distribution
(as well as in the sense of moments) to a centered Gaussian random variable with variance∫
X f (x)2dη(x). ��

3 Transition for Coulomb Gases in Two Dimensions

3.1 Asymptotics of the Correlation Kernel

In this section,webegin by reviewing the basics of the theory of eigenvalues of randomnormal
matrices developed by Ameur, Hedenmalm and Makarov. In particular, we are interested in
the properties of the correlation kernel (1.3) in the bulk of the gas. It has been established
in [2] that, if the potential V is real-analytic, the equilibrium measure is 
V = 2�V 1SV

and the droplet SV is a compact set with a nice boundary. Moreover, in order to compute
the asymptotics of the cumulants of a smooth linear statistic, instead of working with the
correlation kernel K N

V , one can use the so-called approximate Bergman kernel:

BN
V (z, w) = (

Nb0(z, w) + b1(z, w)
)
eN {2�(z,w)−V (z)−V (w)}. (3.1)

The functions b0(z, w), b1(z, w) and �(z, w) are the (unique) bi-holomorphic functions
defined in a neighborhood in C

2 of the set
{
(z, z) : z ∈ SV

}
such that b0(z, z) = 2�V (z),

b1(z, z) = 1
2� log(�V )(z), and �(z, z) = V (z).

Lemma 3.1 (Lemma 1.2 in [2], proved in [1,7]) For any x0 ∈ SV , there exists ε0 > 0 and
C0 > 0 so that when the dimension N is sufficiently large, we have for all z, w ∈ D(x0, ε0),

∣∣∣K N
V (z, w) − BN

V (z, w)

∣∣∣ ≤ C0N
−1. (3.2)

Moreover, at sufficiently small mesoscopic scale, up to a gauge transform, the asymptotics
of the approximate Bergman kernel BN

V is universal.

Lemma 3.2 Let κ > 0 and εN = κN−1/2 log N for all N ∈ N. For any x0 ∈ SV , there
exists ε0 > 0 and a function h : D(0, ε0) → R such that if the parameter N is sufficiently
large, the function

B̃N
V ,x0(u, v) = BN

V (x0 + u, x0 + v)ei Nh(u)

ei Nh(v)
(3.3)

satisfies

B̃N
V ,x0(u, v) = K∞

N
V (x0)(u, v)

{
1 + O

N→∞
(
(log N )2εN

)}
(3.4)

uniformly for all u, v ∈ D(0, εN ), where K∞
N
V (x0)

is the ∞-Ginibre kernel with density
N
V (x0) = 2N�V (x0).

A key ingredient in the paper [2], as well as [44], is to reduce the domain of integration
in formula (2.5), using the exponential off-diagonal decay of the correlation kernels K N

V , to
a set where we can use the asymptotics (3.4)—see the next Lemma. For completeness, the
proofs of Lemmas 3.2 and 3.3 are given in the Appendix B.
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Lemma 3.3 Let n ∈ N and εN = κN−1/2 log N for some constant κ > 0which is sufficiently
large compared to n. We let

A (z0; ε) = {
z ∈ C

n : |z j − z j−1| ≤ ε for all j = 1, . . . n
}
. (3.5)

LetS be a compact subset ofSV , N0 ∈ N, and FN : C
n+1 → R be a sequence of continuous

functions such that

sup
{|FN (z0, z)| : z ∈ C

n, N ≥ N0
} ≤ C1z0∈S . (3.6)

We have
∫

Cn+1
z0=zn+1

FN (z0, z)
n∏

j=0

K N
V (z j , z j+1)dA(z0)dA

n(z)

=
∫

S
dA(z0)

∫

A (z0;εN )
zn+1=z0

FN (z0, z)
n∏

j=0

K N
V (z j , z j+1)dA

n(z) + O
N→∞(N−1). (3.7)

Remark 3.1 Recall that K∞
ρ , (1.16), denotes the correlation kernel of the ∞-Ginibre process

with density ρ > 0. Using the fact that for all z, w ∈ C,
∣∣K∞

ρ (z, w)
∣∣ = ρe−ρ|z−w|2/2, (3.8)

it is easy to obtain the counterpart of Lemma 3.3 for the ∞-Ginibre kernel, see Lemma 4.3.

3.2 Proof of Theorem 1.1

In this section, we show how to apply Theorem 2.2 for Coulomb gases in the global regime
by relying on the asymptotics from Sect. 3.1 for the correlation kernel K N

V . First, observe
that with fN = f and MN = N , the Assumptions (2.11) follow immediately from the law
of large numbers (1.5). Then the measure dη = 
V dμ is absolutely with respect to μ with
compact support. Moreover, if f ∈ C3c (SV ), then the conditions (2.13) are well-known from
[2, Theorem 4.4] with σ 2 = E[X( f )] according to formula (1.8). So, our main technical
challenge is to obtain the estimates (2.12) for a large class of test functions. The first step of
the proof is the following approximation.

Proposition 3.4 Let K ⊂ C be a compact set, f ∈ C3c (K) and let ϒ : � → R be any
map such that

∑
k�n ϒ(k) = 0 for all n ≥ 2. Let LN be an increasing sequence such

that L−1
N (log N )4 = o(1) and LN = o

(√
N/(log N )3

)
as N → +∞. We also denote by

Hn(λ;w) the secondorderTaylor polynomial at0 of the functionw ∈ C
n �→ ϒn+1[ f ](λ, λ+

w). Fix x0 ∈ SV and let fN (z) = f (LN (z − x0)) as in (1.15). Then, we have for any n ≥ 1,
as N → +∞,

∫

Cn+1
z0=zn+1

ϒn+1[ fN ](z0, z)
n∏

j=0

K N
V (z j , z j+1)dA(z0)dA

n(z)

�
∫

K
dA(λ)

∫

Cn

w0=wn+1=0

Hn(λ;w)

n∏

j=0

K∞
ηN (λ)(w j , w j+1)dA

n(w),

(3.9)

where the density is given by ηN (λ) = NL−2
N 
V (x0 + λ/LN ).
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Remark 3.2 Observe that under the assumptions of Proposition 3.4, we have ηN (λ) → +∞
as N → +∞ uniformly for all λ ∈ K. Moreover, it follows from the proof below that in the
global regime where LN = 1 and x0 = 0, provided thatK ⊂ SV , the estimates (3.9) remain
valid with an extra error. Namely, we obtain for all n ≥ 1,

∫

Cn+1
z0=zn+1

ϒn+1[ fN ](z0, z)
n∏

j=0

K N
V (z j , z j+1)dA(z0)dA

n(z)

=
∫

K
dA(λ)

∫

Cn

w0=wn+1=0

Hn(λ;w)

n∏

j=0

K∞
N
V (λ)(w j , w j+1) dA

n(w)

+ O
N→∞

(
(log N )4

)
.

(3.10)

Proof We let FN = ϒn+1[ fN ] and

J n
N :=

∫

Cn+1
zn+1=z0

FN (z0, z)
n∏

j=0

K N
V (z j , z j+1)dA(z0)dA

n(z).

Since x0 ∈ SV , there exists a compact set S ⊂ SV so that supp( fN ) ⊆ S when the
parameter N is sufficiently large. Then, according to formula (2.2), the function FN satisfies
the Assumption (3.6). Thus, by Lemma 3.3, we obtain as N → +∞

J n
N �

∫

S
dA(z0)

∫

A (z0;εN )
zn+1=z0

FN (z0, z)
n∏

j=0

K N
V (z j , z j+1)dA

n(z). (3.11)

By (3.5), the set

A (z0; ε) ⊂ {
z ∈ C

n : z1, . . . , zn ∈ D(z0, nεN )
}

and we can apply Lemma 3.1 to replace the kernels K N
V (z j , z j+1) in formula (3.11). Namely,

if zn+1 = z0 and z ∈ A (z0; ε), then

∣∣∣∣
n∏

j=0

K N
V (z j , z j+1) −

n∏

j=0

BN
V (z j , z j+1)

∣∣∣∣ ≤ C
n+1∑

k=1

N−k Sn+1−k
N ,

where SN = sup
{|BN

V (z, w)| : z, w ∈ D(z0, nεN ), z0 ∈ S
}
. By Lemma 3.2, we have for

all u, v ∈ D(0, nεN ),
∣∣BN

V (z0 + u, z0 + v)
∣∣ ≤ C

∣∣K∞
N
V (z0)(u, v)

∣∣.

and, by formula (3.8), this implies that SN ≤ CN . If we combine these estimates with
formula (3.11), since the functions FN are uniformly bounded, we obtain

J n
N =

∫

S
dA(z0)

∫

A (z0;εN )
zn+1=z0

FN (z0, z)
n∏

j=0

BN
V (z j , z j+1)dA

n(z)

+ O
N→∞

(
Nn−1

∫

S
dA(z0)

∣∣A (z0; εN )
∣∣
)

,

where |A | denotes the Lebesgue measure of the setA . By definition, εN = κN−1/2 log N so
that

∣∣A (z0; εN )
∣∣ ≤ CN−n(log N )2n for all z0 ∈ C. Thus, the previous error term converges
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to 0 like (log N )2n/N . Hence, if we make the change of variables z = z0 + u and the
appropriate gauge transform in the previous integral, according to formula (3.3), we obtain

J n
N �

∫

S
dA(z0)

∫

A (0;εN )
un+1=u0=0

FN (z0 + u)
n∏

j=0

B̃N
V ,z0(u j , u j+1)dA

n(u). (3.12)

Note that in formula (3.12), the integral is over a small subset of the surface {u ∈ C
n+2 :

u0 = un+1 = 0} and we denote FN (z0 + u) = FN (z0, z0 + u1, . . . , z0 + un). Then, we can
apply Lemma 3.2 to replace the kernel B̃N

V ,z0
by K∞

N
V (z0)
in formula (3.12), we obtain

J n
N �

∫

S
dA(z0)

∫

A (0;εN )
un+1=u0=0

FN (z0 + u)χN (z0, u)
n∏

j=0

K∞
N
V (z0)(u j , u j+1)dA

n(u),

where χN (z0, u) = 1 + O
N→∞

(
(log N )2εN

)
uniformly for all z0 ∈ S and all u ∈ A (0; εN ).

Let F = ϒn+1[ f ], δN = εN LN and ηN (λ) = NL−2
N 
V (x0 + λ/LN ). By definition,

FN (z0+u) = F
(
LN (z0−x0+u)

)
andwe canmake the change of variables λ = LN (z0−x0)

and w = LNu to get rid of the scale LN and x0 in the previous integral. Using the obvious
scaling property of the ∞-Ginibre kernel, (1.16), we obtain

J n
N �

∫

K
dA(λ)

∫

A (0;δN )
wn+1=w0=0

F(λ + w)χ̃N (λ,w)

n∏

j=0

K∞
ηN (λ)(w j , w j+1)dA

n(w), (3.13)

where χ̃N (λ,w) = 1+ O
N→∞

(
(log N )2εN

)
uniformly for all λ ∈ K and for all u ∈ A (0; δN ).

Herewe used that the test function f is supported in the setK. The condition
∑

k�n+1 ϒ(k) =
0 implies that F(λ + 0) = 0 for all λ ∈ C so that for all w ∈ A (0; δN ),

∣∣F(λ + w)
∣∣ ≤ CδN .

Moreover, by formula (3.8), we have for any n ∈ N,

n∏

j=0

∣∣K∞
ρ (w j , w j+1)

∣∣ ≤ ρn+1
n∏

j=1

e−ρ|v j |2/2 (3.14)

where v j = w j − w j−1 for all j = 1, . . . , n. Hence, we see that
∣∣∣∣
∫

A (0;δN )
wn+1=w0=0

F(λ + w)

n∏

j=0

K∞
ηN (λ)(w j , w j+1)dA

n(w)

∣∣∣∣ ≤ CδNηN (λ)

and, since ηN (λ) ≤ CNL−2
N for all λ ∈ K, we deduce from formula (3.13) that

J n
N =

∫

K
dA(λ)

∫

A (0;δN )
wn+1=w0=0

F(λ + w)

n∏

j=0

K∞
ηN (λ)(w j , w j+1)dA

n(w)

+ O
N→∞

(
NL−2

N δN εN (log N )2
)
. (3.15)

Recall that δN = LN εN and εN = κN−1/2 log N , so that the error term in (3.15) is of order
(log N )4L−1

N . Moreover, if LN = o
(√

N/ log N
)
, a Taylor approximation shows that for any

w ∈ A (0; δN ),
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F(λ, λ + w1, . . . , λ + wn) = Hn(λ;w) + O
N→∞(δ3N ).

Using the estimate (3.14) once more, by formula (3.15), this implies that

J n
N =

∫

K
dA(λ)

∫

A (0;δN )
wn+1=w0=0

Hn(λ;w)

n∏

j=0

K∞
ηN (λ)(w j , w j+1)dA

n(w)

+ O
N→∞

(
NL−2

N δ3N ∨ (log N )4L−1
N

)
. (3.16)

By Lemma 4.3, the leading term in formula (3.16) has the same limit (up to an arbitrary small
error term) as

∫

K
dA(λ)

∫

Cn

wn+1=w0=0

Hn(λ;w)

n∏

j=0

K∞
ηN (λ)(w j , w j+1)dA

n(w)

and, since NL−2
N δ3N → 0 when LN = o

(√
N/(log N )3

)
, this completes the proof. ��

Since the function w �→ Hn(λ;w) is a multivariate polynomial of degree 2, the leading
term in the Asymptotics (3.9) can be computed explicitly using the reproducing property of
the ∞-Ginibre kernel; see for instance [44]. For any ρ > 0, the function (z, w) �→ eρzw is
the reproducing kernel for the Bergman space with weight ρe−ρ|z|2/2 on C. This implies that
for any w1, w2 ∈ C and for all integer k ≥ 0,

⎧
⎪⎪⎨

⎪⎪⎩

∫

C

K∞
ρ (w1, w2)w

k
2K

∞
ρ (w2, w3)dA(w2) = wk

1K
∞
ρ (w1, w3)

∫

C

K∞
ρ (w1, w2)w2

k K∞
ρ (w2, w3)dA(w2) = w3

k K∞
ρ (w1, w3)

.

As a basic application of these identities, we obtain the following Lemma.

Lemma 3.5 Let n ≥ 1 and ρ > 0. For any polynomial H(w) of degree at most 2 in the
variables w1, . . . , wn, w1, . . . , wn such that H(0) = 0, we have

∫

Cn

wn+1=w0=0

Hn(w)

n∏

j=0

K∞
ρ (w j , w j+1) dA

n(w) =
∑

1≤r≤s≤n

∂s∂r H |w=0. (3.17)

Under the assumptions of Proposition 3.4, since ηN (λ) → +∞ as N → +∞ uniformly
for all λ ∈ K, we deduce from Lemma 3.5 that for any test function f ∈ C3c (K), we have for
all integers n ≥ 1 and m ≥ 0, as N → +∞,

∫

Cn+1
z0=zn+1

ϒn+1
m [ fN ](z0, z)

n∏

j=0

K N
V (z j , z j+1)dA(z0)dA

n(z)

�
∑

2≤r≤s≤n+1

∫

K
∂s∂rϒ

n+1
m [ f ](λ, . . . , λ)dA(λ). (3.18)

Here we used that according to formulae (2.7) and (2.9), we have for any m ≥ 0 and n ≥ 1,

ϒn+1
m [ f ](λ, . . . , λ) = f (λ)n+1

∑

k�n+1

ϒm(k) = 0.
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In the macroscopic regime (LN = 1, x0 = 0 and K = supp( f ) ⊂ SV ), by Remark 3.2,
this also shows that for any n,m ≥ 1,

∫

Cn+1
z0=zn+1

ϒn+1
m [ f ](z)

n∏

j=0

K N
V (z j , z j+1)dA

n+1(z) = O
N→∞

(
(log N )4

)
.

This shows that the estimate (2.12) with MN = N holds for any sequence qN ↘ 0 as
N → +∞. By Theorem 2.2, this completes the proof of Theorem 1.1.

3.3 Mesoscopic Fluctuations for 2-Dimensional Coulomb Gases and the Proofs of
Theorems 1.2 and 1.3

In the mesoscopic regime, we claim that the asymptotics (3.18) with m = 0 implies the
Central Limit Theorem 1.2. Indeed, the fact that the cumulants of order n ≥ 3 vanish in the
large N limit comes from the following combinatorial Lemma.

Lemma 3.6 ([44], Lemma 9) For any n ≥ 1, let

Yn = −
∑

k�n
ϒ0(k)

⎧
⎨

⎩
∑

2≤r<s≤�(k)

kr ks +
�(k)∑

r=2

kr (kr − n)

⎫
⎬

⎭ .

We have Yn =
{
1 if n = 2

0 else
.

Proof of Theorem 1.2 Let λ ∈ C and λ = (λ, . . . , λ) ∈ C
n+1. According to formula (2.2), an

elementary computation shows that for any 2 ≤ r < s ≤ n + 1,

∂s∂rϒ
n+1
0 [ f ](λ) = ∂ f (λ)∂ f (λ) f (λ)n−1

∑

k�n+1

ϒ0(k)kr ks1s≤�(k) (3.19)

and

∂r∂rϒ
n+1
0 [ f ]((λ) = ∂ f (λ)∂ f (λ) f (λ)n−1

∑

k�n+1

ϒ0(k)kr (kr − 1)1r≤�(k)

+ � f (λ) f (λ)n
∑

k�n+1

ϒ0(k)kr1r≤�(k). (3.20)

Since, by integration by parts,
∫

C

� f (λ) f (λ)ndA(λ) = −n
∫

C

∂ f (λ)∂ f (λ) f (λ)n−1dA(λ),

we deduce from formulae (3.19) and (3.20) that

∑

2≤r≤s≤n+1

∫

C

∂s∂rϒ
n+1
m [ f ](λ)dA(λ) = Yn+1

∫

C

∂ f (λ)∂ f (λ) f (λ)n−1dA(λ).

When LN = Nα and 0 < α < 1/2, formulae (2.5) and (3.18) with m = 0 imply that for any
n ≥ 1,

lim
N→∞Cn+1

K N
V

[ fN ] = Yn+1

∫

C

∂ f (λ)∂ f (λ) f (λ)n−1dA(λ). (3.21)
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By Lemma 3.6, this proves that for any test function f ∈ C30(C) and any n ≥ 2,

lim
N→∞Cn

K N
V
[ fN ] =

{
‖ f ‖2

H1(C)
if n = 2

0 else
. (3.22)

This shows that the centered mesoscopic linear statistics �( fN ) − E
[
�( fN )

]
converges in

distribution as N → ∞ to the mean-zero Gaussian random variable X( f ). ��
We are now ready to finish the proof of Theorem 1.3. By Lemma 3.1, for any bounded

function f with compact support, we have for any n ≥ 1,
∫

C

fN (z)nK N
V (z, z)dA(z) = N

∫

C

fN (z)n2�V (z)dA(z) + O
N→∞(1)

= NL−2
N 
V (x0)

∫

C

f (z)ndA(z) + O
N→∞(NL−3

N ).

Here we used that the potential V is smooth and ρV = 2�V > 0 on a small neighborhood
of the point x0 ∈ SV . This implies the Assumption (2.11) with MN = NL1−2α

N 
V (x0)—
since the parameter α < 1/2, MN ↗ +∞ as N → +∞. As we already pointed out, the
asymptotics (3.18) yield the Assumption (2.12) with an error which is O(1). Finally, the
Assumption (2.13) was proved just above—see (3.22). So, by Theorem 2.2, this completes
the proof of Theorem 1.3.

4 Transition for 1-Dimensional Log-Gases

4.1 Asymptotics of Orthogonal Polynomials

In this section, we begin by reviewing basic facts about the asymptotics of orthogonal polyno-
mials which are required for the proofs of Theorems 1.4 and 1.5. A comprehensive reference
for the results discussed in this section is the book of Deift [22]. We assume that the potential
V ∈ C2(R) is a function which satisfies the condition (1.1) and we let � and �̂ be the
determinantal processes with correlation kernels K N

V and K̂ N
V = pN K N

V respectively.
The proof of Theorem 1.4 relies on a combinatorial method introduced in [17] which

consists in using the three-terms recurrence relation of the orthogonal polynomials {Pk}∞k=0
with respect to the measure dμN = e−2NV (x)dx to compute the cumulants of polynomial
linear statistics. For any N ∈ N, there exists two sequences aNk > 0 and bNk ∈ R such that
the orthogonal polynomials Pk in (1.4) satisfy

x Pk(x) = aNk Pk+1(x) + bNk Pk(x) + aNk−1Pk−1(x). (4.1)

In particular, the completion LN of the space of polynomials with respect to L2(R, μN )

is isomorphic to L2(N0) and formula (4.1) implies that the multiplication by x on LN is
unitary equivalent to applying the Jacobi matrix

J :=

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

bN0 aN0 0 0 0

aN0 bN1 aN1 0 0 0

0 aN1 bN2 aN2 0

0 0 aN2 bN3 aN3

0
. . .

. . .
. . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

. (4.2)
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We also let �N be the orthogonal projection on span{e0, . . . , eN−1} acting on L2(N0). The
connection with eigenvalues statistics comes from the fact that for any polynomial Q and for
any composition k � n, one has

∫

Xl
x0=xl

Q(x1)
k1 · · · Q(xl)

kl
∏

0≤ j≤l

K N
V (x j , x j−1)dx1 · · · dxl

= Tr
[
Q(J)k1�N · · · Q(J)kl�N

]

=
N−1∑

m=0

∑

π∈�n
m

l∏

j=1

1π(k1+···+k j )<N

n−1∏

i=0

Q(J)π(i)π(i+1),

where G denotes the adjacency graph of the matrix Q(J) and

�n
m = {

paths π on the graph G of length n such that π(0) = π(n) = m
}
.

Given a path π of length n and a composition k � n, we let

�N
π (k) := 1 max

1≤ j<�(k)

π(k1 + · · · + k j ) ≥ N . (4.3)

Observe that
∏

1≤ j<�(k)

1π(k1+···+k j )<N = 1 − �N
π (k),

so that by formula (2.5), the cumulants of a polynomial linear statistics are given by

Cn
K N
V
[Q] = −

N−1∑

m=0

∑

π∈�n
m

n−1∏

i=0

Q(J)π(i)π(i+1)

∑

k�n
ϒ0(k)

(
1 − �N

π (k)
)
. (4.4)

By definitions, there exists a constant M > 0 which only depends on the degree of Q and
n so that �N

π = 0 for any path π ∈ �n
m as long as m < N − M . Since

∑
k�n ϒ0(k) = 0 for

all n ≥ 2, formula (4.4) implies that

Cn
K N
V
[Q] =

N−1∑

m=N−M

∑

π∈�n
m

n−1∏

i=0

Q(J)π(i)π(i+1)

∑

k�n
ϒ0(k)�N

π (k).

In particular, if the Jacobi matrix has a right-limit, i.e. there exists an (infinite) matrix L such
that for all i, j ∈ Z,

lim
N→∞ JN+i,N+ j = Li, j

then

lim
N→∞Cn

K N
V
[Q] =

M∑

m=1

∑

π∈�̃n
m

n−1∏

i=0

Q(L)π(i)π(i+1)

∑

k�n
ϒ0(k)�0

π (k), (4.5)

where G̃ denotes the adjacency graph of the matrix Q(L) and

�̃n
m = {

paths π on the graph G̃ of length n such that π(0) = π(n) = −m
}
.
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The condition (1.21) implies that the right-limit of the Jacobi matrix is a tridiagonal matrix
L such that L j j = 0 and L j, j±1 = 1/2 for all j ∈ Z and it was proved in [39], see also [17],
that in this case:

lim
N→∞Cn

K N
V
[Q] =

⎧
⎪⎪⎨

⎪⎪⎩

deg Q∑

k=1

k

(∫ 1

−1
Q(x)Tk(x)

dx

π
√
1 − x2

)2

if n = 2

0 else

. (4.6)

The combinatorial method used in the previous section is well-suited to investigate the
global fluctuations of 1-dimensional log-gas, but it is difficult to implement in themesoscopic
regime since we cannot use polynomials as test functions. So, to describe the transition for
mesoscopic linear statistics and to prove Theorem 1.5, we rely on the asymptotics of the
correlation kernel K N

V from [24] and the method from [38] that we review below. Recall that

V is the equilibrium density of the gas and define the integrated density of states:

FV (x) =
∫ x

0

V (s)ds. (4.7)

Let us fix x0 ∈ IV , 0 < α < 1, and set

K̃ N
V ,x0(x, y) = 1

Nα
K N
V

(
x0 + x

Nα
, x0 + y

Nα

)
. (4.8)

Based on the results of [24], we have for any α ∈ (0, 1],

K̃ N
V ,x0(x, y) = sin

[
πN

(
(FV (x0 + xN−α) − FV (x0 + yN−α)

)]

π(x − y)
+ O

N→∞
(
N−α

)
, (4.9)

uniformly for all x, y in compact subsets of R; c.f. [38, Proposition 3.5]. The main idea
of the method of [38] is to compare the kernel (4.9) to the sine-kernel and use the results
from Soshnikov [48] for the cumulants of linear statistics of the Sine process. We define the
sine-kernel with density ρ > 0 on R by

K sin
ρ (x, y) = sin[πρ(x − y)]

π(x − y)
. (4.10)

We see by taking α = 1 in formula (4.9) that the Sine process with correlation kernel (4.10)
describes the local limit in the bulk of the 1-dimensional log-gases. In themesoscopic regime,
it was proved in [38] that, up to a change of variable, it is possible to replace the kernel K̃ N

V ,x0
by an appropriate sine-kernel using the asymptotics (4.9) in the cumulant formulae. Namely,
for any n ≥ 2,

Cn
K N
V
[ fN ] � Cn

K sin
ηN (x0)

[ f ◦ ζN ] (4.11)

where

ζN (x) = Nα
{
GV

(
FV (x0) + 
V (x0)

x

Nα

)
− x0

}
. (4.12)

Here, the function GV denotes the inverse of the integrated density of sates FV , (4.7). By
the inverse function theorem, it exists in a neighborhood of any point FV (x0) when x0 ∈ IV

and the map ζN is well-defined on any compact subset of R as long as the parameter N is
sufficiently large. Then, using Soshnikov’s main combinatorial Lemma, it was proved in [38]
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that

lim
N→∞Cn

K N
V
[ fN ] =

⎧
⎨

⎩

∫ ∞

0
u
∣∣ f̂ (u)

∣∣2du if n = 2

0 if n ≥ 3
. (4.13)

4.2 Proof of Theorem 1.4: The Global Regime

In this section, we modify the strategy described above in order to deduce Theorem 1.4
from our general Theorem 2.2. The first step is to verify the Assumption (2.11). By [43,
Theorem 11.1.2], the expected density of states satisfies for all x ∈ R,

uN
V (x) ≤ e−2N {V (x)−log(1+|x |)−C},

where C is a constant which depends only on the potential V . This implies that the law of
large numbers (1.5) can be extended to all continuous functions with polynomial growth.
Moreover, by (4.6), we obtain the asymptotics (2.13) for the cumulants Cn

K N
V
[Q] of the

linear statistic �(Q). Then, it only remains to verify that the estimates (2.12) hold for any
polynomial test function. By (2.9), since

∑
k�n ϒm(k) = 0, the very same computation

leading to (4.5) shows that for any integers n,m ≥ 1

lim
N→∞

∫

Xn
x0=xn

ϒn
m[Q](x)

∏

1≤ j≤n

K N
V (x j , x j−1)d

nx

=
M∑

m=1

∑

π∈�̃n
m

n−1∏

i=0

Q(L)π(i)π(i+1)

∑

k�n
ϒm(k)�0

π (k).

Since the (infinite) matrix L is bounded with ‖L‖ ≤ 1/2, we obtain the estimates (2.12) with
an error which is O(1). This completes the proof of Theorem 1.4.

Remark 4.1 (Generalizations of Theorem 1.4) Note that we have formulated Theorem 1.4
for a log-gas at inverse temperature β = 2, but the previous proof can be generalized to other
one-dimensional biorthogonal ensemble with a correlation kernel of the form:

K N (z, w) =
N−1∑

k=0

ϕN
k (z)� N

k (w).

The appropriate assumptions are that there exists an equilibrium density and a law of large
numbers holds for all polynomials, the family {ϕN

k }∞k=0 satisfies a q-term recurrence relation
for all N ∈ N and the corresponding recurrence matrix J has a right-limitL as N → ∞. This
applies to other orthogonal polynomial ensembles, such as the discrete point processes com-
ing from domino tilings of hexagons, as well as some non-symmetric biorthogonal ensembles
such as the Muttalib-Borodin ensembles, square singular values of product of complex Gini-
bre matrices or certain two-matrix models, see [17,39] for more details. Moreover, we only
require that the right-limit L exists but it need not be a Toeplitz matrix. Then, we obtain a
crossover from a non-Gaussian process (described by L in the regime where TN → 0) to a
Poisson process (when TN → ∞). For instance, such a transition arises when considering
linear statistics of the log-gases in the multi-cut regime [39].

Remark 4.2 It was proved in [31, Section 5] that when V is a convex polynomial, thenSV =
(−1, 1) and the conditions (1.21) are satisfied. In fact, Johansson’s argument shows that these
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conditions are also necessary to have a CLT for polynomial test functions. Therefore, it is
an interesting question to know whether (1.21) and the one-cut conditionSV = (−1, 1) are
equivalent.

4.3 Proof of Theorem 1.5: Themesoscopic regime

Let us fix x0 ∈ IV , 0 < α < 1 and let fN = f
(
Nα(·−x0)

)
where f ∈ C2c (R). First, observe

that by a change of variable, we have for all n ≥ 1,
∫

R

fN (x)nK N
V (x, x)dx =

∫

R

f (x)n K̃ N
V ,x0(x, x)dx,

where K̃ N
V ,x0

is given by (4.8). Using the asymptotics (4.9), we have that

K̃ N
V ,x0(x, x) = N 1−α
V (x0) + O

N→∞
(
N−α

)

uniformly for all x ∈ supp( f ). If MN = N 1−α
V (x0), this implies that for all n ∈ N,

1

MN

∫

R

fN (x)nK N
V (x, x)dx �

∫

R

f (x)ndx .

Thus, we obtain the condition (2.11) with dη = dx . Moreover, the Assumption (2.13) is
given by (4.13). Then it just remains to prove the estimates (2.12). Let us observe that by a
change of variables, we also have for all n,m ≥ 1,

∫

Rn
u0=un

ϒn
m[ fN ](u)

∏

1≤ j≤n

K N
V (u j , u j−1)dμn(u)

=
∫

Rn
u0=un

ϒn
m[ f ](u)

∏

1≤ j≤n

K̃ N
V ,x0(u j , u j−1)dμn(u). (4.14)

Exactly like the proof of (4.11)—which corresponds to the casem = 0 by formula (2.5)—we
deduce from the proof of [38, Proposition 2.2] that for any m ≥ 1,
∫

Rn
x0=xn

ϒn
m[ f ](x)

∏

j≤n

K̃ N
V ,x0(x j , x j−1)d

nx �
∫

Xn
x0=xn

ϒn
m[hN ](x)

∏

1≤ j≤n

K sin
ηN

(x j , x j−1)d
nx

(4.15)

where hN = f ◦ ζN and ζN is given by (4.12). To finish the proof, we need the following
estimates.

Proposition 4.1 Suppose that supp( f ) ⊂ (−L, L). There exists N0 > 0 such that for all
N ≥ N0, the functions hN = f ◦ ζN are well-defined on R, hN ∈ C2

c ([−L, L]) and for all
u ∈ R,

∣∣ĥN (u)
∣∣ ≤ ‖ f ‖C2(R)

C

1 + |u|2 . (4.16)

Proof When the potential V is analytic, the bulkIV consists of finitely many open intervals
and the equilibrium density 
V is smooth on IV . Since x0 ∈ IV , by formula (4.12), the
function ζN is increasing and smooth on the interval [−L, L] with

ζ ′′
N (x) = 
V (x0)

2G ′′
V

(
FV (x0) + 
V (x0)xN

−α
)
N−α.
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Moreover, since ζN (0) = 0 and ζ ′
N (0) = G ′

V

(
FV (x0)

)

V (x0) = 1, this implies that

ζN (x) = x + O
N→∞(N−α)

uniformly for all x ∈ [−L, L]. Since the open interval (−L, L) contains the support of
the test function f , this estimate shows that when the parameter N is large, we can define
hN (x) = f

(
ζN (x)

)
for all x ∈ [−L, L] and extend it by 0 onR\[−L, L]. Then hN ∈ C2

0 (R)

and

h′′
N (x) = ζ ′′

N (x) f ′(ζN (x)) + ζ ′
N (x)2 f ′′(ζN (x)) (4.17)

for all x ∈ [−L, L]. Moreover, we can use the estimate

∣∣ĥN (u)
∣∣ ≤ C

‖hN‖∞ + ‖h′′
N‖∞

1 + |u|2 (4.18)

to get the upper-bound (4.16). Plainly ‖hN‖∞ ≤ ‖ f ‖∞ and it is easy to deduce from formula
(4.17) that

‖h′′
N‖∞ ≤ ‖ f ′‖∞ + C‖ f ′′‖∞.

��

To compute the limit of the RHS of (4.15), we also need the following asymptotics which
come from the proof of Lemma 1 in Soshnikov’s paper [48] on linear statistics of the CUE
and Sine process.

Lemma 4.2 Let n ≥ 2 and let ηN > 0 such that ηN ↗ ∞ as → +∞. Suppose that hN is a
sequence of integrable functions such that

lim
N→∞

∫

Rn−1

u1+···+un=0
|u1|+···+|un |>ηN

∣∣ĥN (u1) · · · ĥN (un)
∣∣|u1|dn−1u = 0. (4.19)

Then, for any map ϒ : � → R such that
∑

k�n ϒ(k) = 0, we have

∫

Xn
x0=xn

ϒn[hN ](x)
∏

1≤ j≤n

K sin
ηN

(x j , x j−1)d
nx

� −
∫

Rn−1

u1+···+un=0

�
{ n∏

j=1

ĥN (u j )

}∑

k�n
ϒ(k)�u(k)dn−1u, (4.20)

where for any u ∈ R
n and for any composition k � n,

�u(k) = 2 max
1≤ j<�(k)

{0, u1 + · · · + uk1+···+k j }.

Proof Based on the formula

K sin
ηN

(x, y) =
∫

R

1{|u|<ηN /2}e2π iu(x−y)du,
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we obtain

TN :=
∫

Xn
x0=xn

ϒn[hN ](x)
∏

1≤ j≤n

K sin
ηN

(x j , x j−1)d
nx

=
∫

Rn−1

u1+···+un=0

n∏

j=1

ĥN (u j )
∑

k�n
ϒ(k)max

{
0, ηN − �u(k)/2 − �−u(k)/2

}
dn−1u.

Then, the condition
∑

k�n ϒ(k) = 0 implies that

∣∣∣∣TN +
∫

Rn−1

u1+···+un=0

n∏

j=1

ĥN (u j )
∑

k�n
ϒ(k)

�u(k) + �−u(k)

2
dn−1u

∣∣∣∣

≤
∫

Rn−1

u1+···+un=0

∣∣∣∣
n∏

j=1

ĥN (u j )

∣∣∣∣
∑

k�n
|ϒ(k)|�u(k)1{�u(k)+�−u (k)≥2ηN }dn−1u

Since
∣∣�u(k)/2

∣∣ ≤ |u1| + · · · + |un | for any k � n, the condition (4.19) is sufficient to
obtain the asymptotics (4.20). ��

We are now ready to complete the proof of Theorem 1.5. Using the estimate (4.16), we
see that when the parameter N is sufficiently large, there exists a constant C > 0 so that

∣∣∣∣
∫

Rn−1

u1+···+un=0

�
{ n∏

j=1

ĥN (u j )

}∑

k�n
ϒm(k)�u(k)dn−1u

∣∣∣∣

≤ C
∫

Rn−1

u1+···+un=0

|u1| + · · · + |un |
(1 + |u1|2) · · · (1 + |un |2)d

n−1u.

(4.21)

A similar upper-bound shows that the sequence hN = f ◦ ζN satisfies the condition (4.19)
of Lemma 4.2. Hence, combining the asymptotics (4.15) and (4.20), we obtain

∫

Rn
x0=xn

ϒn
m[ f ](x)

∏

j≤n

K̃ N
V ,x0(x j , x j−1)d

nx �

−
∫

Rn−1

u1+···+un=0

�
{ n∏

j=1

ĥN (u j )

}∑

k�n
ϒm(k)�u(k)dn−1u.

By (4.21), we see that the previous integral is uniformly bounded by a constant which depends
only on the test function f and n,m ∈ N. Hence, by (4.14), we obtain the estimates (2.12)
with an error which is O(1) and we can apply Theorem 2.2. This completes the proof of
Theorem 1.5.
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Appendix A: Incomplete Determinantal Processes

In this appendix, we review some background material on determinantal processes and we
give an alternative proof of the results of Bohigas and Pato, [9], that the incomplete process is
determinantal with correlation kernel pN K N

V (z, w). There are many excellent surveys about
determinantal processes and we refer to [11,33,36,47] for further details and an overview of
the main examples.

Let X be a complete separable metric space equipped with a Radon measure μ. The
configuration space Q(X) is the set of integer-valued locally finite Borel measure on X

equipped with the topology which is generated by the maps

Q(X) � � �→ �A :=
∫

A
d�

for every Borel set A ⊆ X. A point process P is a Borel probability measure on the configu-
ration spaceQ(X). A point process can be characterized by its correlation functions (ρn)

∞
n=1.

If it exists, ρn is a symmetric function on Xn which satisfies the identity

E

[(
�A1

k1

)
· · ·
(

�A�

k�

)]
= 1

k1! · · · k�!
∫

A
k1
1 ×···×A

k�
�

ρn(x1, . . . , xn)dμn(x) (A.1)

for all compositions k � n and for all disjoint Borel sets A1, . . . , A� ⊆ X. A point process
is called determinantal if all its correlation functions exist and are given by

ρn(x1, . . . , xn) = det
n×n

[
K (xi , x j )

]
. (A.2)

The function K : X × X → C is called the correlation kernel. For instance, given random

points (λ1, . . . , λN ) with the joint density GN (x) = e−βH N
V (x)/ZN

V on XN , see (1.2), the

random measure
∑N

k=1 δλk defines a point process and its correlation functions satisfy ρN =
N !GN and

ρk(x1, . . . , xk) = N !
(N − k)!

∫
GN (x1, . . . , xN )dxk+1 · · · dxN (A.3)

for all k < N . When β = 2, it is easy to verify that

GN (x) = 1

N ! det
N×N

[
K N
V (xi , x j )

]

and that, by formula (A.3), the process � is determinantal with the correlation kernel K N
V

given by (1.3). In general, if K is a continuous, Hermitian symmetric, functionwhich satisfies
property (2.1), then there exists a determinantal process on X with correlation kernel K ; c.f.
[47, Theorem 3].

Let q ∈ (0, 1) and p = 1−q . Recall that X is a Binomial random variable with parameter
p and N ∈ N if for all k ∈ N0,

E

[(
X

k

)]
= pk

(
N

k

)
. (A.4)

By convention,
(N
k

) = 0 if k > N . Let � be a random (point) configuration and let �̂ be the
configuration obtained after performing a Bernoulli percolation on �. By construction, for
any disjoint Borel set A ⊆ X, the conditional distribution of the random variable �̂A given
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� has a Binomial distribution with parameters p and �A and it is statistically independent
of �B for any Borel set B disjoint of A. By formula (A.4), this implies that

E

[(
�̂A1

k1

)
· · ·
(

�̂A�

k�

)∣∣∣∣�A = N1, . . . , �A = N�

]
= pn

(
N1

k1

)
· · ·
(
N�

k�

)

for any composition k � n and for all disjoint Borel sets A1, . . . , A� ⊆ X. Hence, we obtain

E

[(
�̂A1

k1

)
· · ·
(

�̂A�

k�

)]
= pnE

[(
�A1

k1

)
· · ·
(

�A�

k�

)]

so that, by formula (A.1), the correlation functions of the incomplete process �̂ are given
by pnρn(x1, . . . , xn) for all n ≥ 1. In particular, we deduce from formula (A.2) that, if
� is a determinantal process with a correlation kernel K , then the point process �̂ is also
determinantal with kernel pK .

Appendix B: Off-Diagonal Decay of the Correlation Kernel KN
V in Dimen-

sion 2

In this section, we review some classical estimates for the correlation kernel (1.3) which
have been used in [2] to prove the CLT (1.10). Then, we prove Lemma 3.3 and an analogous
result for the cumulants of the ∞-Ginibre process. For completeness, we also give the proof
of Lemma 3.2. We will use the formulation of Sect. 5 in [2] but the estimates (B.1) and
(B.2) go back to the papers [7] and [1]. Suppose that the potential V : C → R is real-
analytic and satisfies the condition (1.1). Then, there a function φV : C → R

+ such that
φV (z) ≥ ν log |z|2 as |z| → ∞ and some constants C, c, δ > 0 such that

∣∣K N
V (z, w)

∣∣ ≤ CNe−c
√
N (|z−w|∧δ), (B.1)

and

K N
V (z, z) ≤ CNe−NφV (z), (B.2)

for all w ∈ S and z ∈ C.

Proof of Lemma 3.3 We use the convention z0 = zn+1. Since the kernel K N
V is reproducing,

by the Cauchy-Schwartz inequality,

∣∣K N
V (z, w)

∣∣ ≤
√
K N
V (z, z)K N

V (w,w),

for all z, w ∈ C, so that
∣∣∣∣

n∏

j=0

K N
V (z j , z j+1)

∣∣∣∣ ≤ ∣∣K N
V (z0, z1)

∣∣
√
K N
V (z0, z0)K N

V (z1, z1)
n∏

j=2

K N
V (z j , z j ).

Since
∫

C

K N
V (z, z)dA(z) = N and K N

V (z, z) ≤ CN [see the estimate (B.2)], we obtain

∫

Cn×S
|z1−zn+1|>εN

∣∣∣∣
n∏

j=0

K N
V (z j , z j+1)

∣∣∣∣ dA
n+1(z) ≤ CNn

∫

S ×C

|z1−z0|>εN

∣∣K N
V (z0, z1)

∣∣dA(z0)dA(z1).
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Then, it easy to check that the estimates (B.1) and (B.2) imply that
∫

S ×C

|z1−z0|>εN

∣∣K N
V (z0, z1)

∣∣dA(z0)dA(z1) ≤ CNe−c
√
NεN .

Hence, if εN = κN−1/2 log N and κ ≥ (n + 1)/c, we obtain

∫

Cn×S
|z1−zn+1|>εN

∣∣∣∣
n∏

j=0

K N
V (z j , z j+1)

∣∣∣∣ dA
n+1(z) = O

N→∞(N−1). (B.3)

Moreover, since sup
{|FN (z0, z)| : z ∈ C

n, N ≥ N0
} ≤ C1z0∈S by (3.6), the estimate

(B.3) implies that

∫

Cn+1
z0=zn+1

FN (z)
n∏

j=0

K N
V (z j , z j+1)dA

n+1(z)

=
∫

Cn×S
|z1−zn+1|≤εN

FN (z)
n∏

j=0

K N
V (z j , z j+1) dA

n+1(z) + O
N→∞(N−1). (B.4)

Now, we can proceed by induction to get formula (3.7). If CN = {z ∈ C
n+1 : zn+1 ∈

S , |z1 − zn+1| ≤ εN }, the next step is to show that

∫

C N|z2−z1|>εN

∣∣∣∣
n∏

j=0

K N
V (z j , z j+1)

∣∣∣∣ dA
n+1(z) = O

N→∞(N−1). (B.5)

Since the set SV is open, there exists a compact set S ′ ⊂ SV such that S ⊂ S ′ and
CN ⊂ {z ∈ C

n+1 : zn+1, z1 ∈ S ′} when the parameter N is sufficiently large. Then, as
before, we obtain

∫

C N|z2−z1|>εN

∣∣∣∣
n∏

j=0

K N
V (z j , z j+1)

∣∣∣∣ dA
n+1(z) ≤ CNn

∫

S ′×C

|z2−z1|>εN

∣∣K N
V (z1, z2)

∣∣dA(z0)dA(z1),

and formula (B.5) also follows directly from the estimate (B.3). Hence, by formula (B.4),
this implies that

∫

Cn+1
z0=zn+1

FN (z)
n∏

j=0

K N
V (z j , z j+1)dA

n+1(z)

=
∫

Cn×S
|z1−zn+1|≤εN|z2−z1|≤εN

FN (z)
n∏

j=0

K N
V (z j , z j+1) dA

n+1(z) + O
N→∞(N−1).

If we repeat this argument, we obtain (3.7). ��
Lemma 4.3 Let n ∈ N, w0 = wn+1 = 0, and let H(w) be a polynomial of degree at most
2 in the variables w1, . . . , wn, w1, . . . , wn. For any sequence δN ≥ kρ−1/2

N

√
log ρN with

k > 0, we have
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∫

Cn
H(w)

n∏

j=0

K∞
ρN

(w j , w j+1) dA
n(w)

=
∫

A (0;δN )

H(w)

n∏

j=0

K∞
ρN

(w j , w j+1) dA
n(w) + O

N→∞(ρ
1−k2/2
N )

where the set A (0; δN ) is given by formula (3.5).

Proof We will first show that
∫

Cn

|w1|>δN

H(w)

n∏

j=0

K∞
ρN

(w j , w j+1) dA
n(w) = O

N→∞
(
ρNe

−ρN δ2N /2). (B.6)

First, notice that if H = 1, since w0 = 0, by formula (3.14), we have
∫

Cn

|w1|>δN

∣∣∣∣
n∏

j=0

K∞
ρN

(w j , w j+1)

∣∣∣∣ dA
n(w) ≤ e−ρN δ2N /2ρn+1

N

∫

Cn

n∏

j=1

e−ρN |v j |2/2dAn(v)

︸ ︷︷ ︸
= ρ−n

N

.

In general, there exists a constant C > 0 which only depends on the polynomial H so
that

∣∣H(w)
∣∣ ≤ C

{
1 + |w1|2 + · · · + |wn |2

}

or
∣∣H(w)

∣∣ ≤ C
{
1 + |w2 − w1|2 + · · · + |wn−1 − wn |2 + |wn |2

}
. (B.7)

Since, for any k = 1, . . . , n,
∫

Cn

|w1|>δN

|wk − wk+1|2
∣∣∣∣

n∏

j=0

K∞
ρN

(w j , w j+1)

∣∣∣∣dA
n(w)

≤ e−ρN δ2N /2 ρn+1
N

∫

Cn
|vk |2

n∏

j=1

e−ρN |v j |2/2dAn(v)

︸ ︷︷ ︸
= 1

,

the estimate (B.6) follows directly from (B.7) and the leading contribution comes from the
constant term. If we use the estimate

∣∣H(w)
∣∣ ≤ C

{
1 + |w1|2 +

n∑

j=1
j �=k

|w j+1 − w j |2 + |wn |2
}

instead, the same argument shows that for any k = 1, . . . n,
∫

|wk−wk+1|>δN

H(w)

n∏

j=0

K∞
ρN

(w j , w j+1) dA
n(w) = O

N→∞
(
ρNe

−ρN δ2N /2).

Hence, the Lemma follows from applying a union bound and from the choice of the sequence
δN . ��
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Proof of Lemma 3.2 The map (z, w) �→ �(z, w) is bi-holomorphic in a neighborhood of
(x0, x0), so there exists 0 < ε < 1 such that for all |u|, |v| ≤ ε,

�(x0 + u, x0 + v) =
∑

k, j≥0

akj u
kv j .

By definition, �(z, w) = �(w, z), so that the coefficients of the previous power series
are Hermitian-symmetric: akj = a jk for all k, j ≥ 0. Moreover, by definition, we have

a11 = ∂z∂ zV |z=x0 = �V (x0) = b0(x0, x0)

2
. (B.8)

Let

h(u) = i
∑

k>0

{
ak0u

k − a0ku
k} = −2�

{∑

k>0

ak0u
k
}
.

Since V (x0 + u) = �(x0 + u, x0 + u), we see that for any |u|, |v| ≤ ε,

2�(x0 + u, x0 + v) − V (x0 + u) − V (x0 + v)

= −i{h(u) − h(v)} + a11
(
2uv − |u|2 − |v|2)+ O(ε3).

By formula (3.1), this implies that for any |u|, |v| ≤ εN = log(N κ )N−1/2,

BN (x0 + u, x0 + v)ei Nh(u)

ei Nh(v)
= Nb0(x0, x0)e

Na11(2uv−|u|2−|v|2)
{
1 + O

N→∞
(
(log N )2εN

)}
.

By formula (B.8) and the definition of the ∞-Ginibre kernel, it completes the proof. ��
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28. Erdős, L., Knowles, A.: The Altshuler–Shklovskii formulas for random bandmatrices II: the general case.
Ann. Henri Poincaré 16, 709–799 (2015)

29. He, Y., Knowles, A.: Mesoscopic eigenvalue statistics of Wigner matrices. Ann. Appl. Probab. 27(3),
1510–1550 (2017)

30. Hough, B., Krishnapur,M., Peres, Y., Virág, B.: Determinantal processes and independence. Probab. Surv.
3, 206–229 (2006)

31. Johansson, K.: On fluctuations of eigenvalues of random Hermitian matrices. Duke Math. J. 91, 151–204
(1998)

32. Johansson, K.: Universality of the local spacing distribution in certain ensembles of Hermitian Wigner
matrices. Commun. Math. Phys. 215, 683–705 (2001)

33. Johansson, K.: Random Matrices and Determinantal Processes. Mathematical Statistical Physics, pp.
1–55. Elsevier B. V, Amsterdam (2006)

34. Johansson, K.: From Gumble to Tracy–Widom. Probab. Theory Relat. Fields 138, 75–112 (2007)
35. Johansson, K., Lambert, G.:Gaussian and non-Gaussian fluctuations for mesoscopic linear statistics in

determinantal processes. arXiv:1504.06455
36. König, W.: Orthogonal polynomial ensembles in probability theory. Probab. Surv. 2, 385–447 (2005)
37. Kuijlaars, A.B.J.: Universality in the Oxford Handbook of RandomMatrix Theory, pp. 103–134. Oxford

Univ. Press, Oxford (2011)
38. Lambert, G.: Mesoscopic fluctuations for unitary invariant ensembles. Electron. J. Probab. 23(7), 33

(2018)
39. Lambert, G.: CLT for biorthogonal ensembles and related combinatorial identities. Adv. Math. 329,

590–648 (2018)
40. Lavancier, F., Møller, J., Rubak, E.: Determinantal point process models and statistical inference. J. R.

Stat. Soc. Ser. B 77(4), 853–877 (2015)
41. Leblé, T., Serfaty, S.: Fluctuations of two-dimensional Coulomb gases. Geom. Funct. Anal. 28(2), 443–

508 (2018)
42. Pastur, L.A.: Limiting laws of linear eigenvalue statistics for Hermitian matrix models. J. Math. Phys. 47,

103303 (2003)

123

http://arxiv.org/abs/1504.06455


1374 G. Lambert

43. Pastur, L.A., Shcherbina, M.: Eigenvalue Distribution of Large Random Matrices Mathematical Surveys
and Monographs, vol. 171. American Mathematical Society, Providence, RI (2011)

44. Rider, B., Virág, B.: Complex determinantal processes and H1 noise. Electron. J. Probab. 12, 1238–1257
(2007)

45. Rider, B., Virág, B (2007) The noise in the circular law and the Gaussian free field. Int. Math. Res. Notes.
https://doi.org/10.1093/imrn/rnm006 (2007)

46. Shcherbina, M.: Fluctuations of linear eigenvalue statistics of β-matrix models in the multi-cut regime.
J. Stat. Phys. 151, 1004–1034 (2013)

47. Soshnikov, A.: Determinantal random point fields. Russ. Math. Surv. 55, 923–975 (2000)
48. Soshnikov, A.: The Central Limit Theorem for local linear statistics in classical compact groups and

related combinatorial identities. Ann. Probab. 28, 1353–1370 (2000)
49. Soshnikov, A.: Gaussian limit for determinantal random point fields. Ann. Probab. 30, 1–17 (2001)
50. Spencer, T.: Random Banded and Sparse Matrices in the Oxford Handbook of Random Matrix Theory,

pp. 471–488. Oxford Univ. Press, Oxford (2011)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1093/imrn/rnm006

	Incomplete Determinantal Processes: From Random Matrix to Poisson Statistics
	Abstract
	1 Introduction and Results
	1.1 Introduction
	1.2 Main Results for 2-Dimensional Coulomb Gases
	1.3 Main Results for Eigenvalues of Unitary Invariant Hermitian Random Matrices
	1.4 Overview of the Rest of the Paper

	2 Outline of the Proof
	3 Transition for Coulomb Gases in Two Dimensions
	3.1 Asymptotics of the Correlation Kernel
	3.2 Proof of Theorem 1.1
	3.3 Mesoscopic Fluctuations for 2-Dimensional Coulomb Gases and the Proofs of Theorems 1.2 and 1.3

	4 Transition for 1-Dimensional Log-Gases
	4.1 Asymptotics of Orthogonal Polynomials
	4.2 Proof of Theorem 1.4: The Global Regime
	4.3 Proof of Theorem 1.5: The mesoscopic regime

	Acknowledgements
	Appendix A: Incomplete Determinantal Processes
	Appendix B: Off-Diagonal Decay of the Correlation Kernel KNV in Dimension 2
	References




