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Abstract
The study of the phase ordering kinetics of the ferromagnetic one-dimensional Ising model
dates back to 1963 (R. J. Glauber, J. Math. Phys. 4, 294) for non conserved order parameter
(NCOP) and to 1991 (S. J. Cornell, K. Kaski and R.B. Stinchcombe, Phys. Rev. B 44, 12263)
for conserved order parameter (COP). The case of long range interactions J (r) has been
widely studied at equilibrium but their effect on relaxation is a much less investigated field.
Here wemake a detailed numerical and analytical study of both cases, NCOP and COP.Many
results are valid for any positive, decreasing coupling J (r), but we focus specifically on the
exponential case, Jexp(r) = e−r/R with varying R > 0, and on the integrable power law
case, Jpow(r) = 1/r1+σ with σ > 0. We find that the asymptotic growth law L(t) is the usual
algebraic one, L(t) ∼ t1/z , of the correspondingmodel with nearest neighbouring interaction
(zNCOP = 2 and zCOP = 3) for all models except Jpow for small σ : in the non conserved case
when σ ≤ 1 (zNCOP = σ + 1) and in the conserved case when σ → 0+ (zCOP = 4β + 3,
where β = 1/T is the inverse of the absolute temperature). The models with space decaying
interactions also differ markedly from the ones with nearest neighbors due to the presence
of many long-lasting preasymptotic regimes, such as an exponential mean-field behavior
with L(t) ∼ et , a ballistic one with L(t) ∼ t , a slow (logarithmic) behavior L(t) ∼ ln t
and one with L(t) ∼ t1/σ+1. All these regimes and their validity ranges have been found
analytically and verified in numerical simulations. Our results show that the main effect of
the conservation law is a strong slowdown of COP dynamics if interactions have an extended
range. Finally, by comparing the Ising model at hand with continuum approaches based on
a Ginzburg–Landau free energy, we discuss when and to which extent the latter represent a
faithful description of the former.
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1 Introduction

Phase ordering [1] is the dynamical process of growth of order when a system is quenched
from a high temperature homogeneous phase to a low temperature broken-symmetry phase.
It occurs through domain coarsening, with the average size of domains of different phases,
L(t), which increases in time.

Phase ordering is an old research topic and its most unified picture is based on a continuum
approach whose starting point is a Landau–Ginzburg free energy. In an impressive series of
papers dating back around twenty five years, Alan Bray and collaborators have constructed
a theory which covers nonconserved and conserved models, scalar and vector fields, short
and long range interactions [1–3]. Their results for the growth law L(t) do not depend on the
spatial dimension d of the physical system, which only appears when defining the limits of
applicability of the theory.

It is clear that one dimension, the case we focus on in this paper, plays a special role for
scalar systems because the Curie temperature vanishes for short-range interactions, Tc = 0.
This means, first of all, that it is not possible to quench the temperature from Ti > Tc to
T f ≡ T < Tc. However, we can consider quenches to a vanishing T = 0, or to a very
small finite temperature T � 1 (the energy scale of coupling is of order one and here and
in the following we set the Boltzmann constant to unity). In the former case (T = 0) the
equilibrium state is fully ordered and the dynamics can never increase the system energy.
This means that zero temperature dynamics can be blocked, which is actually what happens
if the order parameter is conserved. In the latter case (T > 0) the final equilibrium state is
made of ordered regions of average size equal to the equilibrium correlation length ξ and,
hence, coarsening stops when L(t) � ξ(T ). Since ξ is a very fast increasing function of
(1/T ) (for nearest neighbor (nn) interactions, ξ(T ) � e2/T ), low−T coarsening dynamics
lasts for a long time.

The nn Ising model has been studied decades ago. Nonconserved dynamics proceeds via
spin-flips and it is possible to attain the ground state through processes which lower or keep
constant the energy. We will see that dynamics can be easily described in terms of random
walks performedbydomainwalls, so it is not surprising that the average size of domains grows
according to the law [4] L(t) � t1/2. Conserved dynamics proceeds differently because single
spin-flips, which would change the order parameter (the magnetization), are not allowed.
In this case we rather have spin-exchange processes with spins that can evaporate from a
domain wall and condensate to another droplet after a diffusion process. It is known that such
evaporation-condensation mechanism slows down the dynamics [5] with respect to spin-flip
and results in the growth law L(t) � t1/3.

In a recent publication [6]we have studied the effects of a coupling constant J (r) = e−r/R ,
decreasing exponentially with the distance r between two spins, on the one-dimensional
coarsening dynamics. Since this interaction introduces the new length scale R, it is reasonable
to expect the regime L(t) < R to be physically different from the one with L(t) > R. We
actually found more than that, because we identified different dynamical regimes for large
L(t). In this paperwe go beyond the exponential coupling, finding a series of results which are
independent of the explicit form of the coupling, provided that J (r) is a positive, decreasing
function of r . For definiteness, detailed simulations and specific calculations have been done
for exponential, Jexp = e−r/R , and power-law, Jpow(r) = 1/r1+σ , couplings. We focus on the
growth law L(t) of the domains’ size, which we compute by means of different analytical
approaches along the whole time history, from the instant of the quench up to the asymptotic
stages. Our results are successfully compared to the outcome of numerical simulations.
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512 F. Corberi et al.

Besides addressing themodifications of the kinetics due to a space decaying interaction, in
this paper we also discuss an interesting question which has not been considered previously,
namely the comparison between the coarsening dynamics of the Ising model and the one
emerging from a deterministic continuum description of the same system. This analysis
allows us to provide a physical interpretation to the various dynamical regimes and to show
that some of them, although occurring with the same coarsening law in the discrete and in the
continuum models, are associated to different physical mechanisms. We will also comment
on a recent preprint [7] studying phase ordering for a strictly related Non Conserved Order
Parameter (NCOP) long-range discrete model.

This paper is organized as follows: in Sect. 2 we introduce the models, we define the form
of the interactions and discuss the equilibrium structure. We also specify the kinetic rules and
discuss the elementary processes driving the evolution and the methods that can be used to
perform numerical simulations. Section 3 is devoted to the definition of the simplifiedmodels
with only few domains from which most of our analytical results can be deduced. In Sect. 4
we focus on the NCOP case, by deriving our analytical predictions and comparing them with
the outcome of numerical simulations. We do the same in Sect. 5 for the Conserved Order
Parameter (COP) case. In Sect. 6 we compare our results for the discrete Ising model with
the behavior of the continuummodel based on a Ginzburg–Landau free energy, discussing to
which extent the latter can grasp the physics observed in the former. In Sect. 7 we discuss the
results of this paper on general grounds, and suggest somepossible future research lines,while
in Appendix we give some details of numerical simulations. The captions of most figures
showing our results are preceded by an abbreviation to immediately identify the model in
question. For example, (NCOP exp) means we are considering the exponential model of the
nonconserved class.

2 TheModels

We will consider a general one-dimensional Ising model described by the Hamiltonian

H = −
+∞∑

i=−∞

∑

r>0

J (r)si si+r , (1)

where si = ± 1 are binary variables and we only assume that J (r) is a positive, decreasing
function of the distance r .

Main formulas will be written for general J (r), but specific calculations and simulations
will be done for an exponentially decreasing coupling,

Jexp(r) = e−r/R (2)

and for a power-law one,

Jpow(r) = 1

r1+σ
, (3)

with σ > 0.
The usual Ising Hamiltonian couples only nearest neighbour spins,

Jnn(r) = δr ,1. (4)

In all cases, Eqs. (2)–(4), J (r) should be proportional to some energy scale J0, which will
be assumed to be equal to one throughout all the paper.
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Since we will use both a spin and a lattice gas language, it is useful to rephrase the Ising
Hamiltonian (1) using the variable ni = (1 + si )/2, which takes the values ni = 1 (for
si = +1) and ni = 0 (for si = −1):

H = −
+∞∑

i=−∞

∑

r>0

J (r)(2ni − 1)(2ni+r − 1) (5)

= − 4
+∞∑

i=−∞

∑

r>0

J (r)nini+r + 4
+∞∑

i=−∞
ni

∑

r>0

J (r) −
+∞∑

i=−∞

∑

r>0

J (r). (6)

The third term on the right-hand side is an irrelevant (extensive) constant. The second term
on the right-hand side is constant as well if the dynamics preserves the order parameter,
i.e. if

∑
i si = ∑

i (2ni − 1) is a constant of motion. The spin language is appropriate for
NCOP systems, like magnetic systems; the lattice gas language is appropriate instead for
COP systems, like alloys or fluids. Within this language, the coupling energy between two
particles at distance r , see Eq. (6), is − 4J (r).

As for the equilibrium properties, it is straightforward that there are no qualitative differ-
ences between Jexp(r) and Jnn(r). The power-law case, instead, requires a few more words. If
GS is one of the two ground states and we flip one single spin obtaining the (one flip) state
1F, we have the energy difference

E1F − EGS = 4
∞∑

r=1

1

r1+σ
, (7)

which diverges for σ ≤ 0. For negative σ we are in the so called strong long-range regime,
where extensivity and (above all) additivity do not hold.Wewill not consider this case, which
is reviewed in Ref. [8].

If we flip all spins i > 0, therefore obtaining the microscopic state 1DW characterized by
a single domain wall, we have the energy difference

E1DW − EGS = 2
∞∑

i=1

0∑

j=−∞

1

(i − j)1+σ
, (8)

which is finite for σ > 1. Therefore the standard arguments to explain the absence of long-
range [9,10] order at finite temperature still applies. For 0 < σ ≤ 1 (weak long-range regime)
there is an ordered phase at finite temperature: for 0 < σ < 1 there is a second-order phase
transition [10] while for σ = 1 there is a Kosterlitz–Thouless phase transition with a jump
of the magnetization [11–13]. It is also possible to argue that mean-field critical exponents
are expected for 0 < σ < 1

2 [14].

2.1 Dynamical Evolution

Allmodelswill be studied for both nonconserved and conservedorder parameter. The simplest
NCOP dynamics is based on single spin-flip processes, also called Glauber dynamics: si →
−si . Instead, the simplest COP dynamics is implemented by a spin-exchange processes
between two opposite spins, also called Kawasaki dynamics: si ↔ s j . In the lattice gas
language, if (say) si = 1, this move is simply the hopping of a particle on site i towards an
empty site j : (ni , n j ) = (1, 0) → (0, 1). In most cases and in this manuscript as well, sites
(i, j) must be nn: j = i ± 1.
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514 F. Corberi et al.

The transition rates WIF between an initial state I and a final state F must satisfy detailed
balance in order to ensure relaxation to equilibrium, WIF/WFI = e−β(EF−EI ) in a canonical
ensemble. If we impose the additional constraint WIF + WFI = 1 we obtain the Glauber
transition rates,

WIF = 1

1 + eβ(EF−EI )
. (9)

These transition rates will be used in the following for the elementary moves, namely spin
flips for NCOP or spin exchanges for COP.

Starting with the NCOP case, in Fig. 1a we plot the three possible different single spin-
flip processes. We use here also a language which associates a domain wall (DW) to a pair
of nn antiparallel spins. Within such language the three processes correspond to diffusion,
annihilation and creation of DWs.

It is important to evaluate for each process the energy difference�E = EF − EI between
the final and the initial state. For a nn Ising model, it is straightforward to conclude that
(�E)nn = 0 for DW diffusion, (�E)nn < 0 for annihilation of two DWs, and (�E)nn > 0 for
the creation of two DWs. If J (r) 
= 0 for r > 1 it is not possible to make general statements
about the sign of �E for any pair of initial and final configurations differing for a single spin
flip, since this task involves the knowledge of the whole system configuration. However, as
argued in Sect. 4, most of NCOP dynamics can be understood making reference to a simple
configuration, see Fig. 2a. In this casewe still have�E < 0 for DWannihilation and�E > 0
for DW creation, but DW hopping is no longer free diffusion, because �E 
= 0 and its sign
is such that WIF favors the closing of the smaller domain. Dynamics at T = 0 is therefore
trivial: DWs cannot be created and eachDWdrifts to the closest DWuntil annihilation occurs.
When temperature is switched on, two things happen: DW drift becomes an asymmetric DW
diffusion and DW creation is permitted. Asymmetric diffusion makes dynamics much more
complicated because the symmetric and the antisymmetric parts of DW hopping compete
and their balance depends on the temperature, on how J (r) decreases with r , and on the
typical distance L(t) between neighbouring DWs. DW creation at finite T makes possible to

(a) (b)

Fig. 1 aNCOP (Glauber) dynamics, using spin language and domainwall (DW) language (aDWis represented
by a circle). The reversed spin is the thick spin and its flipping implies the hoppingof aDW(top), the annihilation
of two DWs (center), or the creation of two DWs (bottom). DWs are solid and open circles, before and after the
flipping, respectively. b COP (Kawasaki) dynamics, using the lattice gas language. Full circles are particles,
empty circles are holes. Arrows indicate possible moves of a particle. NCOP and COP microscopic processes
are classified according to the variation of energy for the nn Ising model, (�E)nn = EF − EI , between the
final and the initial state
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attain thermal equilibrium, with a distance L(t) between DWs which equals the equilibrium
correlation length, ξ(T ), similarly to what happens in the nn case.

Let us nowmove to theCOPclass,whose elementary processes at the basis of the dynamics
are shown in Fig. 1b.We use again a particle language where now a particle represents ni = 1
while an empty sites (or a hole) corresponds to ni = 0. The four elementary processes are
particle and hole diffusion, particle attachment and particle detachment. If we limit to nn
interaction it is obvious that diffusion keeps the energy constant, attachment decreases the
energy and detachment increases the energy. Going beyond nn interaction makes impossible
general statements about the sign of �E = EF − EI , as in the NCOP case, but, again, if
we focus on the simple configuration depicted in Fig. 2b we can make some statements:
detachment costs energy, attachment gains energy and diffusion is asymmetric with a drift
towards the closest domain.1

It is clear that for COP, temperature has a more direct role in the dynamics, which can
be easily highlighted in the nn model. At T = 0 the allowed processes are particle and hole
diffusion, and particle attachment. This means that the dynamics stops as soon as a particle
is attached to another particle and a hole is attached to another hole. Starting from a fully
disordered configuration, Ti = ∞, we obtain an average domain size Lnn(T = 0) � 4.16
[15]. If J (r) extends beyond nearest neighbours, being attached to another particle/hole is
not enough to avoid diffusion but for not so small domains it is surely true that detachment
costs energy and it is forbidden at T = 0. We can therefore affirm that zero-temperature
dynamics stops almost immediately, with a “small” average size of domains. When we
switch on temperature, particle detachment is allowed. Monomers perform an asymmetric
diffusion and they can travel the whole empty space between two clusters and reach the other
domain. The probability that this occurs will be evaluated in Sect. 5. This is the mechanism
whereby neighbouring domains exchangemonomers and represents the basic process leading
to coarsening since, due to the loss or gain of monomers, the length of each domain performs
a sort of random walk.

If a second particle is detached in the empty domain between two clusters while the first
one is still diffusing (an extremely rare event at low T ) they can stick together forming a
new cluster. This is the mechanism arresting coarsening and producing equilibration when
L(t) � ξ(T ).

2.2 Numerical Simulations

We consider a chain of N spins with periodic boundary conditions and implement standard
Monte Carlo dynamicswithGlauber transition rates, see Eq. (9). Since the interaction extends
to all the spins, for each spin flip trial, the evaluation of the energy cost �E = EF − EI

involves the sum over all spins in the system with a computation time N × N . This makes
simulationsmuch slower than in the nn case andprevents one to obtain completely satisfactory
results in some cases. An efficient algorithm has been developed in Ref. [16] which has
shown that, in the case of periodic boundary conditions, it is possible to obtain an efficient
diagonalization of the couplingmatrix J (r) via FFT. Bymeans of this method, one obtains an
exact algorithm that scaleswith N×ln N . In our studyweconsider twodifferent approximated
simulation schemes which scale with N and with the number of defects n, respectively. The

1 More precisely, the drift points to the closest domain if the two domains are of equal length. This means
that the direction of the drift changes when the diffusing particle reaches the middlepoint between the two
domains. In the general case of unequal domains, the drift changes direction when the diffusing particle moves
from one domain to the other, but not in the middle point.
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two schemes are briefly introduced below and a more detailed discussion on simulations
techniques is contained in Appendix A.

S1 Simulations with truncated J (r)
In this case we consider the Hamiltonian (1) in terms of the spin variables and assume, for
exponential couplings Jexp(r), that J (r) ≡ 0 when r > MR, where M is a sufficiently
large number. We have checked that with M of order 102 the results obtained with
truncation are indistinguishable from exact simulations. With such large values of M,
therefore, this kind of simulations is basically exact.

S2 Simulations with a reduced number of interacting kinks
Thismethod implements theDWdescription illustrated in Fig. 1where a spin flip or a pair
of spin flips is mapped in different moves of a particle. The key observation is that, indi-
cating with n the number of DWs in the system at a given time, the energy difference�E
after the flip of the spin in the i th site can be always written in the form (see Appendix A)

�E = (�E)nn +
n/2∑

j=−n/2
x j 
=i

(−1) j Q
(|x j − i

∣∣), (10)

where xk is the position of the kth DW and DWs are sorted according to their distance
from the site i . In the above equation (�E)nn is the quantity specified in Fig. 1, namely
the nn contribution to the energy change for the different moves. Q(r) is a decreas-
ing function of r , proportional to J (r) or to its integral for COP and NCOP dynamics,
respectively. The numerical implementation of this simulation method is more complex
but the evaluation of �E involves the sum of n terms, while method S1 involves the
sum of MR terms, therefore making S2 particularly advantageous at large times, when
n = N/L(t) � MR. On the other hand, at short times n is comparable to the total
number of spins in the system and S2 becomes less efficient.
Within the exact S2 framework one can introduce an approximated simulation method
corresponding to consider an interaction extending only to a finite number of kinks nK , by
means of the substitution n → nK in Eq. (10), where nK is a parameter to be optimized.
Clearly, the smaller is nK the worst, but the faster, the approximation is. This approxima-
tion is expected to provide exact results for sufficiently large times when Q(|x j − i |) can
be neglected for j > nK . In the following we will refer to S2 assuming a suitable nK .

In the case of COP dynamics we always use the simulation method S2 whereas for NCOP
we use S1 for simulations at short times and S2 for longer simulations. In addition, for
NCOP, to speed further up the computations, we have considered simulations where activated
processes (spin-flips in the bulk) are forbidden, preventing the equilibration of the system.
This approximation becomes exact in the limit of very small temperature and at large t ,
when the average distance between domains is sufficiently large so that the sum in Eq. (10)
becomes much smaller than 2J (1). For COP, instead, we adopt a rejection free algorithm of
the type described in [17] where activated moves (such as monomers evaporations), which
in the low T limit are very unlikely and delay the dynamics, are always accepted and time is
increased according to the likeliness of the accepted event (see Appendix A). This technique
does not introduce any error.

In our simulations we have consider a chain of N = 104 − 108 spins, depending on
the various parameters. These numbers are sufficiently large to avoid finite-size effects in
the range of time considered. For each choice of the parameters, we take an average over
102 − 103 realizations of the initial conditions and of the thermal history. Additional details
of the used algorithms can be found in Appendix A.
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(a)

(b)

S*

X(t)

X(t)

1 2x

Fig. 2 Simple one dimensional configurations, with periodic boundary conditions. a A single domain of down
spins and length X(t) (with X(0) = L) and a neighbouring domain of initial length L2 (which scales with
L). The interaction of spin S∗ with down spins is compensated by its interaction with dashed up spins. b Two
clusters of particles, labelled as “1” and “2”, whose sizes change in time because they exchange monomers.
The distance between the monomer and cluster 1 is x

We finally stress that for the models which are magnetized at finite temperature (power
models with σ < 1) we always consider a quench to the ordered phase. In particular, for
σ = 0.5 we take T ≤ 1 while Tc > 4 [18].

3 SimplifiedModels with Few Domains

After a quench from the fully disordered phase (Ti = ∞) to zero or low temperature the
system relaxes to equilibrium, which is characterized by a local order on a length scale equal
to the correlation length ξ(T ). Upon increasing the interaction range, the correlation length
increases as well and for the class of power law models we even have long range order at
finite T , if σ ≤ 1. In any case, even if Tc = 0 we can consider low enough T such that ξ(T )

is arbitrarily large.
Relaxation to equilibrium occurs through a coarsening kinetics where domains disappear

leading to the increase over time of their average size, L(t). Figure 2 represents the simplest
configurations leading to the disappearance of a single domain, for NCOP (a) and COP
(b). The analysis of the dynamics of such configurations not only explains the physics of the
process, but it also allows to derivemost of the coarsening laws. In fact, the evolution is a self-
similar phenomenon characterized by a single length scale, L(t). According to the scaling
hypothesis, this property means, e.g., that the correlation function C(r , t) = 〈si (t)si+r (t)〉
is actually a function of a single variable, C(r , t) = f (r/L(t)). Invoking scaling, we argue
that the functional dependence L(t) can be found by determining the typical temporal scale
t necessary to close a domain of initial size L and inverting the resulting function t(L). Let
us now see how this program can be implemented.

Starting from the NCOP case, see Fig. 2a, we consider a domain of the negative phase
and initial size X(0) = L and a neighbouring domain of the positive phase and initial size
L2 ≥ L , which scales with L (periodic boundary conditions apply). Each DW performs
an anisotropic random walk with a drift which favors the closing of the smallest domain,
whose closure time is t(L). In the next Section we will evaluate the drift in the configuration
L2 = ∞ and the closure time in the configuration L2 = L . This choice is due to the fact
that the drift vanishes for L2 = L and the closure time may diverge for L2 = ∞.2 Any other

2 In the absence of drift the length X of the domain performs a symmetric random walk with the initial
condition X(0) = L . The closing time is equivalent to the first passage time in the origin, X(tcl) = 0. It is
well known that for symmetric hopping its average value diverges, 〈tcl(L)〉 = ∞.
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choice of L2 would be equally arbitrary: our choice is justified a priori by simplicity and a
posteriori by the comparison of our analysis with numerical results.

The COP case, Fig. 2b, requires to consider two clusters of particles. This is because two
clusters can exchange matter until finally one of them disappears while a single cluster can
never do that. For simplicity we assume that all domains (clusters of particles and clusters
of holes) have an initial length equal to L . If T = 0 the configuration is frozen because the
detachment of a particle requires energy. If T > 0, such process is permitted on the time scale
τdet ≈ e4J (1)/T . Once that a particle has detached from cluster “1” it performs an asymmetric
random walk ending its journey either reattaching to the same cluster or attaching to cluster
“2”. In the former case the net outcome is null. In the latter case there is a net exchange of
mass (1 → 2) between the first and the second cluster and since the reversed process (2 → 1)
may occur in first approximation with the same probability,3 there is a symmetric exchange
of matter between the two clusters leading to a diffusion process for the length X(t), see
Fig. 2b.

InSect. 5wewill determine the average time tcl neededby a domain of initial size X(0) = L
to either disappear (X(tcl) = 0) or collect all the matter (X(tcl) = 2L) due to the evaporation
of the other domain. The key ingredient to evaluate tcl will be the effective diffusivity of X ,
D(L), which is inversely proportional to the probability p(L) that a monomer, detached from
a cluster, attains the other one.

4 Non Conserved Order Parameter

4.1 Two Domains Approximation: Analytical Results

Looking at Fig. 2a, as soon as L2 
= L the domain walls feel a drift favoring the closure of the
smallest domain. As already said, we evaluate such drift for L2 → ∞. The smaller domain
has the time-dependent length X(t), with X(0) = L . If we define the integrated quantity

I (x) ≡
∞∑

r=x

J (r), (11)

the process X → X +1 requires the energy (�E)+ = 4I (X), while the process X → X −1
releases the same energy.4 Therefore, using Eq. (9), the probabilities of such processes are

p± = 1

1 + e± 4β I (X)
, (12)

and the drift is

δ(X) = p+ − p− = − tanh(2β I (X)). (13)

Next, we evaluate the closing time using a symmetric initial configuration, L2 = L (see
discussion related to footnote 2). In terms of the random variable X(t) whose evolution is
controlled by the probabilities p±, this amounts to have X(0) = L and absorbing barriers in

3 At the beginning of the process the two clusters are of equal length and the two possible exchanges of
matter, 1 → 2 and 2 → 1, are perfectly symmetric. In the course of time the different lengths between the
two clusters creates an asymmetry which will be neglected in our calculations.
4 More precisely, it is the process X + 1 → X to release the same energy, but for large X we can neglect this
difference.
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X = 0 and X = 2L . Uponmapping the discrete, asymmetric randomwalk onto a convection-
diffusion equation, and in the approximation of constant drift (because of scaling it is assumed
to depend on X(0), not on X(t)), the average exit time of the particle, given in [19], is

t(L) = L

v
tanh

(
vL

D

)
. (14)

This expression gives the correct limits t(L) = L2/D for vanishing drift and t(L) = L/v

for strong drift (v � D/L). According to the spirit of the above calculation and in view of
Eq. (13), the appropriate expression to be used for the drift is

v(L) = v0 tanh(2β I (L)), (15)

where v0 is a constant. Therefore, Eqs. (14) and (15) give the closing time t of a domain as
a function of its initial size L .

Itmust be stressed that the simplifiedmodel describes the true situationwithmany domains
if the next boundary is at a distance where J (r) is already very small. This implies that the
interaction with the subsequent boundaries can be neglected, which is basically what the
present approximation does. Since the typical distance at which an interface is found is L(t)
we ask the condition J (L) < e−M , where M � 1, in order for the approximation to be valid.
This provides the lower limit La for L(t) above which the results of the model with few
domains holds, with

L exp
a = MR and Lpow

a = eM/(1+σ). (16)

Notice that La depends linearly on R for the exponential case while it is weakly dependent
on σ for the algebraic case.

Before studyingEqs. (14) and (15), let uswrite in the continuumapproximation the explicit
expression of the quantity I (L) for an exponentially decaying interaction, Eq. (2), and for a
power-law interaction, Eq. (3):

Jexp(r) = e−r/R Iexp(L) � Re−L/R (17)

Jpow(r) = 1

r1+σ
Ipow(L) � 1

σ

1

Lσ
. (18)

In the following we demonstrate that Eqs. (14) and (15) imply the existence of three
dynamical regimes, emerging as particular limits inwhich the arguments of the twohyperbolic
tangents appearing in Eqs. (14) and (15) are small or large. A summary of such regimes (plus
others that are not captured by this analytical method) and of the characteristic crossover
lengths between them is provided in Table 1.

The ballistic regime—In this regime L(t) grows linearlywith time,whichmeans a constant
v (i.e., not depending on L). This is possible if both the hyperbolic tangents in Eqs. (14) and
(15) can be approximated to one, i.e. if both arguments are very large,

v0L

D
� 1 and 2β I (L) � 1. (19)

The left inequality provides a lower limit for L , L � (D/v0), within the approximation with
few domains. Notice however that this bound might be inadequate if D/v0 happens to be
smaller than the typical length La above which the approximation holds true.

On the other hand, the right inequality in (19), considering the decreasing behavior of
I (L), provides an upper limit Lb defined by the relation 2β I (Lb) = 1. More precisely, for
the exponential and power-law models we find
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L exp

b = R ln(2βR) and Lpow

b =
(
2

σ
β

)1/σ

, (20)

which both diverge for T → 0. In this limit, therefore, the ballistic dynamics becomes the
asymptotic one. For any finite T , instead, it is followed by the other regimes described below.

The slow regime—This regime corresponds to a small v, such that the argument of the
transcendental function in Eq. (15) is small, and to a t(L), see Eq. (14), which is given by
the relation t = L/v. This means that we must have

2β I (L) � 1 and
vL

D
� 1. (21)

The left inequality gives L � Lb and the resulting velocity is

v(L) = 2v0β I (L). (22)

Therefore, the right inequality of Eq. (21) gives

2v0
D

Lβ I (L) � 1, (23)

which is consistent with the first of Eqs. (21) and it allows us to define the length Lc through
the relation

2v0
D

Lcβ I (Lc) = 1. (24)

For the exponential case we have

2v0
D

βL exp
c Re−Lexp

c /R = 1, (25)

which has the form Axe−x = 1, where x = L exp
c /R and A = 2v0

D βR2. An approximate
solution for A � 1 can be found as follows:

x = ln A + ln x = ln A + ln ln A + ln

(
1 + ln x

ln A

)
� ln(A ln A). (26)

So, we obtain

L exp
c = R ln

[
2v0
D

βR2 ln

(
2v0
D

βR2
)]

. (27)

For the power-law case we have instead

Lpow
c =

(
2v0
σD

β

)1/(σ−1)

=
(v0

D

)1/(σ−1)
(Lpow

b )σ/(σ−1). (28)

In the range (Lb, Lc) the coarsening law is given by the relation

t = L

v(L)
= L

2v0β I (L)
, (29)

which implies a logarithmically slow dynamics for the exponential case,

L(t) ∼ R ln t, (30)

and a non universal power-law growth for the power-law case,

L(t) � t1/(σ+1). (31)
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It is obvious that Lpow
c , see Eq. (28), is meaningless for σ < 1. In fact, La is a length of

order one and Lb is a length which increases with decreasing the temperature or (for the
exponential case) with increasing R. These same properties apply to Lc (and Lc � Lb) in
the exponential case and in the power-law case with σ ≥ 1. Instead, if σ < 1 the inequality
(23) writes

L �
(

σD

2v0

1

β

)1/(1−σ)

, (32)

which is automatically satisfied at low temperature, implying that the slow regime extends
to infinity at any temperature T < Tc for the power-law case with σ < 1. In all the other
cases there will be a third regime, that we now discuss.

Diffusive regime—For L � Lc it is vL/D � 1, so Eq. (14) gives

t = L

v

vL

D
= L2

D
, (33)

from which the usual growth law of the nn case,

L(t) � t1/2, (34)

is recovered.
We summarize all results for NCOP coarsening in Table 1. The regimes described by the

approximation with few domains are those occurring for L(t) > La , namely those to the
right of the double vertical line in the Table. The early regimes with L(t) < La , which are
observed only for Jexp, will be discussed later.

4.2 Simulations: Interactions Decaying Exponentially

In Fig. 3 we plot the simulation results for Jexp(r) with varying R. In this figure we report
results of simulations obtained with both methods of Sect. 2.2. Clearly, with the method
S1 a much smaller time range can be investigated. When using method S2, bulk flips are
forbidden, and for any R we searched for a value of nK representing a good compromise
between the accuracy of the simulations and their efficiency (for the largest values of R, nK
is of order 2 × 102). For small values of R the two kind of calculations agree rather well at
any time. This can be clearly seen in the case with R = 5. The two methods also agree, for
any R, at sufficiently long times, as expected. Besides that, for any R they also agree in a very
early regime where a fast exponential growth of L(t) takes place. This regime is not captured
by our previous analytical arguments because, recalling the discussion below Eq. (19), it
occurs when L(t) is still too small, L(t) < La , for the model with a single domain to be
adequate. Such regime, which is of a mean field character, will be worked out analytically in
Sect. 4.2.1. On the other hand, for large R, simulations S1 and S2 disagree in an intermediate
time interval after the mean field regime. For instance, for R = 102 the curves obtained with
methods S1 and S2 are quite different in the time range between t � 10 and t � 103. We
remind that this discrepancy is partly due to the limited number nK of kinks considered but,
especially, to the fact that flips in the bulk cannot be neglected in this time domain.

Regarding the behavior of L(t), the first observation is the impressive difference, particu-
larly for large R, with respect to the behavior of the nn model. Looking at the curves obtained
with the simulation method S2 the three regimes discussed above, ballistic (L ∼ t), slow
(L ∼ ln t), and diffusive (L ∼ t1/2) are clearly visible, and the crossovers between them
occur at values of L(t), L exp

a , L exp

b , L exp
c , which are consistent with their estimations given in
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Fig. 3 (NCOP exp) In the main panel the domain size L(t) for a quench from Ti = ∞ to T = 10−2, for a
system of size N = 107, is shown on a log-log plot. Continuous lines with symbols are obtained by means of
simulations using method S2. Different curves correspond to the nn interaction and to the interaction Jexp(r)
with different values of R, as indicated. For some values of R (R = 5, 102, 104) we plot also the curve obtained
with the simulation method S1, see dotted lines. In the simulation method S1 we set M = 100 and we have
verified that no significant change is observed for largerM values. The dashed green and violet lines are the
algebraic forms t1/2 and t , respectively. The curve drawn with turquoise + symbols at short times represents
the exponential growth in the mean-field regime, obtained analytically in Eq. (35). In the upper inset the data
for R = 104 are plotted on a log-linear scale to appreciate the logarithmic behavior. The lower inset shows
the same data of the main panel (only simulations with method S2 for R = 102, 103, 104), but plotting the
rescaled quantity L(t)/R against t/R

Table 1 or equivalently in Eqs. (16, 20, 28). These estimations say that, with increasing R
the ballistic regime ends later, the slow kinetics lasts longer, and the diffusive regime starts
later. In the exact simulations performed with method S1 the ballistic regime is only barely
observed for R = 102, since the range of times where it shows up is small. It should be more
clearly observed for larger R but the numerical effort to go to (reasonably) larger values of
R turns out to be much beyond the scope of this paper.

It is interesting to display the analytical curves for L(t), obtained solving numerically the
two coupled equations (14) and (15), see Fig. 4. Here the three different regimes are very
clearly observed and the figure has the merit of stressing that the behavior of L(t) in the
ballistic and the diffusive regimes does not depend on R (while, clearly, the duration of such
regimes, namely the quantities L exp

a , L exp

b , L exp
c , do depend on R). This is true but less evident

for simulations as well, see Fig. 3. To better analyze this point one can have a look to the
lower inset of Fig. 3 where the same data of the main panel are plotted on rescaled axes.
Although the flat plateau occurring when the fast initial growth of L(t) is over is a spurious
effect due to use of method S2 for simulating the system (indeed, as it can be seen in the
upper panel this plateau is washed out in the exact simulations) it is instructive to study its
location. Its height lies around L(t)/R � 10, and after that the ballistic regime starts. This
shows that, as already discussed, the convective regime starts at L(t) = La ∼ MR, with
M � 10. Since the ballistic regime is independent of R this implies that it starts at a time of
order R, and indeed in the figure it is seen that it begins at t/R � 1.
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Fig. 4 (NCOP exp) Plot of L(t), obtained from reversing the function t(L) as given by Eqs. (14) and (15), on
a double logarithmic scale. Upper left inset: we plot the same data in the short time regime with linear scales
to show the ballistic regime. Lower right inset: the same data are plotted on a log-linear scale to show the
logarithmic regime

4.2.1 Short Time Mean-Field Regime

Wewant now to discuss the early regime, characterized by a fast (exponential) growth of order.
Since this occurs for values of L(t) smaller than La , the approximation with few domains
fails. Luckily, in the limit L � R a mean field approximation holds. We are therefore going
to discuss such an approximation.

If any spin interacts with other spins within a distance R � 1 the magnetization density
m increases in time following the equation [6] dm/dt = [−m + tanh(2βRm)]. The initial
value of m is the result of the imbalance between positive and negative spins on a scale
of order R. Because of the central limit theorem, m(0) � 1/

√
R (we assume m(0) > 0)

so that the minimal value of the argument of tanh is of order 2β
√
R � 1. Therefore, the

approximation tanh(2βRm) � 1 is correct and we can write dm/dt = (1 − m), whose
solution is m(t) = 1 − [1 − m(0)] exp(−t).

Because of the random character of the initial configuration, and due to the fact that
the mean field dynamics does not introduce any correlation among spins, the configuration
corresponding to a magnetization density m can be obtained by choosing the i−th spin as
si = +1 with probability p+ = (1+m)/2 and as si = −1 with probability p− = (1−m)/2.
In doing that, the probability of having �+ consecutive positively aligned spins is P(�+) =
p− p�+−1

+ and the average length of such domain is �̄+ = 1/p−. Analogously, for negative
spins one finds �̄− = 1/p+. Therefore the average domain size is L = 1

2 (�̄+ + �̄−) =
1/(2p− p+). Using the explicit expression for p± in terms of the magnetization, we obtain

L(t) = 2

1 − m2(t)
= 2

1 + m(t)
· et

1 − m(0)
. (35)

Since the quantity 1+m(t) is very weakly dependent on t , it varies from (1+m(0)) to 2, this
equation clearly shows the exponential growth of L(t) in the mean field regime, L(t) � et . In
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Fig. 3 we can check that simulation results well reproduce the prediction of Eq. (35) (compare
the dotted magenta line with the + turquoise symbols) at short times.

The exponential growth ends when L(t) is of order R, which happens at a time of order
ln R. Recalling that the ballistic regime starts at t/R � 1 and for L(t) = La = MR, with
M � 10, there is a time lag of order R − ln R � R in which L(t) must fill the gap from
the end of the mean-field regime with L � R to the beginning of the ballistic one with
L � MR. In this intermediate regime both the mean-field approximation and the one with
few domains fail, because one has neither many boundaries nor a single boundary within the
interaction distance. Also, this is a regime where simulations of kind S2 fail (basically for
the same reason). We could not devise any scheme to derive quantitative information in this
intermediate time range.

4.3 Simulations: Interactions Decaying Algebraically

Before starting our discussion of the case with algebraic interactions let us comment on the
fact that, at variance with the exponential case, now the use of method S2 for the simulations
can always be made reliable, at any time, by tuning nK appropriately. Indeed, as shown
in Fig. 5, the initial mean-field regime is never present in this case and the approximated
method S2 always correspond to neglect terms of the order of (nk L(t))−1−σ which become
sub-leading for a sufficiently large nk . In particular, we have compared S2 simulations with
the exact ones for several choices of the parametersσ and T andwe found excellent agreement
in the whole time domain using values at most equal to nK = 200. In the following, therefore,
we will present always data obtained with method S2.

Let us remind that for J (r) = Jpow(r) our theory predicts a ballistic regime (L ∼ t), then a
slow regime (L ∼ t1/(1+σ)) which is asymptotic for σ ≤ 1 or is followed by a final diffusive
regime (L ∼ t1/2) if σ > 1. In Fig. 5 we plot the NCOP results for different values of σ

100 102 104 106 108

t
100

102

104

106

108

L(
t)

σ=0.5
σ=1
σ=1.5
σ=2
σ=3
nn

t

t1/2

Fig. 5 (NCOP pow) L(t) for NCOP quenched from Ti = ∞ to T = 10−3 on a double-logarithmic scale.
Different symbols and colors correspond to different values of σ and to the nn case (see legend). The dashed
orange line is the t1/2 law and the dashed green one is the ballistic behavior. The color dotted lines (below the
data curves) are the power-laws t1/(σ+1) of the slow regime for each σ value (Color figure online)
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Fig. 6 (NCOP pow) L(t) for NCOP quenched from Ti = ∞ to different final T for σ = 0.5. The green dashed
line indicate the linear, ballistic regime L(t) ∼ t . The magenta dashed line is the growth L ∼ t1/(σ+1) = t2/3

in the slow regime. The system size is N = 8 × 108 (Color figure online)

and for the nn case. Starting from the smallest value of σ , namely σ = 0.5, one observes
that, after a short transient for t � 10, or equivalently for L(t) � Lpow

a � 102, the ballistic
regime is entered which extends up to the longest simulated time tmax . For this choice of the
parameters, indeed, the crossover to the slow regime is delayed after tmax , as we will prove
in a while. The curves for increasing values of σ superimpose on the σ = 0.5 curve up to a
certain value Lpow

b of L which gets smaller the larger σ is, according to Eq. (16). For σ = 3,
Lpow

b is so small that the ballistic regime is not even observed. The late stage diffusive regime
that is expected for σ > 1 is not observed for σ = 1.5 because it sets in at L(t) = L pow

c but
this quantity, according to Eq. (28), diverges for σ → 1 and hence cannot be reached in our
simulations. On the other hand, the diffusive regime is very neatly observed for σ = 3 and
is incipient for σ = 2 at late times. Notice also in this case, as for the exponential coupling,
the profound difference with respect to the nn case.

In order to show the transition to the slow regime also for the case with σ = 0.5 we
show, in Fig. 6, L(t) for quenches to different temperatures. Indeed, the slow regime starts at
the length scale L pow

b of Eq. (20) which, although typically very large when σ < 1, can be
reduced by increasing the temperature. This figure shows the crossover to the slow regime
as T is raised, as expected.

5 Conserved Order Parameter

5.1 Two Clusters Approximation: Analytical Results

If the order parameter is conserved a domain disappears because all its particles evaporate
and attach to neighbouring clusters. There are now two relevant random walk processes,
see Fig. 2b: (i) each cluster emits and absorbs particles, so that its length X(t) is an integer
positive random variable which can increase or decrease; (ii) each emitted particle performs
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a random walk between two clusters and X(t) actually increases or decreases only if an
emitted particle is absorbed by a different cluster.

Theminimalmodel involves two clusters of particles in a ring geometry and, for simplicity,
we are going to consider two clusters of initial length L , separated by a distance L . In spin
language the initial configuration is composed by four domains of equal length. In thisway the
process is (at least initially) perfectly symmetric andwe can limit to determine the probability
p(L) that a particle emitted by cluster 1 is absorbed by cluster 2. Once we know p(L) the
resulting closing time of one of the two domains is simply

t(L) = t0L
2/p(L), (36)

where t0 = e4β J (1) is the characteristic time of particle emission and t0/p(L) is the typical
time because a cluster varies its size by one.

In the nn model a particle between two neighbouring clusters diffuses freely and it is
straightforward to derive that p(L) = 1/L , as argued below [20]. For symmetry reasons
p(L) = 1

2 p(L/2) because once the particle has attained an equal distance to both clusters
the probability to attach to the right cluster is equal to the probability to attach to the left
cluster. Therefore, p(L) = a

L and since p(2) = 1
2 , we obtain a = 1. If the range of J (r)

is not limited to nn, the random walk of the particle emitted by a cluster is not symmetric.
Indeed, when a monomer detaches from a cluster it feels the attraction from the same cluster,
a fact that strongly reduces the probability p(L) with respect to the nn case. As we will see,
this produces an overall slow down of the kinetics upon increasing the interaction range.

We are now going to determine the drift δ(x) felt by a particle at distance x from the
closest domain, see Fig. 2b. The energy E(x) associated to the particle can be evinced from
Eq. (6) by singling out in all the sums the term with i = ix , ix being the site where the
monomer is. Neglecting irrelevant additive constants which are independent of L one has

E(x) = −4

(
x+L∑

r=x

J (r) +
2L−x∑

r=L−x

J (r)

)
, (37)

which is a function defined in the interval (0, L) and symmetric with respect to the midpoint,
x = L/2, where it has a maximum. It is obvious that the drift is negative for x < L/2 and
it is positive for x > L/2. For symmetry reasons it is always true that p(L) = 1

2 p̃(L/2)
where p̃(L/2) is the probability to attain the midpoint x = L/2 and, in order to evaluate this
probability, we only need the negative drift δ(x) for x < L/2. In this interval we can forget
the effect of the farthest domain and we can assume a diverging length of the nearest domain,
so that for x < L/2 we can approximate E(x) as follows,

E(x) � − 4
∞∑

r=x

J (r) = − 4I (x). (38)

The probability p+(x) to hop from x to x + 1 is

p+(x) = 1

1 + eβ(E(x+1)−E(x))
= 1

1 + e4β J (x)
(39)

while the probability to hop from x to x − 1 is

p−(x) = 1

1 + e− 4β J (x)
, (40)

so that

δ(x) = p+(x) − p−(x) = − tanh(2β J (x)). (41)
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Wenowmust determine p̃(L/2) from the knowledge of δ(x). Let us consider the following
first-passage problem: a particle diffuses anisotropically on the integer sites of the interval
[0, N ] and we wonder what is the probability WN (x) that a particle currently at x reaches
the site N before reaching the site 0. We can write

WN (x) = p+(x)WN (x + 1) + p−(x)WN (x − 1). (42)

In a continuum approximation, writingWN (x± 1) � WN (x)±W ′
N (x)+(1/2)W ′′

N (x), using
the relation p+ + p− = 1 and Eq. (41), the above equation reads W ′′

N (x) = − 2δ(x)W ′
N (x),

which should be supplemented with the boundary conditions WN (0) = 0 and WN (N ) = 1.
The equation can be integrated twice, giving

WN (x) =
∫ x
0 dy e− 2

∫ y
0 dsδ(s)

∫ N
0 dy e− 2

∫ y
0 dsδ(s)

. (43)

Observing that p̃(L/2) = WN (x) for x = 1 (the site where a detached particle starts to
diffuse) and N = L/2, we can write

p̃(L/2) =
∫ 1
0 dy e2

∫ y
0 ds|δ(s)|

∫ L/2
0 dy e2

∫ y
0 ds|δ(s)| ≡ A

B(L)
, (44)

with |δ(s)| = tanh(2β J (s)). With the knowledge ofA and B, we have the following relation
to determine the coarsening law,

t = 2t0
A L2B(L). (45)

Let us now evaluate the quantityB(L). Startingwith the expression for |δ(s)|, the argument
of the hyperbolic tangent, 2β J (s), varies from 2β J (s) � 1 at small s to 0 for diverging s,
so there is a crossover between two regimes. If s∗ is defined by the relation 2β J (s∗) = 1,
we have

|δ(s)| �
{
1 s � s∗
2β J (s) s � s∗ , (46)

with a sharp transition between the two regimes. We can therefore approximate the integral
appearing in the exponent as follows,

C(y) ≡
∫ y

0
ds|δ(s)| �

{
y, y < s∗
s∗ + 2β[I (s∗) − I (y)], y > s∗ . (47)

We finally obtain

B(L) =
∫ L/2

0
dy e2C(y) �

⎧
⎪⎨

⎪⎩

∫ L/2
0 dy e2y = 1

2 (e
L − 1) � eL

2 , L
2 < s∗

e2s
∗

2 + e2s
∗ ∫ L/2

s∗ dy e4β[I (s∗)−I (y)], L
2 > s∗

. (48)

As for the numerator,

A =
∫ 1

0
dy e2C(y) �

∫ 1

0
dy e2y = 1

2
(e2 − 1) ≡ c0 � 3.1945. (49)

We can now find the limiting behaviors for small L and diverging L . For L < 2s∗ = Ls

we obtain

t = t0
c0

L2eL , L � Ls (50)
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which gives a logarithmically slow coarsening, L(t) � ln t .
For the opposite case, L > Ls , we can observe that (I (s∗)− I (y)) is an increasing function

from y = 0 (for s = s∗) to the positive, constant value I (s∗) for y → ∞. So, we expect the
leading term for diverging L to be

B(L) � eLs e4β I (Ls/2) L

2
, (51)

and

t � t0
c0

eLs e4β I (Ls/2)L3, L → ∞ (52)

thus obtaining L ≈ t1/3 asymptotically. Notice that, quite interestingly, the logarithmic and
the diffusive regime do not make explicit reference to the form of the interaction.

However, wemust observe that the transition of (I (s∗)− I (y)) from zero to I (s∗) depends
on the explicit form of the coupling: in the exponential case, Jexp(r) rapidly decays to zero and
such transition is sharp; in the power law case, Jpow(r) does not decay rapidly, the transition
is not sharp and a third intermediate regime exists, as we are going to argue.

For J (r) = 1/r1+σ , I (y) = 1/(σ yσ ) and for L > Ls it is

B(L) = e2s
∗

2
+ e2s

∗
e
4β
σ

1
(s∗)σ

∫ L/2

s∗
dye− 4β

σ
1
yσ (53)

= e2s
∗

2
+ e2s

∗
e
4β
σ

1
(s∗)σ

1

σ

(
4β

σ

)1/σ [
Γ

(
− 1

σ
,
4β

σ

(
2

L

)σ )

−Γ

(
− 1

σ
,
4β

σ

(
1

s∗

)σ )]
, (54)

where Γ (α, x) is the upper incomplete Gamma function.
We define the length L cr such that the argument x of the Gamma function on the left

between square brackets, Eq. (54), is equal to one. We find

L cr = 21+(2/σ)(β/σ)1/σ , (55)

and L cr/Ls = 2(2+σ)/[σ(1+σ)]
σ 1/σ β1/(σ (1+σ)) � 1.

For L � L cr the incomplete Gamma function on the right between square brackets,
Eq. (54), can be neglected with respect to the left Γ and using the asymptotic expansion for
x � 1 we obtain Eq. (52). For Ls � L � L cr we can use the expansion valid for x � 1,
Γ (−1/σ, x) � x−1−(1/σ)e−x , and we obtain

t � t0
c02σ+2

eLs

β
Lσ+3 exp

[
β2σ+2

σ

(
1

(Ls)σ
− 1

Lσ

)]
(Ls � L � L cr). (56)

In the limiting case σ → 0 we have Ls = 4β and L cr → ∞, so that the intermediate regime
is the asymptotic regime. In the same limit we find

t � t0
c0

(
e

4β

)4β L4β+3

4β
(σ → 0+). (57)

A summary of the regimes and of the crossover lengths separating them is given in Table 2.
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Table 2 Summary of the results for the COP class

Slow Ls Intermediate Lcr Diffusive

Jexp ln t 2R ln(2β) t
1
3

Jpow
σ > 0 ln t 2(2β)

1
1+σ Eq. (56) 21+(2/σ)(β/σ)1/σ t

1
3

Jpow
σ → 0+ ln t 2(2β)

1
1+σ t

1
4β+3

Time ideally runs from left to right. On the top line the scales Ls , Lcr where the various regimes start/end,
and the corresponding regimes occuring between (or before or after) these lengths are indicated. In the lines
below, the analytic expressions for the crossover lengths and the behavior of L(t) in the corresponding regimes
is reported, for the different forms of J (r). Some regimes, and the corresponding crossover lengths, do not
exist for certain models. For example, for the exponential model there is no intermediate regime because Ls
and Lcr are not distinct

1010 1015 1020 1025

t
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L(
t)

R=1/2
R=2/3
R=1
R=2
R=5
R=10

1010 1015 1020 1025 1030
t
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40
50

L(
t)

t1/3

Fig. 7 (COP exp) L(t) for COP quenched to T = 0.1 according to the analytical prediction based on themodel
with few domains, Eq. (45), with J (r) = Jexp(r) and various values of R, see key. The dashed violet line is
the asymptotic diffusive behavior L(t) ∼ t1/3. In the main figure the data are plotted on a double logarithmic
scale, and the heavy circles correspond to the crossover lengths of Eq. (58) (for R = 10 it is beyond the largest
time in the plot). The inset shows the same data but using a logarithmic-linear scale in order to show the initial
logarithmic regime

5.2 Simulations: Interactions Decaying Exponentially

For an exponential coupling, Jexp(r), our theory predicts a logarithmic coarsening, for L(t) <

Ls = 2s∗, followed by the asymptotic, power-law regime, L ∼ t1/3. Using the definition of
s∗ given above Eq. (46) we have

L exp
s = 2R ln(2β). (58)

These two regimes and the sharp crossover between them are very neatly observed by plotting
the theoretical formulas in Fig. 7. Notice also that the crossover length scales as R, as expected
according to Eq. (58).
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Fig. 8 (COP exp) L(t) for a quench from Ti = ∞ to T = 0.4 for a system size N = 107 and different
values of R, as detailed in the key. The plot in the main figure is on a double-logarithmic scale. The dashed
green line is the the asymptotic diffusive behavior L(t) ∼ t1/3. The horizontal dotted line corresponds to
Lnn(T = 0) � 4.16, the asymptotic domain size for the nn model at T = 0. In the inset the same data (only
for R = 2) are plotted with log-linear scales so as to show the initial, logarithmically slow coarsening

Let us now discuss the results of our simulations performed according to the method S2
discussed in Sect. 2.2. We have checked that with COP this kind of simulations provide
reliable results basically at any time, provided that nK is chosen appropriately (mostly, we
used nK = 2 × 102). This is true for both kinds of interactions J (r) considered. Despite
the speed-up provided by simulations with a reduced number of kinks, calculations with
COP are quite time demanding and, therefore, it is difficult to push R to rather large values.
Nevertheless, even if data display the transition between the two regimes less clearly than
the solution of the model with few domains, there is still a rather clear evidence of a short-
time logarithmic coarsening and of the asymptotic t1/3 power law following it, see Fig. 8.
Also, the crossover between them is delayed by increasing R, as expected. Notice that in our
analytical approach the logarithmic regime turns out to be independent of R. Indeed curves
for different R superimpose in Fig. 7. This is not observed in the numerical simulations of
Fig. 8. This could be possibly due to an offset caused by a very early regime which is not
captured by our analytical techniques, or/and to the impossibility to reach sufficiently large
values of R in simulations.

5.3 Simulations: Interactions Decaying Algebraically

In the power law case we still expect the logarithmic regime and the asymptotic, t1/3, regime,
but in addition we should observe an intermediate regime, as given by Eq. (56), for Ls <

L(t) < Lcr , with (see Table 2):

Lpow
s = 2(2β)

1
1+σ and Lcr = 21+(2/σ)(β/σ)1/σ . (59)

These analytical predictions are corroborated by the explicit numerical solution ofEq. (45),
see Fig. 9. First of all the asymptotic power law expected for σ → 0+ is very well observed.
For the largest values of σ we have considered, namely σ = 1 and σ = 2, after a relatively
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Fig. 9 (COP pow) L(t) for a quench to T = 0.1 according to the model with few domains, Eq. (45), for
J (r) = Jpow(r) and with different values of σ , see key. In the main part of the figure, data are plotted on a

log-log scale. The green dashed line is the behavior t
1

4β+3 expected for σ → 0+. The violet dashed line is
the diffusive behavior t1/3. In the rightmost inset the same data are plotted on a log-linear scale, to show the

logarithmic regime. In the leftmost inset the quantity Λ−1 = β2σ+2

σ L−σ is plotted against τ = ln
(

t
Lσ+3

)
.

According to Eq. (56) one should have the intermediate regime Λ = cost− τ , which is indeed well observed

short preasymptotic regime, L(t) attains the asymptotic diffusive behavior L(t) ∼ t1/3. As
σ is lowered the preasymptotic stage increases, because both Ls and Lcr increase, and the
asymptotic stage is pushed beyond the scale of times presented in the figure. In the rightmost
inset of Fig. 9 we show the early time behavior of the preasymptotic stage with linear-log
scales, in order to detect the logarithmic law. Although the growth is definitely slower than
an algebraic one, the resulting plot is not fully linear, not even for the smaller values of σ ,
because there is a tiny upward curvature. This is perhaps due to the fact that the crossover to
the next stages is broad. In addition, the leftmost inset shows that, after this slow regime, an
intermediate regime where Eq. (56) holds is observed. Actually, according to this equation,

by defining Λ−1 = β2σ+2

σ
L−σ , this quantity should behave as Λ−1 = const − τ , where

τ = ln
(

t
Lσ+3

)
. Indeed, a linear relation between Λ−1 and τ is observed in the inset of Fig. 9

after a certain τ .
When we pass to simulations, the power law COP model is more elusive. Firstly, it is

not possible to clearly show both logarithmic and t1/3 regimes for the same parameters,
because simulations cannot access the whole range of time that would be needed. Indeed,
if T is sufficiently high, given the form of Ls and Lcr , Eq. (59), one is able to enter the
asymptotic diffusive regime but the preasymptotic ones are too compressed to be observable.
On the contrary, lowering T one is able to see the preasymptotic regime (at least the slow
logarithmic one, see below), particularly for small σ , but the asymptotic one is so delayed
to be unreachable. For this reason we present in the following two figures where we change
σ and T separately in order to observe the early as well as the late regimes. Specifically,
in Fig. 10 we show a quench to a temperature T = 0.4 which is large enough to observe
the asymptotic regime. We see that L(t) ∼ t1/3 is observed at late times for σ = 2 and
σ = 3. For smaller values of σ the crossover to the asymptotic stage is at most incipient (for
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Fig. 10 (COP pow) L(t) for a quench from Ti = ∞ to T = 0.4, for N = 104 and different values of σ , see
key. The dashed green line is the t1/3 law

σ = 1). Due to this incipient crossover, it is difficult to identify a well defined preasymptotic
regime. Then, in order to show its presence we show in Fig. 11, for a favorable case with
small σ , i.e. σ = 0.1, how it emerges by lowering the temperature. What we see is that
the curves for very small T tend to become straight lines in this log-linear plot, signaling
a logarithmic growth of L(t). Regarding the intermediate regime, this is too elusive to be
clearly recognized. However, as shown in the inset of Fig. 11, by plotting the quantity Λ−1

(actually we plot (βΛ)−1 to better compare curves at different T ) against τ , as already done
in Fig. 9, one sees that at large times (i.e. large τ ) the curves tend to have a linear behavior,
which would signal the setting in of the intermediate regime, Eq. (56).

6 Deterministic ContinuumModels

Although this is not the main focus of this paper, in this section we briefly discuss the growth
laws found in deterministic continuous models for growth kinetics. This will allow us to
compare the behaviour of these models with the ones of the Ising system analysed insofar
and to discuss to which extent the two approaches can be considered equivalent.

For nn interactions with NCOP the kinetics can be described by means of the Time-
Dependent Ginzburg–Landau equation,

∂tφ(x, t) = 2∂xxφ − 4φ3 + 4φ. (60)

This equation has time independent, single-kink solutions φ(x) = ± tanh(x). In the presence
of an exponential coupling Jexp(r) = e−r/R , one can explicitly take into account the scale
R of the interactions obtaining φ(x) = ± tanh(x/R). Combining two of such solutions to
reproduce the single domain configuration plotted in Fig. 2a one has

φ(x, t) = tanh

(
x − X/2

R

)
− tanh

(
x + X/2

R

)
+ 1. (61)

123



534 F. Corberi et al.

100 104 108 1012 1016

t

5

10

15

20

L(
t)

β=6
β=7
β=8
β=9
β=10

0 5 10 15 20 25 30
τ

32

34

36

38

40

β-1
Λ

-1
(τ

)

*

*

*

*
*

*

Fig. 11 (COP pow) L(t) for a quench from Ti = ∞ to different values of β = 1/T (see key) for σ = 0.1
and N = 104. The plot is on a log-linear scale, hence a logarithmic regime is more and more visible with
increasing β. In the inset the quantity Λ−1 is plotted against τ (see discussion around Fig. 9). Missing points
in the region of relatively short times is an effect due to the large time jumps introduced by the rejection free
simulation scheme (see Appendix A)

The resulting time evolution of X(t) is given by [21] Ẋ(t) = −[V (φ(x = 0)) − V (φ(x
= ∞))], where V (φ) = (φ2 − 1)2 is the standard double well potential. Using Eq. (61) we
obtain

Ẋ(t) = − [V (1 − 2 tanh(X/2R)) − V (1)] ≡ −v(X/R), (62)

where the drift v(X/R) is a positive function vanishing for small and large argument and
with a maximum for X/R = tanh−1(1/2). In the limit X(0) = L � R, because of the
exponential tails (with respect to the asymptotic values ± 1) v(X/R) � e−X/R , which
explains the logarithmic coarsening of the slow regime [22]. The opposite limit X(0) =
L � R (for which v(X/R) ≈ (X/R)2) is not physically relevant because the two DWs
model is not applicable. However, in the intermediate regime X(t) ≈ R the function v(X/R)

is approximately constant because of the maximum, and such constant drift originates a
ballistic behavior. This shows that both the slow and the ballistic regimes observed in the
Ising model have a counterpart in the continuum theory.

For the algebraic coupling Jpow(r), a continuum model has been extensively studied by
Alan Bray and Andrew D. Rutenberg [2,3], finding L(t) ∼ t1/(1+σ) for NCOP,5 which is the
slow regime observed also in the discrete Ising model. This regime has the same origin of the
slow regime for the exponential coupling. In particular, the growth law in these regimes is a
direct manifestation of the analytic form of the interaction: it is logarithmic for an exponential
J (r) and power-law for an algebraic J (r). In conclusion, for NCOP there is a rather general
correspondence between the behavior of the discrete Ising model and continuum approaches.

5 In this respect it is worth stressing that such slow regime is asymptotic for σ < 1, while it is replaced by
the diffusive one (L(t) ∼ t1/2) for large t if σ ≥ 1. This is simply due to the relevance of temperature. In
d = 1, indeed, the model in equilibrium has a finite Tc for σ < 1 and a vanishing Tc for σ ≥ 1. Therefore,
in a renormalization group language, T is an irrelevant parameter in the former case and a relevant one in the
latter. If it is irrelevant, the (continuum) result found at T = 0 is valid also switching on noise (temperature); if
it is relevant, the effect of T should be visible at large enough length scales (as it is for the short range model).
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For COP there are not many available results for deterministic continuum theories, the
only available result concerning the short-range model [23], where a logarithmic coarsening
is inferred. Despite this, we argue on general grounds that the good correspondence between
noiseless continuum approaches and the discretemodel found for NCOP does not apply to the
conserved case. We say this because any regime in the Ising model with COP is intrinsically
stochastic and therefore cannot be captured by a deterministic continuum theory. For this
reason, even if with COP a logarithmic growth is found both in the continuum approach
[23] and in the Ising model, these laws do not have a similar origin, and the corresponding
regimes are physically different. In fact, the logarithmic stage in the continuum model is due
(similarly to what discussed above for NCOP) to an exponentially small interaction between
DWs. Instead in the Ising model it stems from the exponential vanishing of the probability
that a particle detached from a domain reaches another cluster (because of the backward
drift).

This conclusion is corroborated by the fact that the short-time logarithmic regime in the
Ising COP is completely general and independent of the details of J (r). On the contrary, the
interaction between DWs in the continuum theory depends on the form of the interaction, so
that for an algebraically decaying coupling one does not expect such logarithmic coarsening.

7 Conclusions

Despite that phase ordering is an old problem, a thorough investigation of the kinetics of
the Ising model with space decaying interactions was not pursued previously. In this paper
we have considered this model in one dimension with a coupling J (r) between two spins at
distance r which is a general, positive and decreasing function J (r) > 0, ∀r .

In the asymptotic regime, t → ∞, coarsening dynamics is the same as for the short range
model if J (r) decays faster than 1/r2, the condition to have a vanishing Curie temperature
for the equilibrium model. Hence it is L(t) ∼ t1/2 for NCOP and L(t) ∼ t1/3 for COP.
However, our investigation of the dynamics at any time shows that the model with space
decaying interactions displays a rich and unexpected variety of different regimes, with the
asymptotic one being sometimes so delayed to be hardly observable.

Some features of coarsening dynamics are worth of note. The first one is that extending the
range of the interactions produces an acceleration of the NCOP dynamics and a slowdown
of the COP one. Surprisingly, these opposite effects originate from the same phenomenon:
the diffusion of a DW in the NCOP models and the diffusion of a particle in the COP models
are no more symmetric, because a drift appears. In the nonconserved case this drift tends
to move a DW towards its closest neighbour, therefore favoring the closure of domains and
speeding up the dynamics. In the conserved case, instead, the drift is applied to a detached
monomer and reduces its possibility to attain the other clusters, therefore hampering mass
exchange between clusters and impeding the kinetics.

A second feature is related to the comparison between the dynamics of the discrete Ising
model and the dynamics of continuum models, which has been discussed in the previous
Section. We limit here to stress that we have noticed the existence of a ballistic regime
(constant drift) in the continuum model as well. Such regime appears when we pass from
the nn to the exponential model, with a sufficiently large R. We have also pointed out that
a deterministic continuum approach fails in reproducing the kinetics of the Ising model
with COP in 1d, arguing that a stochastic model is needed to reproduce its behavior in any
dynamical regime, from the early stage to the asymptotic one.
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In this manuscript we have provided a detailed study of the time behaviour of L(t),
but this quantity does not cover all features of coarsening dynamics, which is also charac-
terized by correlation functions and by the full size distribution of domains. The general
time dependent spin-correlation function 〈si (t)s j (tw)〉 is usually studied at the same site,
C(t, tw) = 〈si (t)si (tw)〉, or at the same time, G(r , t) = 〈si (t)si+r (t)〉. The autocorrela-
tion function, whose scaling form is C(t, tw) = f (L(t)/L(tw)), has recently been studied
for nonconserved dynamics by the same authors [24], discovering a new universality class
appearing in the power model when σ ≤ 1 (but in contrast to the dynamical exponent z the
function f (x) and in particular the Fisher–Huse exponent λ, f (x) ≈ x−λ for x � 1, does
not depend on σ when σ ≤ 1). The equal time correlation function is the standard spin-spin
correlation functionwhose scaling form isG(r , t) = G(r/L(t) andwhose behavior is clearly
related to the distribution of domain lengths, nd(�, t). It would be of interest to study both
G and nd and finding out possible connections between the two, within different models.

Beyond the case of a quench from a disordered state addressed in this paper, many other
topics remains unexplored, as for instance the kinetics following a quench from a critical
state [25,26], which is present in the one-dimensional model with algebraic interactions
when 0 < σ ≤ 1 when Tc is finite. In addition, besides the determination of the growth law
L(t), several other features of the Ising model with space decaying interactions are worth of
further investigations. Let us mention here the aging properties, i.e. the behavior of two-time
quantities such as correlation and response functions, whose understanding could provide
useful hints for a general interpretation of aging systems [27]. Furthermore, our studies can
be extended to higher dimension d > 1, some results for d = 2 being contained in [6,28],
and to σ < 0, where additivity is lost [8]. Another interesting point to be investigated is
the robustness of our results with respect to the presence of quenched disorder, which is
often unavoidable in real systems. It is well known, in fact, that even a tiny amount of
such randomness may change radically the kinetics of coarsening systems [29], both in one
dimension [30] and higher dimensions [31–33]. The situation becomes even more complex if
disorder introduces frustration [34,35]. In particular, in the case σ ≤ 0, the one-dimensional
Edwards-Anderson model with algebraically decaying coupling constants, shows different
behaviors depending on the exponent σ [36–39]. It would be therefore interesting to explore
if and to which extent the formalism developed in this paper may provide some hints for the
understanding disordered systems with or without frustration.

A final comment concerns a recent preprint [7] whose focus is the study of the NCOP
coarsening dynamics for a lattice model with a continuum local variable qi and falling
in the equilibrium universality class of the Ising model with power-law interactions. The
system is a chain of oscillators with the standard single site, double-well potential and an
interaction potentials decaying as 1/r1+σ

i j , with 0 ≤ σ ≤ 1. Authors want to analyze if
there is equivalence between canonical and microcanonical ensemble or not. The answer is
negative: in the former case they obtain z = 1 + σ , in agreement with our results and with
those in [2,3]. Instead, in the latter case they asymptotically find z = 2, showing an out-of-
equilibrium ensemble inequivalence for σ -values where additivity (and therefore equilibrium
additivity) holds.

Funding F.C. acknowledges financial support by MIUR project PRIN2015K7KK8L.

Compliance with Ethical Standards

Conflict of interest The authors declare that they have no conflict of interest.

123



One Dimensional Phase-Ordering in the Ising Model... 537

Appendix A: Algorithm S2 with a Reduced Number of Interacting Kinks

We indicate with n the total number of interfaces present in the system at a generic time t
and with xk the position of the kth interface (with k = [−n/2, . . . , 0, . . . , n/2]). Under the
assumption of periodic boundary conditions it is easy to show that, if i ∈ [xk + 1, xk+1] and
j ∈ [xm + 1, xm+1], then si (t)s j (t) = 1 for k − m even whereas si (t)s j (t) = −1 for k − m
odd. As a consequence the Hamiltonian can be written as

H = −
n/2∑

k=−n/2

n/2∑

m=−n/2

(−1)k−m
xk+1∑

i=xk+1

xm+1∑

j=xm+1

J (|i − j |), (63)

where |i − j | indicate the spatial distance between the sites (i, j). Because of periodic
boundary conditions, such distance is actually given by the minimum between |i − j | and
N − |i − j |, but we use the expression J (|i − j |) for any pair (i, j) to avoid overloading the
notation. Furthermore, we assume J (0) = 0.

We next consider the energetic cost due to the flip of the i th spin

�E = 2si (t)
∑

j

J (|i − j |)s j (t) (64)

and separate the discussion for the NCOP and COP dynamics.

Fast NCOP Dynamics

In our fast simulation protocol, flips of spins in the bulk are forbidden. Therefore only spins at
the interface (i = xk or i = xk + 1) can flip and the dynamics is mapped to the displacement
of a DW as in Fig.1a (upper panel) (xk → xk ± 1). If xk = xk+1 −1, the displacement of the
kth interface towards the right leads to the annihilation of the two interfaces (n → n − 2).
Annihilation also occurs for a displacement towards the left if xk = xk−1 + 1. Without lack
of generality we consider the dynamics of the defect x0 and a displacement towards the right
x0 → x0 + 1 corresponds to the flip of the spin i = x0 + 1. According to Eqs. (63) and (64)
we find

�E = 2
n/2∑

k=−n/2

(−1)k
xk+1∑

j=xk+1

J (|x0 + 1 − j |). (65)

Similarly, a displacement towards the left, x0 → x0 − 1, corresponds to the flip of the spin
i = x0 and since, by definition sx0 = −sx0+1 we immediately obtain

�E = −2
n/2∑

k=−n/2

(−1)k
xk+1∑

j=xk+1

J (|x0 − j |). (66)

Defining

Q(|xk − i |) =
xk+1∑

j=xk+1

J (|i − j |) (67)

we finally obtain Eq. (10).
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In the approximation scheme S2, we randomly choose one of the (n+1) interfaces present
at time t and accept its move towards the left or the right with a probability given in Eq. (9). A
Monte Carlo step corresponds to n + 1 trials. In particular, the approximation scheme with a
finite number of interacting kinks corresponds to the substitution n → nK in Eq. (66), where
nK is a tunable parameter to be optimised.

Fast COP Dynamics

We consider the Kawasaki dynamics which corresponds to the exchange of two nearest-
neighbor opposite spins. With this dynamics the only possible moves are the three listed in
Fig. 1b. More precisely, diffusion (upper panel) and annihilation (central panel) correspond
to the simultaneous motion of two consecutive defects xk + 1 = xk+1 towards the right
(xk+1 → xk+1 + 1, xk → xk + 1) or towards the left (xk → xk − 1, xk+1 → xk+1 − 1).
In the annihilation process, in particular, the displacement towards the right occurs when a
defect is present in the position xk+2 = xk+1 + 1 leading to the annihilation of two defects.
The same situation occurs for a displacement towards the left when xk−1 = xk − 1. Finally
the detachment process (lower panel) corresponds to the nucleation of two new DWs close
to an existing one.

The energy difference can be still obtained from Eqs. (65) and (66) after taking into
account that all moves involve the simultaneous flip of two consecutive spins i = x0 and
i + 1 = x1 = x0 + 1. As a consequence each move has an energy cost

�E = 2
n/2∑

k=−n/2

(−1)k
xk+1∑

j=xk+1

(J (|x1 − xk |) − J (|x0 − xk |)) (68)

which leads to

�E = 2J (1) − 2
n/2∑

k=2

(−1)k J (|x1 − xk |) + 2
n/2∑

k=1

(−1)k J (|x0 − x−k |), (69)

corresponding to Eq. (10) with Q
(|x j − i |) = J

(
r = |x j − i |).

Also in the case of COP dynamics we have considered the approximation scheme with
a finite number nK of interacting kinks. Simulations have been performed according to a
rejection free algorithm [17]. At a given time t , a generic defect k can perform only one of
the three moves in Fig. 1b, with a probability Wk = 1/(1 + exp(β�E)) (see Eq. (9)). At
this time t , we select one of the defects (say the kth) among the n existing, with a probability
Wk/

∑n/2
j=−n/2+1 Wj . The corresponding move is always accepted and time is incremented

by 1/Wk . Notice that, at sufficiently low temperature, after a transient the system will reach
the configuration where only detachment of the kind of Fig. 1b (lower panel) are possible.
Since in this case (�E)nn > 0 this moves produce huge temporal jumps (1/Wk � 1) which
are, for instance, clearly visible in Fig. 11 by increasing β.
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